Merge branch 'master' into x86/memblock
[linux-2.6.git] / drivers / iommu / intel-iommu.c
blobbcbd693b351ae8f250496388ff5f0921a90b0be6
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
47 #define ROOT_SIZE VTD_PAGE_SIZE
48 #define CONTEXT_SIZE VTD_PAGE_SIZE
50 #define IS_BRIDGE_HOST_DEVICE(pdev) \
51 ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
62 #define MAX_AGAW_WIDTH 64
64 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
65 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
68 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
69 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
70 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
71 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
74 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
75 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
77 /* page table handling */
78 #define LEVEL_STRIDE (9)
79 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
81 static inline int agaw_to_level(int agaw)
83 return agaw + 2;
86 static inline int agaw_to_width(int agaw)
88 return 30 + agaw * LEVEL_STRIDE;
91 static inline int width_to_agaw(int width)
93 return (width - 30) / LEVEL_STRIDE;
96 static inline unsigned int level_to_offset_bits(int level)
98 return (level - 1) * LEVEL_STRIDE;
101 static inline int pfn_level_offset(unsigned long pfn, int level)
103 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
106 static inline unsigned long level_mask(int level)
108 return -1UL << level_to_offset_bits(level);
111 static inline unsigned long level_size(int level)
113 return 1UL << level_to_offset_bits(level);
116 static inline unsigned long align_to_level(unsigned long pfn, int level)
118 return (pfn + level_size(level) - 1) & level_mask(level);
121 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
123 return 1 << ((lvl - 1) * LEVEL_STRIDE);
126 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
127 are never going to work. */
128 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
130 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
133 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
135 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
137 static inline unsigned long page_to_dma_pfn(struct page *pg)
139 return mm_to_dma_pfn(page_to_pfn(pg));
141 static inline unsigned long virt_to_dma_pfn(void *p)
143 return page_to_dma_pfn(virt_to_page(p));
146 /* global iommu list, set NULL for ignored DMAR units */
147 static struct intel_iommu **g_iommus;
149 static void __init check_tylersburg_isoch(void);
150 static int rwbf_quirk;
153 * set to 1 to panic kernel if can't successfully enable VT-d
154 * (used when kernel is launched w/ TXT)
156 static int force_on = 0;
159 * 0: Present
160 * 1-11: Reserved
161 * 12-63: Context Ptr (12 - (haw-1))
162 * 64-127: Reserved
164 struct root_entry {
165 u64 val;
166 u64 rsvd1;
168 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
169 static inline bool root_present(struct root_entry *root)
171 return (root->val & 1);
173 static inline void set_root_present(struct root_entry *root)
175 root->val |= 1;
177 static inline void set_root_value(struct root_entry *root, unsigned long value)
179 root->val |= value & VTD_PAGE_MASK;
182 static inline struct context_entry *
183 get_context_addr_from_root(struct root_entry *root)
185 return (struct context_entry *)
186 (root_present(root)?phys_to_virt(
187 root->val & VTD_PAGE_MASK) :
188 NULL);
192 * low 64 bits:
193 * 0: present
194 * 1: fault processing disable
195 * 2-3: translation type
196 * 12-63: address space root
197 * high 64 bits:
198 * 0-2: address width
199 * 3-6: aval
200 * 8-23: domain id
202 struct context_entry {
203 u64 lo;
204 u64 hi;
207 static inline bool context_present(struct context_entry *context)
209 return (context->lo & 1);
211 static inline void context_set_present(struct context_entry *context)
213 context->lo |= 1;
216 static inline void context_set_fault_enable(struct context_entry *context)
218 context->lo &= (((u64)-1) << 2) | 1;
221 static inline void context_set_translation_type(struct context_entry *context,
222 unsigned long value)
224 context->lo &= (((u64)-1) << 4) | 3;
225 context->lo |= (value & 3) << 2;
228 static inline void context_set_address_root(struct context_entry *context,
229 unsigned long value)
231 context->lo |= value & VTD_PAGE_MASK;
234 static inline void context_set_address_width(struct context_entry *context,
235 unsigned long value)
237 context->hi |= value & 7;
240 static inline void context_set_domain_id(struct context_entry *context,
241 unsigned long value)
243 context->hi |= (value & ((1 << 16) - 1)) << 8;
246 static inline void context_clear_entry(struct context_entry *context)
248 context->lo = 0;
249 context->hi = 0;
253 * 0: readable
254 * 1: writable
255 * 2-6: reserved
256 * 7: super page
257 * 8-10: available
258 * 11: snoop behavior
259 * 12-63: Host physcial address
261 struct dma_pte {
262 u64 val;
265 static inline void dma_clear_pte(struct dma_pte *pte)
267 pte->val = 0;
270 static inline void dma_set_pte_readable(struct dma_pte *pte)
272 pte->val |= DMA_PTE_READ;
275 static inline void dma_set_pte_writable(struct dma_pte *pte)
277 pte->val |= DMA_PTE_WRITE;
280 static inline void dma_set_pte_snp(struct dma_pte *pte)
282 pte->val |= DMA_PTE_SNP;
285 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
287 pte->val = (pte->val & ~3) | (prot & 3);
290 static inline u64 dma_pte_addr(struct dma_pte *pte)
292 #ifdef CONFIG_64BIT
293 return pte->val & VTD_PAGE_MASK;
294 #else
295 /* Must have a full atomic 64-bit read */
296 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
297 #endif
300 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
302 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
305 static inline bool dma_pte_present(struct dma_pte *pte)
307 return (pte->val & 3) != 0;
310 static inline bool dma_pte_superpage(struct dma_pte *pte)
312 return (pte->val & (1 << 7));
315 static inline int first_pte_in_page(struct dma_pte *pte)
317 return !((unsigned long)pte & ~VTD_PAGE_MASK);
321 * This domain is a statically identity mapping domain.
322 * 1. This domain creats a static 1:1 mapping to all usable memory.
323 * 2. It maps to each iommu if successful.
324 * 3. Each iommu mapps to this domain if successful.
326 static struct dmar_domain *si_domain;
327 static int hw_pass_through = 1;
329 /* devices under the same p2p bridge are owned in one domain */
330 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
332 /* domain represents a virtual machine, more than one devices
333 * across iommus may be owned in one domain, e.g. kvm guest.
335 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
337 /* si_domain contains mulitple devices */
338 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
340 struct dmar_domain {
341 int id; /* domain id */
342 int nid; /* node id */
343 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
345 struct list_head devices; /* all devices' list */
346 struct iova_domain iovad; /* iova's that belong to this domain */
348 struct dma_pte *pgd; /* virtual address */
349 int gaw; /* max guest address width */
351 /* adjusted guest address width, 0 is level 2 30-bit */
352 int agaw;
354 int flags; /* flags to find out type of domain */
356 int iommu_coherency;/* indicate coherency of iommu access */
357 int iommu_snooping; /* indicate snooping control feature*/
358 int iommu_count; /* reference count of iommu */
359 int iommu_superpage;/* Level of superpages supported:
360 0 == 4KiB (no superpages), 1 == 2MiB,
361 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
362 spinlock_t iommu_lock; /* protect iommu set in domain */
363 u64 max_addr; /* maximum mapped address */
366 /* PCI domain-device relationship */
367 struct device_domain_info {
368 struct list_head link; /* link to domain siblings */
369 struct list_head global; /* link to global list */
370 int segment; /* PCI domain */
371 u8 bus; /* PCI bus number */
372 u8 devfn; /* PCI devfn number */
373 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
374 struct intel_iommu *iommu; /* IOMMU used by this device */
375 struct dmar_domain *domain; /* pointer to domain */
378 static void flush_unmaps_timeout(unsigned long data);
380 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
382 #define HIGH_WATER_MARK 250
383 struct deferred_flush_tables {
384 int next;
385 struct iova *iova[HIGH_WATER_MARK];
386 struct dmar_domain *domain[HIGH_WATER_MARK];
389 static struct deferred_flush_tables *deferred_flush;
391 /* bitmap for indexing intel_iommus */
392 static int g_num_of_iommus;
394 static DEFINE_SPINLOCK(async_umap_flush_lock);
395 static LIST_HEAD(unmaps_to_do);
397 static int timer_on;
398 static long list_size;
400 static void domain_remove_dev_info(struct dmar_domain *domain);
402 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
403 int dmar_disabled = 0;
404 #else
405 int dmar_disabled = 1;
406 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
408 static int dmar_map_gfx = 1;
409 static int dmar_forcedac;
410 static int intel_iommu_strict;
411 static int intel_iommu_superpage = 1;
413 int intel_iommu_gfx_mapped;
414 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
416 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
417 static DEFINE_SPINLOCK(device_domain_lock);
418 static LIST_HEAD(device_domain_list);
420 static struct iommu_ops intel_iommu_ops;
422 static int __init intel_iommu_setup(char *str)
424 if (!str)
425 return -EINVAL;
426 while (*str) {
427 if (!strncmp(str, "on", 2)) {
428 dmar_disabled = 0;
429 printk(KERN_INFO "Intel-IOMMU: enabled\n");
430 } else if (!strncmp(str, "off", 3)) {
431 dmar_disabled = 1;
432 printk(KERN_INFO "Intel-IOMMU: disabled\n");
433 } else if (!strncmp(str, "igfx_off", 8)) {
434 dmar_map_gfx = 0;
435 printk(KERN_INFO
436 "Intel-IOMMU: disable GFX device mapping\n");
437 } else if (!strncmp(str, "forcedac", 8)) {
438 printk(KERN_INFO
439 "Intel-IOMMU: Forcing DAC for PCI devices\n");
440 dmar_forcedac = 1;
441 } else if (!strncmp(str, "strict", 6)) {
442 printk(KERN_INFO
443 "Intel-IOMMU: disable batched IOTLB flush\n");
444 intel_iommu_strict = 1;
445 } else if (!strncmp(str, "sp_off", 6)) {
446 printk(KERN_INFO
447 "Intel-IOMMU: disable supported super page\n");
448 intel_iommu_superpage = 0;
451 str += strcspn(str, ",");
452 while (*str == ',')
453 str++;
455 return 0;
457 __setup("intel_iommu=", intel_iommu_setup);
459 static struct kmem_cache *iommu_domain_cache;
460 static struct kmem_cache *iommu_devinfo_cache;
461 static struct kmem_cache *iommu_iova_cache;
463 static inline void *alloc_pgtable_page(int node)
465 struct page *page;
466 void *vaddr = NULL;
468 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
469 if (page)
470 vaddr = page_address(page);
471 return vaddr;
474 static inline void free_pgtable_page(void *vaddr)
476 free_page((unsigned long)vaddr);
479 static inline void *alloc_domain_mem(void)
481 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
484 static void free_domain_mem(void *vaddr)
486 kmem_cache_free(iommu_domain_cache, vaddr);
489 static inline void * alloc_devinfo_mem(void)
491 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
494 static inline void free_devinfo_mem(void *vaddr)
496 kmem_cache_free(iommu_devinfo_cache, vaddr);
499 struct iova *alloc_iova_mem(void)
501 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
504 void free_iova_mem(struct iova *iova)
506 kmem_cache_free(iommu_iova_cache, iova);
510 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
512 unsigned long sagaw;
513 int agaw = -1;
515 sagaw = cap_sagaw(iommu->cap);
516 for (agaw = width_to_agaw(max_gaw);
517 agaw >= 0; agaw--) {
518 if (test_bit(agaw, &sagaw))
519 break;
522 return agaw;
526 * Calculate max SAGAW for each iommu.
528 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
530 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
534 * calculate agaw for each iommu.
535 * "SAGAW" may be different across iommus, use a default agaw, and
536 * get a supported less agaw for iommus that don't support the default agaw.
538 int iommu_calculate_agaw(struct intel_iommu *iommu)
540 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
543 /* This functionin only returns single iommu in a domain */
544 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
546 int iommu_id;
548 /* si_domain and vm domain should not get here. */
549 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
550 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
552 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
553 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
554 return NULL;
556 return g_iommus[iommu_id];
559 static void domain_update_iommu_coherency(struct dmar_domain *domain)
561 int i;
563 domain->iommu_coherency = 1;
565 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
566 if (!ecap_coherent(g_iommus[i]->ecap)) {
567 domain->iommu_coherency = 0;
568 break;
573 static void domain_update_iommu_snooping(struct dmar_domain *domain)
575 int i;
577 domain->iommu_snooping = 1;
579 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
580 if (!ecap_sc_support(g_iommus[i]->ecap)) {
581 domain->iommu_snooping = 0;
582 break;
587 static void domain_update_iommu_superpage(struct dmar_domain *domain)
589 struct dmar_drhd_unit *drhd;
590 struct intel_iommu *iommu = NULL;
591 int mask = 0xf;
593 if (!intel_iommu_superpage) {
594 domain->iommu_superpage = 0;
595 return;
598 /* set iommu_superpage to the smallest common denominator */
599 for_each_active_iommu(iommu, drhd) {
600 mask &= cap_super_page_val(iommu->cap);
601 if (!mask) {
602 break;
605 domain->iommu_superpage = fls(mask);
608 /* Some capabilities may be different across iommus */
609 static void domain_update_iommu_cap(struct dmar_domain *domain)
611 domain_update_iommu_coherency(domain);
612 domain_update_iommu_snooping(domain);
613 domain_update_iommu_superpage(domain);
616 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
618 struct dmar_drhd_unit *drhd = NULL;
619 int i;
621 for_each_drhd_unit(drhd) {
622 if (drhd->ignored)
623 continue;
624 if (segment != drhd->segment)
625 continue;
627 for (i = 0; i < drhd->devices_cnt; i++) {
628 if (drhd->devices[i] &&
629 drhd->devices[i]->bus->number == bus &&
630 drhd->devices[i]->devfn == devfn)
631 return drhd->iommu;
632 if (drhd->devices[i] &&
633 drhd->devices[i]->subordinate &&
634 drhd->devices[i]->subordinate->number <= bus &&
635 drhd->devices[i]->subordinate->subordinate >= bus)
636 return drhd->iommu;
639 if (drhd->include_all)
640 return drhd->iommu;
643 return NULL;
646 static void domain_flush_cache(struct dmar_domain *domain,
647 void *addr, int size)
649 if (!domain->iommu_coherency)
650 clflush_cache_range(addr, size);
653 /* Gets context entry for a given bus and devfn */
654 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
655 u8 bus, u8 devfn)
657 struct root_entry *root;
658 struct context_entry *context;
659 unsigned long phy_addr;
660 unsigned long flags;
662 spin_lock_irqsave(&iommu->lock, flags);
663 root = &iommu->root_entry[bus];
664 context = get_context_addr_from_root(root);
665 if (!context) {
666 context = (struct context_entry *)
667 alloc_pgtable_page(iommu->node);
668 if (!context) {
669 spin_unlock_irqrestore(&iommu->lock, flags);
670 return NULL;
672 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
673 phy_addr = virt_to_phys((void *)context);
674 set_root_value(root, phy_addr);
675 set_root_present(root);
676 __iommu_flush_cache(iommu, root, sizeof(*root));
678 spin_unlock_irqrestore(&iommu->lock, flags);
679 return &context[devfn];
682 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
684 struct root_entry *root;
685 struct context_entry *context;
686 int ret;
687 unsigned long flags;
689 spin_lock_irqsave(&iommu->lock, flags);
690 root = &iommu->root_entry[bus];
691 context = get_context_addr_from_root(root);
692 if (!context) {
693 ret = 0;
694 goto out;
696 ret = context_present(&context[devfn]);
697 out:
698 spin_unlock_irqrestore(&iommu->lock, flags);
699 return ret;
702 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
704 struct root_entry *root;
705 struct context_entry *context;
706 unsigned long flags;
708 spin_lock_irqsave(&iommu->lock, flags);
709 root = &iommu->root_entry[bus];
710 context = get_context_addr_from_root(root);
711 if (context) {
712 context_clear_entry(&context[devfn]);
713 __iommu_flush_cache(iommu, &context[devfn], \
714 sizeof(*context));
716 spin_unlock_irqrestore(&iommu->lock, flags);
719 static void free_context_table(struct intel_iommu *iommu)
721 struct root_entry *root;
722 int i;
723 unsigned long flags;
724 struct context_entry *context;
726 spin_lock_irqsave(&iommu->lock, flags);
727 if (!iommu->root_entry) {
728 goto out;
730 for (i = 0; i < ROOT_ENTRY_NR; i++) {
731 root = &iommu->root_entry[i];
732 context = get_context_addr_from_root(root);
733 if (context)
734 free_pgtable_page(context);
736 free_pgtable_page(iommu->root_entry);
737 iommu->root_entry = NULL;
738 out:
739 spin_unlock_irqrestore(&iommu->lock, flags);
742 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
743 unsigned long pfn, int target_level)
745 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
746 struct dma_pte *parent, *pte = NULL;
747 int level = agaw_to_level(domain->agaw);
748 int offset;
750 BUG_ON(!domain->pgd);
751 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
752 parent = domain->pgd;
754 while (level > 0) {
755 void *tmp_page;
757 offset = pfn_level_offset(pfn, level);
758 pte = &parent[offset];
759 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
760 break;
761 if (level == target_level)
762 break;
764 if (!dma_pte_present(pte)) {
765 uint64_t pteval;
767 tmp_page = alloc_pgtable_page(domain->nid);
769 if (!tmp_page)
770 return NULL;
772 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
773 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
774 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
775 /* Someone else set it while we were thinking; use theirs. */
776 free_pgtable_page(tmp_page);
777 } else {
778 dma_pte_addr(pte);
779 domain_flush_cache(domain, pte, sizeof(*pte));
782 parent = phys_to_virt(dma_pte_addr(pte));
783 level--;
786 return pte;
790 /* return address's pte at specific level */
791 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
792 unsigned long pfn,
793 int level, int *large_page)
795 struct dma_pte *parent, *pte = NULL;
796 int total = agaw_to_level(domain->agaw);
797 int offset;
799 parent = domain->pgd;
800 while (level <= total) {
801 offset = pfn_level_offset(pfn, total);
802 pte = &parent[offset];
803 if (level == total)
804 return pte;
806 if (!dma_pte_present(pte)) {
807 *large_page = total;
808 break;
811 if (pte->val & DMA_PTE_LARGE_PAGE) {
812 *large_page = total;
813 return pte;
816 parent = phys_to_virt(dma_pte_addr(pte));
817 total--;
819 return NULL;
822 /* clear last level pte, a tlb flush should be followed */
823 static int dma_pte_clear_range(struct dmar_domain *domain,
824 unsigned long start_pfn,
825 unsigned long last_pfn)
827 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
828 unsigned int large_page = 1;
829 struct dma_pte *first_pte, *pte;
830 int order;
832 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
833 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
834 BUG_ON(start_pfn > last_pfn);
836 /* we don't need lock here; nobody else touches the iova range */
837 do {
838 large_page = 1;
839 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
840 if (!pte) {
841 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
842 continue;
844 do {
845 dma_clear_pte(pte);
846 start_pfn += lvl_to_nr_pages(large_page);
847 pte++;
848 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
850 domain_flush_cache(domain, first_pte,
851 (void *)pte - (void *)first_pte);
853 } while (start_pfn && start_pfn <= last_pfn);
855 order = (large_page - 1) * 9;
856 return order;
859 /* free page table pages. last level pte should already be cleared */
860 static void dma_pte_free_pagetable(struct dmar_domain *domain,
861 unsigned long start_pfn,
862 unsigned long last_pfn)
864 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
865 struct dma_pte *first_pte, *pte;
866 int total = agaw_to_level(domain->agaw);
867 int level;
868 unsigned long tmp;
869 int large_page = 2;
871 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
872 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
873 BUG_ON(start_pfn > last_pfn);
875 /* We don't need lock here; nobody else touches the iova range */
876 level = 2;
877 while (level <= total) {
878 tmp = align_to_level(start_pfn, level);
880 /* If we can't even clear one PTE at this level, we're done */
881 if (tmp + level_size(level) - 1 > last_pfn)
882 return;
884 do {
885 large_page = level;
886 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
887 if (large_page > level)
888 level = large_page + 1;
889 if (!pte) {
890 tmp = align_to_level(tmp + 1, level + 1);
891 continue;
893 do {
894 if (dma_pte_present(pte)) {
895 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
896 dma_clear_pte(pte);
898 pte++;
899 tmp += level_size(level);
900 } while (!first_pte_in_page(pte) &&
901 tmp + level_size(level) - 1 <= last_pfn);
903 domain_flush_cache(domain, first_pte,
904 (void *)pte - (void *)first_pte);
906 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
907 level++;
909 /* free pgd */
910 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
911 free_pgtable_page(domain->pgd);
912 domain->pgd = NULL;
916 /* iommu handling */
917 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
919 struct root_entry *root;
920 unsigned long flags;
922 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
923 if (!root)
924 return -ENOMEM;
926 __iommu_flush_cache(iommu, root, ROOT_SIZE);
928 spin_lock_irqsave(&iommu->lock, flags);
929 iommu->root_entry = root;
930 spin_unlock_irqrestore(&iommu->lock, flags);
932 return 0;
935 static void iommu_set_root_entry(struct intel_iommu *iommu)
937 void *addr;
938 u32 sts;
939 unsigned long flag;
941 addr = iommu->root_entry;
943 raw_spin_lock_irqsave(&iommu->register_lock, flag);
944 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
946 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
948 /* Make sure hardware complete it */
949 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
950 readl, (sts & DMA_GSTS_RTPS), sts);
952 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
955 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
957 u32 val;
958 unsigned long flag;
960 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
961 return;
963 raw_spin_lock_irqsave(&iommu->register_lock, flag);
964 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
966 /* Make sure hardware complete it */
967 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
968 readl, (!(val & DMA_GSTS_WBFS)), val);
970 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
973 /* return value determine if we need a write buffer flush */
974 static void __iommu_flush_context(struct intel_iommu *iommu,
975 u16 did, u16 source_id, u8 function_mask,
976 u64 type)
978 u64 val = 0;
979 unsigned long flag;
981 switch (type) {
982 case DMA_CCMD_GLOBAL_INVL:
983 val = DMA_CCMD_GLOBAL_INVL;
984 break;
985 case DMA_CCMD_DOMAIN_INVL:
986 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
987 break;
988 case DMA_CCMD_DEVICE_INVL:
989 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
990 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
991 break;
992 default:
993 BUG();
995 val |= DMA_CCMD_ICC;
997 raw_spin_lock_irqsave(&iommu->register_lock, flag);
998 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1000 /* Make sure hardware complete it */
1001 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1002 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1004 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1007 /* return value determine if we need a write buffer flush */
1008 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1009 u64 addr, unsigned int size_order, u64 type)
1011 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1012 u64 val = 0, val_iva = 0;
1013 unsigned long flag;
1015 switch (type) {
1016 case DMA_TLB_GLOBAL_FLUSH:
1017 /* global flush doesn't need set IVA_REG */
1018 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1019 break;
1020 case DMA_TLB_DSI_FLUSH:
1021 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1022 break;
1023 case DMA_TLB_PSI_FLUSH:
1024 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1025 /* Note: always flush non-leaf currently */
1026 val_iva = size_order | addr;
1027 break;
1028 default:
1029 BUG();
1031 /* Note: set drain read/write */
1032 #if 0
1034 * This is probably to be super secure.. Looks like we can
1035 * ignore it without any impact.
1037 if (cap_read_drain(iommu->cap))
1038 val |= DMA_TLB_READ_DRAIN;
1039 #endif
1040 if (cap_write_drain(iommu->cap))
1041 val |= DMA_TLB_WRITE_DRAIN;
1043 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1044 /* Note: Only uses first TLB reg currently */
1045 if (val_iva)
1046 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1047 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1049 /* Make sure hardware complete it */
1050 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1051 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1053 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1055 /* check IOTLB invalidation granularity */
1056 if (DMA_TLB_IAIG(val) == 0)
1057 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1058 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1059 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1060 (unsigned long long)DMA_TLB_IIRG(type),
1061 (unsigned long long)DMA_TLB_IAIG(val));
1064 static struct device_domain_info *iommu_support_dev_iotlb(
1065 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1067 int found = 0;
1068 unsigned long flags;
1069 struct device_domain_info *info;
1070 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1072 if (!ecap_dev_iotlb_support(iommu->ecap))
1073 return NULL;
1075 if (!iommu->qi)
1076 return NULL;
1078 spin_lock_irqsave(&device_domain_lock, flags);
1079 list_for_each_entry(info, &domain->devices, link)
1080 if (info->bus == bus && info->devfn == devfn) {
1081 found = 1;
1082 break;
1084 spin_unlock_irqrestore(&device_domain_lock, flags);
1086 if (!found || !info->dev)
1087 return NULL;
1089 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1090 return NULL;
1092 if (!dmar_find_matched_atsr_unit(info->dev))
1093 return NULL;
1095 info->iommu = iommu;
1097 return info;
1100 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1102 if (!info)
1103 return;
1105 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1108 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1110 if (!info->dev || !pci_ats_enabled(info->dev))
1111 return;
1113 pci_disable_ats(info->dev);
1116 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1117 u64 addr, unsigned mask)
1119 u16 sid, qdep;
1120 unsigned long flags;
1121 struct device_domain_info *info;
1123 spin_lock_irqsave(&device_domain_lock, flags);
1124 list_for_each_entry(info, &domain->devices, link) {
1125 if (!info->dev || !pci_ats_enabled(info->dev))
1126 continue;
1128 sid = info->bus << 8 | info->devfn;
1129 qdep = pci_ats_queue_depth(info->dev);
1130 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1132 spin_unlock_irqrestore(&device_domain_lock, flags);
1135 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1136 unsigned long pfn, unsigned int pages, int map)
1138 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1139 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1141 BUG_ON(pages == 0);
1144 * Fallback to domain selective flush if no PSI support or the size is
1145 * too big.
1146 * PSI requires page size to be 2 ^ x, and the base address is naturally
1147 * aligned to the size
1149 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1150 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1151 DMA_TLB_DSI_FLUSH);
1152 else
1153 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1154 DMA_TLB_PSI_FLUSH);
1157 * In caching mode, changes of pages from non-present to present require
1158 * flush. However, device IOTLB doesn't need to be flushed in this case.
1160 if (!cap_caching_mode(iommu->cap) || !map)
1161 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1164 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1166 u32 pmen;
1167 unsigned long flags;
1169 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1170 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1171 pmen &= ~DMA_PMEN_EPM;
1172 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1174 /* wait for the protected region status bit to clear */
1175 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1176 readl, !(pmen & DMA_PMEN_PRS), pmen);
1178 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1181 static int iommu_enable_translation(struct intel_iommu *iommu)
1183 u32 sts;
1184 unsigned long flags;
1186 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1187 iommu->gcmd |= DMA_GCMD_TE;
1188 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1190 /* Make sure hardware complete it */
1191 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1192 readl, (sts & DMA_GSTS_TES), sts);
1194 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1195 return 0;
1198 static int iommu_disable_translation(struct intel_iommu *iommu)
1200 u32 sts;
1201 unsigned long flag;
1203 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1204 iommu->gcmd &= ~DMA_GCMD_TE;
1205 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1207 /* Make sure hardware complete it */
1208 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1209 readl, (!(sts & DMA_GSTS_TES)), sts);
1211 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1212 return 0;
1216 static int iommu_init_domains(struct intel_iommu *iommu)
1218 unsigned long ndomains;
1219 unsigned long nlongs;
1221 ndomains = cap_ndoms(iommu->cap);
1222 pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id,
1223 ndomains);
1224 nlongs = BITS_TO_LONGS(ndomains);
1226 spin_lock_init(&iommu->lock);
1228 /* TBD: there might be 64K domains,
1229 * consider other allocation for future chip
1231 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1232 if (!iommu->domain_ids) {
1233 printk(KERN_ERR "Allocating domain id array failed\n");
1234 return -ENOMEM;
1236 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1237 GFP_KERNEL);
1238 if (!iommu->domains) {
1239 printk(KERN_ERR "Allocating domain array failed\n");
1240 return -ENOMEM;
1244 * if Caching mode is set, then invalid translations are tagged
1245 * with domainid 0. Hence we need to pre-allocate it.
1247 if (cap_caching_mode(iommu->cap))
1248 set_bit(0, iommu->domain_ids);
1249 return 0;
1253 static void domain_exit(struct dmar_domain *domain);
1254 static void vm_domain_exit(struct dmar_domain *domain);
1256 void free_dmar_iommu(struct intel_iommu *iommu)
1258 struct dmar_domain *domain;
1259 int i;
1260 unsigned long flags;
1262 if ((iommu->domains) && (iommu->domain_ids)) {
1263 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1264 domain = iommu->domains[i];
1265 clear_bit(i, iommu->domain_ids);
1267 spin_lock_irqsave(&domain->iommu_lock, flags);
1268 if (--domain->iommu_count == 0) {
1269 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1270 vm_domain_exit(domain);
1271 else
1272 domain_exit(domain);
1274 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1278 if (iommu->gcmd & DMA_GCMD_TE)
1279 iommu_disable_translation(iommu);
1281 if (iommu->irq) {
1282 irq_set_handler_data(iommu->irq, NULL);
1283 /* This will mask the irq */
1284 free_irq(iommu->irq, iommu);
1285 destroy_irq(iommu->irq);
1288 kfree(iommu->domains);
1289 kfree(iommu->domain_ids);
1291 g_iommus[iommu->seq_id] = NULL;
1293 /* if all iommus are freed, free g_iommus */
1294 for (i = 0; i < g_num_of_iommus; i++) {
1295 if (g_iommus[i])
1296 break;
1299 if (i == g_num_of_iommus)
1300 kfree(g_iommus);
1302 /* free context mapping */
1303 free_context_table(iommu);
1306 static struct dmar_domain *alloc_domain(void)
1308 struct dmar_domain *domain;
1310 domain = alloc_domain_mem();
1311 if (!domain)
1312 return NULL;
1314 domain->nid = -1;
1315 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1316 domain->flags = 0;
1318 return domain;
1321 static int iommu_attach_domain(struct dmar_domain *domain,
1322 struct intel_iommu *iommu)
1324 int num;
1325 unsigned long ndomains;
1326 unsigned long flags;
1328 ndomains = cap_ndoms(iommu->cap);
1330 spin_lock_irqsave(&iommu->lock, flags);
1332 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1333 if (num >= ndomains) {
1334 spin_unlock_irqrestore(&iommu->lock, flags);
1335 printk(KERN_ERR "IOMMU: no free domain ids\n");
1336 return -ENOMEM;
1339 domain->id = num;
1340 set_bit(num, iommu->domain_ids);
1341 set_bit(iommu->seq_id, &domain->iommu_bmp);
1342 iommu->domains[num] = domain;
1343 spin_unlock_irqrestore(&iommu->lock, flags);
1345 return 0;
1348 static void iommu_detach_domain(struct dmar_domain *domain,
1349 struct intel_iommu *iommu)
1351 unsigned long flags;
1352 int num, ndomains;
1353 int found = 0;
1355 spin_lock_irqsave(&iommu->lock, flags);
1356 ndomains = cap_ndoms(iommu->cap);
1357 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1358 if (iommu->domains[num] == domain) {
1359 found = 1;
1360 break;
1364 if (found) {
1365 clear_bit(num, iommu->domain_ids);
1366 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1367 iommu->domains[num] = NULL;
1369 spin_unlock_irqrestore(&iommu->lock, flags);
1372 static struct iova_domain reserved_iova_list;
1373 static struct lock_class_key reserved_rbtree_key;
1375 static int dmar_init_reserved_ranges(void)
1377 struct pci_dev *pdev = NULL;
1378 struct iova *iova;
1379 int i;
1381 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1383 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1384 &reserved_rbtree_key);
1386 /* IOAPIC ranges shouldn't be accessed by DMA */
1387 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1388 IOVA_PFN(IOAPIC_RANGE_END));
1389 if (!iova) {
1390 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1391 return -ENODEV;
1394 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1395 for_each_pci_dev(pdev) {
1396 struct resource *r;
1398 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1399 r = &pdev->resource[i];
1400 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1401 continue;
1402 iova = reserve_iova(&reserved_iova_list,
1403 IOVA_PFN(r->start),
1404 IOVA_PFN(r->end));
1405 if (!iova) {
1406 printk(KERN_ERR "Reserve iova failed\n");
1407 return -ENODEV;
1411 return 0;
1414 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1416 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1419 static inline int guestwidth_to_adjustwidth(int gaw)
1421 int agaw;
1422 int r = (gaw - 12) % 9;
1424 if (r == 0)
1425 agaw = gaw;
1426 else
1427 agaw = gaw + 9 - r;
1428 if (agaw > 64)
1429 agaw = 64;
1430 return agaw;
1433 static int domain_init(struct dmar_domain *domain, int guest_width)
1435 struct intel_iommu *iommu;
1436 int adjust_width, agaw;
1437 unsigned long sagaw;
1439 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1440 spin_lock_init(&domain->iommu_lock);
1442 domain_reserve_special_ranges(domain);
1444 /* calculate AGAW */
1445 iommu = domain_get_iommu(domain);
1446 if (guest_width > cap_mgaw(iommu->cap))
1447 guest_width = cap_mgaw(iommu->cap);
1448 domain->gaw = guest_width;
1449 adjust_width = guestwidth_to_adjustwidth(guest_width);
1450 agaw = width_to_agaw(adjust_width);
1451 sagaw = cap_sagaw(iommu->cap);
1452 if (!test_bit(agaw, &sagaw)) {
1453 /* hardware doesn't support it, choose a bigger one */
1454 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1455 agaw = find_next_bit(&sagaw, 5, agaw);
1456 if (agaw >= 5)
1457 return -ENODEV;
1459 domain->agaw = agaw;
1460 INIT_LIST_HEAD(&domain->devices);
1462 if (ecap_coherent(iommu->ecap))
1463 domain->iommu_coherency = 1;
1464 else
1465 domain->iommu_coherency = 0;
1467 if (ecap_sc_support(iommu->ecap))
1468 domain->iommu_snooping = 1;
1469 else
1470 domain->iommu_snooping = 0;
1472 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1473 domain->iommu_count = 1;
1474 domain->nid = iommu->node;
1476 /* always allocate the top pgd */
1477 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1478 if (!domain->pgd)
1479 return -ENOMEM;
1480 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1481 return 0;
1484 static void domain_exit(struct dmar_domain *domain)
1486 struct dmar_drhd_unit *drhd;
1487 struct intel_iommu *iommu;
1489 /* Domain 0 is reserved, so dont process it */
1490 if (!domain)
1491 return;
1493 /* Flush any lazy unmaps that may reference this domain */
1494 if (!intel_iommu_strict)
1495 flush_unmaps_timeout(0);
1497 domain_remove_dev_info(domain);
1498 /* destroy iovas */
1499 put_iova_domain(&domain->iovad);
1501 /* clear ptes */
1502 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1504 /* free page tables */
1505 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1507 for_each_active_iommu(iommu, drhd)
1508 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1509 iommu_detach_domain(domain, iommu);
1511 free_domain_mem(domain);
1514 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1515 u8 bus, u8 devfn, int translation)
1517 struct context_entry *context;
1518 unsigned long flags;
1519 struct intel_iommu *iommu;
1520 struct dma_pte *pgd;
1521 unsigned long num;
1522 unsigned long ndomains;
1523 int id;
1524 int agaw;
1525 struct device_domain_info *info = NULL;
1527 pr_debug("Set context mapping for %02x:%02x.%d\n",
1528 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1530 BUG_ON(!domain->pgd);
1531 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1532 translation != CONTEXT_TT_MULTI_LEVEL);
1534 iommu = device_to_iommu(segment, bus, devfn);
1535 if (!iommu)
1536 return -ENODEV;
1538 context = device_to_context_entry(iommu, bus, devfn);
1539 if (!context)
1540 return -ENOMEM;
1541 spin_lock_irqsave(&iommu->lock, flags);
1542 if (context_present(context)) {
1543 spin_unlock_irqrestore(&iommu->lock, flags);
1544 return 0;
1547 id = domain->id;
1548 pgd = domain->pgd;
1550 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1551 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1552 int found = 0;
1554 /* find an available domain id for this device in iommu */
1555 ndomains = cap_ndoms(iommu->cap);
1556 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1557 if (iommu->domains[num] == domain) {
1558 id = num;
1559 found = 1;
1560 break;
1564 if (found == 0) {
1565 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1566 if (num >= ndomains) {
1567 spin_unlock_irqrestore(&iommu->lock, flags);
1568 printk(KERN_ERR "IOMMU: no free domain ids\n");
1569 return -EFAULT;
1572 set_bit(num, iommu->domain_ids);
1573 iommu->domains[num] = domain;
1574 id = num;
1577 /* Skip top levels of page tables for
1578 * iommu which has less agaw than default.
1579 * Unnecessary for PT mode.
1581 if (translation != CONTEXT_TT_PASS_THROUGH) {
1582 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1583 pgd = phys_to_virt(dma_pte_addr(pgd));
1584 if (!dma_pte_present(pgd)) {
1585 spin_unlock_irqrestore(&iommu->lock, flags);
1586 return -ENOMEM;
1592 context_set_domain_id(context, id);
1594 if (translation != CONTEXT_TT_PASS_THROUGH) {
1595 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1596 translation = info ? CONTEXT_TT_DEV_IOTLB :
1597 CONTEXT_TT_MULTI_LEVEL;
1600 * In pass through mode, AW must be programmed to indicate the largest
1601 * AGAW value supported by hardware. And ASR is ignored by hardware.
1603 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1604 context_set_address_width(context, iommu->msagaw);
1605 else {
1606 context_set_address_root(context, virt_to_phys(pgd));
1607 context_set_address_width(context, iommu->agaw);
1610 context_set_translation_type(context, translation);
1611 context_set_fault_enable(context);
1612 context_set_present(context);
1613 domain_flush_cache(domain, context, sizeof(*context));
1616 * It's a non-present to present mapping. If hardware doesn't cache
1617 * non-present entry we only need to flush the write-buffer. If the
1618 * _does_ cache non-present entries, then it does so in the special
1619 * domain #0, which we have to flush:
1621 if (cap_caching_mode(iommu->cap)) {
1622 iommu->flush.flush_context(iommu, 0,
1623 (((u16)bus) << 8) | devfn,
1624 DMA_CCMD_MASK_NOBIT,
1625 DMA_CCMD_DEVICE_INVL);
1626 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1627 } else {
1628 iommu_flush_write_buffer(iommu);
1630 iommu_enable_dev_iotlb(info);
1631 spin_unlock_irqrestore(&iommu->lock, flags);
1633 spin_lock_irqsave(&domain->iommu_lock, flags);
1634 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1635 domain->iommu_count++;
1636 if (domain->iommu_count == 1)
1637 domain->nid = iommu->node;
1638 domain_update_iommu_cap(domain);
1640 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1641 return 0;
1644 static int
1645 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1646 int translation)
1648 int ret;
1649 struct pci_dev *tmp, *parent;
1651 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1652 pdev->bus->number, pdev->devfn,
1653 translation);
1654 if (ret)
1655 return ret;
1657 /* dependent device mapping */
1658 tmp = pci_find_upstream_pcie_bridge(pdev);
1659 if (!tmp)
1660 return 0;
1661 /* Secondary interface's bus number and devfn 0 */
1662 parent = pdev->bus->self;
1663 while (parent != tmp) {
1664 ret = domain_context_mapping_one(domain,
1665 pci_domain_nr(parent->bus),
1666 parent->bus->number,
1667 parent->devfn, translation);
1668 if (ret)
1669 return ret;
1670 parent = parent->bus->self;
1672 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1673 return domain_context_mapping_one(domain,
1674 pci_domain_nr(tmp->subordinate),
1675 tmp->subordinate->number, 0,
1676 translation);
1677 else /* this is a legacy PCI bridge */
1678 return domain_context_mapping_one(domain,
1679 pci_domain_nr(tmp->bus),
1680 tmp->bus->number,
1681 tmp->devfn,
1682 translation);
1685 static int domain_context_mapped(struct pci_dev *pdev)
1687 int ret;
1688 struct pci_dev *tmp, *parent;
1689 struct intel_iommu *iommu;
1691 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1692 pdev->devfn);
1693 if (!iommu)
1694 return -ENODEV;
1696 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1697 if (!ret)
1698 return ret;
1699 /* dependent device mapping */
1700 tmp = pci_find_upstream_pcie_bridge(pdev);
1701 if (!tmp)
1702 return ret;
1703 /* Secondary interface's bus number and devfn 0 */
1704 parent = pdev->bus->self;
1705 while (parent != tmp) {
1706 ret = device_context_mapped(iommu, parent->bus->number,
1707 parent->devfn);
1708 if (!ret)
1709 return ret;
1710 parent = parent->bus->self;
1712 if (pci_is_pcie(tmp))
1713 return device_context_mapped(iommu, tmp->subordinate->number,
1715 else
1716 return device_context_mapped(iommu, tmp->bus->number,
1717 tmp->devfn);
1720 /* Returns a number of VTD pages, but aligned to MM page size */
1721 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1722 size_t size)
1724 host_addr &= ~PAGE_MASK;
1725 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1728 /* Return largest possible superpage level for a given mapping */
1729 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1730 unsigned long iov_pfn,
1731 unsigned long phy_pfn,
1732 unsigned long pages)
1734 int support, level = 1;
1735 unsigned long pfnmerge;
1737 support = domain->iommu_superpage;
1739 /* To use a large page, the virtual *and* physical addresses
1740 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1741 of them will mean we have to use smaller pages. So just
1742 merge them and check both at once. */
1743 pfnmerge = iov_pfn | phy_pfn;
1745 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1746 pages >>= VTD_STRIDE_SHIFT;
1747 if (!pages)
1748 break;
1749 pfnmerge >>= VTD_STRIDE_SHIFT;
1750 level++;
1751 support--;
1753 return level;
1756 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1757 struct scatterlist *sg, unsigned long phys_pfn,
1758 unsigned long nr_pages, int prot)
1760 struct dma_pte *first_pte = NULL, *pte = NULL;
1761 phys_addr_t uninitialized_var(pteval);
1762 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1763 unsigned long sg_res;
1764 unsigned int largepage_lvl = 0;
1765 unsigned long lvl_pages = 0;
1767 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1769 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1770 return -EINVAL;
1772 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1774 if (sg)
1775 sg_res = 0;
1776 else {
1777 sg_res = nr_pages + 1;
1778 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1781 while (nr_pages > 0) {
1782 uint64_t tmp;
1784 if (!sg_res) {
1785 sg_res = aligned_nrpages(sg->offset, sg->length);
1786 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1787 sg->dma_length = sg->length;
1788 pteval = page_to_phys(sg_page(sg)) | prot;
1789 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1792 if (!pte) {
1793 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1795 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1796 if (!pte)
1797 return -ENOMEM;
1798 /* It is large page*/
1799 if (largepage_lvl > 1)
1800 pteval |= DMA_PTE_LARGE_PAGE;
1801 else
1802 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1805 /* We don't need lock here, nobody else
1806 * touches the iova range
1808 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1809 if (tmp) {
1810 static int dumps = 5;
1811 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1812 iov_pfn, tmp, (unsigned long long)pteval);
1813 if (dumps) {
1814 dumps--;
1815 debug_dma_dump_mappings(NULL);
1817 WARN_ON(1);
1820 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1822 BUG_ON(nr_pages < lvl_pages);
1823 BUG_ON(sg_res < lvl_pages);
1825 nr_pages -= lvl_pages;
1826 iov_pfn += lvl_pages;
1827 phys_pfn += lvl_pages;
1828 pteval += lvl_pages * VTD_PAGE_SIZE;
1829 sg_res -= lvl_pages;
1831 /* If the next PTE would be the first in a new page, then we
1832 need to flush the cache on the entries we've just written.
1833 And then we'll need to recalculate 'pte', so clear it and
1834 let it get set again in the if (!pte) block above.
1836 If we're done (!nr_pages) we need to flush the cache too.
1838 Also if we've been setting superpages, we may need to
1839 recalculate 'pte' and switch back to smaller pages for the
1840 end of the mapping, if the trailing size is not enough to
1841 use another superpage (i.e. sg_res < lvl_pages). */
1842 pte++;
1843 if (!nr_pages || first_pte_in_page(pte) ||
1844 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1845 domain_flush_cache(domain, first_pte,
1846 (void *)pte - (void *)first_pte);
1847 pte = NULL;
1850 if (!sg_res && nr_pages)
1851 sg = sg_next(sg);
1853 return 0;
1856 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1857 struct scatterlist *sg, unsigned long nr_pages,
1858 int prot)
1860 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1863 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1864 unsigned long phys_pfn, unsigned long nr_pages,
1865 int prot)
1867 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1870 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1872 if (!iommu)
1873 return;
1875 clear_context_table(iommu, bus, devfn);
1876 iommu->flush.flush_context(iommu, 0, 0, 0,
1877 DMA_CCMD_GLOBAL_INVL);
1878 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1881 static void domain_remove_dev_info(struct dmar_domain *domain)
1883 struct device_domain_info *info;
1884 unsigned long flags;
1885 struct intel_iommu *iommu;
1887 spin_lock_irqsave(&device_domain_lock, flags);
1888 while (!list_empty(&domain->devices)) {
1889 info = list_entry(domain->devices.next,
1890 struct device_domain_info, link);
1891 list_del(&info->link);
1892 list_del(&info->global);
1893 if (info->dev)
1894 info->dev->dev.archdata.iommu = NULL;
1895 spin_unlock_irqrestore(&device_domain_lock, flags);
1897 iommu_disable_dev_iotlb(info);
1898 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1899 iommu_detach_dev(iommu, info->bus, info->devfn);
1900 free_devinfo_mem(info);
1902 spin_lock_irqsave(&device_domain_lock, flags);
1904 spin_unlock_irqrestore(&device_domain_lock, flags);
1908 * find_domain
1909 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1911 static struct dmar_domain *
1912 find_domain(struct pci_dev *pdev)
1914 struct device_domain_info *info;
1916 /* No lock here, assumes no domain exit in normal case */
1917 info = pdev->dev.archdata.iommu;
1918 if (info)
1919 return info->domain;
1920 return NULL;
1923 /* domain is initialized */
1924 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1926 struct dmar_domain *domain, *found = NULL;
1927 struct intel_iommu *iommu;
1928 struct dmar_drhd_unit *drhd;
1929 struct device_domain_info *info, *tmp;
1930 struct pci_dev *dev_tmp;
1931 unsigned long flags;
1932 int bus = 0, devfn = 0;
1933 int segment;
1934 int ret;
1936 domain = find_domain(pdev);
1937 if (domain)
1938 return domain;
1940 segment = pci_domain_nr(pdev->bus);
1942 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1943 if (dev_tmp) {
1944 if (pci_is_pcie(dev_tmp)) {
1945 bus = dev_tmp->subordinate->number;
1946 devfn = 0;
1947 } else {
1948 bus = dev_tmp->bus->number;
1949 devfn = dev_tmp->devfn;
1951 spin_lock_irqsave(&device_domain_lock, flags);
1952 list_for_each_entry(info, &device_domain_list, global) {
1953 if (info->segment == segment &&
1954 info->bus == bus && info->devfn == devfn) {
1955 found = info->domain;
1956 break;
1959 spin_unlock_irqrestore(&device_domain_lock, flags);
1960 /* pcie-pci bridge already has a domain, uses it */
1961 if (found) {
1962 domain = found;
1963 goto found_domain;
1967 domain = alloc_domain();
1968 if (!domain)
1969 goto error;
1971 /* Allocate new domain for the device */
1972 drhd = dmar_find_matched_drhd_unit(pdev);
1973 if (!drhd) {
1974 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1975 pci_name(pdev));
1976 return NULL;
1978 iommu = drhd->iommu;
1980 ret = iommu_attach_domain(domain, iommu);
1981 if (ret) {
1982 free_domain_mem(domain);
1983 goto error;
1986 if (domain_init(domain, gaw)) {
1987 domain_exit(domain);
1988 goto error;
1991 /* register pcie-to-pci device */
1992 if (dev_tmp) {
1993 info = alloc_devinfo_mem();
1994 if (!info) {
1995 domain_exit(domain);
1996 goto error;
1998 info->segment = segment;
1999 info->bus = bus;
2000 info->devfn = devfn;
2001 info->dev = NULL;
2002 info->domain = domain;
2003 /* This domain is shared by devices under p2p bridge */
2004 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2006 /* pcie-to-pci bridge already has a domain, uses it */
2007 found = NULL;
2008 spin_lock_irqsave(&device_domain_lock, flags);
2009 list_for_each_entry(tmp, &device_domain_list, global) {
2010 if (tmp->segment == segment &&
2011 tmp->bus == bus && tmp->devfn == devfn) {
2012 found = tmp->domain;
2013 break;
2016 if (found) {
2017 spin_unlock_irqrestore(&device_domain_lock, flags);
2018 free_devinfo_mem(info);
2019 domain_exit(domain);
2020 domain = found;
2021 } else {
2022 list_add(&info->link, &domain->devices);
2023 list_add(&info->global, &device_domain_list);
2024 spin_unlock_irqrestore(&device_domain_lock, flags);
2028 found_domain:
2029 info = alloc_devinfo_mem();
2030 if (!info)
2031 goto error;
2032 info->segment = segment;
2033 info->bus = pdev->bus->number;
2034 info->devfn = pdev->devfn;
2035 info->dev = pdev;
2036 info->domain = domain;
2037 spin_lock_irqsave(&device_domain_lock, flags);
2038 /* somebody is fast */
2039 found = find_domain(pdev);
2040 if (found != NULL) {
2041 spin_unlock_irqrestore(&device_domain_lock, flags);
2042 if (found != domain) {
2043 domain_exit(domain);
2044 domain = found;
2046 free_devinfo_mem(info);
2047 return domain;
2049 list_add(&info->link, &domain->devices);
2050 list_add(&info->global, &device_domain_list);
2051 pdev->dev.archdata.iommu = info;
2052 spin_unlock_irqrestore(&device_domain_lock, flags);
2053 return domain;
2054 error:
2055 /* recheck it here, maybe others set it */
2056 return find_domain(pdev);
2059 static int iommu_identity_mapping;
2060 #define IDENTMAP_ALL 1
2061 #define IDENTMAP_GFX 2
2062 #define IDENTMAP_AZALIA 4
2064 static int iommu_domain_identity_map(struct dmar_domain *domain,
2065 unsigned long long start,
2066 unsigned long long end)
2068 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2069 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2071 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2072 dma_to_mm_pfn(last_vpfn))) {
2073 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2074 return -ENOMEM;
2077 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2078 start, end, domain->id);
2080 * RMRR range might have overlap with physical memory range,
2081 * clear it first
2083 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2085 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2086 last_vpfn - first_vpfn + 1,
2087 DMA_PTE_READ|DMA_PTE_WRITE);
2090 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2091 unsigned long long start,
2092 unsigned long long end)
2094 struct dmar_domain *domain;
2095 int ret;
2097 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2098 if (!domain)
2099 return -ENOMEM;
2101 /* For _hardware_ passthrough, don't bother. But for software
2102 passthrough, we do it anyway -- it may indicate a memory
2103 range which is reserved in E820, so which didn't get set
2104 up to start with in si_domain */
2105 if (domain == si_domain && hw_pass_through) {
2106 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2107 pci_name(pdev), start, end);
2108 return 0;
2111 printk(KERN_INFO
2112 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2113 pci_name(pdev), start, end);
2115 if (end < start) {
2116 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2117 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2118 dmi_get_system_info(DMI_BIOS_VENDOR),
2119 dmi_get_system_info(DMI_BIOS_VERSION),
2120 dmi_get_system_info(DMI_PRODUCT_VERSION));
2121 ret = -EIO;
2122 goto error;
2125 if (end >> agaw_to_width(domain->agaw)) {
2126 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2127 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2128 agaw_to_width(domain->agaw),
2129 dmi_get_system_info(DMI_BIOS_VENDOR),
2130 dmi_get_system_info(DMI_BIOS_VERSION),
2131 dmi_get_system_info(DMI_PRODUCT_VERSION));
2132 ret = -EIO;
2133 goto error;
2136 ret = iommu_domain_identity_map(domain, start, end);
2137 if (ret)
2138 goto error;
2140 /* context entry init */
2141 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2142 if (ret)
2143 goto error;
2145 return 0;
2147 error:
2148 domain_exit(domain);
2149 return ret;
2152 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2153 struct pci_dev *pdev)
2155 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2156 return 0;
2157 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2158 rmrr->end_address);
2161 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2162 static inline void iommu_prepare_isa(void)
2164 struct pci_dev *pdev;
2165 int ret;
2167 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2168 if (!pdev)
2169 return;
2171 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2172 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2174 if (ret)
2175 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2176 "floppy might not work\n");
2179 #else
2180 static inline void iommu_prepare_isa(void)
2182 return;
2184 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2186 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2188 static int __init si_domain_init(int hw)
2190 struct dmar_drhd_unit *drhd;
2191 struct intel_iommu *iommu;
2192 int nid, ret = 0;
2194 si_domain = alloc_domain();
2195 if (!si_domain)
2196 return -EFAULT;
2198 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2200 for_each_active_iommu(iommu, drhd) {
2201 ret = iommu_attach_domain(si_domain, iommu);
2202 if (ret) {
2203 domain_exit(si_domain);
2204 return -EFAULT;
2208 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2209 domain_exit(si_domain);
2210 return -EFAULT;
2213 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2215 if (hw)
2216 return 0;
2218 for_each_online_node(nid) {
2219 unsigned long start_pfn, end_pfn;
2220 int i;
2222 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2223 ret = iommu_domain_identity_map(si_domain,
2224 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2225 if (ret)
2226 return ret;
2230 return 0;
2233 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2234 struct pci_dev *pdev);
2235 static int identity_mapping(struct pci_dev *pdev)
2237 struct device_domain_info *info;
2239 if (likely(!iommu_identity_mapping))
2240 return 0;
2242 info = pdev->dev.archdata.iommu;
2243 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2244 return (info->domain == si_domain);
2246 return 0;
2249 static int domain_add_dev_info(struct dmar_domain *domain,
2250 struct pci_dev *pdev,
2251 int translation)
2253 struct device_domain_info *info;
2254 unsigned long flags;
2255 int ret;
2257 info = alloc_devinfo_mem();
2258 if (!info)
2259 return -ENOMEM;
2261 ret = domain_context_mapping(domain, pdev, translation);
2262 if (ret) {
2263 free_devinfo_mem(info);
2264 return ret;
2267 info->segment = pci_domain_nr(pdev->bus);
2268 info->bus = pdev->bus->number;
2269 info->devfn = pdev->devfn;
2270 info->dev = pdev;
2271 info->domain = domain;
2273 spin_lock_irqsave(&device_domain_lock, flags);
2274 list_add(&info->link, &domain->devices);
2275 list_add(&info->global, &device_domain_list);
2276 pdev->dev.archdata.iommu = info;
2277 spin_unlock_irqrestore(&device_domain_lock, flags);
2279 return 0;
2282 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2284 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2285 return 1;
2287 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2288 return 1;
2290 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2291 return 0;
2294 * We want to start off with all devices in the 1:1 domain, and
2295 * take them out later if we find they can't access all of memory.
2297 * However, we can't do this for PCI devices behind bridges,
2298 * because all PCI devices behind the same bridge will end up
2299 * with the same source-id on their transactions.
2301 * Practically speaking, we can't change things around for these
2302 * devices at run-time, because we can't be sure there'll be no
2303 * DMA transactions in flight for any of their siblings.
2305 * So PCI devices (unless they're on the root bus) as well as
2306 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2307 * the 1:1 domain, just in _case_ one of their siblings turns out
2308 * not to be able to map all of memory.
2310 if (!pci_is_pcie(pdev)) {
2311 if (!pci_is_root_bus(pdev->bus))
2312 return 0;
2313 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2314 return 0;
2315 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2316 return 0;
2319 * At boot time, we don't yet know if devices will be 64-bit capable.
2320 * Assume that they will -- if they turn out not to be, then we can
2321 * take them out of the 1:1 domain later.
2323 if (!startup) {
2325 * If the device's dma_mask is less than the system's memory
2326 * size then this is not a candidate for identity mapping.
2328 u64 dma_mask = pdev->dma_mask;
2330 if (pdev->dev.coherent_dma_mask &&
2331 pdev->dev.coherent_dma_mask < dma_mask)
2332 dma_mask = pdev->dev.coherent_dma_mask;
2334 return dma_mask >= dma_get_required_mask(&pdev->dev);
2337 return 1;
2340 static int __init iommu_prepare_static_identity_mapping(int hw)
2342 struct pci_dev *pdev = NULL;
2343 int ret;
2345 ret = si_domain_init(hw);
2346 if (ret)
2347 return -EFAULT;
2349 for_each_pci_dev(pdev) {
2350 /* Skip Host/PCI Bridge devices */
2351 if (IS_BRIDGE_HOST_DEVICE(pdev))
2352 continue;
2353 if (iommu_should_identity_map(pdev, 1)) {
2354 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2355 hw ? "hardware" : "software", pci_name(pdev));
2357 ret = domain_add_dev_info(si_domain, pdev,
2358 hw ? CONTEXT_TT_PASS_THROUGH :
2359 CONTEXT_TT_MULTI_LEVEL);
2360 if (ret)
2361 return ret;
2365 return 0;
2368 static int __init init_dmars(void)
2370 struct dmar_drhd_unit *drhd;
2371 struct dmar_rmrr_unit *rmrr;
2372 struct pci_dev *pdev;
2373 struct intel_iommu *iommu;
2374 int i, ret;
2377 * for each drhd
2378 * allocate root
2379 * initialize and program root entry to not present
2380 * endfor
2382 for_each_drhd_unit(drhd) {
2383 g_num_of_iommus++;
2385 * lock not needed as this is only incremented in the single
2386 * threaded kernel __init code path all other access are read
2387 * only
2391 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2392 GFP_KERNEL);
2393 if (!g_iommus) {
2394 printk(KERN_ERR "Allocating global iommu array failed\n");
2395 ret = -ENOMEM;
2396 goto error;
2399 deferred_flush = kzalloc(g_num_of_iommus *
2400 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2401 if (!deferred_flush) {
2402 ret = -ENOMEM;
2403 goto error;
2406 for_each_drhd_unit(drhd) {
2407 if (drhd->ignored)
2408 continue;
2410 iommu = drhd->iommu;
2411 g_iommus[iommu->seq_id] = iommu;
2413 ret = iommu_init_domains(iommu);
2414 if (ret)
2415 goto error;
2418 * TBD:
2419 * we could share the same root & context tables
2420 * among all IOMMU's. Need to Split it later.
2422 ret = iommu_alloc_root_entry(iommu);
2423 if (ret) {
2424 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2425 goto error;
2427 if (!ecap_pass_through(iommu->ecap))
2428 hw_pass_through = 0;
2432 * Start from the sane iommu hardware state.
2434 for_each_drhd_unit(drhd) {
2435 if (drhd->ignored)
2436 continue;
2438 iommu = drhd->iommu;
2441 * If the queued invalidation is already initialized by us
2442 * (for example, while enabling interrupt-remapping) then
2443 * we got the things already rolling from a sane state.
2445 if (iommu->qi)
2446 continue;
2449 * Clear any previous faults.
2451 dmar_fault(-1, iommu);
2453 * Disable queued invalidation if supported and already enabled
2454 * before OS handover.
2456 dmar_disable_qi(iommu);
2459 for_each_drhd_unit(drhd) {
2460 if (drhd->ignored)
2461 continue;
2463 iommu = drhd->iommu;
2465 if (dmar_enable_qi(iommu)) {
2467 * Queued Invalidate not enabled, use Register Based
2468 * Invalidate
2470 iommu->flush.flush_context = __iommu_flush_context;
2471 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2472 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2473 "invalidation\n",
2474 iommu->seq_id,
2475 (unsigned long long)drhd->reg_base_addr);
2476 } else {
2477 iommu->flush.flush_context = qi_flush_context;
2478 iommu->flush.flush_iotlb = qi_flush_iotlb;
2479 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2480 "invalidation\n",
2481 iommu->seq_id,
2482 (unsigned long long)drhd->reg_base_addr);
2486 if (iommu_pass_through)
2487 iommu_identity_mapping |= IDENTMAP_ALL;
2489 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2490 iommu_identity_mapping |= IDENTMAP_GFX;
2491 #endif
2493 check_tylersburg_isoch();
2496 * If pass through is not set or not enabled, setup context entries for
2497 * identity mappings for rmrr, gfx, and isa and may fall back to static
2498 * identity mapping if iommu_identity_mapping is set.
2500 if (iommu_identity_mapping) {
2501 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2502 if (ret) {
2503 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2504 goto error;
2508 * For each rmrr
2509 * for each dev attached to rmrr
2510 * do
2511 * locate drhd for dev, alloc domain for dev
2512 * allocate free domain
2513 * allocate page table entries for rmrr
2514 * if context not allocated for bus
2515 * allocate and init context
2516 * set present in root table for this bus
2517 * init context with domain, translation etc
2518 * endfor
2519 * endfor
2521 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2522 for_each_rmrr_units(rmrr) {
2523 for (i = 0; i < rmrr->devices_cnt; i++) {
2524 pdev = rmrr->devices[i];
2526 * some BIOS lists non-exist devices in DMAR
2527 * table.
2529 if (!pdev)
2530 continue;
2531 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2532 if (ret)
2533 printk(KERN_ERR
2534 "IOMMU: mapping reserved region failed\n");
2538 iommu_prepare_isa();
2541 * for each drhd
2542 * enable fault log
2543 * global invalidate context cache
2544 * global invalidate iotlb
2545 * enable translation
2547 for_each_drhd_unit(drhd) {
2548 if (drhd->ignored) {
2550 * we always have to disable PMRs or DMA may fail on
2551 * this device
2553 if (force_on)
2554 iommu_disable_protect_mem_regions(drhd->iommu);
2555 continue;
2557 iommu = drhd->iommu;
2559 iommu_flush_write_buffer(iommu);
2561 ret = dmar_set_interrupt(iommu);
2562 if (ret)
2563 goto error;
2565 iommu_set_root_entry(iommu);
2567 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2568 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2570 ret = iommu_enable_translation(iommu);
2571 if (ret)
2572 goto error;
2574 iommu_disable_protect_mem_regions(iommu);
2577 return 0;
2578 error:
2579 for_each_drhd_unit(drhd) {
2580 if (drhd->ignored)
2581 continue;
2582 iommu = drhd->iommu;
2583 free_iommu(iommu);
2585 kfree(g_iommus);
2586 return ret;
2589 /* This takes a number of _MM_ pages, not VTD pages */
2590 static struct iova *intel_alloc_iova(struct device *dev,
2591 struct dmar_domain *domain,
2592 unsigned long nrpages, uint64_t dma_mask)
2594 struct pci_dev *pdev = to_pci_dev(dev);
2595 struct iova *iova = NULL;
2597 /* Restrict dma_mask to the width that the iommu can handle */
2598 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2600 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2602 * First try to allocate an io virtual address in
2603 * DMA_BIT_MASK(32) and if that fails then try allocating
2604 * from higher range
2606 iova = alloc_iova(&domain->iovad, nrpages,
2607 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2608 if (iova)
2609 return iova;
2611 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2612 if (unlikely(!iova)) {
2613 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2614 nrpages, pci_name(pdev));
2615 return NULL;
2618 return iova;
2621 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2623 struct dmar_domain *domain;
2624 int ret;
2626 domain = get_domain_for_dev(pdev,
2627 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2628 if (!domain) {
2629 printk(KERN_ERR
2630 "Allocating domain for %s failed", pci_name(pdev));
2631 return NULL;
2634 /* make sure context mapping is ok */
2635 if (unlikely(!domain_context_mapped(pdev))) {
2636 ret = domain_context_mapping(domain, pdev,
2637 CONTEXT_TT_MULTI_LEVEL);
2638 if (ret) {
2639 printk(KERN_ERR
2640 "Domain context map for %s failed",
2641 pci_name(pdev));
2642 return NULL;
2646 return domain;
2649 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2651 struct device_domain_info *info;
2653 /* No lock here, assumes no domain exit in normal case */
2654 info = dev->dev.archdata.iommu;
2655 if (likely(info))
2656 return info->domain;
2658 return __get_valid_domain_for_dev(dev);
2661 static int iommu_dummy(struct pci_dev *pdev)
2663 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2666 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2667 static int iommu_no_mapping(struct device *dev)
2669 struct pci_dev *pdev;
2670 int found;
2672 if (unlikely(dev->bus != &pci_bus_type))
2673 return 1;
2675 pdev = to_pci_dev(dev);
2676 if (iommu_dummy(pdev))
2677 return 1;
2679 if (!iommu_identity_mapping)
2680 return 0;
2682 found = identity_mapping(pdev);
2683 if (found) {
2684 if (iommu_should_identity_map(pdev, 0))
2685 return 1;
2686 else {
2688 * 32 bit DMA is removed from si_domain and fall back
2689 * to non-identity mapping.
2691 domain_remove_one_dev_info(si_domain, pdev);
2692 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2693 pci_name(pdev));
2694 return 0;
2696 } else {
2698 * In case of a detached 64 bit DMA device from vm, the device
2699 * is put into si_domain for identity mapping.
2701 if (iommu_should_identity_map(pdev, 0)) {
2702 int ret;
2703 ret = domain_add_dev_info(si_domain, pdev,
2704 hw_pass_through ?
2705 CONTEXT_TT_PASS_THROUGH :
2706 CONTEXT_TT_MULTI_LEVEL);
2707 if (!ret) {
2708 printk(KERN_INFO "64bit %s uses identity mapping\n",
2709 pci_name(pdev));
2710 return 1;
2715 return 0;
2718 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2719 size_t size, int dir, u64 dma_mask)
2721 struct pci_dev *pdev = to_pci_dev(hwdev);
2722 struct dmar_domain *domain;
2723 phys_addr_t start_paddr;
2724 struct iova *iova;
2725 int prot = 0;
2726 int ret;
2727 struct intel_iommu *iommu;
2728 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2730 BUG_ON(dir == DMA_NONE);
2732 if (iommu_no_mapping(hwdev))
2733 return paddr;
2735 domain = get_valid_domain_for_dev(pdev);
2736 if (!domain)
2737 return 0;
2739 iommu = domain_get_iommu(domain);
2740 size = aligned_nrpages(paddr, size);
2742 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2743 if (!iova)
2744 goto error;
2747 * Check if DMAR supports zero-length reads on write only
2748 * mappings..
2750 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2751 !cap_zlr(iommu->cap))
2752 prot |= DMA_PTE_READ;
2753 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2754 prot |= DMA_PTE_WRITE;
2756 * paddr - (paddr + size) might be partial page, we should map the whole
2757 * page. Note: if two part of one page are separately mapped, we
2758 * might have two guest_addr mapping to the same host paddr, but this
2759 * is not a big problem
2761 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2762 mm_to_dma_pfn(paddr_pfn), size, prot);
2763 if (ret)
2764 goto error;
2766 /* it's a non-present to present mapping. Only flush if caching mode */
2767 if (cap_caching_mode(iommu->cap))
2768 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2769 else
2770 iommu_flush_write_buffer(iommu);
2772 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2773 start_paddr += paddr & ~PAGE_MASK;
2774 return start_paddr;
2776 error:
2777 if (iova)
2778 __free_iova(&domain->iovad, iova);
2779 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2780 pci_name(pdev), size, (unsigned long long)paddr, dir);
2781 return 0;
2784 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2785 unsigned long offset, size_t size,
2786 enum dma_data_direction dir,
2787 struct dma_attrs *attrs)
2789 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2790 dir, to_pci_dev(dev)->dma_mask);
2793 static void flush_unmaps(void)
2795 int i, j;
2797 timer_on = 0;
2799 /* just flush them all */
2800 for (i = 0; i < g_num_of_iommus; i++) {
2801 struct intel_iommu *iommu = g_iommus[i];
2802 if (!iommu)
2803 continue;
2805 if (!deferred_flush[i].next)
2806 continue;
2808 /* In caching mode, global flushes turn emulation expensive */
2809 if (!cap_caching_mode(iommu->cap))
2810 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2811 DMA_TLB_GLOBAL_FLUSH);
2812 for (j = 0; j < deferred_flush[i].next; j++) {
2813 unsigned long mask;
2814 struct iova *iova = deferred_flush[i].iova[j];
2815 struct dmar_domain *domain = deferred_flush[i].domain[j];
2817 /* On real hardware multiple invalidations are expensive */
2818 if (cap_caching_mode(iommu->cap))
2819 iommu_flush_iotlb_psi(iommu, domain->id,
2820 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2821 else {
2822 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2823 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2824 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2826 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2828 deferred_flush[i].next = 0;
2831 list_size = 0;
2834 static void flush_unmaps_timeout(unsigned long data)
2836 unsigned long flags;
2838 spin_lock_irqsave(&async_umap_flush_lock, flags);
2839 flush_unmaps();
2840 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2843 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2845 unsigned long flags;
2846 int next, iommu_id;
2847 struct intel_iommu *iommu;
2849 spin_lock_irqsave(&async_umap_flush_lock, flags);
2850 if (list_size == HIGH_WATER_MARK)
2851 flush_unmaps();
2853 iommu = domain_get_iommu(dom);
2854 iommu_id = iommu->seq_id;
2856 next = deferred_flush[iommu_id].next;
2857 deferred_flush[iommu_id].domain[next] = dom;
2858 deferred_flush[iommu_id].iova[next] = iova;
2859 deferred_flush[iommu_id].next++;
2861 if (!timer_on) {
2862 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2863 timer_on = 1;
2865 list_size++;
2866 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2869 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2870 size_t size, enum dma_data_direction dir,
2871 struct dma_attrs *attrs)
2873 struct pci_dev *pdev = to_pci_dev(dev);
2874 struct dmar_domain *domain;
2875 unsigned long start_pfn, last_pfn;
2876 struct iova *iova;
2877 struct intel_iommu *iommu;
2879 if (iommu_no_mapping(dev))
2880 return;
2882 domain = find_domain(pdev);
2883 BUG_ON(!domain);
2885 iommu = domain_get_iommu(domain);
2887 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2888 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2889 (unsigned long long)dev_addr))
2890 return;
2892 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2893 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2895 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2896 pci_name(pdev), start_pfn, last_pfn);
2898 /* clear the whole page */
2899 dma_pte_clear_range(domain, start_pfn, last_pfn);
2901 /* free page tables */
2902 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2904 if (intel_iommu_strict) {
2905 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2906 last_pfn - start_pfn + 1, 0);
2907 /* free iova */
2908 __free_iova(&domain->iovad, iova);
2909 } else {
2910 add_unmap(domain, iova);
2912 * queue up the release of the unmap to save the 1/6th of the
2913 * cpu used up by the iotlb flush operation...
2918 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2919 dma_addr_t *dma_handle, gfp_t flags)
2921 void *vaddr;
2922 int order;
2924 size = PAGE_ALIGN(size);
2925 order = get_order(size);
2927 if (!iommu_no_mapping(hwdev))
2928 flags &= ~(GFP_DMA | GFP_DMA32);
2929 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2930 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2931 flags |= GFP_DMA;
2932 else
2933 flags |= GFP_DMA32;
2936 vaddr = (void *)__get_free_pages(flags, order);
2937 if (!vaddr)
2938 return NULL;
2939 memset(vaddr, 0, size);
2941 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2942 DMA_BIDIRECTIONAL,
2943 hwdev->coherent_dma_mask);
2944 if (*dma_handle)
2945 return vaddr;
2946 free_pages((unsigned long)vaddr, order);
2947 return NULL;
2950 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2951 dma_addr_t dma_handle)
2953 int order;
2955 size = PAGE_ALIGN(size);
2956 order = get_order(size);
2958 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2959 free_pages((unsigned long)vaddr, order);
2962 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2963 int nelems, enum dma_data_direction dir,
2964 struct dma_attrs *attrs)
2966 struct pci_dev *pdev = to_pci_dev(hwdev);
2967 struct dmar_domain *domain;
2968 unsigned long start_pfn, last_pfn;
2969 struct iova *iova;
2970 struct intel_iommu *iommu;
2972 if (iommu_no_mapping(hwdev))
2973 return;
2975 domain = find_domain(pdev);
2976 BUG_ON(!domain);
2978 iommu = domain_get_iommu(domain);
2980 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2981 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2982 (unsigned long long)sglist[0].dma_address))
2983 return;
2985 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2986 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2988 /* clear the whole page */
2989 dma_pte_clear_range(domain, start_pfn, last_pfn);
2991 /* free page tables */
2992 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2994 if (intel_iommu_strict) {
2995 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2996 last_pfn - start_pfn + 1, 0);
2997 /* free iova */
2998 __free_iova(&domain->iovad, iova);
2999 } else {
3000 add_unmap(domain, iova);
3002 * queue up the release of the unmap to save the 1/6th of the
3003 * cpu used up by the iotlb flush operation...
3008 static int intel_nontranslate_map_sg(struct device *hddev,
3009 struct scatterlist *sglist, int nelems, int dir)
3011 int i;
3012 struct scatterlist *sg;
3014 for_each_sg(sglist, sg, nelems, i) {
3015 BUG_ON(!sg_page(sg));
3016 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3017 sg->dma_length = sg->length;
3019 return nelems;
3022 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3023 enum dma_data_direction dir, struct dma_attrs *attrs)
3025 int i;
3026 struct pci_dev *pdev = to_pci_dev(hwdev);
3027 struct dmar_domain *domain;
3028 size_t size = 0;
3029 int prot = 0;
3030 struct iova *iova = NULL;
3031 int ret;
3032 struct scatterlist *sg;
3033 unsigned long start_vpfn;
3034 struct intel_iommu *iommu;
3036 BUG_ON(dir == DMA_NONE);
3037 if (iommu_no_mapping(hwdev))
3038 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3040 domain = get_valid_domain_for_dev(pdev);
3041 if (!domain)
3042 return 0;
3044 iommu = domain_get_iommu(domain);
3046 for_each_sg(sglist, sg, nelems, i)
3047 size += aligned_nrpages(sg->offset, sg->length);
3049 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3050 pdev->dma_mask);
3051 if (!iova) {
3052 sglist->dma_length = 0;
3053 return 0;
3057 * Check if DMAR supports zero-length reads on write only
3058 * mappings..
3060 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3061 !cap_zlr(iommu->cap))
3062 prot |= DMA_PTE_READ;
3063 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3064 prot |= DMA_PTE_WRITE;
3066 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3068 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3069 if (unlikely(ret)) {
3070 /* clear the page */
3071 dma_pte_clear_range(domain, start_vpfn,
3072 start_vpfn + size - 1);
3073 /* free page tables */
3074 dma_pte_free_pagetable(domain, start_vpfn,
3075 start_vpfn + size - 1);
3076 /* free iova */
3077 __free_iova(&domain->iovad, iova);
3078 return 0;
3081 /* it's a non-present to present mapping. Only flush if caching mode */
3082 if (cap_caching_mode(iommu->cap))
3083 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3084 else
3085 iommu_flush_write_buffer(iommu);
3087 return nelems;
3090 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3092 return !dma_addr;
3095 struct dma_map_ops intel_dma_ops = {
3096 .alloc_coherent = intel_alloc_coherent,
3097 .free_coherent = intel_free_coherent,
3098 .map_sg = intel_map_sg,
3099 .unmap_sg = intel_unmap_sg,
3100 .map_page = intel_map_page,
3101 .unmap_page = intel_unmap_page,
3102 .mapping_error = intel_mapping_error,
3105 static inline int iommu_domain_cache_init(void)
3107 int ret = 0;
3109 iommu_domain_cache = kmem_cache_create("iommu_domain",
3110 sizeof(struct dmar_domain),
3112 SLAB_HWCACHE_ALIGN,
3114 NULL);
3115 if (!iommu_domain_cache) {
3116 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3117 ret = -ENOMEM;
3120 return ret;
3123 static inline int iommu_devinfo_cache_init(void)
3125 int ret = 0;
3127 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3128 sizeof(struct device_domain_info),
3130 SLAB_HWCACHE_ALIGN,
3131 NULL);
3132 if (!iommu_devinfo_cache) {
3133 printk(KERN_ERR "Couldn't create devinfo cache\n");
3134 ret = -ENOMEM;
3137 return ret;
3140 static inline int iommu_iova_cache_init(void)
3142 int ret = 0;
3144 iommu_iova_cache = kmem_cache_create("iommu_iova",
3145 sizeof(struct iova),
3147 SLAB_HWCACHE_ALIGN,
3148 NULL);
3149 if (!iommu_iova_cache) {
3150 printk(KERN_ERR "Couldn't create iova cache\n");
3151 ret = -ENOMEM;
3154 return ret;
3157 static int __init iommu_init_mempool(void)
3159 int ret;
3160 ret = iommu_iova_cache_init();
3161 if (ret)
3162 return ret;
3164 ret = iommu_domain_cache_init();
3165 if (ret)
3166 goto domain_error;
3168 ret = iommu_devinfo_cache_init();
3169 if (!ret)
3170 return ret;
3172 kmem_cache_destroy(iommu_domain_cache);
3173 domain_error:
3174 kmem_cache_destroy(iommu_iova_cache);
3176 return -ENOMEM;
3179 static void __init iommu_exit_mempool(void)
3181 kmem_cache_destroy(iommu_devinfo_cache);
3182 kmem_cache_destroy(iommu_domain_cache);
3183 kmem_cache_destroy(iommu_iova_cache);
3187 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3189 struct dmar_drhd_unit *drhd;
3190 u32 vtbar;
3191 int rc;
3193 /* We know that this device on this chipset has its own IOMMU.
3194 * If we find it under a different IOMMU, then the BIOS is lying
3195 * to us. Hope that the IOMMU for this device is actually
3196 * disabled, and it needs no translation...
3198 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3199 if (rc) {
3200 /* "can't" happen */
3201 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3202 return;
3204 vtbar &= 0xffff0000;
3206 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3207 drhd = dmar_find_matched_drhd_unit(pdev);
3208 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3209 TAINT_FIRMWARE_WORKAROUND,
3210 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3211 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3213 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3215 static void __init init_no_remapping_devices(void)
3217 struct dmar_drhd_unit *drhd;
3219 for_each_drhd_unit(drhd) {
3220 if (!drhd->include_all) {
3221 int i;
3222 for (i = 0; i < drhd->devices_cnt; i++)
3223 if (drhd->devices[i] != NULL)
3224 break;
3225 /* ignore DMAR unit if no pci devices exist */
3226 if (i == drhd->devices_cnt)
3227 drhd->ignored = 1;
3231 for_each_drhd_unit(drhd) {
3232 int i;
3233 if (drhd->ignored || drhd->include_all)
3234 continue;
3236 for (i = 0; i < drhd->devices_cnt; i++)
3237 if (drhd->devices[i] &&
3238 !IS_GFX_DEVICE(drhd->devices[i]))
3239 break;
3241 if (i < drhd->devices_cnt)
3242 continue;
3244 /* This IOMMU has *only* gfx devices. Either bypass it or
3245 set the gfx_mapped flag, as appropriate */
3246 if (dmar_map_gfx) {
3247 intel_iommu_gfx_mapped = 1;
3248 } else {
3249 drhd->ignored = 1;
3250 for (i = 0; i < drhd->devices_cnt; i++) {
3251 if (!drhd->devices[i])
3252 continue;
3253 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3259 #ifdef CONFIG_SUSPEND
3260 static int init_iommu_hw(void)
3262 struct dmar_drhd_unit *drhd;
3263 struct intel_iommu *iommu = NULL;
3265 for_each_active_iommu(iommu, drhd)
3266 if (iommu->qi)
3267 dmar_reenable_qi(iommu);
3269 for_each_iommu(iommu, drhd) {
3270 if (drhd->ignored) {
3272 * we always have to disable PMRs or DMA may fail on
3273 * this device
3275 if (force_on)
3276 iommu_disable_protect_mem_regions(iommu);
3277 continue;
3280 iommu_flush_write_buffer(iommu);
3282 iommu_set_root_entry(iommu);
3284 iommu->flush.flush_context(iommu, 0, 0, 0,
3285 DMA_CCMD_GLOBAL_INVL);
3286 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3287 DMA_TLB_GLOBAL_FLUSH);
3288 if (iommu_enable_translation(iommu))
3289 return 1;
3290 iommu_disable_protect_mem_regions(iommu);
3293 return 0;
3296 static void iommu_flush_all(void)
3298 struct dmar_drhd_unit *drhd;
3299 struct intel_iommu *iommu;
3301 for_each_active_iommu(iommu, drhd) {
3302 iommu->flush.flush_context(iommu, 0, 0, 0,
3303 DMA_CCMD_GLOBAL_INVL);
3304 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3305 DMA_TLB_GLOBAL_FLUSH);
3309 static int iommu_suspend(void)
3311 struct dmar_drhd_unit *drhd;
3312 struct intel_iommu *iommu = NULL;
3313 unsigned long flag;
3315 for_each_active_iommu(iommu, drhd) {
3316 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3317 GFP_ATOMIC);
3318 if (!iommu->iommu_state)
3319 goto nomem;
3322 iommu_flush_all();
3324 for_each_active_iommu(iommu, drhd) {
3325 iommu_disable_translation(iommu);
3327 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3329 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3330 readl(iommu->reg + DMAR_FECTL_REG);
3331 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3332 readl(iommu->reg + DMAR_FEDATA_REG);
3333 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3334 readl(iommu->reg + DMAR_FEADDR_REG);
3335 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3336 readl(iommu->reg + DMAR_FEUADDR_REG);
3338 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3340 return 0;
3342 nomem:
3343 for_each_active_iommu(iommu, drhd)
3344 kfree(iommu->iommu_state);
3346 return -ENOMEM;
3349 static void iommu_resume(void)
3351 struct dmar_drhd_unit *drhd;
3352 struct intel_iommu *iommu = NULL;
3353 unsigned long flag;
3355 if (init_iommu_hw()) {
3356 if (force_on)
3357 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3358 else
3359 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3360 return;
3363 for_each_active_iommu(iommu, drhd) {
3365 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3367 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3368 iommu->reg + DMAR_FECTL_REG);
3369 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3370 iommu->reg + DMAR_FEDATA_REG);
3371 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3372 iommu->reg + DMAR_FEADDR_REG);
3373 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3374 iommu->reg + DMAR_FEUADDR_REG);
3376 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3379 for_each_active_iommu(iommu, drhd)
3380 kfree(iommu->iommu_state);
3383 static struct syscore_ops iommu_syscore_ops = {
3384 .resume = iommu_resume,
3385 .suspend = iommu_suspend,
3388 static void __init init_iommu_pm_ops(void)
3390 register_syscore_ops(&iommu_syscore_ops);
3393 #else
3394 static inline void init_iommu_pm_ops(void) {}
3395 #endif /* CONFIG_PM */
3397 LIST_HEAD(dmar_rmrr_units);
3399 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3401 list_add(&rmrr->list, &dmar_rmrr_units);
3405 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3407 struct acpi_dmar_reserved_memory *rmrr;
3408 struct dmar_rmrr_unit *rmrru;
3410 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3411 if (!rmrru)
3412 return -ENOMEM;
3414 rmrru->hdr = header;
3415 rmrr = (struct acpi_dmar_reserved_memory *)header;
3416 rmrru->base_address = rmrr->base_address;
3417 rmrru->end_address = rmrr->end_address;
3419 dmar_register_rmrr_unit(rmrru);
3420 return 0;
3423 static int __init
3424 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3426 struct acpi_dmar_reserved_memory *rmrr;
3427 int ret;
3429 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3430 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3431 ((void *)rmrr) + rmrr->header.length,
3432 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3434 if (ret || (rmrru->devices_cnt == 0)) {
3435 list_del(&rmrru->list);
3436 kfree(rmrru);
3438 return ret;
3441 static LIST_HEAD(dmar_atsr_units);
3443 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3445 struct acpi_dmar_atsr *atsr;
3446 struct dmar_atsr_unit *atsru;
3448 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3449 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3450 if (!atsru)
3451 return -ENOMEM;
3453 atsru->hdr = hdr;
3454 atsru->include_all = atsr->flags & 0x1;
3456 list_add(&atsru->list, &dmar_atsr_units);
3458 return 0;
3461 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3463 int rc;
3464 struct acpi_dmar_atsr *atsr;
3466 if (atsru->include_all)
3467 return 0;
3469 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3470 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3471 (void *)atsr + atsr->header.length,
3472 &atsru->devices_cnt, &atsru->devices,
3473 atsr->segment);
3474 if (rc || !atsru->devices_cnt) {
3475 list_del(&atsru->list);
3476 kfree(atsru);
3479 return rc;
3482 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3484 int i;
3485 struct pci_bus *bus;
3486 struct acpi_dmar_atsr *atsr;
3487 struct dmar_atsr_unit *atsru;
3489 dev = pci_physfn(dev);
3491 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3492 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3493 if (atsr->segment == pci_domain_nr(dev->bus))
3494 goto found;
3497 return 0;
3499 found:
3500 for (bus = dev->bus; bus; bus = bus->parent) {
3501 struct pci_dev *bridge = bus->self;
3503 if (!bridge || !pci_is_pcie(bridge) ||
3504 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
3505 return 0;
3507 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
3508 for (i = 0; i < atsru->devices_cnt; i++)
3509 if (atsru->devices[i] == bridge)
3510 return 1;
3511 break;
3515 if (atsru->include_all)
3516 return 1;
3518 return 0;
3521 int dmar_parse_rmrr_atsr_dev(void)
3523 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3524 struct dmar_atsr_unit *atsr, *atsr_n;
3525 int ret = 0;
3527 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3528 ret = rmrr_parse_dev(rmrr);
3529 if (ret)
3530 return ret;
3533 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3534 ret = atsr_parse_dev(atsr);
3535 if (ret)
3536 return ret;
3539 return ret;
3543 * Here we only respond to action of unbound device from driver.
3545 * Added device is not attached to its DMAR domain here yet. That will happen
3546 * when mapping the device to iova.
3548 static int device_notifier(struct notifier_block *nb,
3549 unsigned long action, void *data)
3551 struct device *dev = data;
3552 struct pci_dev *pdev = to_pci_dev(dev);
3553 struct dmar_domain *domain;
3555 if (iommu_no_mapping(dev))
3556 return 0;
3558 domain = find_domain(pdev);
3559 if (!domain)
3560 return 0;
3562 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3563 domain_remove_one_dev_info(domain, pdev);
3565 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3566 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3567 list_empty(&domain->devices))
3568 domain_exit(domain);
3571 return 0;
3574 static struct notifier_block device_nb = {
3575 .notifier_call = device_notifier,
3578 int __init intel_iommu_init(void)
3580 int ret = 0;
3582 /* VT-d is required for a TXT/tboot launch, so enforce that */
3583 force_on = tboot_force_iommu();
3585 if (dmar_table_init()) {
3586 if (force_on)
3587 panic("tboot: Failed to initialize DMAR table\n");
3588 return -ENODEV;
3591 if (dmar_dev_scope_init() < 0) {
3592 if (force_on)
3593 panic("tboot: Failed to initialize DMAR device scope\n");
3594 return -ENODEV;
3597 if (no_iommu || dmar_disabled)
3598 return -ENODEV;
3600 if (iommu_init_mempool()) {
3601 if (force_on)
3602 panic("tboot: Failed to initialize iommu memory\n");
3603 return -ENODEV;
3606 if (list_empty(&dmar_rmrr_units))
3607 printk(KERN_INFO "DMAR: No RMRR found\n");
3609 if (list_empty(&dmar_atsr_units))
3610 printk(KERN_INFO "DMAR: No ATSR found\n");
3612 if (dmar_init_reserved_ranges()) {
3613 if (force_on)
3614 panic("tboot: Failed to reserve iommu ranges\n");
3615 return -ENODEV;
3618 init_no_remapping_devices();
3620 ret = init_dmars();
3621 if (ret) {
3622 if (force_on)
3623 panic("tboot: Failed to initialize DMARs\n");
3624 printk(KERN_ERR "IOMMU: dmar init failed\n");
3625 put_iova_domain(&reserved_iova_list);
3626 iommu_exit_mempool();
3627 return ret;
3629 printk(KERN_INFO
3630 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3632 init_timer(&unmap_timer);
3633 #ifdef CONFIG_SWIOTLB
3634 swiotlb = 0;
3635 #endif
3636 dma_ops = &intel_dma_ops;
3638 init_iommu_pm_ops();
3640 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3642 bus_register_notifier(&pci_bus_type, &device_nb);
3644 return 0;
3647 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3648 struct pci_dev *pdev)
3650 struct pci_dev *tmp, *parent;
3652 if (!iommu || !pdev)
3653 return;
3655 /* dependent device detach */
3656 tmp = pci_find_upstream_pcie_bridge(pdev);
3657 /* Secondary interface's bus number and devfn 0 */
3658 if (tmp) {
3659 parent = pdev->bus->self;
3660 while (parent != tmp) {
3661 iommu_detach_dev(iommu, parent->bus->number,
3662 parent->devfn);
3663 parent = parent->bus->self;
3665 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3666 iommu_detach_dev(iommu,
3667 tmp->subordinate->number, 0);
3668 else /* this is a legacy PCI bridge */
3669 iommu_detach_dev(iommu, tmp->bus->number,
3670 tmp->devfn);
3674 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3675 struct pci_dev *pdev)
3677 struct device_domain_info *info;
3678 struct intel_iommu *iommu;
3679 unsigned long flags;
3680 int found = 0;
3681 struct list_head *entry, *tmp;
3683 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3684 pdev->devfn);
3685 if (!iommu)
3686 return;
3688 spin_lock_irqsave(&device_domain_lock, flags);
3689 list_for_each_safe(entry, tmp, &domain->devices) {
3690 info = list_entry(entry, struct device_domain_info, link);
3691 if (info->segment == pci_domain_nr(pdev->bus) &&
3692 info->bus == pdev->bus->number &&
3693 info->devfn == pdev->devfn) {
3694 list_del(&info->link);
3695 list_del(&info->global);
3696 if (info->dev)
3697 info->dev->dev.archdata.iommu = NULL;
3698 spin_unlock_irqrestore(&device_domain_lock, flags);
3700 iommu_disable_dev_iotlb(info);
3701 iommu_detach_dev(iommu, info->bus, info->devfn);
3702 iommu_detach_dependent_devices(iommu, pdev);
3703 free_devinfo_mem(info);
3705 spin_lock_irqsave(&device_domain_lock, flags);
3707 if (found)
3708 break;
3709 else
3710 continue;
3713 /* if there is no other devices under the same iommu
3714 * owned by this domain, clear this iommu in iommu_bmp
3715 * update iommu count and coherency
3717 if (iommu == device_to_iommu(info->segment, info->bus,
3718 info->devfn))
3719 found = 1;
3722 spin_unlock_irqrestore(&device_domain_lock, flags);
3724 if (found == 0) {
3725 unsigned long tmp_flags;
3726 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3727 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3728 domain->iommu_count--;
3729 domain_update_iommu_cap(domain);
3730 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3732 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3733 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3734 spin_lock_irqsave(&iommu->lock, tmp_flags);
3735 clear_bit(domain->id, iommu->domain_ids);
3736 iommu->domains[domain->id] = NULL;
3737 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3742 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3744 struct device_domain_info *info;
3745 struct intel_iommu *iommu;
3746 unsigned long flags1, flags2;
3748 spin_lock_irqsave(&device_domain_lock, flags1);
3749 while (!list_empty(&domain->devices)) {
3750 info = list_entry(domain->devices.next,
3751 struct device_domain_info, link);
3752 list_del(&info->link);
3753 list_del(&info->global);
3754 if (info->dev)
3755 info->dev->dev.archdata.iommu = NULL;
3757 spin_unlock_irqrestore(&device_domain_lock, flags1);
3759 iommu_disable_dev_iotlb(info);
3760 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3761 iommu_detach_dev(iommu, info->bus, info->devfn);
3762 iommu_detach_dependent_devices(iommu, info->dev);
3764 /* clear this iommu in iommu_bmp, update iommu count
3765 * and capabilities
3767 spin_lock_irqsave(&domain->iommu_lock, flags2);
3768 if (test_and_clear_bit(iommu->seq_id,
3769 &domain->iommu_bmp)) {
3770 domain->iommu_count--;
3771 domain_update_iommu_cap(domain);
3773 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3775 free_devinfo_mem(info);
3776 spin_lock_irqsave(&device_domain_lock, flags1);
3778 spin_unlock_irqrestore(&device_domain_lock, flags1);
3781 /* domain id for virtual machine, it won't be set in context */
3782 static unsigned long vm_domid;
3784 static struct dmar_domain *iommu_alloc_vm_domain(void)
3786 struct dmar_domain *domain;
3788 domain = alloc_domain_mem();
3789 if (!domain)
3790 return NULL;
3792 domain->id = vm_domid++;
3793 domain->nid = -1;
3794 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3795 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3797 return domain;
3800 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3802 int adjust_width;
3804 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3805 spin_lock_init(&domain->iommu_lock);
3807 domain_reserve_special_ranges(domain);
3809 /* calculate AGAW */
3810 domain->gaw = guest_width;
3811 adjust_width = guestwidth_to_adjustwidth(guest_width);
3812 domain->agaw = width_to_agaw(adjust_width);
3814 INIT_LIST_HEAD(&domain->devices);
3816 domain->iommu_count = 0;
3817 domain->iommu_coherency = 0;
3818 domain->iommu_snooping = 0;
3819 domain->iommu_superpage = 0;
3820 domain->max_addr = 0;
3821 domain->nid = -1;
3823 /* always allocate the top pgd */
3824 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3825 if (!domain->pgd)
3826 return -ENOMEM;
3827 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3828 return 0;
3831 static void iommu_free_vm_domain(struct dmar_domain *domain)
3833 unsigned long flags;
3834 struct dmar_drhd_unit *drhd;
3835 struct intel_iommu *iommu;
3836 unsigned long i;
3837 unsigned long ndomains;
3839 for_each_drhd_unit(drhd) {
3840 if (drhd->ignored)
3841 continue;
3842 iommu = drhd->iommu;
3844 ndomains = cap_ndoms(iommu->cap);
3845 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3846 if (iommu->domains[i] == domain) {
3847 spin_lock_irqsave(&iommu->lock, flags);
3848 clear_bit(i, iommu->domain_ids);
3849 iommu->domains[i] = NULL;
3850 spin_unlock_irqrestore(&iommu->lock, flags);
3851 break;
3857 static void vm_domain_exit(struct dmar_domain *domain)
3859 /* Domain 0 is reserved, so dont process it */
3860 if (!domain)
3861 return;
3863 vm_domain_remove_all_dev_info(domain);
3864 /* destroy iovas */
3865 put_iova_domain(&domain->iovad);
3867 /* clear ptes */
3868 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3870 /* free page tables */
3871 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3873 iommu_free_vm_domain(domain);
3874 free_domain_mem(domain);
3877 static int intel_iommu_domain_init(struct iommu_domain *domain)
3879 struct dmar_domain *dmar_domain;
3881 dmar_domain = iommu_alloc_vm_domain();
3882 if (!dmar_domain) {
3883 printk(KERN_ERR
3884 "intel_iommu_domain_init: dmar_domain == NULL\n");
3885 return -ENOMEM;
3887 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3888 printk(KERN_ERR
3889 "intel_iommu_domain_init() failed\n");
3890 vm_domain_exit(dmar_domain);
3891 return -ENOMEM;
3893 domain_update_iommu_cap(dmar_domain);
3894 domain->priv = dmar_domain;
3896 return 0;
3899 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3901 struct dmar_domain *dmar_domain = domain->priv;
3903 domain->priv = NULL;
3904 vm_domain_exit(dmar_domain);
3907 static int intel_iommu_attach_device(struct iommu_domain *domain,
3908 struct device *dev)
3910 struct dmar_domain *dmar_domain = domain->priv;
3911 struct pci_dev *pdev = to_pci_dev(dev);
3912 struct intel_iommu *iommu;
3913 int addr_width;
3915 /* normally pdev is not mapped */
3916 if (unlikely(domain_context_mapped(pdev))) {
3917 struct dmar_domain *old_domain;
3919 old_domain = find_domain(pdev);
3920 if (old_domain) {
3921 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3922 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3923 domain_remove_one_dev_info(old_domain, pdev);
3924 else
3925 domain_remove_dev_info(old_domain);
3929 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3930 pdev->devfn);
3931 if (!iommu)
3932 return -ENODEV;
3934 /* check if this iommu agaw is sufficient for max mapped address */
3935 addr_width = agaw_to_width(iommu->agaw);
3936 if (addr_width > cap_mgaw(iommu->cap))
3937 addr_width = cap_mgaw(iommu->cap);
3939 if (dmar_domain->max_addr > (1LL << addr_width)) {
3940 printk(KERN_ERR "%s: iommu width (%d) is not "
3941 "sufficient for the mapped address (%llx)\n",
3942 __func__, addr_width, dmar_domain->max_addr);
3943 return -EFAULT;
3945 dmar_domain->gaw = addr_width;
3948 * Knock out extra levels of page tables if necessary
3950 while (iommu->agaw < dmar_domain->agaw) {
3951 struct dma_pte *pte;
3953 pte = dmar_domain->pgd;
3954 if (dma_pte_present(pte)) {
3955 dmar_domain->pgd = (struct dma_pte *)
3956 phys_to_virt(dma_pte_addr(pte));
3957 free_pgtable_page(pte);
3959 dmar_domain->agaw--;
3962 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3965 static void intel_iommu_detach_device(struct iommu_domain *domain,
3966 struct device *dev)
3968 struct dmar_domain *dmar_domain = domain->priv;
3969 struct pci_dev *pdev = to_pci_dev(dev);
3971 domain_remove_one_dev_info(dmar_domain, pdev);
3974 static int intel_iommu_map(struct iommu_domain *domain,
3975 unsigned long iova, phys_addr_t hpa,
3976 int gfp_order, int iommu_prot)
3978 struct dmar_domain *dmar_domain = domain->priv;
3979 u64 max_addr;
3980 int prot = 0;
3981 size_t size;
3982 int ret;
3984 if (iommu_prot & IOMMU_READ)
3985 prot |= DMA_PTE_READ;
3986 if (iommu_prot & IOMMU_WRITE)
3987 prot |= DMA_PTE_WRITE;
3988 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3989 prot |= DMA_PTE_SNP;
3991 size = PAGE_SIZE << gfp_order;
3992 max_addr = iova + size;
3993 if (dmar_domain->max_addr < max_addr) {
3994 u64 end;
3996 /* check if minimum agaw is sufficient for mapped address */
3997 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
3998 if (end < max_addr) {
3999 printk(KERN_ERR "%s: iommu width (%d) is not "
4000 "sufficient for the mapped address (%llx)\n",
4001 __func__, dmar_domain->gaw, max_addr);
4002 return -EFAULT;
4004 dmar_domain->max_addr = max_addr;
4006 /* Round up size to next multiple of PAGE_SIZE, if it and
4007 the low bits of hpa would take us onto the next page */
4008 size = aligned_nrpages(hpa, size);
4009 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4010 hpa >> VTD_PAGE_SHIFT, size, prot);
4011 return ret;
4014 static int intel_iommu_unmap(struct iommu_domain *domain,
4015 unsigned long iova, int gfp_order)
4017 struct dmar_domain *dmar_domain = domain->priv;
4018 size_t size = PAGE_SIZE << gfp_order;
4019 int order;
4021 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4022 (iova + size - 1) >> VTD_PAGE_SHIFT);
4024 if (dmar_domain->max_addr == iova + size)
4025 dmar_domain->max_addr = iova;
4027 return order;
4030 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4031 unsigned long iova)
4033 struct dmar_domain *dmar_domain = domain->priv;
4034 struct dma_pte *pte;
4035 u64 phys = 0;
4037 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4038 if (pte)
4039 phys = dma_pte_addr(pte);
4041 return phys;
4044 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4045 unsigned long cap)
4047 struct dmar_domain *dmar_domain = domain->priv;
4049 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4050 return dmar_domain->iommu_snooping;
4051 if (cap == IOMMU_CAP_INTR_REMAP)
4052 return intr_remapping_enabled;
4054 return 0;
4057 static struct iommu_ops intel_iommu_ops = {
4058 .domain_init = intel_iommu_domain_init,
4059 .domain_destroy = intel_iommu_domain_destroy,
4060 .attach_dev = intel_iommu_attach_device,
4061 .detach_dev = intel_iommu_detach_device,
4062 .map = intel_iommu_map,
4063 .unmap = intel_iommu_unmap,
4064 .iova_to_phys = intel_iommu_iova_to_phys,
4065 .domain_has_cap = intel_iommu_domain_has_cap,
4068 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4071 * Mobile 4 Series Chipset neglects to set RWBF capability,
4072 * but needs it:
4074 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4075 rwbf_quirk = 1;
4077 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4078 if (dev->revision == 0x07) {
4079 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4080 dmar_map_gfx = 0;
4084 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4086 #define GGC 0x52
4087 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4088 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4089 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4090 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4091 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4092 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4093 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4094 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4096 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4098 unsigned short ggc;
4100 if (pci_read_config_word(dev, GGC, &ggc))
4101 return;
4103 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4104 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4105 dmar_map_gfx = 0;
4106 } else if (dmar_map_gfx) {
4107 /* we have to ensure the gfx device is idle before we flush */
4108 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4109 intel_iommu_strict = 1;
4112 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4113 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4114 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4115 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4117 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4118 ISOCH DMAR unit for the Azalia sound device, but not give it any
4119 TLB entries, which causes it to deadlock. Check for that. We do
4120 this in a function called from init_dmars(), instead of in a PCI
4121 quirk, because we don't want to print the obnoxious "BIOS broken"
4122 message if VT-d is actually disabled.
4124 static void __init check_tylersburg_isoch(void)
4126 struct pci_dev *pdev;
4127 uint32_t vtisochctrl;
4129 /* If there's no Azalia in the system anyway, forget it. */
4130 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4131 if (!pdev)
4132 return;
4133 pci_dev_put(pdev);
4135 /* System Management Registers. Might be hidden, in which case
4136 we can't do the sanity check. But that's OK, because the
4137 known-broken BIOSes _don't_ actually hide it, so far. */
4138 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4139 if (!pdev)
4140 return;
4142 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4143 pci_dev_put(pdev);
4144 return;
4147 pci_dev_put(pdev);
4149 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4150 if (vtisochctrl & 1)
4151 return;
4153 /* Drop all bits other than the number of TLB entries */
4154 vtisochctrl &= 0x1c;
4156 /* If we have the recommended number of TLB entries (16), fine. */
4157 if (vtisochctrl == 0x10)
4158 return;
4160 /* Zero TLB entries? You get to ride the short bus to school. */
4161 if (!vtisochctrl) {
4162 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4163 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4164 dmi_get_system_info(DMI_BIOS_VENDOR),
4165 dmi_get_system_info(DMI_BIOS_VERSION),
4166 dmi_get_system_info(DMI_PRODUCT_VERSION));
4167 iommu_identity_mapping |= IDENTMAP_AZALIA;
4168 return;
4171 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4172 vtisochctrl);