4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
69 int number_of_cpusets __read_mostly
;
71 /* Forward declare cgroup structures */
72 struct cgroup_subsys cpuset_subsys
;
75 /* See "Frequency meter" comments, below. */
78 int cnt
; /* unprocessed events count */
79 int val
; /* most recent output value */
80 time_t time
; /* clock (secs) when val computed */
81 spinlock_t lock
; /* guards read or write of above */
85 struct cgroup_subsys_state css
;
87 unsigned long flags
; /* "unsigned long" so bitops work */
88 cpumask_var_t cpus_allowed
; /* CPUs allowed to tasks in cpuset */
89 nodemask_t mems_allowed
; /* Memory Nodes allowed to tasks */
92 * This is old Memory Nodes tasks took on.
94 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
95 * - A new cpuset's old_mems_allowed is initialized when some
96 * task is moved into it.
97 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
98 * cpuset.mems_allowed and have tasks' nodemask updated, and
99 * then old_mems_allowed is updated to mems_allowed.
101 nodemask_t old_mems_allowed
;
103 struct fmeter fmeter
; /* memory_pressure filter */
106 * Tasks are being attached to this cpuset. Used to prevent
107 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
109 int attach_in_progress
;
111 /* partition number for rebuild_sched_domains() */
114 /* for custom sched domain */
115 int relax_domain_level
;
118 /* Retrieve the cpuset for a cgroup */
119 static inline struct cpuset
*cgroup_cs(struct cgroup
*cgrp
)
121 return container_of(cgroup_subsys_state(cgrp
, cpuset_subsys_id
),
125 /* Retrieve the cpuset for a task */
126 static inline struct cpuset
*task_cs(struct task_struct
*task
)
128 return container_of(task_subsys_state(task
, cpuset_subsys_id
),
132 static inline struct cpuset
*parent_cs(const struct cpuset
*cs
)
134 struct cgroup
*pcgrp
= cs
->css
.cgroup
->parent
;
137 return cgroup_cs(pcgrp
);
142 static inline bool task_has_mempolicy(struct task_struct
*task
)
144 return task
->mempolicy
;
147 static inline bool task_has_mempolicy(struct task_struct
*task
)
154 /* bits in struct cpuset flags field */
161 CS_SCHED_LOAD_BALANCE
,
166 /* convenient tests for these bits */
167 static inline bool is_cpuset_online(const struct cpuset
*cs
)
169 return test_bit(CS_ONLINE
, &cs
->flags
);
172 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
174 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
177 static inline int is_mem_exclusive(const struct cpuset
*cs
)
179 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
182 static inline int is_mem_hardwall(const struct cpuset
*cs
)
184 return test_bit(CS_MEM_HARDWALL
, &cs
->flags
);
187 static inline int is_sched_load_balance(const struct cpuset
*cs
)
189 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
192 static inline int is_memory_migrate(const struct cpuset
*cs
)
194 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
197 static inline int is_spread_page(const struct cpuset
*cs
)
199 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
202 static inline int is_spread_slab(const struct cpuset
*cs
)
204 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
207 static struct cpuset top_cpuset
= {
208 .flags
= ((1 << CS_ONLINE
) | (1 << CS_CPU_EXCLUSIVE
) |
209 (1 << CS_MEM_EXCLUSIVE
)),
213 * cpuset_for_each_child - traverse online children of a cpuset
214 * @child_cs: loop cursor pointing to the current child
215 * @pos_cgrp: used for iteration
216 * @parent_cs: target cpuset to walk children of
218 * Walk @child_cs through the online children of @parent_cs. Must be used
219 * with RCU read locked.
221 #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
222 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
223 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
226 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
227 * @des_cs: loop cursor pointing to the current descendant
228 * @pos_cgrp: used for iteration
229 * @root_cs: target cpuset to walk ancestor of
231 * Walk @des_cs through the online descendants of @root_cs. Must be used
232 * with RCU read locked. The caller may modify @pos_cgrp by calling
233 * cgroup_rightmost_descendant() to skip subtree.
235 #define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
236 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
237 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
240 * There are two global mutexes guarding cpuset structures - cpuset_mutex
241 * and callback_mutex. The latter may nest inside the former. We also
242 * require taking task_lock() when dereferencing a task's cpuset pointer.
243 * See "The task_lock() exception", at the end of this comment.
245 * A task must hold both mutexes to modify cpusets. If a task holds
246 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
247 * is the only task able to also acquire callback_mutex and be able to
248 * modify cpusets. It can perform various checks on the cpuset structure
249 * first, knowing nothing will change. It can also allocate memory while
250 * just holding cpuset_mutex. While it is performing these checks, various
251 * callback routines can briefly acquire callback_mutex to query cpusets.
252 * Once it is ready to make the changes, it takes callback_mutex, blocking
255 * Calls to the kernel memory allocator can not be made while holding
256 * callback_mutex, as that would risk double tripping on callback_mutex
257 * from one of the callbacks into the cpuset code from within
260 * If a task is only holding callback_mutex, then it has read-only
263 * Now, the task_struct fields mems_allowed and mempolicy may be changed
264 * by other task, we use alloc_lock in the task_struct fields to protect
267 * The cpuset_common_file_read() handlers only hold callback_mutex across
268 * small pieces of code, such as when reading out possibly multi-word
269 * cpumasks and nodemasks.
271 * Accessing a task's cpuset should be done in accordance with the
272 * guidelines for accessing subsystem state in kernel/cgroup.c
275 static DEFINE_MUTEX(cpuset_mutex
);
276 static DEFINE_MUTEX(callback_mutex
);
279 * CPU / memory hotplug is handled asynchronously.
281 static void cpuset_hotplug_workfn(struct work_struct
*work
);
282 static DECLARE_WORK(cpuset_hotplug_work
, cpuset_hotplug_workfn
);
284 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq
);
287 * This is ugly, but preserves the userspace API for existing cpuset
288 * users. If someone tries to mount the "cpuset" filesystem, we
289 * silently switch it to mount "cgroup" instead
291 static struct dentry
*cpuset_mount(struct file_system_type
*fs_type
,
292 int flags
, const char *unused_dev_name
, void *data
)
294 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
295 struct dentry
*ret
= ERR_PTR(-ENODEV
);
299 "release_agent=/sbin/cpuset_release_agent";
300 ret
= cgroup_fs
->mount(cgroup_fs
, flags
,
301 unused_dev_name
, mountopts
);
302 put_filesystem(cgroup_fs
);
307 static struct file_system_type cpuset_fs_type
= {
309 .mount
= cpuset_mount
,
313 * Return in pmask the portion of a cpusets's cpus_allowed that
314 * are online. If none are online, walk up the cpuset hierarchy
315 * until we find one that does have some online cpus. The top
316 * cpuset always has some cpus online.
318 * One way or another, we guarantee to return some non-empty subset
319 * of cpu_online_mask.
321 * Call with callback_mutex held.
323 static void guarantee_online_cpus(const struct cpuset
*cs
,
324 struct cpumask
*pmask
)
326 while (!cpumask_intersects(cs
->cpus_allowed
, cpu_online_mask
))
328 cpumask_and(pmask
, cs
->cpus_allowed
, cpu_online_mask
);
332 * Return in *pmask the portion of a cpusets's mems_allowed that
333 * are online, with memory. If none are online with memory, walk
334 * up the cpuset hierarchy until we find one that does have some
335 * online mems. The top cpuset always has some mems online.
337 * One way or another, we guarantee to return some non-empty subset
338 * of node_states[N_MEMORY].
340 * Call with callback_mutex held.
342 static void guarantee_online_mems(const struct cpuset
*cs
, nodemask_t
*pmask
)
344 while (!nodes_intersects(cs
->mems_allowed
, node_states
[N_MEMORY
]))
346 nodes_and(*pmask
, cs
->mems_allowed
, node_states
[N_MEMORY
]);
350 * update task's spread flag if cpuset's page/slab spread flag is set
352 * Called with callback_mutex/cpuset_mutex held
354 static void cpuset_update_task_spread_flag(struct cpuset
*cs
,
355 struct task_struct
*tsk
)
357 if (is_spread_page(cs
))
358 tsk
->flags
|= PF_SPREAD_PAGE
;
360 tsk
->flags
&= ~PF_SPREAD_PAGE
;
361 if (is_spread_slab(cs
))
362 tsk
->flags
|= PF_SPREAD_SLAB
;
364 tsk
->flags
&= ~PF_SPREAD_SLAB
;
368 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
370 * One cpuset is a subset of another if all its allowed CPUs and
371 * Memory Nodes are a subset of the other, and its exclusive flags
372 * are only set if the other's are set. Call holding cpuset_mutex.
375 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
377 return cpumask_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
378 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
379 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
380 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
384 * alloc_trial_cpuset - allocate a trial cpuset
385 * @cs: the cpuset that the trial cpuset duplicates
387 static struct cpuset
*alloc_trial_cpuset(const struct cpuset
*cs
)
389 struct cpuset
*trial
;
391 trial
= kmemdup(cs
, sizeof(*cs
), GFP_KERNEL
);
395 if (!alloc_cpumask_var(&trial
->cpus_allowed
, GFP_KERNEL
)) {
399 cpumask_copy(trial
->cpus_allowed
, cs
->cpus_allowed
);
405 * free_trial_cpuset - free the trial cpuset
406 * @trial: the trial cpuset to be freed
408 static void free_trial_cpuset(struct cpuset
*trial
)
410 free_cpumask_var(trial
->cpus_allowed
);
415 * validate_change() - Used to validate that any proposed cpuset change
416 * follows the structural rules for cpusets.
418 * If we replaced the flag and mask values of the current cpuset
419 * (cur) with those values in the trial cpuset (trial), would
420 * our various subset and exclusive rules still be valid? Presumes
423 * 'cur' is the address of an actual, in-use cpuset. Operations
424 * such as list traversal that depend on the actual address of the
425 * cpuset in the list must use cur below, not trial.
427 * 'trial' is the address of bulk structure copy of cur, with
428 * perhaps one or more of the fields cpus_allowed, mems_allowed,
429 * or flags changed to new, trial values.
431 * Return 0 if valid, -errno if not.
434 static int validate_change(const struct cpuset
*cur
, const struct cpuset
*trial
)
437 struct cpuset
*c
, *par
;
442 /* Each of our child cpusets must be a subset of us */
444 cpuset_for_each_child(c
, cgrp
, cur
)
445 if (!is_cpuset_subset(c
, trial
))
448 /* Remaining checks don't apply to root cpuset */
450 if (cur
== &top_cpuset
)
453 par
= parent_cs(cur
);
455 /* We must be a subset of our parent cpuset */
457 if (!is_cpuset_subset(trial
, par
))
461 * If either I or some sibling (!= me) is exclusive, we can't
465 cpuset_for_each_child(c
, cgrp
, par
) {
466 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
468 cpumask_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
470 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
472 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
477 * Cpusets with tasks - existing or newly being attached - can't
478 * have empty cpus_allowed or mems_allowed.
481 if ((cgroup_task_count(cur
->css
.cgroup
) || cur
->attach_in_progress
) &&
482 (cpumask_empty(trial
->cpus_allowed
) &&
483 nodes_empty(trial
->mems_allowed
)))
494 * Helper routine for generate_sched_domains().
495 * Do cpusets a, b have overlapping cpus_allowed masks?
497 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
499 return cpumask_intersects(a
->cpus_allowed
, b
->cpus_allowed
);
503 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
505 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
506 dattr
->relax_domain_level
= c
->relax_domain_level
;
510 static void update_domain_attr_tree(struct sched_domain_attr
*dattr
,
511 struct cpuset
*root_cs
)
514 struct cgroup
*pos_cgrp
;
517 cpuset_for_each_descendant_pre(cp
, pos_cgrp
, root_cs
) {
518 /* skip the whole subtree if @cp doesn't have any CPU */
519 if (cpumask_empty(cp
->cpus_allowed
)) {
520 pos_cgrp
= cgroup_rightmost_descendant(pos_cgrp
);
524 if (is_sched_load_balance(cp
))
525 update_domain_attr(dattr
, cp
);
531 * generate_sched_domains()
533 * This function builds a partial partition of the systems CPUs
534 * A 'partial partition' is a set of non-overlapping subsets whose
535 * union is a subset of that set.
536 * The output of this function needs to be passed to kernel/sched/core.c
537 * partition_sched_domains() routine, which will rebuild the scheduler's
538 * load balancing domains (sched domains) as specified by that partial
541 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
542 * for a background explanation of this.
544 * Does not return errors, on the theory that the callers of this
545 * routine would rather not worry about failures to rebuild sched
546 * domains when operating in the severe memory shortage situations
547 * that could cause allocation failures below.
549 * Must be called with cpuset_mutex held.
551 * The three key local variables below are:
552 * q - a linked-list queue of cpuset pointers, used to implement a
553 * top-down scan of all cpusets. This scan loads a pointer
554 * to each cpuset marked is_sched_load_balance into the
555 * array 'csa'. For our purposes, rebuilding the schedulers
556 * sched domains, we can ignore !is_sched_load_balance cpusets.
557 * csa - (for CpuSet Array) Array of pointers to all the cpusets
558 * that need to be load balanced, for convenient iterative
559 * access by the subsequent code that finds the best partition,
560 * i.e the set of domains (subsets) of CPUs such that the
561 * cpus_allowed of every cpuset marked is_sched_load_balance
562 * is a subset of one of these domains, while there are as
563 * many such domains as possible, each as small as possible.
564 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
565 * the kernel/sched/core.c routine partition_sched_domains() in a
566 * convenient format, that can be easily compared to the prior
567 * value to determine what partition elements (sched domains)
568 * were changed (added or removed.)
570 * Finding the best partition (set of domains):
571 * The triple nested loops below over i, j, k scan over the
572 * load balanced cpusets (using the array of cpuset pointers in
573 * csa[]) looking for pairs of cpusets that have overlapping
574 * cpus_allowed, but which don't have the same 'pn' partition
575 * number and gives them in the same partition number. It keeps
576 * looping on the 'restart' label until it can no longer find
579 * The union of the cpus_allowed masks from the set of
580 * all cpusets having the same 'pn' value then form the one
581 * element of the partition (one sched domain) to be passed to
582 * partition_sched_domains().
584 static int generate_sched_domains(cpumask_var_t
**domains
,
585 struct sched_domain_attr
**attributes
)
587 struct cpuset
*cp
; /* scans q */
588 struct cpuset
**csa
; /* array of all cpuset ptrs */
589 int csn
; /* how many cpuset ptrs in csa so far */
590 int i
, j
, k
; /* indices for partition finding loops */
591 cpumask_var_t
*doms
; /* resulting partition; i.e. sched domains */
592 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
593 int ndoms
= 0; /* number of sched domains in result */
594 int nslot
; /* next empty doms[] struct cpumask slot */
595 struct cgroup
*pos_cgrp
;
601 /* Special case for the 99% of systems with one, full, sched domain */
602 if (is_sched_load_balance(&top_cpuset
)) {
604 doms
= alloc_sched_domains(ndoms
);
608 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
610 *dattr
= SD_ATTR_INIT
;
611 update_domain_attr_tree(dattr
, &top_cpuset
);
613 cpumask_copy(doms
[0], top_cpuset
.cpus_allowed
);
618 csa
= kmalloc(number_of_cpusets
* sizeof(cp
), GFP_KERNEL
);
624 cpuset_for_each_descendant_pre(cp
, pos_cgrp
, &top_cpuset
) {
626 * Continue traversing beyond @cp iff @cp has some CPUs and
627 * isn't load balancing. The former is obvious. The
628 * latter: All child cpusets contain a subset of the
629 * parent's cpus, so just skip them, and then we call
630 * update_domain_attr_tree() to calc relax_domain_level of
631 * the corresponding sched domain.
633 if (!cpumask_empty(cp
->cpus_allowed
) &&
634 !is_sched_load_balance(cp
))
637 if (is_sched_load_balance(cp
))
640 /* skip @cp's subtree */
641 pos_cgrp
= cgroup_rightmost_descendant(pos_cgrp
);
645 for (i
= 0; i
< csn
; i
++)
650 /* Find the best partition (set of sched domains) */
651 for (i
= 0; i
< csn
; i
++) {
652 struct cpuset
*a
= csa
[i
];
655 for (j
= 0; j
< csn
; j
++) {
656 struct cpuset
*b
= csa
[j
];
659 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
660 for (k
= 0; k
< csn
; k
++) {
661 struct cpuset
*c
= csa
[k
];
666 ndoms
--; /* one less element */
673 * Now we know how many domains to create.
674 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
676 doms
= alloc_sched_domains(ndoms
);
681 * The rest of the code, including the scheduler, can deal with
682 * dattr==NULL case. No need to abort if alloc fails.
684 dattr
= kmalloc(ndoms
* sizeof(struct sched_domain_attr
), GFP_KERNEL
);
686 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
687 struct cpuset
*a
= csa
[i
];
692 /* Skip completed partitions */
698 if (nslot
== ndoms
) {
699 static int warnings
= 10;
702 "rebuild_sched_domains confused:"
703 " nslot %d, ndoms %d, csn %d, i %d,"
705 nslot
, ndoms
, csn
, i
, apn
);
713 *(dattr
+ nslot
) = SD_ATTR_INIT
;
714 for (j
= i
; j
< csn
; j
++) {
715 struct cpuset
*b
= csa
[j
];
718 cpumask_or(dp
, dp
, b
->cpus_allowed
);
720 update_domain_attr_tree(dattr
+ nslot
, b
);
722 /* Done with this partition */
728 BUG_ON(nslot
!= ndoms
);
734 * Fallback to the default domain if kmalloc() failed.
735 * See comments in partition_sched_domains().
746 * Rebuild scheduler domains.
748 * If the flag 'sched_load_balance' of any cpuset with non-empty
749 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
750 * which has that flag enabled, or if any cpuset with a non-empty
751 * 'cpus' is removed, then call this routine to rebuild the
752 * scheduler's dynamic sched domains.
754 * Call with cpuset_mutex held. Takes get_online_cpus().
756 static void rebuild_sched_domains_locked(void)
758 struct sched_domain_attr
*attr
;
762 lockdep_assert_held(&cpuset_mutex
);
766 * We have raced with CPU hotplug. Don't do anything to avoid
767 * passing doms with offlined cpu to partition_sched_domains().
768 * Anyways, hotplug work item will rebuild sched domains.
770 if (!cpumask_equal(top_cpuset
.cpus_allowed
, cpu_active_mask
))
773 /* Generate domain masks and attrs */
774 ndoms
= generate_sched_domains(&doms
, &attr
);
776 /* Have scheduler rebuild the domains */
777 partition_sched_domains(ndoms
, doms
, attr
);
781 #else /* !CONFIG_SMP */
782 static void rebuild_sched_domains_locked(void)
785 #endif /* CONFIG_SMP */
787 void rebuild_sched_domains(void)
789 mutex_lock(&cpuset_mutex
);
790 rebuild_sched_domains_locked();
791 mutex_unlock(&cpuset_mutex
);
795 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
796 * @cs: the cpuset in interest
798 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
799 * with non-empty cpus. We use effective cpumask whenever:
800 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
801 * if the cpuset they reside in has no cpus)
802 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
804 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
805 * exception. See comments there.
807 static struct cpuset
*effective_cpumask_cpuset(struct cpuset
*cs
)
809 while (cpumask_empty(cs
->cpus_allowed
))
815 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
816 * @cs: the cpuset in interest
818 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
819 * with non-empty memss. We use effective nodemask whenever:
820 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
821 * if the cpuset they reside in has no mems)
822 * - we want to retrieve task_cs(tsk)'s mems_allowed.
824 * Called with cpuset_mutex held.
826 static struct cpuset
*effective_nodemask_cpuset(struct cpuset
*cs
)
828 while (nodes_empty(cs
->mems_allowed
))
834 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
836 * @scan: struct cgroup_scanner containing the cgroup of the task
838 * Called by cgroup_scan_tasks() for each task in a cgroup whose
839 * cpus_allowed mask needs to be changed.
841 * We don't need to re-check for the cgroup/cpuset membership, since we're
842 * holding cpuset_mutex at this point.
844 static void cpuset_change_cpumask(struct task_struct
*tsk
,
845 struct cgroup_scanner
*scan
)
847 struct cpuset
*cpus_cs
;
849 cpus_cs
= effective_cpumask_cpuset(cgroup_cs(scan
->cg
));
850 set_cpus_allowed_ptr(tsk
, cpus_cs
->cpus_allowed
);
854 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
855 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
856 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
858 * Called with cpuset_mutex held
860 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
861 * calling callback functions for each.
863 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
866 static void update_tasks_cpumask(struct cpuset
*cs
, struct ptr_heap
*heap
)
868 struct cgroup_scanner scan
;
870 scan
.cg
= cs
->css
.cgroup
;
871 scan
.test_task
= NULL
;
872 scan
.process_task
= cpuset_change_cpumask
;
874 cgroup_scan_tasks(&scan
);
878 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
879 * @root_cs: the root cpuset of the hierarchy
880 * @update_root: update root cpuset or not?
881 * @heap: the heap used by cgroup_scan_tasks()
883 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
884 * which take on cpumask of @root_cs.
886 * Called with cpuset_mutex held
888 static void update_tasks_cpumask_hier(struct cpuset
*root_cs
,
889 bool update_root
, struct ptr_heap
*heap
)
892 struct cgroup
*pos_cgrp
;
895 update_tasks_cpumask(root_cs
, heap
);
898 cpuset_for_each_descendant_pre(cp
, pos_cgrp
, root_cs
) {
899 /* skip the whole subtree if @cp have some CPU */
900 if (!cpumask_empty(cp
->cpus_allowed
)) {
901 pos_cgrp
= cgroup_rightmost_descendant(pos_cgrp
);
904 if (!css_tryget(&cp
->css
))
908 update_tasks_cpumask(cp
, heap
);
917 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
918 * @cs: the cpuset to consider
919 * @buf: buffer of cpu numbers written to this cpuset
921 static int update_cpumask(struct cpuset
*cs
, struct cpuset
*trialcs
,
924 struct ptr_heap heap
;
926 int is_load_balanced
;
928 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
929 if (cs
== &top_cpuset
)
933 * An empty cpus_allowed is ok only if the cpuset has no tasks.
934 * Since cpulist_parse() fails on an empty mask, we special case
935 * that parsing. The validate_change() call ensures that cpusets
936 * with tasks have cpus.
939 cpumask_clear(trialcs
->cpus_allowed
);
941 retval
= cpulist_parse(buf
, trialcs
->cpus_allowed
);
945 if (!cpumask_subset(trialcs
->cpus_allowed
, cpu_active_mask
))
949 /* Nothing to do if the cpus didn't change */
950 if (cpumask_equal(cs
->cpus_allowed
, trialcs
->cpus_allowed
))
953 retval
= validate_change(cs
, trialcs
);
957 retval
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, NULL
);
961 is_load_balanced
= is_sched_load_balance(trialcs
);
963 mutex_lock(&callback_mutex
);
964 cpumask_copy(cs
->cpus_allowed
, trialcs
->cpus_allowed
);
965 mutex_unlock(&callback_mutex
);
967 update_tasks_cpumask_hier(cs
, true, &heap
);
971 if (is_load_balanced
)
972 rebuild_sched_domains_locked();
979 * Migrate memory region from one set of nodes to another.
981 * Temporarilly set tasks mems_allowed to target nodes of migration,
982 * so that the migration code can allocate pages on these nodes.
984 * Call holding cpuset_mutex, so current's cpuset won't change
985 * during this call, as manage_mutex holds off any cpuset_attach()
986 * calls. Therefore we don't need to take task_lock around the
987 * call to guarantee_online_mems(), as we know no one is changing
990 * While the mm_struct we are migrating is typically from some
991 * other task, the task_struct mems_allowed that we are hacking
992 * is for our current task, which must allocate new pages for that
993 * migrating memory region.
996 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
997 const nodemask_t
*to
)
999 struct task_struct
*tsk
= current
;
1000 struct cpuset
*mems_cs
;
1002 tsk
->mems_allowed
= *to
;
1004 do_migrate_pages(mm
, from
, to
, MPOL_MF_MOVE_ALL
);
1006 mems_cs
= effective_nodemask_cpuset(task_cs(tsk
));
1007 guarantee_online_mems(mems_cs
, &tsk
->mems_allowed
);
1011 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1012 * @tsk: the task to change
1013 * @newmems: new nodes that the task will be set
1015 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1016 * we structure updates as setting all new allowed nodes, then clearing newly
1019 static void cpuset_change_task_nodemask(struct task_struct
*tsk
,
1020 nodemask_t
*newmems
)
1025 * Allow tasks that have access to memory reserves because they have
1026 * been OOM killed to get memory anywhere.
1028 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
1030 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
1035 * Determine if a loop is necessary if another thread is doing
1036 * get_mems_allowed(). If at least one node remains unchanged and
1037 * tsk does not have a mempolicy, then an empty nodemask will not be
1038 * possible when mems_allowed is larger than a word.
1040 need_loop
= task_has_mempolicy(tsk
) ||
1041 !nodes_intersects(*newmems
, tsk
->mems_allowed
);
1044 write_seqcount_begin(&tsk
->mems_allowed_seq
);
1046 nodes_or(tsk
->mems_allowed
, tsk
->mems_allowed
, *newmems
);
1047 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP1
);
1049 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP2
);
1050 tsk
->mems_allowed
= *newmems
;
1053 write_seqcount_end(&tsk
->mems_allowed_seq
);
1059 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1060 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1061 * memory_migrate flag is set. Called with cpuset_mutex held.
1063 static void cpuset_change_nodemask(struct task_struct
*p
,
1064 struct cgroup_scanner
*scan
)
1066 struct cpuset
*cs
= cgroup_cs(scan
->cg
);
1067 struct mm_struct
*mm
;
1069 nodemask_t
*newmems
= scan
->data
;
1071 cpuset_change_task_nodemask(p
, newmems
);
1073 mm
= get_task_mm(p
);
1077 migrate
= is_memory_migrate(cs
);
1079 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1081 cpuset_migrate_mm(mm
, &cs
->old_mems_allowed
, newmems
);
1085 static void *cpuset_being_rebound
;
1088 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1089 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1090 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1092 * Called with cpuset_mutex held
1093 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1096 static void update_tasks_nodemask(struct cpuset
*cs
, struct ptr_heap
*heap
)
1098 static nodemask_t newmems
; /* protected by cpuset_mutex */
1099 struct cgroup_scanner scan
;
1100 struct cpuset
*mems_cs
= effective_nodemask_cpuset(cs
);
1102 cpuset_being_rebound
= cs
; /* causes mpol_dup() rebind */
1104 guarantee_online_mems(mems_cs
, &newmems
);
1106 scan
.cg
= cs
->css
.cgroup
;
1107 scan
.test_task
= NULL
;
1108 scan
.process_task
= cpuset_change_nodemask
;
1110 scan
.data
= &newmems
;
1113 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1114 * take while holding tasklist_lock. Forks can happen - the
1115 * mpol_dup() cpuset_being_rebound check will catch such forks,
1116 * and rebind their vma mempolicies too. Because we still hold
1117 * the global cpuset_mutex, we know that no other rebind effort
1118 * will be contending for the global variable cpuset_being_rebound.
1119 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1120 * is idempotent. Also migrate pages in each mm to new nodes.
1122 cgroup_scan_tasks(&scan
);
1125 * All the tasks' nodemasks have been updated, update
1126 * cs->old_mems_allowed.
1128 cs
->old_mems_allowed
= newmems
;
1130 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1131 cpuset_being_rebound
= NULL
;
1135 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1136 * @cs: the root cpuset of the hierarchy
1137 * @update_root: update the root cpuset or not?
1138 * @heap: the heap used by cgroup_scan_tasks()
1140 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1141 * which take on nodemask of @root_cs.
1143 * Called with cpuset_mutex held
1145 static void update_tasks_nodemask_hier(struct cpuset
*root_cs
,
1146 bool update_root
, struct ptr_heap
*heap
)
1149 struct cgroup
*pos_cgrp
;
1152 update_tasks_nodemask(root_cs
, heap
);
1155 cpuset_for_each_descendant_pre(cp
, pos_cgrp
, root_cs
) {
1156 /* skip the whole subtree if @cp have some CPU */
1157 if (!nodes_empty(cp
->mems_allowed
)) {
1158 pos_cgrp
= cgroup_rightmost_descendant(pos_cgrp
);
1161 if (!css_tryget(&cp
->css
))
1165 update_tasks_nodemask(cp
, heap
);
1174 * Handle user request to change the 'mems' memory placement
1175 * of a cpuset. Needs to validate the request, update the
1176 * cpusets mems_allowed, and for each task in the cpuset,
1177 * update mems_allowed and rebind task's mempolicy and any vma
1178 * mempolicies and if the cpuset is marked 'memory_migrate',
1179 * migrate the tasks pages to the new memory.
1181 * Call with cpuset_mutex held. May take callback_mutex during call.
1182 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1183 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1184 * their mempolicies to the cpusets new mems_allowed.
1186 static int update_nodemask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1190 struct ptr_heap heap
;
1193 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1196 if (cs
== &top_cpuset
) {
1202 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1203 * Since nodelist_parse() fails on an empty mask, we special case
1204 * that parsing. The validate_change() call ensures that cpusets
1205 * with tasks have memory.
1208 nodes_clear(trialcs
->mems_allowed
);
1210 retval
= nodelist_parse(buf
, trialcs
->mems_allowed
);
1214 if (!nodes_subset(trialcs
->mems_allowed
,
1215 node_states
[N_MEMORY
])) {
1221 if (nodes_equal(cs
->mems_allowed
, trialcs
->mems_allowed
)) {
1222 retval
= 0; /* Too easy - nothing to do */
1225 retval
= validate_change(cs
, trialcs
);
1229 retval
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, NULL
);
1233 mutex_lock(&callback_mutex
);
1234 cs
->mems_allowed
= trialcs
->mems_allowed
;
1235 mutex_unlock(&callback_mutex
);
1237 update_tasks_nodemask_hier(cs
, true, &heap
);
1244 int current_cpuset_is_being_rebound(void)
1246 return task_cs(current
) == cpuset_being_rebound
;
1249 static int update_relax_domain_level(struct cpuset
*cs
, s64 val
)
1252 if (val
< -1 || val
>= sched_domain_level_max
)
1256 if (val
!= cs
->relax_domain_level
) {
1257 cs
->relax_domain_level
= val
;
1258 if (!cpumask_empty(cs
->cpus_allowed
) &&
1259 is_sched_load_balance(cs
))
1260 rebuild_sched_domains_locked();
1267 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1268 * @tsk: task to be updated
1269 * @scan: struct cgroup_scanner containing the cgroup of the task
1271 * Called by cgroup_scan_tasks() for each task in a cgroup.
1273 * We don't need to re-check for the cgroup/cpuset membership, since we're
1274 * holding cpuset_mutex at this point.
1276 static void cpuset_change_flag(struct task_struct
*tsk
,
1277 struct cgroup_scanner
*scan
)
1279 cpuset_update_task_spread_flag(cgroup_cs(scan
->cg
), tsk
);
1283 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1284 * @cs: the cpuset in which each task's spread flags needs to be changed
1285 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1287 * Called with cpuset_mutex held
1289 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1290 * calling callback functions for each.
1292 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1295 static void update_tasks_flags(struct cpuset
*cs
, struct ptr_heap
*heap
)
1297 struct cgroup_scanner scan
;
1299 scan
.cg
= cs
->css
.cgroup
;
1300 scan
.test_task
= NULL
;
1301 scan
.process_task
= cpuset_change_flag
;
1303 cgroup_scan_tasks(&scan
);
1307 * update_flag - read a 0 or a 1 in a file and update associated flag
1308 * bit: the bit to update (see cpuset_flagbits_t)
1309 * cs: the cpuset to update
1310 * turning_on: whether the flag is being set or cleared
1312 * Call with cpuset_mutex held.
1315 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
,
1318 struct cpuset
*trialcs
;
1319 int balance_flag_changed
;
1320 int spread_flag_changed
;
1321 struct ptr_heap heap
;
1324 trialcs
= alloc_trial_cpuset(cs
);
1329 set_bit(bit
, &trialcs
->flags
);
1331 clear_bit(bit
, &trialcs
->flags
);
1333 err
= validate_change(cs
, trialcs
);
1337 err
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, NULL
);
1341 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1342 is_sched_load_balance(trialcs
));
1344 spread_flag_changed
= ((is_spread_slab(cs
) != is_spread_slab(trialcs
))
1345 || (is_spread_page(cs
) != is_spread_page(trialcs
)));
1347 mutex_lock(&callback_mutex
);
1348 cs
->flags
= trialcs
->flags
;
1349 mutex_unlock(&callback_mutex
);
1351 if (!cpumask_empty(trialcs
->cpus_allowed
) && balance_flag_changed
)
1352 rebuild_sched_domains_locked();
1354 if (spread_flag_changed
)
1355 update_tasks_flags(cs
, &heap
);
1358 free_trial_cpuset(trialcs
);
1363 * Frequency meter - How fast is some event occurring?
1365 * These routines manage a digitally filtered, constant time based,
1366 * event frequency meter. There are four routines:
1367 * fmeter_init() - initialize a frequency meter.
1368 * fmeter_markevent() - called each time the event happens.
1369 * fmeter_getrate() - returns the recent rate of such events.
1370 * fmeter_update() - internal routine used to update fmeter.
1372 * A common data structure is passed to each of these routines,
1373 * which is used to keep track of the state required to manage the
1374 * frequency meter and its digital filter.
1376 * The filter works on the number of events marked per unit time.
1377 * The filter is single-pole low-pass recursive (IIR). The time unit
1378 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1379 * simulate 3 decimal digits of precision (multiplied by 1000).
1381 * With an FM_COEF of 933, and a time base of 1 second, the filter
1382 * has a half-life of 10 seconds, meaning that if the events quit
1383 * happening, then the rate returned from the fmeter_getrate()
1384 * will be cut in half each 10 seconds, until it converges to zero.
1386 * It is not worth doing a real infinitely recursive filter. If more
1387 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1388 * just compute FM_MAXTICKS ticks worth, by which point the level
1391 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1392 * arithmetic overflow in the fmeter_update() routine.
1394 * Given the simple 32 bit integer arithmetic used, this meter works
1395 * best for reporting rates between one per millisecond (msec) and
1396 * one per 32 (approx) seconds. At constant rates faster than one
1397 * per msec it maxes out at values just under 1,000,000. At constant
1398 * rates between one per msec, and one per second it will stabilize
1399 * to a value N*1000, where N is the rate of events per second.
1400 * At constant rates between one per second and one per 32 seconds,
1401 * it will be choppy, moving up on the seconds that have an event,
1402 * and then decaying until the next event. At rates slower than
1403 * about one in 32 seconds, it decays all the way back to zero between
1407 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1408 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1409 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1410 #define FM_SCALE 1000 /* faux fixed point scale */
1412 /* Initialize a frequency meter */
1413 static void fmeter_init(struct fmeter
*fmp
)
1418 spin_lock_init(&fmp
->lock
);
1421 /* Internal meter update - process cnt events and update value */
1422 static void fmeter_update(struct fmeter
*fmp
)
1424 time_t now
= get_seconds();
1425 time_t ticks
= now
- fmp
->time
;
1430 ticks
= min(FM_MAXTICKS
, ticks
);
1432 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1435 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1439 /* Process any previous ticks, then bump cnt by one (times scale). */
1440 static void fmeter_markevent(struct fmeter
*fmp
)
1442 spin_lock(&fmp
->lock
);
1444 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1445 spin_unlock(&fmp
->lock
);
1448 /* Process any previous ticks, then return current value. */
1449 static int fmeter_getrate(struct fmeter
*fmp
)
1453 spin_lock(&fmp
->lock
);
1456 spin_unlock(&fmp
->lock
);
1460 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1461 static int cpuset_can_attach(struct cgroup
*cgrp
, struct cgroup_taskset
*tset
)
1463 struct cpuset
*cs
= cgroup_cs(cgrp
);
1464 struct task_struct
*task
;
1467 mutex_lock(&cpuset_mutex
);
1470 * We allow to move tasks into an empty cpuset if sane_behavior
1474 if (!cgroup_sane_behavior(cgrp
) &&
1475 (cpumask_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
)))
1478 cgroup_taskset_for_each(task
, cgrp
, tset
) {
1480 * Kthreads which disallow setaffinity shouldn't be moved
1481 * to a new cpuset; we don't want to change their cpu
1482 * affinity and isolating such threads by their set of
1483 * allowed nodes is unnecessary. Thus, cpusets are not
1484 * applicable for such threads. This prevents checking for
1485 * success of set_cpus_allowed_ptr() on all attached tasks
1486 * before cpus_allowed may be changed.
1489 if (task
->flags
& PF_NO_SETAFFINITY
)
1491 ret
= security_task_setscheduler(task
);
1497 * Mark attach is in progress. This makes validate_change() fail
1498 * changes which zero cpus/mems_allowed.
1500 cs
->attach_in_progress
++;
1503 mutex_unlock(&cpuset_mutex
);
1507 static void cpuset_cancel_attach(struct cgroup
*cgrp
,
1508 struct cgroup_taskset
*tset
)
1510 mutex_lock(&cpuset_mutex
);
1511 cgroup_cs(cgrp
)->attach_in_progress
--;
1512 mutex_unlock(&cpuset_mutex
);
1516 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1517 * but we can't allocate it dynamically there. Define it global and
1518 * allocate from cpuset_init().
1520 static cpumask_var_t cpus_attach
;
1522 static void cpuset_attach(struct cgroup
*cgrp
, struct cgroup_taskset
*tset
)
1524 /* static buf protected by cpuset_mutex */
1525 static nodemask_t cpuset_attach_nodemask_to
;
1526 struct mm_struct
*mm
;
1527 struct task_struct
*task
;
1528 struct task_struct
*leader
= cgroup_taskset_first(tset
);
1529 struct cgroup
*oldcgrp
= cgroup_taskset_cur_cgroup(tset
);
1530 struct cpuset
*cs
= cgroup_cs(cgrp
);
1531 struct cpuset
*oldcs
= cgroup_cs(oldcgrp
);
1532 struct cpuset
*cpus_cs
= effective_cpumask_cpuset(cs
);
1533 struct cpuset
*mems_cs
= effective_nodemask_cpuset(cs
);
1535 mutex_lock(&cpuset_mutex
);
1537 /* prepare for attach */
1538 if (cs
== &top_cpuset
)
1539 cpumask_copy(cpus_attach
, cpu_possible_mask
);
1541 guarantee_online_cpus(cpus_cs
, cpus_attach
);
1543 guarantee_online_mems(mems_cs
, &cpuset_attach_nodemask_to
);
1545 cgroup_taskset_for_each(task
, cgrp
, tset
) {
1547 * can_attach beforehand should guarantee that this doesn't
1548 * fail. TODO: have a better way to handle failure here
1550 WARN_ON_ONCE(set_cpus_allowed_ptr(task
, cpus_attach
));
1552 cpuset_change_task_nodemask(task
, &cpuset_attach_nodemask_to
);
1553 cpuset_update_task_spread_flag(cs
, task
);
1557 * Change mm, possibly for multiple threads in a threadgroup. This is
1558 * expensive and may sleep.
1560 cpuset_attach_nodemask_to
= cs
->mems_allowed
;
1561 mm
= get_task_mm(leader
);
1563 struct cpuset
*mems_oldcs
= effective_nodemask_cpuset(oldcs
);
1565 mpol_rebind_mm(mm
, &cpuset_attach_nodemask_to
);
1568 * old_mems_allowed is the same with mems_allowed here, except
1569 * if this task is being moved automatically due to hotplug.
1570 * In that case @mems_allowed has been updated and is empty,
1571 * so @old_mems_allowed is the right nodesets that we migrate
1574 if (is_memory_migrate(cs
)) {
1575 cpuset_migrate_mm(mm
, &mems_oldcs
->old_mems_allowed
,
1576 &cpuset_attach_nodemask_to
);
1581 cs
->old_mems_allowed
= cpuset_attach_nodemask_to
;
1583 cs
->attach_in_progress
--;
1584 if (!cs
->attach_in_progress
)
1585 wake_up(&cpuset_attach_wq
);
1587 mutex_unlock(&cpuset_mutex
);
1590 /* The various types of files and directories in a cpuset file system */
1593 FILE_MEMORY_MIGRATE
,
1599 FILE_SCHED_LOAD_BALANCE
,
1600 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1601 FILE_MEMORY_PRESSURE_ENABLED
,
1602 FILE_MEMORY_PRESSURE
,
1605 } cpuset_filetype_t
;
1607 static int cpuset_write_u64(struct cgroup
*cgrp
, struct cftype
*cft
, u64 val
)
1609 struct cpuset
*cs
= cgroup_cs(cgrp
);
1610 cpuset_filetype_t type
= cft
->private;
1611 int retval
= -ENODEV
;
1613 mutex_lock(&cpuset_mutex
);
1614 if (!is_cpuset_online(cs
))
1618 case FILE_CPU_EXCLUSIVE
:
1619 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, val
);
1621 case FILE_MEM_EXCLUSIVE
:
1622 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, val
);
1624 case FILE_MEM_HARDWALL
:
1625 retval
= update_flag(CS_MEM_HARDWALL
, cs
, val
);
1627 case FILE_SCHED_LOAD_BALANCE
:
1628 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, val
);
1630 case FILE_MEMORY_MIGRATE
:
1631 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, val
);
1633 case FILE_MEMORY_PRESSURE_ENABLED
:
1634 cpuset_memory_pressure_enabled
= !!val
;
1636 case FILE_MEMORY_PRESSURE
:
1639 case FILE_SPREAD_PAGE
:
1640 retval
= update_flag(CS_SPREAD_PAGE
, cs
, val
);
1642 case FILE_SPREAD_SLAB
:
1643 retval
= update_flag(CS_SPREAD_SLAB
, cs
, val
);
1650 mutex_unlock(&cpuset_mutex
);
1654 static int cpuset_write_s64(struct cgroup
*cgrp
, struct cftype
*cft
, s64 val
)
1656 struct cpuset
*cs
= cgroup_cs(cgrp
);
1657 cpuset_filetype_t type
= cft
->private;
1658 int retval
= -ENODEV
;
1660 mutex_lock(&cpuset_mutex
);
1661 if (!is_cpuset_online(cs
))
1665 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1666 retval
= update_relax_domain_level(cs
, val
);
1673 mutex_unlock(&cpuset_mutex
);
1678 * Common handling for a write to a "cpus" or "mems" file.
1680 static int cpuset_write_resmask(struct cgroup
*cgrp
, struct cftype
*cft
,
1683 struct cpuset
*cs
= cgroup_cs(cgrp
);
1684 struct cpuset
*trialcs
;
1685 int retval
= -ENODEV
;
1688 * CPU or memory hotunplug may leave @cs w/o any execution
1689 * resources, in which case the hotplug code asynchronously updates
1690 * configuration and transfers all tasks to the nearest ancestor
1691 * which can execute.
1693 * As writes to "cpus" or "mems" may restore @cs's execution
1694 * resources, wait for the previously scheduled operations before
1695 * proceeding, so that we don't end up keep removing tasks added
1696 * after execution capability is restored.
1698 flush_work(&cpuset_hotplug_work
);
1700 mutex_lock(&cpuset_mutex
);
1701 if (!is_cpuset_online(cs
))
1704 trialcs
= alloc_trial_cpuset(cs
);
1710 switch (cft
->private) {
1712 retval
= update_cpumask(cs
, trialcs
, buf
);
1715 retval
= update_nodemask(cs
, trialcs
, buf
);
1722 free_trial_cpuset(trialcs
);
1724 mutex_unlock(&cpuset_mutex
);
1729 * These ascii lists should be read in a single call, by using a user
1730 * buffer large enough to hold the entire map. If read in smaller
1731 * chunks, there is no guarantee of atomicity. Since the display format
1732 * used, list of ranges of sequential numbers, is variable length,
1733 * and since these maps can change value dynamically, one could read
1734 * gibberish by doing partial reads while a list was changing.
1735 * A single large read to a buffer that crosses a page boundary is
1736 * ok, because the result being copied to user land is not recomputed
1737 * across a page fault.
1740 static size_t cpuset_sprintf_cpulist(char *page
, struct cpuset
*cs
)
1744 mutex_lock(&callback_mutex
);
1745 count
= cpulist_scnprintf(page
, PAGE_SIZE
, cs
->cpus_allowed
);
1746 mutex_unlock(&callback_mutex
);
1751 static size_t cpuset_sprintf_memlist(char *page
, struct cpuset
*cs
)
1755 mutex_lock(&callback_mutex
);
1756 count
= nodelist_scnprintf(page
, PAGE_SIZE
, cs
->mems_allowed
);
1757 mutex_unlock(&callback_mutex
);
1762 static ssize_t
cpuset_common_file_read(struct cgroup
*cgrp
,
1766 size_t nbytes
, loff_t
*ppos
)
1768 struct cpuset
*cs
= cgroup_cs(cgrp
);
1769 cpuset_filetype_t type
= cft
->private;
1774 if (!(page
= (char *)__get_free_page(GFP_TEMPORARY
)))
1781 s
+= cpuset_sprintf_cpulist(s
, cs
);
1784 s
+= cpuset_sprintf_memlist(s
, cs
);
1792 retval
= simple_read_from_buffer(buf
, nbytes
, ppos
, page
, s
- page
);
1794 free_page((unsigned long)page
);
1798 static u64
cpuset_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
1800 struct cpuset
*cs
= cgroup_cs(cgrp
);
1801 cpuset_filetype_t type
= cft
->private;
1803 case FILE_CPU_EXCLUSIVE
:
1804 return is_cpu_exclusive(cs
);
1805 case FILE_MEM_EXCLUSIVE
:
1806 return is_mem_exclusive(cs
);
1807 case FILE_MEM_HARDWALL
:
1808 return is_mem_hardwall(cs
);
1809 case FILE_SCHED_LOAD_BALANCE
:
1810 return is_sched_load_balance(cs
);
1811 case FILE_MEMORY_MIGRATE
:
1812 return is_memory_migrate(cs
);
1813 case FILE_MEMORY_PRESSURE_ENABLED
:
1814 return cpuset_memory_pressure_enabled
;
1815 case FILE_MEMORY_PRESSURE
:
1816 return fmeter_getrate(&cs
->fmeter
);
1817 case FILE_SPREAD_PAGE
:
1818 return is_spread_page(cs
);
1819 case FILE_SPREAD_SLAB
:
1820 return is_spread_slab(cs
);
1825 /* Unreachable but makes gcc happy */
1829 static s64
cpuset_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
)
1831 struct cpuset
*cs
= cgroup_cs(cgrp
);
1832 cpuset_filetype_t type
= cft
->private;
1834 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1835 return cs
->relax_domain_level
;
1840 /* Unrechable but makes gcc happy */
1846 * for the common functions, 'private' gives the type of file
1849 static struct cftype files
[] = {
1852 .read
= cpuset_common_file_read
,
1853 .write_string
= cpuset_write_resmask
,
1854 .max_write_len
= (100U + 6 * NR_CPUS
),
1855 .private = FILE_CPULIST
,
1860 .read
= cpuset_common_file_read
,
1861 .write_string
= cpuset_write_resmask
,
1862 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
1863 .private = FILE_MEMLIST
,
1867 .name
= "cpu_exclusive",
1868 .read_u64
= cpuset_read_u64
,
1869 .write_u64
= cpuset_write_u64
,
1870 .private = FILE_CPU_EXCLUSIVE
,
1874 .name
= "mem_exclusive",
1875 .read_u64
= cpuset_read_u64
,
1876 .write_u64
= cpuset_write_u64
,
1877 .private = FILE_MEM_EXCLUSIVE
,
1881 .name
= "mem_hardwall",
1882 .read_u64
= cpuset_read_u64
,
1883 .write_u64
= cpuset_write_u64
,
1884 .private = FILE_MEM_HARDWALL
,
1888 .name
= "sched_load_balance",
1889 .read_u64
= cpuset_read_u64
,
1890 .write_u64
= cpuset_write_u64
,
1891 .private = FILE_SCHED_LOAD_BALANCE
,
1895 .name
= "sched_relax_domain_level",
1896 .read_s64
= cpuset_read_s64
,
1897 .write_s64
= cpuset_write_s64
,
1898 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1902 .name
= "memory_migrate",
1903 .read_u64
= cpuset_read_u64
,
1904 .write_u64
= cpuset_write_u64
,
1905 .private = FILE_MEMORY_MIGRATE
,
1909 .name
= "memory_pressure",
1910 .read_u64
= cpuset_read_u64
,
1911 .write_u64
= cpuset_write_u64
,
1912 .private = FILE_MEMORY_PRESSURE
,
1917 .name
= "memory_spread_page",
1918 .read_u64
= cpuset_read_u64
,
1919 .write_u64
= cpuset_write_u64
,
1920 .private = FILE_SPREAD_PAGE
,
1924 .name
= "memory_spread_slab",
1925 .read_u64
= cpuset_read_u64
,
1926 .write_u64
= cpuset_write_u64
,
1927 .private = FILE_SPREAD_SLAB
,
1931 .name
= "memory_pressure_enabled",
1932 .flags
= CFTYPE_ONLY_ON_ROOT
,
1933 .read_u64
= cpuset_read_u64
,
1934 .write_u64
= cpuset_write_u64
,
1935 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1942 * cpuset_css_alloc - allocate a cpuset css
1943 * cgrp: control group that the new cpuset will be part of
1946 static struct cgroup_subsys_state
*cpuset_css_alloc(struct cgroup
*cgrp
)
1951 return &top_cpuset
.css
;
1953 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
1955 return ERR_PTR(-ENOMEM
);
1956 if (!alloc_cpumask_var(&cs
->cpus_allowed
, GFP_KERNEL
)) {
1958 return ERR_PTR(-ENOMEM
);
1961 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1962 cpumask_clear(cs
->cpus_allowed
);
1963 nodes_clear(cs
->mems_allowed
);
1964 fmeter_init(&cs
->fmeter
);
1965 cs
->relax_domain_level
= -1;
1970 static int cpuset_css_online(struct cgroup
*cgrp
)
1972 struct cpuset
*cs
= cgroup_cs(cgrp
);
1973 struct cpuset
*parent
= parent_cs(cs
);
1974 struct cpuset
*tmp_cs
;
1975 struct cgroup
*pos_cg
;
1980 mutex_lock(&cpuset_mutex
);
1982 set_bit(CS_ONLINE
, &cs
->flags
);
1983 if (is_spread_page(parent
))
1984 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1985 if (is_spread_slab(parent
))
1986 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1988 number_of_cpusets
++;
1990 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
))
1994 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1995 * set. This flag handling is implemented in cgroup core for
1996 * histrical reasons - the flag may be specified during mount.
1998 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1999 * refuse to clone the configuration - thereby refusing the task to
2000 * be entered, and as a result refusing the sys_unshare() or
2001 * clone() which initiated it. If this becomes a problem for some
2002 * users who wish to allow that scenario, then this could be
2003 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2004 * (and likewise for mems) to the new cgroup.
2007 cpuset_for_each_child(tmp_cs
, pos_cg
, parent
) {
2008 if (is_mem_exclusive(tmp_cs
) || is_cpu_exclusive(tmp_cs
)) {
2015 mutex_lock(&callback_mutex
);
2016 cs
->mems_allowed
= parent
->mems_allowed
;
2017 cpumask_copy(cs
->cpus_allowed
, parent
->cpus_allowed
);
2018 mutex_unlock(&callback_mutex
);
2020 mutex_unlock(&cpuset_mutex
);
2024 static void cpuset_css_offline(struct cgroup
*cgrp
)
2026 struct cpuset
*cs
= cgroup_cs(cgrp
);
2028 mutex_lock(&cpuset_mutex
);
2030 if (is_sched_load_balance(cs
))
2031 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, 0);
2033 number_of_cpusets
--;
2034 clear_bit(CS_ONLINE
, &cs
->flags
);
2036 mutex_unlock(&cpuset_mutex
);
2040 * If the cpuset being removed has its flag 'sched_load_balance'
2041 * enabled, then simulate turning sched_load_balance off, which
2042 * will call rebuild_sched_domains_locked().
2045 static void cpuset_css_free(struct cgroup
*cgrp
)
2047 struct cpuset
*cs
= cgroup_cs(cgrp
);
2049 free_cpumask_var(cs
->cpus_allowed
);
2053 struct cgroup_subsys cpuset_subsys
= {
2055 .css_alloc
= cpuset_css_alloc
,
2056 .css_online
= cpuset_css_online
,
2057 .css_offline
= cpuset_css_offline
,
2058 .css_free
= cpuset_css_free
,
2059 .can_attach
= cpuset_can_attach
,
2060 .cancel_attach
= cpuset_cancel_attach
,
2061 .attach
= cpuset_attach
,
2062 .subsys_id
= cpuset_subsys_id
,
2063 .base_cftypes
= files
,
2068 * cpuset_init - initialize cpusets at system boot
2070 * Description: Initialize top_cpuset and the cpuset internal file system,
2073 int __init
cpuset_init(void)
2077 if (!alloc_cpumask_var(&top_cpuset
.cpus_allowed
, GFP_KERNEL
))
2080 cpumask_setall(top_cpuset
.cpus_allowed
);
2081 nodes_setall(top_cpuset
.mems_allowed
);
2083 fmeter_init(&top_cpuset
.fmeter
);
2084 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
2085 top_cpuset
.relax_domain_level
= -1;
2087 err
= register_filesystem(&cpuset_fs_type
);
2091 if (!alloc_cpumask_var(&cpus_attach
, GFP_KERNEL
))
2094 number_of_cpusets
= 1;
2099 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2100 * or memory nodes, we need to walk over the cpuset hierarchy,
2101 * removing that CPU or node from all cpusets. If this removes the
2102 * last CPU or node from a cpuset, then move the tasks in the empty
2103 * cpuset to its next-highest non-empty parent.
2105 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
2107 struct cpuset
*parent
;
2110 * Find its next-highest non-empty parent, (top cpuset
2111 * has online cpus, so can't be empty).
2113 parent
= parent_cs(cs
);
2114 while (cpumask_empty(parent
->cpus_allowed
) ||
2115 nodes_empty(parent
->mems_allowed
))
2116 parent
= parent_cs(parent
);
2118 if (cgroup_transfer_tasks(parent
->css
.cgroup
, cs
->css
.cgroup
)) {
2120 printk(KERN_ERR
"cpuset: failed to transfer tasks out of empty cpuset %s\n",
2121 cgroup_name(cs
->css
.cgroup
));
2127 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2128 * @cs: cpuset in interest
2130 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2131 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2132 * all its tasks are moved to the nearest ancestor with both resources.
2134 static void cpuset_hotplug_update_tasks(struct cpuset
*cs
)
2136 static cpumask_t off_cpus
;
2137 static nodemask_t off_mems
;
2139 bool sane
= cgroup_sane_behavior(cs
->css
.cgroup
);
2142 wait_event(cpuset_attach_wq
, cs
->attach_in_progress
== 0);
2144 mutex_lock(&cpuset_mutex
);
2147 * We have raced with task attaching. We wait until attaching
2148 * is finished, so we won't attach a task to an empty cpuset.
2150 if (cs
->attach_in_progress
) {
2151 mutex_unlock(&cpuset_mutex
);
2155 cpumask_andnot(&off_cpus
, cs
->cpus_allowed
, top_cpuset
.cpus_allowed
);
2156 nodes_andnot(off_mems
, cs
->mems_allowed
, top_cpuset
.mems_allowed
);
2158 mutex_lock(&callback_mutex
);
2159 cpumask_andnot(cs
->cpus_allowed
, cs
->cpus_allowed
, &off_cpus
);
2160 mutex_unlock(&callback_mutex
);
2163 * If sane_behavior flag is set, we need to update tasks' cpumask
2164 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2165 * call update_tasks_cpumask() if the cpuset becomes empty, as
2166 * the tasks in it will be migrated to an ancestor.
2168 if ((sane
&& cpumask_empty(cs
->cpus_allowed
)) ||
2169 (!cpumask_empty(&off_cpus
) && !cpumask_empty(cs
->cpus_allowed
)))
2170 update_tasks_cpumask(cs
, NULL
);
2172 mutex_lock(&callback_mutex
);
2173 nodes_andnot(cs
->mems_allowed
, cs
->mems_allowed
, off_mems
);
2174 mutex_unlock(&callback_mutex
);
2177 * If sane_behavior flag is set, we need to update tasks' nodemask
2178 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2179 * call update_tasks_nodemask() if the cpuset becomes empty, as
2180 * the tasks in it will be migratd to an ancestor.
2182 if ((sane
&& nodes_empty(cs
->mems_allowed
)) ||
2183 (!nodes_empty(off_mems
) && !nodes_empty(cs
->mems_allowed
)))
2184 update_tasks_nodemask(cs
, NULL
);
2186 is_empty
= cpumask_empty(cs
->cpus_allowed
) ||
2187 nodes_empty(cs
->mems_allowed
);
2189 mutex_unlock(&cpuset_mutex
);
2192 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2194 * Otherwise move tasks to the nearest ancestor with execution
2195 * resources. This is full cgroup operation which will
2196 * also call back into cpuset. Should be done outside any lock.
2198 if (!sane
&& is_empty
)
2199 remove_tasks_in_empty_cpuset(cs
);
2203 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2205 * This function is called after either CPU or memory configuration has
2206 * changed and updates cpuset accordingly. The top_cpuset is always
2207 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2208 * order to make cpusets transparent (of no affect) on systems that are
2209 * actively using CPU hotplug but making no active use of cpusets.
2211 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2212 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2215 * Note that CPU offlining during suspend is ignored. We don't modify
2216 * cpusets across suspend/resume cycles at all.
2218 static void cpuset_hotplug_workfn(struct work_struct
*work
)
2220 static cpumask_t new_cpus
;
2221 static nodemask_t new_mems
;
2222 bool cpus_updated
, mems_updated
;
2224 mutex_lock(&cpuset_mutex
);
2226 /* fetch the available cpus/mems and find out which changed how */
2227 cpumask_copy(&new_cpus
, cpu_active_mask
);
2228 new_mems
= node_states
[N_MEMORY
];
2230 cpus_updated
= !cpumask_equal(top_cpuset
.cpus_allowed
, &new_cpus
);
2231 mems_updated
= !nodes_equal(top_cpuset
.mems_allowed
, new_mems
);
2233 /* synchronize cpus_allowed to cpu_active_mask */
2235 mutex_lock(&callback_mutex
);
2236 cpumask_copy(top_cpuset
.cpus_allowed
, &new_cpus
);
2237 mutex_unlock(&callback_mutex
);
2238 /* we don't mess with cpumasks of tasks in top_cpuset */
2241 /* synchronize mems_allowed to N_MEMORY */
2243 mutex_lock(&callback_mutex
);
2244 top_cpuset
.mems_allowed
= new_mems
;
2245 mutex_unlock(&callback_mutex
);
2246 update_tasks_nodemask(&top_cpuset
, NULL
);
2249 mutex_unlock(&cpuset_mutex
);
2251 /* if cpus or mems changed, we need to propagate to descendants */
2252 if (cpus_updated
|| mems_updated
) {
2254 struct cgroup
*pos_cgrp
;
2257 cpuset_for_each_descendant_pre(cs
, pos_cgrp
, &top_cpuset
) {
2258 if (!css_tryget(&cs
->css
))
2262 cpuset_hotplug_update_tasks(cs
);
2270 /* rebuild sched domains if cpus_allowed has changed */
2272 rebuild_sched_domains();
2275 void cpuset_update_active_cpus(bool cpu_online
)
2278 * We're inside cpu hotplug critical region which usually nests
2279 * inside cgroup synchronization. Bounce actual hotplug processing
2280 * to a work item to avoid reverse locking order.
2282 * We still need to do partition_sched_domains() synchronously;
2283 * otherwise, the scheduler will get confused and put tasks to the
2284 * dead CPU. Fall back to the default single domain.
2285 * cpuset_hotplug_workfn() will rebuild it as necessary.
2287 partition_sched_domains(1, NULL
, NULL
);
2288 schedule_work(&cpuset_hotplug_work
);
2292 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2293 * Call this routine anytime after node_states[N_MEMORY] changes.
2294 * See cpuset_update_active_cpus() for CPU hotplug handling.
2296 static int cpuset_track_online_nodes(struct notifier_block
*self
,
2297 unsigned long action
, void *arg
)
2299 schedule_work(&cpuset_hotplug_work
);
2303 static struct notifier_block cpuset_track_online_nodes_nb
= {
2304 .notifier_call
= cpuset_track_online_nodes
,
2305 .priority
= 10, /* ??! */
2309 * cpuset_init_smp - initialize cpus_allowed
2311 * Description: Finish top cpuset after cpu, node maps are initialized
2313 void __init
cpuset_init_smp(void)
2315 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_active_mask
);
2316 top_cpuset
.mems_allowed
= node_states
[N_MEMORY
];
2317 top_cpuset
.old_mems_allowed
= top_cpuset
.mems_allowed
;
2319 register_hotmemory_notifier(&cpuset_track_online_nodes_nb
);
2323 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2324 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2325 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2327 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2328 * attached to the specified @tsk. Guaranteed to return some non-empty
2329 * subset of cpu_online_mask, even if this means going outside the
2333 void cpuset_cpus_allowed(struct task_struct
*tsk
, struct cpumask
*pmask
)
2335 struct cpuset
*cpus_cs
;
2337 mutex_lock(&callback_mutex
);
2339 cpus_cs
= effective_cpumask_cpuset(task_cs(tsk
));
2340 guarantee_online_cpus(cpus_cs
, pmask
);
2342 mutex_unlock(&callback_mutex
);
2345 void cpuset_cpus_allowed_fallback(struct task_struct
*tsk
)
2347 const struct cpuset
*cpus_cs
;
2350 cpus_cs
= effective_cpumask_cpuset(task_cs(tsk
));
2351 do_set_cpus_allowed(tsk
, cpus_cs
->cpus_allowed
);
2355 * We own tsk->cpus_allowed, nobody can change it under us.
2357 * But we used cs && cs->cpus_allowed lockless and thus can
2358 * race with cgroup_attach_task() or update_cpumask() and get
2359 * the wrong tsk->cpus_allowed. However, both cases imply the
2360 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2361 * which takes task_rq_lock().
2363 * If we are called after it dropped the lock we must see all
2364 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2365 * set any mask even if it is not right from task_cs() pov,
2366 * the pending set_cpus_allowed_ptr() will fix things.
2368 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2373 void cpuset_init_current_mems_allowed(void)
2375 nodes_setall(current
->mems_allowed
);
2379 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2380 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2382 * Description: Returns the nodemask_t mems_allowed of the cpuset
2383 * attached to the specified @tsk. Guaranteed to return some non-empty
2384 * subset of node_states[N_MEMORY], even if this means going outside the
2388 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
2390 struct cpuset
*mems_cs
;
2393 mutex_lock(&callback_mutex
);
2395 mems_cs
= effective_nodemask_cpuset(task_cs(tsk
));
2396 guarantee_online_mems(mems_cs
, &mask
);
2398 mutex_unlock(&callback_mutex
);
2404 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2405 * @nodemask: the nodemask to be checked
2407 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2409 int cpuset_nodemask_valid_mems_allowed(nodemask_t
*nodemask
)
2411 return nodes_intersects(*nodemask
, current
->mems_allowed
);
2415 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2416 * mem_hardwall ancestor to the specified cpuset. Call holding
2417 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2418 * (an unusual configuration), then returns the root cpuset.
2420 static const struct cpuset
*nearest_hardwall_ancestor(const struct cpuset
*cs
)
2422 while (!(is_mem_exclusive(cs
) || is_mem_hardwall(cs
)) && parent_cs(cs
))
2428 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2429 * @node: is this an allowed node?
2430 * @gfp_mask: memory allocation flags
2432 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2433 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2434 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2435 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2436 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2440 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2441 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2442 * might sleep, and might allow a node from an enclosing cpuset.
2444 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2445 * cpusets, and never sleeps.
2447 * The __GFP_THISNODE placement logic is really handled elsewhere,
2448 * by forcibly using a zonelist starting at a specified node, and by
2449 * (in get_page_from_freelist()) refusing to consider the zones for
2450 * any node on the zonelist except the first. By the time any such
2451 * calls get to this routine, we should just shut up and say 'yes'.
2453 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2454 * and do not allow allocations outside the current tasks cpuset
2455 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2456 * GFP_KERNEL allocations are not so marked, so can escape to the
2457 * nearest enclosing hardwalled ancestor cpuset.
2459 * Scanning up parent cpusets requires callback_mutex. The
2460 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2461 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2462 * current tasks mems_allowed came up empty on the first pass over
2463 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2464 * cpuset are short of memory, might require taking the callback_mutex
2467 * The first call here from mm/page_alloc:get_page_from_freelist()
2468 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2469 * so no allocation on a node outside the cpuset is allowed (unless
2470 * in interrupt, of course).
2472 * The second pass through get_page_from_freelist() doesn't even call
2473 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2474 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2475 * in alloc_flags. That logic and the checks below have the combined
2477 * in_interrupt - any node ok (current task context irrelevant)
2478 * GFP_ATOMIC - any node ok
2479 * TIF_MEMDIE - any node ok
2480 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2481 * GFP_USER - only nodes in current tasks mems allowed ok.
2484 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2485 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2486 * the code that might scan up ancestor cpusets and sleep.
2488 int __cpuset_node_allowed_softwall(int node
, gfp_t gfp_mask
)
2490 const struct cpuset
*cs
; /* current cpuset ancestors */
2491 int allowed
; /* is allocation in zone z allowed? */
2493 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2495 might_sleep_if(!(gfp_mask
& __GFP_HARDWALL
));
2496 if (node_isset(node
, current
->mems_allowed
))
2499 * Allow tasks that have access to memory reserves because they have
2500 * been OOM killed to get memory anywhere.
2502 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2504 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2507 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2510 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2511 mutex_lock(&callback_mutex
);
2514 cs
= nearest_hardwall_ancestor(task_cs(current
));
2515 task_unlock(current
);
2517 allowed
= node_isset(node
, cs
->mems_allowed
);
2518 mutex_unlock(&callback_mutex
);
2523 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2524 * @node: is this an allowed node?
2525 * @gfp_mask: memory allocation flags
2527 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2528 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2529 * yes. If the task has been OOM killed and has access to memory reserves as
2530 * specified by the TIF_MEMDIE flag, yes.
2533 * The __GFP_THISNODE placement logic is really handled elsewhere,
2534 * by forcibly using a zonelist starting at a specified node, and by
2535 * (in get_page_from_freelist()) refusing to consider the zones for
2536 * any node on the zonelist except the first. By the time any such
2537 * calls get to this routine, we should just shut up and say 'yes'.
2539 * Unlike the cpuset_node_allowed_softwall() variant, above,
2540 * this variant requires that the node be in the current task's
2541 * mems_allowed or that we're in interrupt. It does not scan up the
2542 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2545 int __cpuset_node_allowed_hardwall(int node
, gfp_t gfp_mask
)
2547 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2549 if (node_isset(node
, current
->mems_allowed
))
2552 * Allow tasks that have access to memory reserves because they have
2553 * been OOM killed to get memory anywhere.
2555 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2561 * cpuset_mem_spread_node() - On which node to begin search for a file page
2562 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2564 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2565 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2566 * and if the memory allocation used cpuset_mem_spread_node()
2567 * to determine on which node to start looking, as it will for
2568 * certain page cache or slab cache pages such as used for file
2569 * system buffers and inode caches, then instead of starting on the
2570 * local node to look for a free page, rather spread the starting
2571 * node around the tasks mems_allowed nodes.
2573 * We don't have to worry about the returned node being offline
2574 * because "it can't happen", and even if it did, it would be ok.
2576 * The routines calling guarantee_online_mems() are careful to
2577 * only set nodes in task->mems_allowed that are online. So it
2578 * should not be possible for the following code to return an
2579 * offline node. But if it did, that would be ok, as this routine
2580 * is not returning the node where the allocation must be, only
2581 * the node where the search should start. The zonelist passed to
2582 * __alloc_pages() will include all nodes. If the slab allocator
2583 * is passed an offline node, it will fall back to the local node.
2584 * See kmem_cache_alloc_node().
2587 static int cpuset_spread_node(int *rotor
)
2591 node
= next_node(*rotor
, current
->mems_allowed
);
2592 if (node
== MAX_NUMNODES
)
2593 node
= first_node(current
->mems_allowed
);
2598 int cpuset_mem_spread_node(void)
2600 if (current
->cpuset_mem_spread_rotor
== NUMA_NO_NODE
)
2601 current
->cpuset_mem_spread_rotor
=
2602 node_random(¤t
->mems_allowed
);
2604 return cpuset_spread_node(¤t
->cpuset_mem_spread_rotor
);
2607 int cpuset_slab_spread_node(void)
2609 if (current
->cpuset_slab_spread_rotor
== NUMA_NO_NODE
)
2610 current
->cpuset_slab_spread_rotor
=
2611 node_random(¤t
->mems_allowed
);
2613 return cpuset_spread_node(¤t
->cpuset_slab_spread_rotor
);
2616 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2619 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2620 * @tsk1: pointer to task_struct of some task.
2621 * @tsk2: pointer to task_struct of some other task.
2623 * Description: Return true if @tsk1's mems_allowed intersects the
2624 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2625 * one of the task's memory usage might impact the memory available
2629 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2630 const struct task_struct
*tsk2
)
2632 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2635 #define CPUSET_NODELIST_LEN (256)
2638 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2639 * @task: pointer to task_struct of some task.
2641 * Description: Prints @task's name, cpuset name, and cached copy of its
2642 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2643 * dereferencing task_cs(task).
2645 void cpuset_print_task_mems_allowed(struct task_struct
*tsk
)
2647 /* Statically allocated to prevent using excess stack. */
2648 static char cpuset_nodelist
[CPUSET_NODELIST_LEN
];
2649 static DEFINE_SPINLOCK(cpuset_buffer_lock
);
2651 struct cgroup
*cgrp
= task_cs(tsk
)->css
.cgroup
;
2654 spin_lock(&cpuset_buffer_lock
);
2656 nodelist_scnprintf(cpuset_nodelist
, CPUSET_NODELIST_LEN
,
2658 printk(KERN_INFO
"%s cpuset=%s mems_allowed=%s\n",
2659 tsk
->comm
, cgroup_name(cgrp
), cpuset_nodelist
);
2661 spin_unlock(&cpuset_buffer_lock
);
2666 * Collection of memory_pressure is suppressed unless
2667 * this flag is enabled by writing "1" to the special
2668 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2671 int cpuset_memory_pressure_enabled __read_mostly
;
2674 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2676 * Keep a running average of the rate of synchronous (direct)
2677 * page reclaim efforts initiated by tasks in each cpuset.
2679 * This represents the rate at which some task in the cpuset
2680 * ran low on memory on all nodes it was allowed to use, and
2681 * had to enter the kernels page reclaim code in an effort to
2682 * create more free memory by tossing clean pages or swapping
2683 * or writing dirty pages.
2685 * Display to user space in the per-cpuset read-only file
2686 * "memory_pressure". Value displayed is an integer
2687 * representing the recent rate of entry into the synchronous
2688 * (direct) page reclaim by any task attached to the cpuset.
2691 void __cpuset_memory_pressure_bump(void)
2694 fmeter_markevent(&task_cs(current
)->fmeter
);
2695 task_unlock(current
);
2698 #ifdef CONFIG_PROC_PID_CPUSET
2700 * proc_cpuset_show()
2701 * - Print tasks cpuset path into seq_file.
2702 * - Used for /proc/<pid>/cpuset.
2703 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2704 * doesn't really matter if tsk->cpuset changes after we read it,
2705 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2708 int proc_cpuset_show(struct seq_file
*m
, void *unused_v
)
2711 struct task_struct
*tsk
;
2713 struct cgroup_subsys_state
*css
;
2717 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2723 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2728 css
= task_subsys_state(tsk
, cpuset_subsys_id
);
2729 retval
= cgroup_path(css
->cgroup
, buf
, PAGE_SIZE
);
2736 put_task_struct(tsk
);
2742 #endif /* CONFIG_PROC_PID_CPUSET */
2744 /* Display task mems_allowed in /proc/<pid>/status file. */
2745 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
2747 seq_printf(m
, "Mems_allowed:\t");
2748 seq_nodemask(m
, &task
->mems_allowed
);
2749 seq_printf(m
, "\n");
2750 seq_printf(m
, "Mems_allowed_list:\t");
2751 seq_nodemask_list(m
, &task
->mems_allowed
);
2752 seq_printf(m
, "\n");