2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_dir2_format.h"
35 #include "xfs_dir2_priv.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
39 #include <linux/aio.h>
40 #include <linux/dcache.h>
41 #include <linux/falloc.h>
42 #include <linux/pagevec.h>
44 static const struct vm_operations_struct xfs_file_vm_ops
;
47 * Locking primitives for read and write IO paths to ensure we consistently use
48 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
55 if (type
& XFS_IOLOCK_EXCL
)
56 mutex_lock(&VFS_I(ip
)->i_mutex
);
65 xfs_iunlock(ip
, type
);
66 if (type
& XFS_IOLOCK_EXCL
)
67 mutex_unlock(&VFS_I(ip
)->i_mutex
);
75 xfs_ilock_demote(ip
, type
);
76 if (type
& XFS_IOLOCK_EXCL
)
77 mutex_unlock(&VFS_I(ip
)->i_mutex
);
83 * xfs_iozero clears the specified range of buffer supplied,
84 * and marks all the affected blocks as valid and modified. If
85 * an affected block is not allocated, it will be allocated. If
86 * an affected block is not completely overwritten, and is not
87 * valid before the operation, it will be read from disk before
88 * being partially zeroed.
92 struct xfs_inode
*ip
, /* inode */
93 loff_t pos
, /* offset in file */
94 size_t count
) /* size of data to zero */
97 struct address_space
*mapping
;
100 mapping
= VFS_I(ip
)->i_mapping
;
102 unsigned offset
, bytes
;
105 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
106 bytes
= PAGE_CACHE_SIZE
- offset
;
110 status
= pagecache_write_begin(NULL
, mapping
, pos
, bytes
,
111 AOP_FLAG_UNINTERRUPTIBLE
,
116 zero_user(page
, offset
, bytes
);
118 status
= pagecache_write_end(NULL
, mapping
, pos
, bytes
, bytes
,
120 WARN_ON(status
<= 0); /* can't return less than zero! */
130 * Fsync operations on directories are much simpler than on regular files,
131 * as there is no file data to flush, and thus also no need for explicit
132 * cache flush operations, and there are no non-transaction metadata updates
133 * on directories either.
142 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
143 struct xfs_mount
*mp
= ip
->i_mount
;
146 trace_xfs_dir_fsync(ip
);
148 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
149 if (xfs_ipincount(ip
))
150 lsn
= ip
->i_itemp
->ili_last_lsn
;
151 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
155 return _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, NULL
);
165 struct inode
*inode
= file
->f_mapping
->host
;
166 struct xfs_inode
*ip
= XFS_I(inode
);
167 struct xfs_mount
*mp
= ip
->i_mount
;
172 trace_xfs_file_fsync(ip
);
174 error
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
178 if (XFS_FORCED_SHUTDOWN(mp
))
179 return -XFS_ERROR(EIO
);
181 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
183 if (mp
->m_flags
& XFS_MOUNT_BARRIER
) {
185 * If we have an RT and/or log subvolume we need to make sure
186 * to flush the write cache the device used for file data
187 * first. This is to ensure newly written file data make
188 * it to disk before logging the new inode size in case of
189 * an extending write.
191 if (XFS_IS_REALTIME_INODE(ip
))
192 xfs_blkdev_issue_flush(mp
->m_rtdev_targp
);
193 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
194 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
198 * All metadata updates are logged, which means that we just have
199 * to flush the log up to the latest LSN that touched the inode.
201 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
202 if (xfs_ipincount(ip
)) {
204 (ip
->i_itemp
->ili_fields
& ~XFS_ILOG_TIMESTAMP
))
205 lsn
= ip
->i_itemp
->ili_last_lsn
;
207 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
210 error
= _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, &log_flushed
);
213 * If we only have a single device, and the log force about was
214 * a no-op we might have to flush the data device cache here.
215 * This can only happen for fdatasync/O_DSYNC if we were overwriting
216 * an already allocated file and thus do not have any metadata to
219 if ((mp
->m_flags
& XFS_MOUNT_BARRIER
) &&
220 mp
->m_logdev_targp
== mp
->m_ddev_targp
&&
221 !XFS_IS_REALTIME_INODE(ip
) &&
223 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
231 const struct iovec
*iovp
,
232 unsigned long nr_segs
,
235 struct file
*file
= iocb
->ki_filp
;
236 struct inode
*inode
= file
->f_mapping
->host
;
237 struct xfs_inode
*ip
= XFS_I(inode
);
238 struct xfs_mount
*mp
= ip
->i_mount
;
244 XFS_STATS_INC(xs_read_calls
);
246 BUG_ON(iocb
->ki_pos
!= pos
);
248 if (unlikely(file
->f_flags
& O_DIRECT
))
249 ioflags
|= IO_ISDIRECT
;
250 if (file
->f_mode
& FMODE_NOCMTIME
)
253 ret
= generic_segment_checks(iovp
, &nr_segs
, &size
, VERIFY_WRITE
);
257 if (unlikely(ioflags
& IO_ISDIRECT
)) {
258 xfs_buftarg_t
*target
=
259 XFS_IS_REALTIME_INODE(ip
) ?
260 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
261 if ((pos
& target
->bt_smask
) || (size
& target
->bt_smask
)) {
262 if (pos
== i_size_read(inode
))
264 return -XFS_ERROR(EINVAL
);
268 n
= mp
->m_super
->s_maxbytes
- pos
;
269 if (n
<= 0 || size
== 0)
275 if (XFS_FORCED_SHUTDOWN(mp
))
279 * Locking is a bit tricky here. If we take an exclusive lock
280 * for direct IO, we effectively serialise all new concurrent
281 * read IO to this file and block it behind IO that is currently in
282 * progress because IO in progress holds the IO lock shared. We only
283 * need to hold the lock exclusive to blow away the page cache, so
284 * only take lock exclusively if the page cache needs invalidation.
285 * This allows the normal direct IO case of no page cache pages to
286 * proceeed concurrently without serialisation.
288 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
289 if ((ioflags
& IO_ISDIRECT
) && inode
->i_mapping
->nrpages
) {
290 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
291 xfs_rw_ilock(ip
, XFS_IOLOCK_EXCL
);
293 if (inode
->i_mapping
->nrpages
) {
294 ret
= -filemap_write_and_wait_range(
295 VFS_I(ip
)->i_mapping
,
298 xfs_rw_iunlock(ip
, XFS_IOLOCK_EXCL
);
301 truncate_pagecache_range(VFS_I(ip
), pos
, -1);
303 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
306 trace_xfs_file_read(ip
, size
, pos
, ioflags
);
308 ret
= generic_file_aio_read(iocb
, iovp
, nr_segs
, pos
);
310 XFS_STATS_ADD(xs_read_bytes
, ret
);
312 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
317 xfs_file_splice_read(
320 struct pipe_inode_info
*pipe
,
324 struct xfs_inode
*ip
= XFS_I(infilp
->f_mapping
->host
);
328 XFS_STATS_INC(xs_read_calls
);
330 if (infilp
->f_mode
& FMODE_NOCMTIME
)
333 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
336 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
338 trace_xfs_file_splice_read(ip
, count
, *ppos
, ioflags
);
340 ret
= generic_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
342 XFS_STATS_ADD(xs_read_bytes
, ret
);
344 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
349 * xfs_file_splice_write() does not use xfs_rw_ilock() because
350 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
351 * couuld cause lock inversions between the aio_write path and the splice path
352 * if someone is doing concurrent splice(2) based writes and write(2) based
353 * writes to the same inode. The only real way to fix this is to re-implement
354 * the generic code here with correct locking orders.
357 xfs_file_splice_write(
358 struct pipe_inode_info
*pipe
,
359 struct file
*outfilp
,
364 struct inode
*inode
= outfilp
->f_mapping
->host
;
365 struct xfs_inode
*ip
= XFS_I(inode
);
369 XFS_STATS_INC(xs_write_calls
);
371 if (outfilp
->f_mode
& FMODE_NOCMTIME
)
374 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
377 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
379 trace_xfs_file_splice_write(ip
, count
, *ppos
, ioflags
);
381 ret
= generic_file_splice_write(pipe
, outfilp
, ppos
, count
, flags
);
383 XFS_STATS_ADD(xs_write_bytes
, ret
);
385 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
390 * This routine is called to handle zeroing any space in the last block of the
391 * file that is beyond the EOF. We do this since the size is being increased
392 * without writing anything to that block and we don't want to read the
393 * garbage on the disk.
395 STATIC
int /* error (positive) */
397 struct xfs_inode
*ip
,
401 struct xfs_mount
*mp
= ip
->i_mount
;
402 xfs_fileoff_t last_fsb
= XFS_B_TO_FSBT(mp
, isize
);
403 int zero_offset
= XFS_B_FSB_OFFSET(mp
, isize
);
407 struct xfs_bmbt_irec imap
;
409 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
410 error
= xfs_bmapi_read(ip
, last_fsb
, 1, &imap
, &nimaps
, 0);
411 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
418 * If the block underlying isize is just a hole, then there
419 * is nothing to zero.
421 if (imap
.br_startblock
== HOLESTARTBLOCK
)
424 zero_len
= mp
->m_sb
.sb_blocksize
- zero_offset
;
425 if (isize
+ zero_len
> offset
)
426 zero_len
= offset
- isize
;
427 return xfs_iozero(ip
, isize
, zero_len
);
431 * Zero any on disk space between the current EOF and the new, larger EOF.
433 * This handles the normal case of zeroing the remainder of the last block in
434 * the file and the unusual case of zeroing blocks out beyond the size of the
435 * file. This second case only happens with fixed size extents and when the
436 * system crashes before the inode size was updated but after blocks were
439 * Expects the iolock to be held exclusive, and will take the ilock internally.
441 int /* error (positive) */
443 struct xfs_inode
*ip
,
444 xfs_off_t offset
, /* starting I/O offset */
445 xfs_fsize_t isize
) /* current inode size */
447 struct xfs_mount
*mp
= ip
->i_mount
;
448 xfs_fileoff_t start_zero_fsb
;
449 xfs_fileoff_t end_zero_fsb
;
450 xfs_fileoff_t zero_count_fsb
;
451 xfs_fileoff_t last_fsb
;
452 xfs_fileoff_t zero_off
;
453 xfs_fsize_t zero_len
;
456 struct xfs_bmbt_irec imap
;
458 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
459 ASSERT(offset
> isize
);
462 * First handle zeroing the block on which isize resides.
464 * We only zero a part of that block so it is handled specially.
466 if (XFS_B_FSB_OFFSET(mp
, isize
) != 0) {
467 error
= xfs_zero_last_block(ip
, offset
, isize
);
473 * Calculate the range between the new size and the old where blocks
474 * needing to be zeroed may exist.
476 * To get the block where the last byte in the file currently resides,
477 * we need to subtract one from the size and truncate back to a block
478 * boundary. We subtract 1 in case the size is exactly on a block
481 last_fsb
= isize
? XFS_B_TO_FSBT(mp
, isize
- 1) : (xfs_fileoff_t
)-1;
482 start_zero_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
483 end_zero_fsb
= XFS_B_TO_FSBT(mp
, offset
- 1);
484 ASSERT((xfs_sfiloff_t
)last_fsb
< (xfs_sfiloff_t
)start_zero_fsb
);
485 if (last_fsb
== end_zero_fsb
) {
487 * The size was only incremented on its last block.
488 * We took care of that above, so just return.
493 ASSERT(start_zero_fsb
<= end_zero_fsb
);
494 while (start_zero_fsb
<= end_zero_fsb
) {
496 zero_count_fsb
= end_zero_fsb
- start_zero_fsb
+ 1;
498 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
499 error
= xfs_bmapi_read(ip
, start_zero_fsb
, zero_count_fsb
,
501 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
507 if (imap
.br_state
== XFS_EXT_UNWRITTEN
||
508 imap
.br_startblock
== HOLESTARTBLOCK
) {
509 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
510 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
515 * There are blocks we need to zero.
517 zero_off
= XFS_FSB_TO_B(mp
, start_zero_fsb
);
518 zero_len
= XFS_FSB_TO_B(mp
, imap
.br_blockcount
);
520 if ((zero_off
+ zero_len
) > offset
)
521 zero_len
= offset
- zero_off
;
523 error
= xfs_iozero(ip
, zero_off
, zero_len
);
527 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
528 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
535 * Common pre-write limit and setup checks.
537 * Called with the iolocked held either shared and exclusive according to
538 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
539 * if called for a direct write beyond i_size.
542 xfs_file_aio_write_checks(
548 struct inode
*inode
= file
->f_mapping
->host
;
549 struct xfs_inode
*ip
= XFS_I(inode
);
553 error
= generic_write_checks(file
, pos
, count
, S_ISBLK(inode
->i_mode
));
558 * If the offset is beyond the size of the file, we need to zero any
559 * blocks that fall between the existing EOF and the start of this
560 * write. If zeroing is needed and we are currently holding the
561 * iolock shared, we need to update it to exclusive which implies
562 * having to redo all checks before.
564 if (*pos
> i_size_read(inode
)) {
565 if (*iolock
== XFS_IOLOCK_SHARED
) {
566 xfs_rw_iunlock(ip
, *iolock
);
567 *iolock
= XFS_IOLOCK_EXCL
;
568 xfs_rw_ilock(ip
, *iolock
);
571 error
= -xfs_zero_eof(ip
, *pos
, i_size_read(inode
));
577 * Updating the timestamps will grab the ilock again from
578 * xfs_fs_dirty_inode, so we have to call it after dropping the
579 * lock above. Eventually we should look into a way to avoid
580 * the pointless lock roundtrip.
582 if (likely(!(file
->f_mode
& FMODE_NOCMTIME
))) {
583 error
= file_update_time(file
);
589 * If we're writing the file then make sure to clear the setuid and
590 * setgid bits if the process is not being run by root. This keeps
591 * people from modifying setuid and setgid binaries.
593 return file_remove_suid(file
);
597 * xfs_file_dio_aio_write - handle direct IO writes
599 * Lock the inode appropriately to prepare for and issue a direct IO write.
600 * By separating it from the buffered write path we remove all the tricky to
601 * follow locking changes and looping.
603 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
604 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
605 * pages are flushed out.
607 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
608 * allowing them to be done in parallel with reads and other direct IO writes.
609 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
610 * needs to do sub-block zeroing and that requires serialisation against other
611 * direct IOs to the same block. In this case we need to serialise the
612 * submission of the unaligned IOs so that we don't get racing block zeroing in
613 * the dio layer. To avoid the problem with aio, we also need to wait for
614 * outstanding IOs to complete so that unwritten extent conversion is completed
615 * before we try to map the overlapping block. This is currently implemented by
616 * hitting it with a big hammer (i.e. inode_dio_wait()).
618 * Returns with locks held indicated by @iolock and errors indicated by
619 * negative return values.
622 xfs_file_dio_aio_write(
624 const struct iovec
*iovp
,
625 unsigned long nr_segs
,
629 struct file
*file
= iocb
->ki_filp
;
630 struct address_space
*mapping
= file
->f_mapping
;
631 struct inode
*inode
= mapping
->host
;
632 struct xfs_inode
*ip
= XFS_I(inode
);
633 struct xfs_mount
*mp
= ip
->i_mount
;
635 size_t count
= ocount
;
636 int unaligned_io
= 0;
638 struct xfs_buftarg
*target
= XFS_IS_REALTIME_INODE(ip
) ?
639 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
641 if ((pos
& target
->bt_smask
) || (count
& target
->bt_smask
))
642 return -XFS_ERROR(EINVAL
);
644 if ((pos
& mp
->m_blockmask
) || ((pos
+ count
) & mp
->m_blockmask
))
648 * We don't need to take an exclusive lock unless there page cache needs
649 * to be invalidated or unaligned IO is being executed. We don't need to
650 * consider the EOF extension case here because
651 * xfs_file_aio_write_checks() will relock the inode as necessary for
652 * EOF zeroing cases and fill out the new inode size as appropriate.
654 if (unaligned_io
|| mapping
->nrpages
)
655 iolock
= XFS_IOLOCK_EXCL
;
657 iolock
= XFS_IOLOCK_SHARED
;
658 xfs_rw_ilock(ip
, iolock
);
661 * Recheck if there are cached pages that need invalidate after we got
662 * the iolock to protect against other threads adding new pages while
663 * we were waiting for the iolock.
665 if (mapping
->nrpages
&& iolock
== XFS_IOLOCK_SHARED
) {
666 xfs_rw_iunlock(ip
, iolock
);
667 iolock
= XFS_IOLOCK_EXCL
;
668 xfs_rw_ilock(ip
, iolock
);
671 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
675 if (mapping
->nrpages
) {
676 ret
= -filemap_write_and_wait_range(VFS_I(ip
)->i_mapping
,
680 truncate_pagecache_range(VFS_I(ip
), pos
, -1);
684 * If we are doing unaligned IO, wait for all other IO to drain,
685 * otherwise demote the lock if we had to flush cached pages
688 inode_dio_wait(inode
);
689 else if (iolock
== XFS_IOLOCK_EXCL
) {
690 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
691 iolock
= XFS_IOLOCK_SHARED
;
694 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
, 0);
695 ret
= generic_file_direct_write(iocb
, iovp
,
696 &nr_segs
, pos
, &iocb
->ki_pos
, count
, ocount
);
699 xfs_rw_iunlock(ip
, iolock
);
701 /* No fallback to buffered IO on errors for XFS. */
702 ASSERT(ret
< 0 || ret
== count
);
707 xfs_file_buffered_aio_write(
709 const struct iovec
*iovp
,
710 unsigned long nr_segs
,
714 struct file
*file
= iocb
->ki_filp
;
715 struct address_space
*mapping
= file
->f_mapping
;
716 struct inode
*inode
= mapping
->host
;
717 struct xfs_inode
*ip
= XFS_I(inode
);
720 int iolock
= XFS_IOLOCK_EXCL
;
721 size_t count
= ocount
;
723 xfs_rw_ilock(ip
, iolock
);
725 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
729 /* We can write back this queue in page reclaim */
730 current
->backing_dev_info
= mapping
->backing_dev_info
;
733 trace_xfs_file_buffered_write(ip
, count
, iocb
->ki_pos
, 0);
734 ret
= generic_file_buffered_write(iocb
, iovp
, nr_segs
,
735 pos
, &iocb
->ki_pos
, count
, 0);
738 * If we just got an ENOSPC, try to write back all dirty inodes to
739 * convert delalloc space to free up some of the excess reserved
742 if (ret
== -ENOSPC
&& !enospc
) {
744 xfs_flush_inodes(ip
->i_mount
);
748 current
->backing_dev_info
= NULL
;
750 xfs_rw_iunlock(ip
, iolock
);
757 const struct iovec
*iovp
,
758 unsigned long nr_segs
,
761 struct file
*file
= iocb
->ki_filp
;
762 struct address_space
*mapping
= file
->f_mapping
;
763 struct inode
*inode
= mapping
->host
;
764 struct xfs_inode
*ip
= XFS_I(inode
);
768 XFS_STATS_INC(xs_write_calls
);
770 BUG_ON(iocb
->ki_pos
!= pos
);
772 ret
= generic_segment_checks(iovp
, &nr_segs
, &ocount
, VERIFY_READ
);
779 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
784 if (unlikely(file
->f_flags
& O_DIRECT
))
785 ret
= xfs_file_dio_aio_write(iocb
, iovp
, nr_segs
, pos
, ocount
);
787 ret
= xfs_file_buffered_aio_write(iocb
, iovp
, nr_segs
, pos
,
793 XFS_STATS_ADD(xs_write_bytes
, ret
);
795 /* Handle various SYNC-type writes */
796 err
= generic_write_sync(file
, pos
, ret
);
812 struct inode
*inode
= file_inode(file
);
816 xfs_inode_t
*ip
= XFS_I(inode
);
817 int cmd
= XFS_IOC_RESVSP
;
818 int attr_flags
= XFS_ATTR_NOLOCK
;
820 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
827 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
829 if (mode
& FALLOC_FL_PUNCH_HOLE
)
830 cmd
= XFS_IOC_UNRESVSP
;
832 /* check the new inode size is valid before allocating */
833 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
834 offset
+ len
> i_size_read(inode
)) {
835 new_size
= offset
+ len
;
836 error
= inode_newsize_ok(inode
, new_size
);
841 if (file
->f_flags
& O_DSYNC
)
842 attr_flags
|= XFS_ATTR_SYNC
;
844 error
= -xfs_change_file_space(ip
, cmd
, &bf
, 0, attr_flags
);
848 /* Change file size if needed */
852 iattr
.ia_valid
= ATTR_SIZE
;
853 iattr
.ia_size
= new_size
;
854 error
= -xfs_setattr_size(ip
, &iattr
, XFS_ATTR_NOLOCK
);
858 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
868 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
870 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
880 struct xfs_inode
*ip
= XFS_I(inode
);
884 error
= xfs_file_open(inode
, file
);
889 * If there are any blocks, read-ahead block 0 as we're almost
890 * certain to have the next operation be a read there.
892 mode
= xfs_ilock_map_shared(ip
);
893 if (ip
->i_d
.di_nextents
> 0)
894 xfs_dir3_data_readahead(NULL
, ip
, 0, -1);
895 xfs_iunlock(ip
, mode
);
904 return -xfs_release(XFS_I(inode
));
910 struct dir_context
*ctx
)
912 struct inode
*inode
= file_inode(file
);
913 xfs_inode_t
*ip
= XFS_I(inode
);
918 * The Linux API doesn't pass down the total size of the buffer
919 * we read into down to the filesystem. With the filldir concept
920 * it's not needed for correct information, but the XFS dir2 leaf
921 * code wants an estimate of the buffer size to calculate it's
922 * readahead window and size the buffers used for mapping to
925 * Try to give it an estimate that's good enough, maybe at some
926 * point we can change the ->readdir prototype to include the
927 * buffer size. For now we use the current glibc buffer size.
929 bufsize
= (size_t)min_t(loff_t
, 32768, ip
->i_d
.di_size
);
931 error
= xfs_readdir(ip
, ctx
, bufsize
);
940 struct vm_area_struct
*vma
)
942 vma
->vm_ops
= &xfs_file_vm_ops
;
949 * mmap()d file has taken write protection fault and is being made
950 * writable. We can set the page state up correctly for a writable
951 * page, which means we can do correct delalloc accounting (ENOSPC
952 * checking!) and unwritten extent mapping.
956 struct vm_area_struct
*vma
,
957 struct vm_fault
*vmf
)
959 return block_page_mkwrite(vma
, vmf
, xfs_get_blocks
);
963 * This type is designed to indicate the type of offset we would like
964 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
972 * Lookup the desired type of offset from the given page.
974 * On success, return true and the offset argument will point to the
975 * start of the region that was found. Otherwise this function will
976 * return false and keep the offset argument unchanged.
979 xfs_lookup_buffer_offset(
984 loff_t lastoff
= page_offset(page
);
986 struct buffer_head
*bh
, *head
;
988 bh
= head
= page_buffers(page
);
991 * Unwritten extents that have data in the page
992 * cache covering them can be identified by the
993 * BH_Unwritten state flag. Pages with multiple
994 * buffers might have a mix of holes, data and
995 * unwritten extents - any buffer with valid
996 * data in it should have BH_Uptodate flag set
999 if (buffer_unwritten(bh
) ||
1000 buffer_uptodate(bh
)) {
1001 if (type
== DATA_OFF
)
1004 if (type
== HOLE_OFF
)
1012 lastoff
+= bh
->b_size
;
1013 } while ((bh
= bh
->b_this_page
) != head
);
1019 * This routine is called to find out and return a data or hole offset
1020 * from the page cache for unwritten extents according to the desired
1021 * type for xfs_seek_data() or xfs_seek_hole().
1023 * The argument offset is used to tell where we start to search from the
1024 * page cache. Map is used to figure out the end points of the range to
1027 * Return true if the desired type of offset was found, and the argument
1028 * offset is filled with that address. Otherwise, return false and keep
1032 xfs_find_get_desired_pgoff(
1033 struct inode
*inode
,
1034 struct xfs_bmbt_irec
*map
,
1038 struct xfs_inode
*ip
= XFS_I(inode
);
1039 struct xfs_mount
*mp
= ip
->i_mount
;
1040 struct pagevec pvec
;
1044 loff_t startoff
= *offset
;
1045 loff_t lastoff
= startoff
;
1048 pagevec_init(&pvec
, 0);
1050 index
= startoff
>> PAGE_CACHE_SHIFT
;
1051 endoff
= XFS_FSB_TO_B(mp
, map
->br_startoff
+ map
->br_blockcount
);
1052 end
= endoff
>> PAGE_CACHE_SHIFT
;
1058 want
= min_t(pgoff_t
, end
- index
, PAGEVEC_SIZE
);
1059 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, index
,
1062 * No page mapped into given range. If we are searching holes
1063 * and if this is the first time we got into the loop, it means
1064 * that the given offset is landed in a hole, return it.
1066 * If we have already stepped through some block buffers to find
1067 * holes but they all contains data. In this case, the last
1068 * offset is already updated and pointed to the end of the last
1069 * mapped page, if it does not reach the endpoint to search,
1070 * that means there should be a hole between them.
1072 if (nr_pages
== 0) {
1073 /* Data search found nothing */
1074 if (type
== DATA_OFF
)
1077 ASSERT(type
== HOLE_OFF
);
1078 if (lastoff
== startoff
|| lastoff
< endoff
) {
1086 * At lease we found one page. If this is the first time we
1087 * step into the loop, and if the first page index offset is
1088 * greater than the given search offset, a hole was found.
1090 if (type
== HOLE_OFF
&& lastoff
== startoff
&&
1091 lastoff
< page_offset(pvec
.pages
[0])) {
1096 for (i
= 0; i
< nr_pages
; i
++) {
1097 struct page
*page
= pvec
.pages
[i
];
1101 * At this point, the page may be truncated or
1102 * invalidated (changing page->mapping to NULL),
1103 * or even swizzled back from swapper_space to tmpfs
1104 * file mapping. However, page->index will not change
1105 * because we have a reference on the page.
1107 * Searching done if the page index is out of range.
1108 * If the current offset is not reaches the end of
1109 * the specified search range, there should be a hole
1112 if (page
->index
> end
) {
1113 if (type
== HOLE_OFF
&& lastoff
< endoff
) {
1122 * Page truncated or invalidated(page->mapping == NULL).
1123 * We can freely skip it and proceed to check the next
1126 if (unlikely(page
->mapping
!= inode
->i_mapping
)) {
1131 if (!page_has_buffers(page
)) {
1136 found
= xfs_lookup_buffer_offset(page
, &b_offset
, type
);
1139 * The found offset may be less than the start
1140 * point to search if this is the first time to
1143 *offset
= max_t(loff_t
, startoff
, b_offset
);
1149 * We either searching data but nothing was found, or
1150 * searching hole but found a data buffer. In either
1151 * case, probably the next page contains the desired
1152 * things, update the last offset to it so.
1154 lastoff
= page_offset(page
) + PAGE_SIZE
;
1159 * The number of returned pages less than our desired, search
1160 * done. In this case, nothing was found for searching data,
1161 * but we found a hole behind the last offset.
1163 if (nr_pages
< want
) {
1164 if (type
== HOLE_OFF
) {
1171 index
= pvec
.pages
[i
- 1]->index
+ 1;
1172 pagevec_release(&pvec
);
1173 } while (index
<= end
);
1176 pagevec_release(&pvec
);
1185 struct inode
*inode
= file
->f_mapping
->host
;
1186 struct xfs_inode
*ip
= XFS_I(inode
);
1187 struct xfs_mount
*mp
= ip
->i_mount
;
1188 loff_t
uninitialized_var(offset
);
1190 xfs_fileoff_t fsbno
;
1195 lock
= xfs_ilock_map_shared(ip
);
1197 isize
= i_size_read(inode
);
1198 if (start
>= isize
) {
1204 * Try to read extents from the first block indicated
1205 * by fsbno to the end block of the file.
1207 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1208 end
= XFS_B_TO_FSB(mp
, isize
);
1210 struct xfs_bmbt_irec map
[2];
1214 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1219 /* No extents at given offset, must be beyond EOF */
1225 for (i
= 0; i
< nmap
; i
++) {
1226 offset
= max_t(loff_t
, start
,
1227 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1229 /* Landed in a data extent */
1230 if (map
[i
].br_startblock
== DELAYSTARTBLOCK
||
1231 (map
[i
].br_state
== XFS_EXT_NORM
&&
1232 !isnullstartblock(map
[i
].br_startblock
)))
1236 * Landed in an unwritten extent, try to search data
1239 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1240 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1247 * map[0] is hole or its an unwritten extent but
1248 * without data in page cache. Probably means that
1249 * we are reading after EOF if nothing in map[1].
1259 * Nothing was found, proceed to the next round of search
1260 * if reading offset not beyond or hit EOF.
1262 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1263 start
= XFS_FSB_TO_B(mp
, fsbno
);
1264 if (start
>= isize
) {
1271 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1274 xfs_iunlock_map_shared(ip
, lock
);
1286 struct inode
*inode
= file
->f_mapping
->host
;
1287 struct xfs_inode
*ip
= XFS_I(inode
);
1288 struct xfs_mount
*mp
= ip
->i_mount
;
1289 loff_t
uninitialized_var(offset
);
1291 xfs_fileoff_t fsbno
;
1296 if (XFS_FORCED_SHUTDOWN(mp
))
1297 return -XFS_ERROR(EIO
);
1299 lock
= xfs_ilock_map_shared(ip
);
1301 isize
= i_size_read(inode
);
1302 if (start
>= isize
) {
1307 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1308 end
= XFS_B_TO_FSB(mp
, isize
);
1311 struct xfs_bmbt_irec map
[2];
1315 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1320 /* No extents at given offset, must be beyond EOF */
1326 for (i
= 0; i
< nmap
; i
++) {
1327 offset
= max_t(loff_t
, start
,
1328 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1330 /* Landed in a hole */
1331 if (map
[i
].br_startblock
== HOLESTARTBLOCK
)
1335 * Landed in an unwritten extent, try to search hole
1338 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1339 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1346 * map[0] contains data or its unwritten but contains
1347 * data in page cache, probably means that we are
1348 * reading after EOF. We should fix offset to point
1349 * to the end of the file(i.e., there is an implicit
1350 * hole at the end of any file).
1360 * Both mappings contains data, proceed to the next round of
1361 * search if the current reading offset not beyond or hit EOF.
1363 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1364 start
= XFS_FSB_TO_B(mp
, fsbno
);
1365 if (start
>= isize
) {
1373 * At this point, we must have found a hole. However, the returned
1374 * offset may be bigger than the file size as it may be aligned to
1375 * page boundary for unwritten extents, we need to deal with this
1376 * situation in particular.
1378 offset
= min_t(loff_t
, offset
, isize
);
1379 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1382 xfs_iunlock_map_shared(ip
, lock
);
1399 return generic_file_llseek(file
, offset
, origin
);
1401 return xfs_seek_data(file
, offset
);
1403 return xfs_seek_hole(file
, offset
);
1409 const struct file_operations xfs_file_operations
= {
1410 .llseek
= xfs_file_llseek
,
1411 .read
= do_sync_read
,
1412 .write
= do_sync_write
,
1413 .aio_read
= xfs_file_aio_read
,
1414 .aio_write
= xfs_file_aio_write
,
1415 .splice_read
= xfs_file_splice_read
,
1416 .splice_write
= xfs_file_splice_write
,
1417 .unlocked_ioctl
= xfs_file_ioctl
,
1418 #ifdef CONFIG_COMPAT
1419 .compat_ioctl
= xfs_file_compat_ioctl
,
1421 .mmap
= xfs_file_mmap
,
1422 .open
= xfs_file_open
,
1423 .release
= xfs_file_release
,
1424 .fsync
= xfs_file_fsync
,
1425 .fallocate
= xfs_file_fallocate
,
1428 const struct file_operations xfs_dir_file_operations
= {
1429 .open
= xfs_dir_open
,
1430 .read
= generic_read_dir
,
1431 .iterate
= xfs_file_readdir
,
1432 .llseek
= generic_file_llseek
,
1433 .unlocked_ioctl
= xfs_file_ioctl
,
1434 #ifdef CONFIG_COMPAT
1435 .compat_ioctl
= xfs_file_compat_ioctl
,
1437 .fsync
= xfs_dir_fsync
,
1440 static const struct vm_operations_struct xfs_file_vm_ops
= {
1441 .fault
= filemap_fault
,
1442 .page_mkwrite
= xfs_vm_page_mkwrite
,
1443 .remap_pages
= generic_file_remap_pages
,