KVM: introduce kvm_vcpu_on_spin
[linux-2.6.git] / virt / kvm / kvm_main.c
blobcac69c4415dfcf9bb9d3b00108145bbed57f9405
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "iodev.h"
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/kvm.h>
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
63 * Ordering of locks:
65 * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
68 DEFINE_SPINLOCK(kvm_lock);
69 LIST_HEAD(vm_list);
71 static cpumask_var_t cpus_hardware_enabled;
72 static int kvm_usage_count = 0;
73 static atomic_t hardware_enable_failed;
75 struct kmem_cache *kvm_vcpu_cache;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
78 static __read_mostly struct preempt_ops kvm_preempt_ops;
80 struct dentry *kvm_debugfs_dir;
82 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
83 unsigned long arg);
84 static int hardware_enable_all(void);
85 static void hardware_disable_all(void);
87 static bool kvm_rebooting;
89 static bool largepages_enabled = true;
91 inline int kvm_is_mmio_pfn(pfn_t pfn)
93 if (pfn_valid(pfn)) {
94 struct page *page = compound_head(pfn_to_page(pfn));
95 return PageReserved(page);
98 return true;
102 * Switches to specified vcpu, until a matching vcpu_put()
104 void vcpu_load(struct kvm_vcpu *vcpu)
106 int cpu;
108 mutex_lock(&vcpu->mutex);
109 cpu = get_cpu();
110 preempt_notifier_register(&vcpu->preempt_notifier);
111 kvm_arch_vcpu_load(vcpu, cpu);
112 put_cpu();
115 void vcpu_put(struct kvm_vcpu *vcpu)
117 preempt_disable();
118 kvm_arch_vcpu_put(vcpu);
119 preempt_notifier_unregister(&vcpu->preempt_notifier);
120 preempt_enable();
121 mutex_unlock(&vcpu->mutex);
124 static void ack_flush(void *_completed)
128 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
130 int i, cpu, me;
131 cpumask_var_t cpus;
132 bool called = true;
133 struct kvm_vcpu *vcpu;
135 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
137 spin_lock(&kvm->requests_lock);
138 me = smp_processor_id();
139 kvm_for_each_vcpu(i, vcpu, kvm) {
140 if (test_and_set_bit(req, &vcpu->requests))
141 continue;
142 cpu = vcpu->cpu;
143 if (cpus != NULL && cpu != -1 && cpu != me)
144 cpumask_set_cpu(cpu, cpus);
146 if (unlikely(cpus == NULL))
147 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
148 else if (!cpumask_empty(cpus))
149 smp_call_function_many(cpus, ack_flush, NULL, 1);
150 else
151 called = false;
152 spin_unlock(&kvm->requests_lock);
153 free_cpumask_var(cpus);
154 return called;
157 void kvm_flush_remote_tlbs(struct kvm *kvm)
159 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
160 ++kvm->stat.remote_tlb_flush;
163 void kvm_reload_remote_mmus(struct kvm *kvm)
165 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
168 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
170 struct page *page;
171 int r;
173 mutex_init(&vcpu->mutex);
174 vcpu->cpu = -1;
175 vcpu->kvm = kvm;
176 vcpu->vcpu_id = id;
177 init_waitqueue_head(&vcpu->wq);
179 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
180 if (!page) {
181 r = -ENOMEM;
182 goto fail;
184 vcpu->run = page_address(page);
186 r = kvm_arch_vcpu_init(vcpu);
187 if (r < 0)
188 goto fail_free_run;
189 return 0;
191 fail_free_run:
192 free_page((unsigned long)vcpu->run);
193 fail:
194 return r;
196 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
198 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
200 kvm_arch_vcpu_uninit(vcpu);
201 free_page((unsigned long)vcpu->run);
203 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
205 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
206 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
208 return container_of(mn, struct kvm, mmu_notifier);
211 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
212 struct mm_struct *mm,
213 unsigned long address)
215 struct kvm *kvm = mmu_notifier_to_kvm(mn);
216 int need_tlb_flush;
219 * When ->invalidate_page runs, the linux pte has been zapped
220 * already but the page is still allocated until
221 * ->invalidate_page returns. So if we increase the sequence
222 * here the kvm page fault will notice if the spte can't be
223 * established because the page is going to be freed. If
224 * instead the kvm page fault establishes the spte before
225 * ->invalidate_page runs, kvm_unmap_hva will release it
226 * before returning.
228 * The sequence increase only need to be seen at spin_unlock
229 * time, and not at spin_lock time.
231 * Increasing the sequence after the spin_unlock would be
232 * unsafe because the kvm page fault could then establish the
233 * pte after kvm_unmap_hva returned, without noticing the page
234 * is going to be freed.
236 spin_lock(&kvm->mmu_lock);
237 kvm->mmu_notifier_seq++;
238 need_tlb_flush = kvm_unmap_hva(kvm, address);
239 spin_unlock(&kvm->mmu_lock);
241 /* we've to flush the tlb before the pages can be freed */
242 if (need_tlb_flush)
243 kvm_flush_remote_tlbs(kvm);
247 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
248 struct mm_struct *mm,
249 unsigned long address,
250 pte_t pte)
252 struct kvm *kvm = mmu_notifier_to_kvm(mn);
254 spin_lock(&kvm->mmu_lock);
255 kvm->mmu_notifier_seq++;
256 kvm_set_spte_hva(kvm, address, pte);
257 spin_unlock(&kvm->mmu_lock);
260 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long start,
263 unsigned long end)
265 struct kvm *kvm = mmu_notifier_to_kvm(mn);
266 int need_tlb_flush = 0;
268 spin_lock(&kvm->mmu_lock);
270 * The count increase must become visible at unlock time as no
271 * spte can be established without taking the mmu_lock and
272 * count is also read inside the mmu_lock critical section.
274 kvm->mmu_notifier_count++;
275 for (; start < end; start += PAGE_SIZE)
276 need_tlb_flush |= kvm_unmap_hva(kvm, start);
277 spin_unlock(&kvm->mmu_lock);
279 /* we've to flush the tlb before the pages can be freed */
280 if (need_tlb_flush)
281 kvm_flush_remote_tlbs(kvm);
284 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
285 struct mm_struct *mm,
286 unsigned long start,
287 unsigned long end)
289 struct kvm *kvm = mmu_notifier_to_kvm(mn);
291 spin_lock(&kvm->mmu_lock);
293 * This sequence increase will notify the kvm page fault that
294 * the page that is going to be mapped in the spte could have
295 * been freed.
297 kvm->mmu_notifier_seq++;
299 * The above sequence increase must be visible before the
300 * below count decrease but both values are read by the kvm
301 * page fault under mmu_lock spinlock so we don't need to add
302 * a smb_wmb() here in between the two.
304 kvm->mmu_notifier_count--;
305 spin_unlock(&kvm->mmu_lock);
307 BUG_ON(kvm->mmu_notifier_count < 0);
310 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
311 struct mm_struct *mm,
312 unsigned long address)
314 struct kvm *kvm = mmu_notifier_to_kvm(mn);
315 int young;
317 spin_lock(&kvm->mmu_lock);
318 young = kvm_age_hva(kvm, address);
319 spin_unlock(&kvm->mmu_lock);
321 if (young)
322 kvm_flush_remote_tlbs(kvm);
324 return young;
327 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
328 struct mm_struct *mm)
330 struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 kvm_arch_flush_shadow(kvm);
334 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
335 .invalidate_page = kvm_mmu_notifier_invalidate_page,
336 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
337 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
338 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
339 .change_pte = kvm_mmu_notifier_change_pte,
340 .release = kvm_mmu_notifier_release,
342 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
344 static struct kvm *kvm_create_vm(void)
346 int r = 0;
347 struct kvm *kvm = kvm_arch_create_vm();
348 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
349 struct page *page;
350 #endif
352 if (IS_ERR(kvm))
353 goto out;
355 r = hardware_enable_all();
356 if (r)
357 goto out_err_nodisable;
359 #ifdef CONFIG_HAVE_KVM_IRQCHIP
360 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
361 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
362 #endif
364 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
365 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
366 if (!page) {
367 r = -ENOMEM;
368 goto out_err;
370 kvm->coalesced_mmio_ring =
371 (struct kvm_coalesced_mmio_ring *)page_address(page);
372 #endif
374 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
376 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
377 r = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
378 if (r) {
379 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
380 put_page(page);
381 #endif
382 goto out_err;
385 #endif
387 kvm->mm = current->mm;
388 atomic_inc(&kvm->mm->mm_count);
389 spin_lock_init(&kvm->mmu_lock);
390 spin_lock_init(&kvm->requests_lock);
391 kvm_io_bus_init(&kvm->pio_bus);
392 kvm_eventfd_init(kvm);
393 mutex_init(&kvm->lock);
394 mutex_init(&kvm->irq_lock);
395 kvm_io_bus_init(&kvm->mmio_bus);
396 init_rwsem(&kvm->slots_lock);
397 atomic_set(&kvm->users_count, 1);
398 spin_lock(&kvm_lock);
399 list_add(&kvm->vm_list, &vm_list);
400 spin_unlock(&kvm_lock);
401 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
402 kvm_coalesced_mmio_init(kvm);
403 #endif
404 out:
405 return kvm;
407 out_err:
408 hardware_disable_all();
409 out_err_nodisable:
410 kfree(kvm);
411 return ERR_PTR(r);
415 * Free any memory in @free but not in @dont.
417 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
418 struct kvm_memory_slot *dont)
420 int i;
422 if (!dont || free->rmap != dont->rmap)
423 vfree(free->rmap);
425 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
426 vfree(free->dirty_bitmap);
429 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
430 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
431 vfree(free->lpage_info[i]);
432 free->lpage_info[i] = NULL;
436 free->npages = 0;
437 free->dirty_bitmap = NULL;
438 free->rmap = NULL;
441 void kvm_free_physmem(struct kvm *kvm)
443 int i;
445 for (i = 0; i < kvm->nmemslots; ++i)
446 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
449 static void kvm_destroy_vm(struct kvm *kvm)
451 struct mm_struct *mm = kvm->mm;
453 kvm_arch_sync_events(kvm);
454 spin_lock(&kvm_lock);
455 list_del(&kvm->vm_list);
456 spin_unlock(&kvm_lock);
457 kvm_free_irq_routing(kvm);
458 kvm_io_bus_destroy(&kvm->pio_bus);
459 kvm_io_bus_destroy(&kvm->mmio_bus);
460 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
461 if (kvm->coalesced_mmio_ring != NULL)
462 free_page((unsigned long)kvm->coalesced_mmio_ring);
463 #endif
464 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
465 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
466 #else
467 kvm_arch_flush_shadow(kvm);
468 #endif
469 kvm_arch_destroy_vm(kvm);
470 hardware_disable_all();
471 mmdrop(mm);
474 void kvm_get_kvm(struct kvm *kvm)
476 atomic_inc(&kvm->users_count);
478 EXPORT_SYMBOL_GPL(kvm_get_kvm);
480 void kvm_put_kvm(struct kvm *kvm)
482 if (atomic_dec_and_test(&kvm->users_count))
483 kvm_destroy_vm(kvm);
485 EXPORT_SYMBOL_GPL(kvm_put_kvm);
488 static int kvm_vm_release(struct inode *inode, struct file *filp)
490 struct kvm *kvm = filp->private_data;
492 kvm_irqfd_release(kvm);
494 kvm_put_kvm(kvm);
495 return 0;
499 * Allocate some memory and give it an address in the guest physical address
500 * space.
502 * Discontiguous memory is allowed, mostly for framebuffers.
504 * Must be called holding mmap_sem for write.
506 int __kvm_set_memory_region(struct kvm *kvm,
507 struct kvm_userspace_memory_region *mem,
508 int user_alloc)
510 int r;
511 gfn_t base_gfn;
512 unsigned long npages;
513 unsigned long i;
514 struct kvm_memory_slot *memslot;
515 struct kvm_memory_slot old, new;
517 r = -EINVAL;
518 /* General sanity checks */
519 if (mem->memory_size & (PAGE_SIZE - 1))
520 goto out;
521 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
522 goto out;
523 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
524 goto out;
525 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
526 goto out;
527 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
528 goto out;
530 memslot = &kvm->memslots[mem->slot];
531 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
532 npages = mem->memory_size >> PAGE_SHIFT;
534 if (!npages)
535 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
537 new = old = *memslot;
539 new.base_gfn = base_gfn;
540 new.npages = npages;
541 new.flags = mem->flags;
543 /* Disallow changing a memory slot's size. */
544 r = -EINVAL;
545 if (npages && old.npages && npages != old.npages)
546 goto out_free;
548 /* Check for overlaps */
549 r = -EEXIST;
550 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
551 struct kvm_memory_slot *s = &kvm->memslots[i];
553 if (s == memslot || !s->npages)
554 continue;
555 if (!((base_gfn + npages <= s->base_gfn) ||
556 (base_gfn >= s->base_gfn + s->npages)))
557 goto out_free;
560 /* Free page dirty bitmap if unneeded */
561 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
562 new.dirty_bitmap = NULL;
564 r = -ENOMEM;
566 /* Allocate if a slot is being created */
567 #ifndef CONFIG_S390
568 if (npages && !new.rmap) {
569 new.rmap = vmalloc(npages * sizeof(struct page *));
571 if (!new.rmap)
572 goto out_free;
574 memset(new.rmap, 0, npages * sizeof(*new.rmap));
576 new.user_alloc = user_alloc;
578 * hva_to_rmmap() serialzies with the mmu_lock and to be
579 * safe it has to ignore memslots with !user_alloc &&
580 * !userspace_addr.
582 if (user_alloc)
583 new.userspace_addr = mem->userspace_addr;
584 else
585 new.userspace_addr = 0;
587 if (!npages)
588 goto skip_lpage;
590 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
591 unsigned long ugfn;
592 unsigned long j;
593 int lpages;
594 int level = i + 2;
596 /* Avoid unused variable warning if no large pages */
597 (void)level;
599 if (new.lpage_info[i])
600 continue;
602 lpages = 1 + (base_gfn + npages - 1) /
603 KVM_PAGES_PER_HPAGE(level);
604 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
606 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
608 if (!new.lpage_info[i])
609 goto out_free;
611 memset(new.lpage_info[i], 0,
612 lpages * sizeof(*new.lpage_info[i]));
614 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
615 new.lpage_info[i][0].write_count = 1;
616 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
617 new.lpage_info[i][lpages - 1].write_count = 1;
618 ugfn = new.userspace_addr >> PAGE_SHIFT;
620 * If the gfn and userspace address are not aligned wrt each
621 * other, or if explicitly asked to, disable large page
622 * support for this slot
624 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
625 !largepages_enabled)
626 for (j = 0; j < lpages; ++j)
627 new.lpage_info[i][j].write_count = 1;
630 skip_lpage:
632 /* Allocate page dirty bitmap if needed */
633 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
634 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
636 new.dirty_bitmap = vmalloc(dirty_bytes);
637 if (!new.dirty_bitmap)
638 goto out_free;
639 memset(new.dirty_bitmap, 0, dirty_bytes);
640 if (old.npages)
641 kvm_arch_flush_shadow(kvm);
643 #else /* not defined CONFIG_S390 */
644 new.user_alloc = user_alloc;
645 if (user_alloc)
646 new.userspace_addr = mem->userspace_addr;
647 #endif /* not defined CONFIG_S390 */
649 if (!npages)
650 kvm_arch_flush_shadow(kvm);
652 spin_lock(&kvm->mmu_lock);
653 if (mem->slot >= kvm->nmemslots)
654 kvm->nmemslots = mem->slot + 1;
656 *memslot = new;
657 spin_unlock(&kvm->mmu_lock);
659 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
660 if (r) {
661 spin_lock(&kvm->mmu_lock);
662 *memslot = old;
663 spin_unlock(&kvm->mmu_lock);
664 goto out_free;
667 kvm_free_physmem_slot(&old, npages ? &new : NULL);
668 /* Slot deletion case: we have to update the current slot */
669 spin_lock(&kvm->mmu_lock);
670 if (!npages)
671 *memslot = old;
672 spin_unlock(&kvm->mmu_lock);
673 #ifdef CONFIG_DMAR
674 /* map the pages in iommu page table */
675 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
676 if (r)
677 goto out;
678 #endif
679 return 0;
681 out_free:
682 kvm_free_physmem_slot(&new, &old);
683 out:
684 return r;
687 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
689 int kvm_set_memory_region(struct kvm *kvm,
690 struct kvm_userspace_memory_region *mem,
691 int user_alloc)
693 int r;
695 down_write(&kvm->slots_lock);
696 r = __kvm_set_memory_region(kvm, mem, user_alloc);
697 up_write(&kvm->slots_lock);
698 return r;
700 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
702 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
703 struct
704 kvm_userspace_memory_region *mem,
705 int user_alloc)
707 if (mem->slot >= KVM_MEMORY_SLOTS)
708 return -EINVAL;
709 return kvm_set_memory_region(kvm, mem, user_alloc);
712 int kvm_get_dirty_log(struct kvm *kvm,
713 struct kvm_dirty_log *log, int *is_dirty)
715 struct kvm_memory_slot *memslot;
716 int r, i;
717 int n;
718 unsigned long any = 0;
720 r = -EINVAL;
721 if (log->slot >= KVM_MEMORY_SLOTS)
722 goto out;
724 memslot = &kvm->memslots[log->slot];
725 r = -ENOENT;
726 if (!memslot->dirty_bitmap)
727 goto out;
729 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
731 for (i = 0; !any && i < n/sizeof(long); ++i)
732 any = memslot->dirty_bitmap[i];
734 r = -EFAULT;
735 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
736 goto out;
738 if (any)
739 *is_dirty = 1;
741 r = 0;
742 out:
743 return r;
746 void kvm_disable_largepages(void)
748 largepages_enabled = false;
750 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
752 int is_error_page(struct page *page)
754 return page == bad_page;
756 EXPORT_SYMBOL_GPL(is_error_page);
758 int is_error_pfn(pfn_t pfn)
760 return pfn == bad_pfn;
762 EXPORT_SYMBOL_GPL(is_error_pfn);
764 static inline unsigned long bad_hva(void)
766 return PAGE_OFFSET;
769 int kvm_is_error_hva(unsigned long addr)
771 return addr == bad_hva();
773 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
775 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
777 int i;
779 for (i = 0; i < kvm->nmemslots; ++i) {
780 struct kvm_memory_slot *memslot = &kvm->memslots[i];
782 if (gfn >= memslot->base_gfn
783 && gfn < memslot->base_gfn + memslot->npages)
784 return memslot;
786 return NULL;
788 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
790 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
792 gfn = unalias_gfn(kvm, gfn);
793 return gfn_to_memslot_unaliased(kvm, gfn);
796 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
798 int i;
800 gfn = unalias_gfn(kvm, gfn);
801 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
802 struct kvm_memory_slot *memslot = &kvm->memslots[i];
804 if (gfn >= memslot->base_gfn
805 && gfn < memslot->base_gfn + memslot->npages)
806 return 1;
808 return 0;
810 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
812 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
814 struct kvm_memory_slot *slot;
816 gfn = unalias_gfn(kvm, gfn);
817 slot = gfn_to_memslot_unaliased(kvm, gfn);
818 if (!slot)
819 return bad_hva();
820 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
822 EXPORT_SYMBOL_GPL(gfn_to_hva);
824 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
826 struct page *page[1];
827 unsigned long addr;
828 int npages;
829 pfn_t pfn;
831 might_sleep();
833 addr = gfn_to_hva(kvm, gfn);
834 if (kvm_is_error_hva(addr)) {
835 get_page(bad_page);
836 return page_to_pfn(bad_page);
839 npages = get_user_pages_fast(addr, 1, 1, page);
841 if (unlikely(npages != 1)) {
842 struct vm_area_struct *vma;
844 down_read(&current->mm->mmap_sem);
845 vma = find_vma(current->mm, addr);
847 if (vma == NULL || addr < vma->vm_start ||
848 !(vma->vm_flags & VM_PFNMAP)) {
849 up_read(&current->mm->mmap_sem);
850 get_page(bad_page);
851 return page_to_pfn(bad_page);
854 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
855 up_read(&current->mm->mmap_sem);
856 BUG_ON(!kvm_is_mmio_pfn(pfn));
857 } else
858 pfn = page_to_pfn(page[0]);
860 return pfn;
863 EXPORT_SYMBOL_GPL(gfn_to_pfn);
865 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
867 pfn_t pfn;
869 pfn = gfn_to_pfn(kvm, gfn);
870 if (!kvm_is_mmio_pfn(pfn))
871 return pfn_to_page(pfn);
873 WARN_ON(kvm_is_mmio_pfn(pfn));
875 get_page(bad_page);
876 return bad_page;
879 EXPORT_SYMBOL_GPL(gfn_to_page);
881 void kvm_release_page_clean(struct page *page)
883 kvm_release_pfn_clean(page_to_pfn(page));
885 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
887 void kvm_release_pfn_clean(pfn_t pfn)
889 if (!kvm_is_mmio_pfn(pfn))
890 put_page(pfn_to_page(pfn));
892 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
894 void kvm_release_page_dirty(struct page *page)
896 kvm_release_pfn_dirty(page_to_pfn(page));
898 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
900 void kvm_release_pfn_dirty(pfn_t pfn)
902 kvm_set_pfn_dirty(pfn);
903 kvm_release_pfn_clean(pfn);
905 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
907 void kvm_set_page_dirty(struct page *page)
909 kvm_set_pfn_dirty(page_to_pfn(page));
911 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
913 void kvm_set_pfn_dirty(pfn_t pfn)
915 if (!kvm_is_mmio_pfn(pfn)) {
916 struct page *page = pfn_to_page(pfn);
917 if (!PageReserved(page))
918 SetPageDirty(page);
921 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
923 void kvm_set_pfn_accessed(pfn_t pfn)
925 if (!kvm_is_mmio_pfn(pfn))
926 mark_page_accessed(pfn_to_page(pfn));
928 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
930 void kvm_get_pfn(pfn_t pfn)
932 if (!kvm_is_mmio_pfn(pfn))
933 get_page(pfn_to_page(pfn));
935 EXPORT_SYMBOL_GPL(kvm_get_pfn);
937 static int next_segment(unsigned long len, int offset)
939 if (len > PAGE_SIZE - offset)
940 return PAGE_SIZE - offset;
941 else
942 return len;
945 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
946 int len)
948 int r;
949 unsigned long addr;
951 addr = gfn_to_hva(kvm, gfn);
952 if (kvm_is_error_hva(addr))
953 return -EFAULT;
954 r = copy_from_user(data, (void __user *)addr + offset, len);
955 if (r)
956 return -EFAULT;
957 return 0;
959 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
961 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
963 gfn_t gfn = gpa >> PAGE_SHIFT;
964 int seg;
965 int offset = offset_in_page(gpa);
966 int ret;
968 while ((seg = next_segment(len, offset)) != 0) {
969 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
970 if (ret < 0)
971 return ret;
972 offset = 0;
973 len -= seg;
974 data += seg;
975 ++gfn;
977 return 0;
979 EXPORT_SYMBOL_GPL(kvm_read_guest);
981 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
982 unsigned long len)
984 int r;
985 unsigned long addr;
986 gfn_t gfn = gpa >> PAGE_SHIFT;
987 int offset = offset_in_page(gpa);
989 addr = gfn_to_hva(kvm, gfn);
990 if (kvm_is_error_hva(addr))
991 return -EFAULT;
992 pagefault_disable();
993 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
994 pagefault_enable();
995 if (r)
996 return -EFAULT;
997 return 0;
999 EXPORT_SYMBOL(kvm_read_guest_atomic);
1001 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1002 int offset, int len)
1004 int r;
1005 unsigned long addr;
1007 addr = gfn_to_hva(kvm, gfn);
1008 if (kvm_is_error_hva(addr))
1009 return -EFAULT;
1010 r = copy_to_user((void __user *)addr + offset, data, len);
1011 if (r)
1012 return -EFAULT;
1013 mark_page_dirty(kvm, gfn);
1014 return 0;
1016 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1018 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1019 unsigned long len)
1021 gfn_t gfn = gpa >> PAGE_SHIFT;
1022 int seg;
1023 int offset = offset_in_page(gpa);
1024 int ret;
1026 while ((seg = next_segment(len, offset)) != 0) {
1027 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1028 if (ret < 0)
1029 return ret;
1030 offset = 0;
1031 len -= seg;
1032 data += seg;
1033 ++gfn;
1035 return 0;
1038 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1040 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1042 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1044 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1046 gfn_t gfn = gpa >> PAGE_SHIFT;
1047 int seg;
1048 int offset = offset_in_page(gpa);
1049 int ret;
1051 while ((seg = next_segment(len, offset)) != 0) {
1052 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1053 if (ret < 0)
1054 return ret;
1055 offset = 0;
1056 len -= seg;
1057 ++gfn;
1059 return 0;
1061 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1063 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1065 struct kvm_memory_slot *memslot;
1067 gfn = unalias_gfn(kvm, gfn);
1068 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1069 if (memslot && memslot->dirty_bitmap) {
1070 unsigned long rel_gfn = gfn - memslot->base_gfn;
1072 /* avoid RMW */
1073 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1074 set_bit(rel_gfn, memslot->dirty_bitmap);
1079 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1081 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1083 DEFINE_WAIT(wait);
1085 for (;;) {
1086 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1088 if (kvm_arch_vcpu_runnable(vcpu)) {
1089 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1090 break;
1092 if (kvm_cpu_has_pending_timer(vcpu))
1093 break;
1094 if (signal_pending(current))
1095 break;
1097 schedule();
1100 finish_wait(&vcpu->wq, &wait);
1103 void kvm_resched(struct kvm_vcpu *vcpu)
1105 if (!need_resched())
1106 return;
1107 cond_resched();
1109 EXPORT_SYMBOL_GPL(kvm_resched);
1111 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1113 ktime_t expires;
1114 DEFINE_WAIT(wait);
1116 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1118 /* Sleep for 100 us, and hope lock-holder got scheduled */
1119 expires = ktime_add_ns(ktime_get(), 100000UL);
1120 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1122 finish_wait(&vcpu->wq, &wait);
1124 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1126 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1128 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1129 struct page *page;
1131 if (vmf->pgoff == 0)
1132 page = virt_to_page(vcpu->run);
1133 #ifdef CONFIG_X86
1134 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1135 page = virt_to_page(vcpu->arch.pio_data);
1136 #endif
1137 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1138 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1139 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1140 #endif
1141 else
1142 return VM_FAULT_SIGBUS;
1143 get_page(page);
1144 vmf->page = page;
1145 return 0;
1148 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1149 .fault = kvm_vcpu_fault,
1152 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1154 vma->vm_ops = &kvm_vcpu_vm_ops;
1155 return 0;
1158 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1160 struct kvm_vcpu *vcpu = filp->private_data;
1162 kvm_put_kvm(vcpu->kvm);
1163 return 0;
1166 static struct file_operations kvm_vcpu_fops = {
1167 .release = kvm_vcpu_release,
1168 .unlocked_ioctl = kvm_vcpu_ioctl,
1169 .compat_ioctl = kvm_vcpu_ioctl,
1170 .mmap = kvm_vcpu_mmap,
1174 * Allocates an inode for the vcpu.
1176 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1178 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1182 * Creates some virtual cpus. Good luck creating more than one.
1184 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1186 int r;
1187 struct kvm_vcpu *vcpu, *v;
1189 vcpu = kvm_arch_vcpu_create(kvm, id);
1190 if (IS_ERR(vcpu))
1191 return PTR_ERR(vcpu);
1193 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1195 r = kvm_arch_vcpu_setup(vcpu);
1196 if (r)
1197 return r;
1199 mutex_lock(&kvm->lock);
1200 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1201 r = -EINVAL;
1202 goto vcpu_destroy;
1205 kvm_for_each_vcpu(r, v, kvm)
1206 if (v->vcpu_id == id) {
1207 r = -EEXIST;
1208 goto vcpu_destroy;
1211 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1213 /* Now it's all set up, let userspace reach it */
1214 kvm_get_kvm(kvm);
1215 r = create_vcpu_fd(vcpu);
1216 if (r < 0) {
1217 kvm_put_kvm(kvm);
1218 goto vcpu_destroy;
1221 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1222 smp_wmb();
1223 atomic_inc(&kvm->online_vcpus);
1225 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1226 if (kvm->bsp_vcpu_id == id)
1227 kvm->bsp_vcpu = vcpu;
1228 #endif
1229 mutex_unlock(&kvm->lock);
1230 return r;
1232 vcpu_destroy:
1233 mutex_unlock(&kvm->lock);
1234 kvm_arch_vcpu_destroy(vcpu);
1235 return r;
1238 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1240 if (sigset) {
1241 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1242 vcpu->sigset_active = 1;
1243 vcpu->sigset = *sigset;
1244 } else
1245 vcpu->sigset_active = 0;
1246 return 0;
1249 static long kvm_vcpu_ioctl(struct file *filp,
1250 unsigned int ioctl, unsigned long arg)
1252 struct kvm_vcpu *vcpu = filp->private_data;
1253 void __user *argp = (void __user *)arg;
1254 int r;
1255 struct kvm_fpu *fpu = NULL;
1256 struct kvm_sregs *kvm_sregs = NULL;
1258 if (vcpu->kvm->mm != current->mm)
1259 return -EIO;
1260 switch (ioctl) {
1261 case KVM_RUN:
1262 r = -EINVAL;
1263 if (arg)
1264 goto out;
1265 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1266 break;
1267 case KVM_GET_REGS: {
1268 struct kvm_regs *kvm_regs;
1270 r = -ENOMEM;
1271 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1272 if (!kvm_regs)
1273 goto out;
1274 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1275 if (r)
1276 goto out_free1;
1277 r = -EFAULT;
1278 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1279 goto out_free1;
1280 r = 0;
1281 out_free1:
1282 kfree(kvm_regs);
1283 break;
1285 case KVM_SET_REGS: {
1286 struct kvm_regs *kvm_regs;
1288 r = -ENOMEM;
1289 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1290 if (!kvm_regs)
1291 goto out;
1292 r = -EFAULT;
1293 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1294 goto out_free2;
1295 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1296 if (r)
1297 goto out_free2;
1298 r = 0;
1299 out_free2:
1300 kfree(kvm_regs);
1301 break;
1303 case KVM_GET_SREGS: {
1304 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1305 r = -ENOMEM;
1306 if (!kvm_sregs)
1307 goto out;
1308 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1309 if (r)
1310 goto out;
1311 r = -EFAULT;
1312 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1313 goto out;
1314 r = 0;
1315 break;
1317 case KVM_SET_SREGS: {
1318 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1319 r = -ENOMEM;
1320 if (!kvm_sregs)
1321 goto out;
1322 r = -EFAULT;
1323 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1324 goto out;
1325 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1326 if (r)
1327 goto out;
1328 r = 0;
1329 break;
1331 case KVM_GET_MP_STATE: {
1332 struct kvm_mp_state mp_state;
1334 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1335 if (r)
1336 goto out;
1337 r = -EFAULT;
1338 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1339 goto out;
1340 r = 0;
1341 break;
1343 case KVM_SET_MP_STATE: {
1344 struct kvm_mp_state mp_state;
1346 r = -EFAULT;
1347 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1348 goto out;
1349 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1350 if (r)
1351 goto out;
1352 r = 0;
1353 break;
1355 case KVM_TRANSLATE: {
1356 struct kvm_translation tr;
1358 r = -EFAULT;
1359 if (copy_from_user(&tr, argp, sizeof tr))
1360 goto out;
1361 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1362 if (r)
1363 goto out;
1364 r = -EFAULT;
1365 if (copy_to_user(argp, &tr, sizeof tr))
1366 goto out;
1367 r = 0;
1368 break;
1370 case KVM_SET_GUEST_DEBUG: {
1371 struct kvm_guest_debug dbg;
1373 r = -EFAULT;
1374 if (copy_from_user(&dbg, argp, sizeof dbg))
1375 goto out;
1376 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1377 if (r)
1378 goto out;
1379 r = 0;
1380 break;
1382 case KVM_SET_SIGNAL_MASK: {
1383 struct kvm_signal_mask __user *sigmask_arg = argp;
1384 struct kvm_signal_mask kvm_sigmask;
1385 sigset_t sigset, *p;
1387 p = NULL;
1388 if (argp) {
1389 r = -EFAULT;
1390 if (copy_from_user(&kvm_sigmask, argp,
1391 sizeof kvm_sigmask))
1392 goto out;
1393 r = -EINVAL;
1394 if (kvm_sigmask.len != sizeof sigset)
1395 goto out;
1396 r = -EFAULT;
1397 if (copy_from_user(&sigset, sigmask_arg->sigset,
1398 sizeof sigset))
1399 goto out;
1400 p = &sigset;
1402 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1403 break;
1405 case KVM_GET_FPU: {
1406 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1407 r = -ENOMEM;
1408 if (!fpu)
1409 goto out;
1410 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1411 if (r)
1412 goto out;
1413 r = -EFAULT;
1414 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1415 goto out;
1416 r = 0;
1417 break;
1419 case KVM_SET_FPU: {
1420 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1421 r = -ENOMEM;
1422 if (!fpu)
1423 goto out;
1424 r = -EFAULT;
1425 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1426 goto out;
1427 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1428 if (r)
1429 goto out;
1430 r = 0;
1431 break;
1433 default:
1434 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1436 out:
1437 kfree(fpu);
1438 kfree(kvm_sregs);
1439 return r;
1442 static long kvm_vm_ioctl(struct file *filp,
1443 unsigned int ioctl, unsigned long arg)
1445 struct kvm *kvm = filp->private_data;
1446 void __user *argp = (void __user *)arg;
1447 int r;
1449 if (kvm->mm != current->mm)
1450 return -EIO;
1451 switch (ioctl) {
1452 case KVM_CREATE_VCPU:
1453 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1454 if (r < 0)
1455 goto out;
1456 break;
1457 case KVM_SET_USER_MEMORY_REGION: {
1458 struct kvm_userspace_memory_region kvm_userspace_mem;
1460 r = -EFAULT;
1461 if (copy_from_user(&kvm_userspace_mem, argp,
1462 sizeof kvm_userspace_mem))
1463 goto out;
1465 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1466 if (r)
1467 goto out;
1468 break;
1470 case KVM_GET_DIRTY_LOG: {
1471 struct kvm_dirty_log log;
1473 r = -EFAULT;
1474 if (copy_from_user(&log, argp, sizeof log))
1475 goto out;
1476 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1477 if (r)
1478 goto out;
1479 break;
1481 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1482 case KVM_REGISTER_COALESCED_MMIO: {
1483 struct kvm_coalesced_mmio_zone zone;
1484 r = -EFAULT;
1485 if (copy_from_user(&zone, argp, sizeof zone))
1486 goto out;
1487 r = -ENXIO;
1488 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1489 if (r)
1490 goto out;
1491 r = 0;
1492 break;
1494 case KVM_UNREGISTER_COALESCED_MMIO: {
1495 struct kvm_coalesced_mmio_zone zone;
1496 r = -EFAULT;
1497 if (copy_from_user(&zone, argp, sizeof zone))
1498 goto out;
1499 r = -ENXIO;
1500 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1501 if (r)
1502 goto out;
1503 r = 0;
1504 break;
1506 #endif
1507 case KVM_IRQFD: {
1508 struct kvm_irqfd data;
1510 r = -EFAULT;
1511 if (copy_from_user(&data, argp, sizeof data))
1512 goto out;
1513 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1514 break;
1516 case KVM_IOEVENTFD: {
1517 struct kvm_ioeventfd data;
1519 r = -EFAULT;
1520 if (copy_from_user(&data, argp, sizeof data))
1521 goto out;
1522 r = kvm_ioeventfd(kvm, &data);
1523 break;
1525 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1526 case KVM_SET_BOOT_CPU_ID:
1527 r = 0;
1528 mutex_lock(&kvm->lock);
1529 if (atomic_read(&kvm->online_vcpus) != 0)
1530 r = -EBUSY;
1531 else
1532 kvm->bsp_vcpu_id = arg;
1533 mutex_unlock(&kvm->lock);
1534 break;
1535 #endif
1536 default:
1537 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1538 if (r == -ENOTTY)
1539 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1541 out:
1542 return r;
1545 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1547 struct page *page[1];
1548 unsigned long addr;
1549 int npages;
1550 gfn_t gfn = vmf->pgoff;
1551 struct kvm *kvm = vma->vm_file->private_data;
1553 addr = gfn_to_hva(kvm, gfn);
1554 if (kvm_is_error_hva(addr))
1555 return VM_FAULT_SIGBUS;
1557 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1558 NULL);
1559 if (unlikely(npages != 1))
1560 return VM_FAULT_SIGBUS;
1562 vmf->page = page[0];
1563 return 0;
1566 static const struct vm_operations_struct kvm_vm_vm_ops = {
1567 .fault = kvm_vm_fault,
1570 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1572 vma->vm_ops = &kvm_vm_vm_ops;
1573 return 0;
1576 static struct file_operations kvm_vm_fops = {
1577 .release = kvm_vm_release,
1578 .unlocked_ioctl = kvm_vm_ioctl,
1579 .compat_ioctl = kvm_vm_ioctl,
1580 .mmap = kvm_vm_mmap,
1583 static int kvm_dev_ioctl_create_vm(void)
1585 int fd;
1586 struct kvm *kvm;
1588 kvm = kvm_create_vm();
1589 if (IS_ERR(kvm))
1590 return PTR_ERR(kvm);
1591 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1592 if (fd < 0)
1593 kvm_put_kvm(kvm);
1595 return fd;
1598 static long kvm_dev_ioctl_check_extension_generic(long arg)
1600 switch (arg) {
1601 case KVM_CAP_USER_MEMORY:
1602 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1603 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1604 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1605 case KVM_CAP_SET_BOOT_CPU_ID:
1606 #endif
1607 return 1;
1608 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1609 case KVM_CAP_IRQ_ROUTING:
1610 return KVM_MAX_IRQ_ROUTES;
1611 #endif
1612 default:
1613 break;
1615 return kvm_dev_ioctl_check_extension(arg);
1618 static long kvm_dev_ioctl(struct file *filp,
1619 unsigned int ioctl, unsigned long arg)
1621 long r = -EINVAL;
1623 switch (ioctl) {
1624 case KVM_GET_API_VERSION:
1625 r = -EINVAL;
1626 if (arg)
1627 goto out;
1628 r = KVM_API_VERSION;
1629 break;
1630 case KVM_CREATE_VM:
1631 r = -EINVAL;
1632 if (arg)
1633 goto out;
1634 r = kvm_dev_ioctl_create_vm();
1635 break;
1636 case KVM_CHECK_EXTENSION:
1637 r = kvm_dev_ioctl_check_extension_generic(arg);
1638 break;
1639 case KVM_GET_VCPU_MMAP_SIZE:
1640 r = -EINVAL;
1641 if (arg)
1642 goto out;
1643 r = PAGE_SIZE; /* struct kvm_run */
1644 #ifdef CONFIG_X86
1645 r += PAGE_SIZE; /* pio data page */
1646 #endif
1647 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1648 r += PAGE_SIZE; /* coalesced mmio ring page */
1649 #endif
1650 break;
1651 case KVM_TRACE_ENABLE:
1652 case KVM_TRACE_PAUSE:
1653 case KVM_TRACE_DISABLE:
1654 r = -EOPNOTSUPP;
1655 break;
1656 default:
1657 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1659 out:
1660 return r;
1663 static struct file_operations kvm_chardev_ops = {
1664 .unlocked_ioctl = kvm_dev_ioctl,
1665 .compat_ioctl = kvm_dev_ioctl,
1668 static struct miscdevice kvm_dev = {
1669 KVM_MINOR,
1670 "kvm",
1671 &kvm_chardev_ops,
1674 static void hardware_enable(void *junk)
1676 int cpu = raw_smp_processor_id();
1677 int r;
1679 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1680 return;
1682 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1684 r = kvm_arch_hardware_enable(NULL);
1686 if (r) {
1687 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1688 atomic_inc(&hardware_enable_failed);
1689 printk(KERN_INFO "kvm: enabling virtualization on "
1690 "CPU%d failed\n", cpu);
1694 static void hardware_disable(void *junk)
1696 int cpu = raw_smp_processor_id();
1698 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1699 return;
1700 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1701 kvm_arch_hardware_disable(NULL);
1704 static void hardware_disable_all_nolock(void)
1706 BUG_ON(!kvm_usage_count);
1708 kvm_usage_count--;
1709 if (!kvm_usage_count)
1710 on_each_cpu(hardware_disable, NULL, 1);
1713 static void hardware_disable_all(void)
1715 spin_lock(&kvm_lock);
1716 hardware_disable_all_nolock();
1717 spin_unlock(&kvm_lock);
1720 static int hardware_enable_all(void)
1722 int r = 0;
1724 spin_lock(&kvm_lock);
1726 kvm_usage_count++;
1727 if (kvm_usage_count == 1) {
1728 atomic_set(&hardware_enable_failed, 0);
1729 on_each_cpu(hardware_enable, NULL, 1);
1731 if (atomic_read(&hardware_enable_failed)) {
1732 hardware_disable_all_nolock();
1733 r = -EBUSY;
1737 spin_unlock(&kvm_lock);
1739 return r;
1742 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1743 void *v)
1745 int cpu = (long)v;
1747 if (!kvm_usage_count)
1748 return NOTIFY_OK;
1750 val &= ~CPU_TASKS_FROZEN;
1751 switch (val) {
1752 case CPU_DYING:
1753 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1754 cpu);
1755 hardware_disable(NULL);
1756 break;
1757 case CPU_UP_CANCELED:
1758 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1759 cpu);
1760 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1761 break;
1762 case CPU_ONLINE:
1763 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1764 cpu);
1765 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1766 break;
1768 return NOTIFY_OK;
1772 asmlinkage void kvm_handle_fault_on_reboot(void)
1774 if (kvm_rebooting)
1775 /* spin while reset goes on */
1776 while (true)
1778 /* Fault while not rebooting. We want the trace. */
1779 BUG();
1781 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1783 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1784 void *v)
1787 * Some (well, at least mine) BIOSes hang on reboot if
1788 * in vmx root mode.
1790 * And Intel TXT required VMX off for all cpu when system shutdown.
1792 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1793 kvm_rebooting = true;
1794 on_each_cpu(hardware_disable, NULL, 1);
1795 return NOTIFY_OK;
1798 static struct notifier_block kvm_reboot_notifier = {
1799 .notifier_call = kvm_reboot,
1800 .priority = 0,
1803 void kvm_io_bus_init(struct kvm_io_bus *bus)
1805 memset(bus, 0, sizeof(*bus));
1808 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1810 int i;
1812 for (i = 0; i < bus->dev_count; i++) {
1813 struct kvm_io_device *pos = bus->devs[i];
1815 kvm_iodevice_destructor(pos);
1819 /* kvm_io_bus_write - called under kvm->slots_lock */
1820 int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
1821 int len, const void *val)
1823 int i;
1824 for (i = 0; i < bus->dev_count; i++)
1825 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
1826 return 0;
1827 return -EOPNOTSUPP;
1830 /* kvm_io_bus_read - called under kvm->slots_lock */
1831 int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
1833 int i;
1834 for (i = 0; i < bus->dev_count; i++)
1835 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
1836 return 0;
1837 return -EOPNOTSUPP;
1840 int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
1841 struct kvm_io_device *dev)
1843 int ret;
1845 down_write(&kvm->slots_lock);
1846 ret = __kvm_io_bus_register_dev(bus, dev);
1847 up_write(&kvm->slots_lock);
1849 return ret;
1852 /* An unlocked version. Caller must have write lock on slots_lock. */
1853 int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
1854 struct kvm_io_device *dev)
1856 if (bus->dev_count > NR_IOBUS_DEVS-1)
1857 return -ENOSPC;
1859 bus->devs[bus->dev_count++] = dev;
1861 return 0;
1864 void kvm_io_bus_unregister_dev(struct kvm *kvm,
1865 struct kvm_io_bus *bus,
1866 struct kvm_io_device *dev)
1868 down_write(&kvm->slots_lock);
1869 __kvm_io_bus_unregister_dev(bus, dev);
1870 up_write(&kvm->slots_lock);
1873 /* An unlocked version. Caller must have write lock on slots_lock. */
1874 void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
1875 struct kvm_io_device *dev)
1877 int i;
1879 for (i = 0; i < bus->dev_count; i++)
1880 if (bus->devs[i] == dev) {
1881 bus->devs[i] = bus->devs[--bus->dev_count];
1882 break;
1886 static struct notifier_block kvm_cpu_notifier = {
1887 .notifier_call = kvm_cpu_hotplug,
1888 .priority = 20, /* must be > scheduler priority */
1891 static int vm_stat_get(void *_offset, u64 *val)
1893 unsigned offset = (long)_offset;
1894 struct kvm *kvm;
1896 *val = 0;
1897 spin_lock(&kvm_lock);
1898 list_for_each_entry(kvm, &vm_list, vm_list)
1899 *val += *(u32 *)((void *)kvm + offset);
1900 spin_unlock(&kvm_lock);
1901 return 0;
1904 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1906 static int vcpu_stat_get(void *_offset, u64 *val)
1908 unsigned offset = (long)_offset;
1909 struct kvm *kvm;
1910 struct kvm_vcpu *vcpu;
1911 int i;
1913 *val = 0;
1914 spin_lock(&kvm_lock);
1915 list_for_each_entry(kvm, &vm_list, vm_list)
1916 kvm_for_each_vcpu(i, vcpu, kvm)
1917 *val += *(u32 *)((void *)vcpu + offset);
1919 spin_unlock(&kvm_lock);
1920 return 0;
1923 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1925 static const struct file_operations *stat_fops[] = {
1926 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1927 [KVM_STAT_VM] = &vm_stat_fops,
1930 static void kvm_init_debug(void)
1932 struct kvm_stats_debugfs_item *p;
1934 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1935 for (p = debugfs_entries; p->name; ++p)
1936 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1937 (void *)(long)p->offset,
1938 stat_fops[p->kind]);
1941 static void kvm_exit_debug(void)
1943 struct kvm_stats_debugfs_item *p;
1945 for (p = debugfs_entries; p->name; ++p)
1946 debugfs_remove(p->dentry);
1947 debugfs_remove(kvm_debugfs_dir);
1950 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1952 if (kvm_usage_count)
1953 hardware_disable(NULL);
1954 return 0;
1957 static int kvm_resume(struct sys_device *dev)
1959 if (kvm_usage_count)
1960 hardware_enable(NULL);
1961 return 0;
1964 static struct sysdev_class kvm_sysdev_class = {
1965 .name = "kvm",
1966 .suspend = kvm_suspend,
1967 .resume = kvm_resume,
1970 static struct sys_device kvm_sysdev = {
1971 .id = 0,
1972 .cls = &kvm_sysdev_class,
1975 struct page *bad_page;
1976 pfn_t bad_pfn;
1978 static inline
1979 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1981 return container_of(pn, struct kvm_vcpu, preempt_notifier);
1984 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1986 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1988 kvm_arch_vcpu_load(vcpu, cpu);
1991 static void kvm_sched_out(struct preempt_notifier *pn,
1992 struct task_struct *next)
1994 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1996 kvm_arch_vcpu_put(vcpu);
1999 int kvm_init(void *opaque, unsigned int vcpu_size,
2000 struct module *module)
2002 int r;
2003 int cpu;
2005 r = kvm_arch_init(opaque);
2006 if (r)
2007 goto out_fail;
2009 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2011 if (bad_page == NULL) {
2012 r = -ENOMEM;
2013 goto out;
2016 bad_pfn = page_to_pfn(bad_page);
2018 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2019 r = -ENOMEM;
2020 goto out_free_0;
2023 r = kvm_arch_hardware_setup();
2024 if (r < 0)
2025 goto out_free_0a;
2027 for_each_online_cpu(cpu) {
2028 smp_call_function_single(cpu,
2029 kvm_arch_check_processor_compat,
2030 &r, 1);
2031 if (r < 0)
2032 goto out_free_1;
2035 r = register_cpu_notifier(&kvm_cpu_notifier);
2036 if (r)
2037 goto out_free_2;
2038 register_reboot_notifier(&kvm_reboot_notifier);
2040 r = sysdev_class_register(&kvm_sysdev_class);
2041 if (r)
2042 goto out_free_3;
2044 r = sysdev_register(&kvm_sysdev);
2045 if (r)
2046 goto out_free_4;
2048 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2049 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2050 __alignof__(struct kvm_vcpu),
2051 0, NULL);
2052 if (!kvm_vcpu_cache) {
2053 r = -ENOMEM;
2054 goto out_free_5;
2057 kvm_chardev_ops.owner = module;
2058 kvm_vm_fops.owner = module;
2059 kvm_vcpu_fops.owner = module;
2061 r = misc_register(&kvm_dev);
2062 if (r) {
2063 printk(KERN_ERR "kvm: misc device register failed\n");
2064 goto out_free;
2067 kvm_preempt_ops.sched_in = kvm_sched_in;
2068 kvm_preempt_ops.sched_out = kvm_sched_out;
2070 kvm_init_debug();
2072 return 0;
2074 out_free:
2075 kmem_cache_destroy(kvm_vcpu_cache);
2076 out_free_5:
2077 sysdev_unregister(&kvm_sysdev);
2078 out_free_4:
2079 sysdev_class_unregister(&kvm_sysdev_class);
2080 out_free_3:
2081 unregister_reboot_notifier(&kvm_reboot_notifier);
2082 unregister_cpu_notifier(&kvm_cpu_notifier);
2083 out_free_2:
2084 out_free_1:
2085 kvm_arch_hardware_unsetup();
2086 out_free_0a:
2087 free_cpumask_var(cpus_hardware_enabled);
2088 out_free_0:
2089 __free_page(bad_page);
2090 out:
2091 kvm_arch_exit();
2092 out_fail:
2093 return r;
2095 EXPORT_SYMBOL_GPL(kvm_init);
2097 void kvm_exit(void)
2099 tracepoint_synchronize_unregister();
2100 kvm_exit_debug();
2101 misc_deregister(&kvm_dev);
2102 kmem_cache_destroy(kvm_vcpu_cache);
2103 sysdev_unregister(&kvm_sysdev);
2104 sysdev_class_unregister(&kvm_sysdev_class);
2105 unregister_reboot_notifier(&kvm_reboot_notifier);
2106 unregister_cpu_notifier(&kvm_cpu_notifier);
2107 on_each_cpu(hardware_disable, NULL, 1);
2108 kvm_arch_hardware_unsetup();
2109 kvm_arch_exit();
2110 free_cpumask_var(cpus_hardware_enabled);
2111 __free_page(bad_page);
2113 EXPORT_SYMBOL_GPL(kvm_exit);