page allocator: replace __alloc_pages_internal() with __alloc_pages_nodemask()
[linux-2.6.git] / mm / page_alloc.c
blobd58df9031503f639b337194fa188c729409f5f15
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 #include <linux/kmemleak.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 #include "internal.h"
56 * Array of node states.
58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61 #ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 #ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 #endif
66 [N_CPU] = { { [0] = 1UL } },
67 #endif /* NUMA */
69 EXPORT_SYMBOL(node_states);
71 unsigned long totalram_pages __read_mostly;
72 unsigned long totalreserve_pages __read_mostly;
73 unsigned long highest_memmap_pfn __read_mostly;
74 int percpu_pagelist_fraction;
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly;
78 #endif
80 static void __free_pages_ok(struct page *page, unsigned int order);
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94 #ifdef CONFIG_ZONE_DMA
95 256,
96 #endif
97 #ifdef CONFIG_ZONE_DMA32
98 256,
99 #endif
100 #ifdef CONFIG_HIGHMEM
102 #endif
106 EXPORT_SYMBOL(totalram_pages);
108 static char * const zone_names[MAX_NR_ZONES] = {
109 #ifdef CONFIG_ZONE_DMA
110 "DMA",
111 #endif
112 #ifdef CONFIG_ZONE_DMA32
113 "DMA32",
114 #endif
115 "Normal",
116 #ifdef CONFIG_HIGHMEM
117 "HighMem",
118 #endif
119 "Movable",
122 int min_free_kbytes = 1024;
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
165 #endif
167 int page_group_by_mobility_disabled __read_mostly;
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
171 set_pageblock_flags_group(page, (unsigned long)migratetype,
172 PB_migrate, PB_migrate_end);
175 #ifdef CONFIG_DEBUG_VM
176 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
178 int ret = 0;
179 unsigned seq;
180 unsigned long pfn = page_to_pfn(page);
182 do {
183 seq = zone_span_seqbegin(zone);
184 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
185 ret = 1;
186 else if (pfn < zone->zone_start_pfn)
187 ret = 1;
188 } while (zone_span_seqretry(zone, seq));
190 return ret;
193 static int page_is_consistent(struct zone *zone, struct page *page)
195 if (!pfn_valid_within(page_to_pfn(page)))
196 return 0;
197 if (zone != page_zone(page))
198 return 0;
200 return 1;
203 * Temporary debugging check for pages not lying within a given zone.
205 static int bad_range(struct zone *zone, struct page *page)
207 if (page_outside_zone_boundaries(zone, page))
208 return 1;
209 if (!page_is_consistent(zone, page))
210 return 1;
212 return 0;
214 #else
215 static inline int bad_range(struct zone *zone, struct page *page)
217 return 0;
219 #endif
221 static void bad_page(struct page *page)
223 static unsigned long resume;
224 static unsigned long nr_shown;
225 static unsigned long nr_unshown;
228 * Allow a burst of 60 reports, then keep quiet for that minute;
229 * or allow a steady drip of one report per second.
231 if (nr_shown == 60) {
232 if (time_before(jiffies, resume)) {
233 nr_unshown++;
234 goto out;
236 if (nr_unshown) {
237 printk(KERN_ALERT
238 "BUG: Bad page state: %lu messages suppressed\n",
239 nr_unshown);
240 nr_unshown = 0;
242 nr_shown = 0;
244 if (nr_shown++ == 0)
245 resume = jiffies + 60 * HZ;
247 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
248 current->comm, page_to_pfn(page));
249 printk(KERN_ALERT
250 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
251 page, (void *)page->flags, page_count(page),
252 page_mapcount(page), page->mapping, page->index);
254 dump_stack();
255 out:
256 /* Leave bad fields for debug, except PageBuddy could make trouble */
257 __ClearPageBuddy(page);
258 add_taint(TAINT_BAD_PAGE);
262 * Higher-order pages are called "compound pages". They are structured thusly:
264 * The first PAGE_SIZE page is called the "head page".
266 * The remaining PAGE_SIZE pages are called "tail pages".
268 * All pages have PG_compound set. All pages have their ->private pointing at
269 * the head page (even the head page has this).
271 * The first tail page's ->lru.next holds the address of the compound page's
272 * put_page() function. Its ->lru.prev holds the order of allocation.
273 * This usage means that zero-order pages may not be compound.
276 static void free_compound_page(struct page *page)
278 __free_pages_ok(page, compound_order(page));
281 void prep_compound_page(struct page *page, unsigned long order)
283 int i;
284 int nr_pages = 1 << order;
286 set_compound_page_dtor(page, free_compound_page);
287 set_compound_order(page, order);
288 __SetPageHead(page);
289 for (i = 1; i < nr_pages; i++) {
290 struct page *p = page + i;
292 __SetPageTail(p);
293 p->first_page = page;
297 #ifdef CONFIG_HUGETLBFS
298 void prep_compound_gigantic_page(struct page *page, unsigned long order)
300 int i;
301 int nr_pages = 1 << order;
302 struct page *p = page + 1;
304 set_compound_page_dtor(page, free_compound_page);
305 set_compound_order(page, order);
306 __SetPageHead(page);
307 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
308 __SetPageTail(p);
309 p->first_page = page;
312 #endif
314 static int destroy_compound_page(struct page *page, unsigned long order)
316 int i;
317 int nr_pages = 1 << order;
318 int bad = 0;
320 if (unlikely(compound_order(page) != order) ||
321 unlikely(!PageHead(page))) {
322 bad_page(page);
323 bad++;
326 __ClearPageHead(page);
328 for (i = 1; i < nr_pages; i++) {
329 struct page *p = page + i;
331 if (unlikely(!PageTail(p) || (p->first_page != page))) {
332 bad_page(page);
333 bad++;
335 __ClearPageTail(p);
338 return bad;
341 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
343 int i;
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
354 static inline void set_page_order(struct page *page, int order)
356 set_page_private(page, order);
357 __SetPageBuddy(page);
360 static inline void rmv_page_order(struct page *page)
362 __ClearPageBuddy(page);
363 set_page_private(page, 0);
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
372 * B2 = B1 ^ (1 << O)
373 * For example, if the starting buddy (buddy2) is #8 its order
374 * 1 buddy is #10:
375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
379 * P = B & ~(1 << O)
381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
383 static inline struct page *
384 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
386 unsigned long buddy_idx = page_idx ^ (1 << order);
388 return page + (buddy_idx - page_idx);
391 static inline unsigned long
392 __find_combined_index(unsigned long page_idx, unsigned int order)
394 return (page_idx & ~(1 << order));
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
400 * (a) the buddy is not in a hole &&
401 * (b) the buddy is in the buddy system &&
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
408 * For recording page's order, we use page_private(page).
410 static inline int page_is_buddy(struct page *page, struct page *buddy,
411 int order)
413 if (!pfn_valid_within(page_to_pfn(buddy)))
414 return 0;
416 if (page_zone_id(page) != page_zone_id(buddy))
417 return 0;
419 if (PageBuddy(buddy) && page_order(buddy) == order) {
420 BUG_ON(page_count(buddy) != 0);
421 return 1;
423 return 0;
427 * Freeing function for a buddy system allocator.
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
440 * order is recorded in page_private(page) field.
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other. That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
447 * -- wli
450 static inline void __free_one_page(struct page *page,
451 struct zone *zone, unsigned int order)
453 unsigned long page_idx;
454 int order_size = 1 << order;
455 int migratetype = get_pageblock_migratetype(page);
457 if (unlikely(PageCompound(page)))
458 if (unlikely(destroy_compound_page(page, order)))
459 return;
461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
463 VM_BUG_ON(page_idx & (order_size - 1));
464 VM_BUG_ON(bad_range(zone, page));
466 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
467 while (order < MAX_ORDER-1) {
468 unsigned long combined_idx;
469 struct page *buddy;
471 buddy = __page_find_buddy(page, page_idx, order);
472 if (!page_is_buddy(page, buddy, order))
473 break;
475 /* Our buddy is free, merge with it and move up one order. */
476 list_del(&buddy->lru);
477 zone->free_area[order].nr_free--;
478 rmv_page_order(buddy);
479 combined_idx = __find_combined_index(page_idx, order);
480 page = page + (combined_idx - page_idx);
481 page_idx = combined_idx;
482 order++;
484 set_page_order(page, order);
485 list_add(&page->lru,
486 &zone->free_area[order].free_list[migratetype]);
487 zone->free_area[order].nr_free++;
490 static inline int free_pages_check(struct page *page)
492 free_page_mlock(page);
493 if (unlikely(page_mapcount(page) |
494 (page->mapping != NULL) |
495 (page_count(page) != 0) |
496 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
497 bad_page(page);
498 return 1;
500 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
501 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
502 return 0;
506 * Frees a list of pages.
507 * Assumes all pages on list are in same zone, and of same order.
508 * count is the number of pages to free.
510 * If the zone was previously in an "all pages pinned" state then look to
511 * see if this freeing clears that state.
513 * And clear the zone's pages_scanned counter, to hold off the "all pages are
514 * pinned" detection logic.
516 static void free_pages_bulk(struct zone *zone, int count,
517 struct list_head *list, int order)
519 spin_lock(&zone->lock);
520 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
521 zone->pages_scanned = 0;
522 while (count--) {
523 struct page *page;
525 VM_BUG_ON(list_empty(list));
526 page = list_entry(list->prev, struct page, lru);
527 /* have to delete it as __free_one_page list manipulates */
528 list_del(&page->lru);
529 __free_one_page(page, zone, order);
531 spin_unlock(&zone->lock);
534 static void free_one_page(struct zone *zone, struct page *page, int order)
536 spin_lock(&zone->lock);
537 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
538 zone->pages_scanned = 0;
539 __free_one_page(page, zone, order);
540 spin_unlock(&zone->lock);
543 static void __free_pages_ok(struct page *page, unsigned int order)
545 unsigned long flags;
546 int i;
547 int bad = 0;
549 for (i = 0 ; i < (1 << order) ; ++i)
550 bad += free_pages_check(page + i);
551 if (bad)
552 return;
554 if (!PageHighMem(page)) {
555 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
556 debug_check_no_obj_freed(page_address(page),
557 PAGE_SIZE << order);
559 arch_free_page(page, order);
560 kernel_map_pages(page, 1 << order, 0);
562 local_irq_save(flags);
563 __count_vm_events(PGFREE, 1 << order);
564 free_one_page(page_zone(page), page, order);
565 local_irq_restore(flags);
569 * permit the bootmem allocator to evade page validation on high-order frees
571 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
573 if (order == 0) {
574 __ClearPageReserved(page);
575 set_page_count(page, 0);
576 set_page_refcounted(page);
577 __free_page(page);
578 } else {
579 int loop;
581 prefetchw(page);
582 for (loop = 0; loop < BITS_PER_LONG; loop++) {
583 struct page *p = &page[loop];
585 if (loop + 1 < BITS_PER_LONG)
586 prefetchw(p + 1);
587 __ClearPageReserved(p);
588 set_page_count(p, 0);
591 set_page_refcounted(page);
592 __free_pages(page, order);
598 * The order of subdivision here is critical for the IO subsystem.
599 * Please do not alter this order without good reasons and regression
600 * testing. Specifically, as large blocks of memory are subdivided,
601 * the order in which smaller blocks are delivered depends on the order
602 * they're subdivided in this function. This is the primary factor
603 * influencing the order in which pages are delivered to the IO
604 * subsystem according to empirical testing, and this is also justified
605 * by considering the behavior of a buddy system containing a single
606 * large block of memory acted on by a series of small allocations.
607 * This behavior is a critical factor in sglist merging's success.
609 * -- wli
611 static inline void expand(struct zone *zone, struct page *page,
612 int low, int high, struct free_area *area,
613 int migratetype)
615 unsigned long size = 1 << high;
617 while (high > low) {
618 area--;
619 high--;
620 size >>= 1;
621 VM_BUG_ON(bad_range(zone, &page[size]));
622 list_add(&page[size].lru, &area->free_list[migratetype]);
623 area->nr_free++;
624 set_page_order(&page[size], high);
629 * This page is about to be returned from the page allocator
631 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
633 if (unlikely(page_mapcount(page) |
634 (page->mapping != NULL) |
635 (page_count(page) != 0) |
636 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
637 bad_page(page);
638 return 1;
641 set_page_private(page, 0);
642 set_page_refcounted(page);
644 arch_alloc_page(page, order);
645 kernel_map_pages(page, 1 << order, 1);
647 if (gfp_flags & __GFP_ZERO)
648 prep_zero_page(page, order, gfp_flags);
650 if (order && (gfp_flags & __GFP_COMP))
651 prep_compound_page(page, order);
653 return 0;
657 * Go through the free lists for the given migratetype and remove
658 * the smallest available page from the freelists
660 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
661 int migratetype)
663 unsigned int current_order;
664 struct free_area * area;
665 struct page *page;
667 /* Find a page of the appropriate size in the preferred list */
668 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
669 area = &(zone->free_area[current_order]);
670 if (list_empty(&area->free_list[migratetype]))
671 continue;
673 page = list_entry(area->free_list[migratetype].next,
674 struct page, lru);
675 list_del(&page->lru);
676 rmv_page_order(page);
677 area->nr_free--;
678 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
679 expand(zone, page, order, current_order, area, migratetype);
680 return page;
683 return NULL;
688 * This array describes the order lists are fallen back to when
689 * the free lists for the desirable migrate type are depleted
691 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
692 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
693 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
694 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
695 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
699 * Move the free pages in a range to the free lists of the requested type.
700 * Note that start_page and end_pages are not aligned on a pageblock
701 * boundary. If alignment is required, use move_freepages_block()
703 static int move_freepages(struct zone *zone,
704 struct page *start_page, struct page *end_page,
705 int migratetype)
707 struct page *page;
708 unsigned long order;
709 int pages_moved = 0;
711 #ifndef CONFIG_HOLES_IN_ZONE
713 * page_zone is not safe to call in this context when
714 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
715 * anyway as we check zone boundaries in move_freepages_block().
716 * Remove at a later date when no bug reports exist related to
717 * grouping pages by mobility
719 BUG_ON(page_zone(start_page) != page_zone(end_page));
720 #endif
722 for (page = start_page; page <= end_page;) {
723 /* Make sure we are not inadvertently changing nodes */
724 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
726 if (!pfn_valid_within(page_to_pfn(page))) {
727 page++;
728 continue;
731 if (!PageBuddy(page)) {
732 page++;
733 continue;
736 order = page_order(page);
737 list_del(&page->lru);
738 list_add(&page->lru,
739 &zone->free_area[order].free_list[migratetype]);
740 page += 1 << order;
741 pages_moved += 1 << order;
744 return pages_moved;
747 static int move_freepages_block(struct zone *zone, struct page *page,
748 int migratetype)
750 unsigned long start_pfn, end_pfn;
751 struct page *start_page, *end_page;
753 start_pfn = page_to_pfn(page);
754 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
755 start_page = pfn_to_page(start_pfn);
756 end_page = start_page + pageblock_nr_pages - 1;
757 end_pfn = start_pfn + pageblock_nr_pages - 1;
759 /* Do not cross zone boundaries */
760 if (start_pfn < zone->zone_start_pfn)
761 start_page = page;
762 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
763 return 0;
765 return move_freepages(zone, start_page, end_page, migratetype);
768 /* Remove an element from the buddy allocator from the fallback list */
769 static struct page *__rmqueue_fallback(struct zone *zone, int order,
770 int start_migratetype)
772 struct free_area * area;
773 int current_order;
774 struct page *page;
775 int migratetype, i;
777 /* Find the largest possible block of pages in the other list */
778 for (current_order = MAX_ORDER-1; current_order >= order;
779 --current_order) {
780 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
781 migratetype = fallbacks[start_migratetype][i];
783 /* MIGRATE_RESERVE handled later if necessary */
784 if (migratetype == MIGRATE_RESERVE)
785 continue;
787 area = &(zone->free_area[current_order]);
788 if (list_empty(&area->free_list[migratetype]))
789 continue;
791 page = list_entry(area->free_list[migratetype].next,
792 struct page, lru);
793 area->nr_free--;
796 * If breaking a large block of pages, move all free
797 * pages to the preferred allocation list. If falling
798 * back for a reclaimable kernel allocation, be more
799 * agressive about taking ownership of free pages
801 if (unlikely(current_order >= (pageblock_order >> 1)) ||
802 start_migratetype == MIGRATE_RECLAIMABLE) {
803 unsigned long pages;
804 pages = move_freepages_block(zone, page,
805 start_migratetype);
807 /* Claim the whole block if over half of it is free */
808 if (pages >= (1 << (pageblock_order-1)))
809 set_pageblock_migratetype(page,
810 start_migratetype);
812 migratetype = start_migratetype;
815 /* Remove the page from the freelists */
816 list_del(&page->lru);
817 rmv_page_order(page);
818 __mod_zone_page_state(zone, NR_FREE_PAGES,
819 -(1UL << order));
821 if (current_order == pageblock_order)
822 set_pageblock_migratetype(page,
823 start_migratetype);
825 expand(zone, page, order, current_order, area, migratetype);
826 return page;
830 /* Use MIGRATE_RESERVE rather than fail an allocation */
831 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
835 * Do the hard work of removing an element from the buddy allocator.
836 * Call me with the zone->lock already held.
838 static struct page *__rmqueue(struct zone *zone, unsigned int order,
839 int migratetype)
841 struct page *page;
843 page = __rmqueue_smallest(zone, order, migratetype);
845 if (unlikely(!page))
846 page = __rmqueue_fallback(zone, order, migratetype);
848 return page;
852 * Obtain a specified number of elements from the buddy allocator, all under
853 * a single hold of the lock, for efficiency. Add them to the supplied list.
854 * Returns the number of new pages which were placed at *list.
856 static int rmqueue_bulk(struct zone *zone, unsigned int order,
857 unsigned long count, struct list_head *list,
858 int migratetype)
860 int i;
862 spin_lock(&zone->lock);
863 for (i = 0; i < count; ++i) {
864 struct page *page = __rmqueue(zone, order, migratetype);
865 if (unlikely(page == NULL))
866 break;
869 * Split buddy pages returned by expand() are received here
870 * in physical page order. The page is added to the callers and
871 * list and the list head then moves forward. From the callers
872 * perspective, the linked list is ordered by page number in
873 * some conditions. This is useful for IO devices that can
874 * merge IO requests if the physical pages are ordered
875 * properly.
877 list_add(&page->lru, list);
878 set_page_private(page, migratetype);
879 list = &page->lru;
881 spin_unlock(&zone->lock);
882 return i;
885 #ifdef CONFIG_NUMA
887 * Called from the vmstat counter updater to drain pagesets of this
888 * currently executing processor on remote nodes after they have
889 * expired.
891 * Note that this function must be called with the thread pinned to
892 * a single processor.
894 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
896 unsigned long flags;
897 int to_drain;
899 local_irq_save(flags);
900 if (pcp->count >= pcp->batch)
901 to_drain = pcp->batch;
902 else
903 to_drain = pcp->count;
904 free_pages_bulk(zone, to_drain, &pcp->list, 0);
905 pcp->count -= to_drain;
906 local_irq_restore(flags);
908 #endif
911 * Drain pages of the indicated processor.
913 * The processor must either be the current processor and the
914 * thread pinned to the current processor or a processor that
915 * is not online.
917 static void drain_pages(unsigned int cpu)
919 unsigned long flags;
920 struct zone *zone;
922 for_each_populated_zone(zone) {
923 struct per_cpu_pageset *pset;
924 struct per_cpu_pages *pcp;
926 pset = zone_pcp(zone, cpu);
928 pcp = &pset->pcp;
929 local_irq_save(flags);
930 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
931 pcp->count = 0;
932 local_irq_restore(flags);
937 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
939 void drain_local_pages(void *arg)
941 drain_pages(smp_processor_id());
945 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
947 void drain_all_pages(void)
949 on_each_cpu(drain_local_pages, NULL, 1);
952 #ifdef CONFIG_HIBERNATION
954 void mark_free_pages(struct zone *zone)
956 unsigned long pfn, max_zone_pfn;
957 unsigned long flags;
958 int order, t;
959 struct list_head *curr;
961 if (!zone->spanned_pages)
962 return;
964 spin_lock_irqsave(&zone->lock, flags);
966 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
967 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
968 if (pfn_valid(pfn)) {
969 struct page *page = pfn_to_page(pfn);
971 if (!swsusp_page_is_forbidden(page))
972 swsusp_unset_page_free(page);
975 for_each_migratetype_order(order, t) {
976 list_for_each(curr, &zone->free_area[order].free_list[t]) {
977 unsigned long i;
979 pfn = page_to_pfn(list_entry(curr, struct page, lru));
980 for (i = 0; i < (1UL << order); i++)
981 swsusp_set_page_free(pfn_to_page(pfn + i));
984 spin_unlock_irqrestore(&zone->lock, flags);
986 #endif /* CONFIG_PM */
989 * Free a 0-order page
991 static void free_hot_cold_page(struct page *page, int cold)
993 struct zone *zone = page_zone(page);
994 struct per_cpu_pages *pcp;
995 unsigned long flags;
997 if (PageAnon(page))
998 page->mapping = NULL;
999 if (free_pages_check(page))
1000 return;
1002 if (!PageHighMem(page)) {
1003 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1004 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1006 arch_free_page(page, 0);
1007 kernel_map_pages(page, 1, 0);
1009 pcp = &zone_pcp(zone, get_cpu())->pcp;
1010 local_irq_save(flags);
1011 __count_vm_event(PGFREE);
1012 if (cold)
1013 list_add_tail(&page->lru, &pcp->list);
1014 else
1015 list_add(&page->lru, &pcp->list);
1016 set_page_private(page, get_pageblock_migratetype(page));
1017 pcp->count++;
1018 if (pcp->count >= pcp->high) {
1019 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1020 pcp->count -= pcp->batch;
1022 local_irq_restore(flags);
1023 put_cpu();
1026 void free_hot_page(struct page *page)
1028 free_hot_cold_page(page, 0);
1031 void free_cold_page(struct page *page)
1033 free_hot_cold_page(page, 1);
1037 * split_page takes a non-compound higher-order page, and splits it into
1038 * n (1<<order) sub-pages: page[0..n]
1039 * Each sub-page must be freed individually.
1041 * Note: this is probably too low level an operation for use in drivers.
1042 * Please consult with lkml before using this in your driver.
1044 void split_page(struct page *page, unsigned int order)
1046 int i;
1048 VM_BUG_ON(PageCompound(page));
1049 VM_BUG_ON(!page_count(page));
1050 for (i = 1; i < (1 << order); i++)
1051 set_page_refcounted(page + i);
1055 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1056 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1057 * or two.
1059 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1060 struct zone *zone, int order, gfp_t gfp_flags)
1062 unsigned long flags;
1063 struct page *page;
1064 int cold = !!(gfp_flags & __GFP_COLD);
1065 int cpu;
1066 int migratetype = allocflags_to_migratetype(gfp_flags);
1068 again:
1069 cpu = get_cpu();
1070 if (likely(order == 0)) {
1071 struct per_cpu_pages *pcp;
1073 pcp = &zone_pcp(zone, cpu)->pcp;
1074 local_irq_save(flags);
1075 if (!pcp->count) {
1076 pcp->count = rmqueue_bulk(zone, 0,
1077 pcp->batch, &pcp->list, migratetype);
1078 if (unlikely(!pcp->count))
1079 goto failed;
1082 /* Find a page of the appropriate migrate type */
1083 if (cold) {
1084 list_for_each_entry_reverse(page, &pcp->list, lru)
1085 if (page_private(page) == migratetype)
1086 break;
1087 } else {
1088 list_for_each_entry(page, &pcp->list, lru)
1089 if (page_private(page) == migratetype)
1090 break;
1093 /* Allocate more to the pcp list if necessary */
1094 if (unlikely(&page->lru == &pcp->list)) {
1095 pcp->count += rmqueue_bulk(zone, 0,
1096 pcp->batch, &pcp->list, migratetype);
1097 page = list_entry(pcp->list.next, struct page, lru);
1100 list_del(&page->lru);
1101 pcp->count--;
1102 } else {
1103 spin_lock_irqsave(&zone->lock, flags);
1104 page = __rmqueue(zone, order, migratetype);
1105 spin_unlock(&zone->lock);
1106 if (!page)
1107 goto failed;
1110 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1111 zone_statistics(preferred_zone, zone);
1112 local_irq_restore(flags);
1113 put_cpu();
1115 VM_BUG_ON(bad_range(zone, page));
1116 if (prep_new_page(page, order, gfp_flags))
1117 goto again;
1118 return page;
1120 failed:
1121 local_irq_restore(flags);
1122 put_cpu();
1123 return NULL;
1126 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1127 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1128 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1129 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1130 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1131 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1132 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1134 #ifdef CONFIG_FAIL_PAGE_ALLOC
1136 static struct fail_page_alloc_attr {
1137 struct fault_attr attr;
1139 u32 ignore_gfp_highmem;
1140 u32 ignore_gfp_wait;
1141 u32 min_order;
1143 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1145 struct dentry *ignore_gfp_highmem_file;
1146 struct dentry *ignore_gfp_wait_file;
1147 struct dentry *min_order_file;
1149 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1151 } fail_page_alloc = {
1152 .attr = FAULT_ATTR_INITIALIZER,
1153 .ignore_gfp_wait = 1,
1154 .ignore_gfp_highmem = 1,
1155 .min_order = 1,
1158 static int __init setup_fail_page_alloc(char *str)
1160 return setup_fault_attr(&fail_page_alloc.attr, str);
1162 __setup("fail_page_alloc=", setup_fail_page_alloc);
1164 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1166 if (order < fail_page_alloc.min_order)
1167 return 0;
1168 if (gfp_mask & __GFP_NOFAIL)
1169 return 0;
1170 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1171 return 0;
1172 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1173 return 0;
1175 return should_fail(&fail_page_alloc.attr, 1 << order);
1178 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1180 static int __init fail_page_alloc_debugfs(void)
1182 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1183 struct dentry *dir;
1184 int err;
1186 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1187 "fail_page_alloc");
1188 if (err)
1189 return err;
1190 dir = fail_page_alloc.attr.dentries.dir;
1192 fail_page_alloc.ignore_gfp_wait_file =
1193 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1194 &fail_page_alloc.ignore_gfp_wait);
1196 fail_page_alloc.ignore_gfp_highmem_file =
1197 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1198 &fail_page_alloc.ignore_gfp_highmem);
1199 fail_page_alloc.min_order_file =
1200 debugfs_create_u32("min-order", mode, dir,
1201 &fail_page_alloc.min_order);
1203 if (!fail_page_alloc.ignore_gfp_wait_file ||
1204 !fail_page_alloc.ignore_gfp_highmem_file ||
1205 !fail_page_alloc.min_order_file) {
1206 err = -ENOMEM;
1207 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1208 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1209 debugfs_remove(fail_page_alloc.min_order_file);
1210 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1213 return err;
1216 late_initcall(fail_page_alloc_debugfs);
1218 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1220 #else /* CONFIG_FAIL_PAGE_ALLOC */
1222 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1224 return 0;
1227 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1230 * Return 1 if free pages are above 'mark'. This takes into account the order
1231 * of the allocation.
1233 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1234 int classzone_idx, int alloc_flags)
1236 /* free_pages my go negative - that's OK */
1237 long min = mark;
1238 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1239 int o;
1241 if (alloc_flags & ALLOC_HIGH)
1242 min -= min / 2;
1243 if (alloc_flags & ALLOC_HARDER)
1244 min -= min / 4;
1246 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1247 return 0;
1248 for (o = 0; o < order; o++) {
1249 /* At the next order, this order's pages become unavailable */
1250 free_pages -= z->free_area[o].nr_free << o;
1252 /* Require fewer higher order pages to be free */
1253 min >>= 1;
1255 if (free_pages <= min)
1256 return 0;
1258 return 1;
1261 #ifdef CONFIG_NUMA
1263 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1264 * skip over zones that are not allowed by the cpuset, or that have
1265 * been recently (in last second) found to be nearly full. See further
1266 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1267 * that have to skip over a lot of full or unallowed zones.
1269 * If the zonelist cache is present in the passed in zonelist, then
1270 * returns a pointer to the allowed node mask (either the current
1271 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1273 * If the zonelist cache is not available for this zonelist, does
1274 * nothing and returns NULL.
1276 * If the fullzones BITMAP in the zonelist cache is stale (more than
1277 * a second since last zap'd) then we zap it out (clear its bits.)
1279 * We hold off even calling zlc_setup, until after we've checked the
1280 * first zone in the zonelist, on the theory that most allocations will
1281 * be satisfied from that first zone, so best to examine that zone as
1282 * quickly as we can.
1284 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1286 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1287 nodemask_t *allowednodes; /* zonelist_cache approximation */
1289 zlc = zonelist->zlcache_ptr;
1290 if (!zlc)
1291 return NULL;
1293 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1294 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1295 zlc->last_full_zap = jiffies;
1298 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1299 &cpuset_current_mems_allowed :
1300 &node_states[N_HIGH_MEMORY];
1301 return allowednodes;
1305 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1306 * if it is worth looking at further for free memory:
1307 * 1) Check that the zone isn't thought to be full (doesn't have its
1308 * bit set in the zonelist_cache fullzones BITMAP).
1309 * 2) Check that the zones node (obtained from the zonelist_cache
1310 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1311 * Return true (non-zero) if zone is worth looking at further, or
1312 * else return false (zero) if it is not.
1314 * This check -ignores- the distinction between various watermarks,
1315 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1316 * found to be full for any variation of these watermarks, it will
1317 * be considered full for up to one second by all requests, unless
1318 * we are so low on memory on all allowed nodes that we are forced
1319 * into the second scan of the zonelist.
1321 * In the second scan we ignore this zonelist cache and exactly
1322 * apply the watermarks to all zones, even it is slower to do so.
1323 * We are low on memory in the second scan, and should leave no stone
1324 * unturned looking for a free page.
1326 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1327 nodemask_t *allowednodes)
1329 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1330 int i; /* index of *z in zonelist zones */
1331 int n; /* node that zone *z is on */
1333 zlc = zonelist->zlcache_ptr;
1334 if (!zlc)
1335 return 1;
1337 i = z - zonelist->_zonerefs;
1338 n = zlc->z_to_n[i];
1340 /* This zone is worth trying if it is allowed but not full */
1341 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1345 * Given 'z' scanning a zonelist, set the corresponding bit in
1346 * zlc->fullzones, so that subsequent attempts to allocate a page
1347 * from that zone don't waste time re-examining it.
1349 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1351 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1352 int i; /* index of *z in zonelist zones */
1354 zlc = zonelist->zlcache_ptr;
1355 if (!zlc)
1356 return;
1358 i = z - zonelist->_zonerefs;
1360 set_bit(i, zlc->fullzones);
1363 #else /* CONFIG_NUMA */
1365 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1367 return NULL;
1370 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1371 nodemask_t *allowednodes)
1373 return 1;
1376 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1379 #endif /* CONFIG_NUMA */
1382 * get_page_from_freelist goes through the zonelist trying to allocate
1383 * a page.
1385 static struct page *
1386 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1387 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1389 struct zoneref *z;
1390 struct page *page = NULL;
1391 int classzone_idx;
1392 struct zone *zone, *preferred_zone;
1393 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1394 int zlc_active = 0; /* set if using zonelist_cache */
1395 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1397 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1398 &preferred_zone);
1399 if (!preferred_zone)
1400 return NULL;
1402 classzone_idx = zone_idx(preferred_zone);
1404 zonelist_scan:
1406 * Scan zonelist, looking for a zone with enough free.
1407 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1409 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1410 high_zoneidx, nodemask) {
1411 if (NUMA_BUILD && zlc_active &&
1412 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1413 continue;
1414 if ((alloc_flags & ALLOC_CPUSET) &&
1415 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1416 goto try_next_zone;
1418 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1419 unsigned long mark;
1420 if (alloc_flags & ALLOC_WMARK_MIN)
1421 mark = zone->pages_min;
1422 else if (alloc_flags & ALLOC_WMARK_LOW)
1423 mark = zone->pages_low;
1424 else
1425 mark = zone->pages_high;
1426 if (!zone_watermark_ok(zone, order, mark,
1427 classzone_idx, alloc_flags)) {
1428 if (!zone_reclaim_mode ||
1429 !zone_reclaim(zone, gfp_mask, order))
1430 goto this_zone_full;
1434 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1435 if (page)
1436 break;
1437 this_zone_full:
1438 if (NUMA_BUILD)
1439 zlc_mark_zone_full(zonelist, z);
1440 try_next_zone:
1441 if (NUMA_BUILD && !did_zlc_setup) {
1442 /* we do zlc_setup after the first zone is tried */
1443 allowednodes = zlc_setup(zonelist, alloc_flags);
1444 zlc_active = 1;
1445 did_zlc_setup = 1;
1449 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1450 /* Disable zlc cache for second zonelist scan */
1451 zlc_active = 0;
1452 goto zonelist_scan;
1454 return page;
1458 * This is the 'heart' of the zoned buddy allocator.
1460 struct page *
1461 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1462 struct zonelist *zonelist, nodemask_t *nodemask)
1464 const gfp_t wait = gfp_mask & __GFP_WAIT;
1465 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1466 struct zoneref *z;
1467 struct zone *zone;
1468 struct page *page;
1469 struct reclaim_state reclaim_state;
1470 struct task_struct *p = current;
1471 int do_retry;
1472 int alloc_flags;
1473 unsigned long did_some_progress;
1474 unsigned long pages_reclaimed = 0;
1476 lockdep_trace_alloc(gfp_mask);
1478 might_sleep_if(wait);
1480 if (should_fail_alloc_page(gfp_mask, order))
1481 return NULL;
1483 restart:
1484 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1486 if (unlikely(!z->zone)) {
1488 * Happens if we have an empty zonelist as a result of
1489 * GFP_THISNODE being used on a memoryless node
1491 return NULL;
1494 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1495 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1496 if (page)
1497 goto got_pg;
1500 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1501 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1502 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1503 * using a larger set of nodes after it has established that the
1504 * allowed per node queues are empty and that nodes are
1505 * over allocated.
1507 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1508 goto nopage;
1510 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1511 wakeup_kswapd(zone, order);
1514 * OK, we're below the kswapd watermark and have kicked background
1515 * reclaim. Now things get more complex, so set up alloc_flags according
1516 * to how we want to proceed.
1518 * The caller may dip into page reserves a bit more if the caller
1519 * cannot run direct reclaim, or if the caller has realtime scheduling
1520 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1521 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1523 alloc_flags = ALLOC_WMARK_MIN;
1524 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1525 alloc_flags |= ALLOC_HARDER;
1526 if (gfp_mask & __GFP_HIGH)
1527 alloc_flags |= ALLOC_HIGH;
1528 if (wait)
1529 alloc_flags |= ALLOC_CPUSET;
1532 * Go through the zonelist again. Let __GFP_HIGH and allocations
1533 * coming from realtime tasks go deeper into reserves.
1535 * This is the last chance, in general, before the goto nopage.
1536 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1537 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1539 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1540 high_zoneidx, alloc_flags);
1541 if (page)
1542 goto got_pg;
1544 /* This allocation should allow future memory freeing. */
1546 rebalance:
1547 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1548 && !in_interrupt()) {
1549 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1550 nofail_alloc:
1551 /* go through the zonelist yet again, ignoring mins */
1552 page = get_page_from_freelist(gfp_mask, nodemask, order,
1553 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1554 if (page)
1555 goto got_pg;
1556 if (gfp_mask & __GFP_NOFAIL) {
1557 congestion_wait(WRITE, HZ/50);
1558 goto nofail_alloc;
1561 goto nopage;
1564 /* Atomic allocations - we can't balance anything */
1565 if (!wait)
1566 goto nopage;
1568 cond_resched();
1570 /* We now go into synchronous reclaim */
1571 cpuset_memory_pressure_bump();
1573 p->flags |= PF_MEMALLOC;
1575 lockdep_set_current_reclaim_state(gfp_mask);
1576 reclaim_state.reclaimed_slab = 0;
1577 p->reclaim_state = &reclaim_state;
1579 did_some_progress = try_to_free_pages(zonelist, order,
1580 gfp_mask, nodemask);
1582 p->reclaim_state = NULL;
1583 lockdep_clear_current_reclaim_state();
1584 p->flags &= ~PF_MEMALLOC;
1586 cond_resched();
1588 if (order != 0)
1589 drain_all_pages();
1591 if (likely(did_some_progress)) {
1592 page = get_page_from_freelist(gfp_mask, nodemask, order,
1593 zonelist, high_zoneidx, alloc_flags);
1594 if (page)
1595 goto got_pg;
1596 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1597 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1598 schedule_timeout_uninterruptible(1);
1599 goto restart;
1603 * Go through the zonelist yet one more time, keep
1604 * very high watermark here, this is only to catch
1605 * a parallel oom killing, we must fail if we're still
1606 * under heavy pressure.
1608 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1609 order, zonelist, high_zoneidx,
1610 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1611 if (page) {
1612 clear_zonelist_oom(zonelist, gfp_mask);
1613 goto got_pg;
1616 /* The OOM killer will not help higher order allocs so fail */
1617 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1618 clear_zonelist_oom(zonelist, gfp_mask);
1619 goto nopage;
1622 out_of_memory(zonelist, gfp_mask, order);
1623 clear_zonelist_oom(zonelist, gfp_mask);
1624 goto restart;
1628 * Don't let big-order allocations loop unless the caller explicitly
1629 * requests that. Wait for some write requests to complete then retry.
1631 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1632 * means __GFP_NOFAIL, but that may not be true in other
1633 * implementations.
1635 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1636 * specified, then we retry until we no longer reclaim any pages
1637 * (above), or we've reclaimed an order of pages at least as
1638 * large as the allocation's order. In both cases, if the
1639 * allocation still fails, we stop retrying.
1641 pages_reclaimed += did_some_progress;
1642 do_retry = 0;
1643 if (!(gfp_mask & __GFP_NORETRY)) {
1644 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1645 do_retry = 1;
1646 } else {
1647 if (gfp_mask & __GFP_REPEAT &&
1648 pages_reclaimed < (1 << order))
1649 do_retry = 1;
1651 if (gfp_mask & __GFP_NOFAIL)
1652 do_retry = 1;
1654 if (do_retry) {
1655 congestion_wait(WRITE, HZ/50);
1656 goto rebalance;
1659 nopage:
1660 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1661 printk(KERN_WARNING "%s: page allocation failure."
1662 " order:%d, mode:0x%x\n",
1663 p->comm, order, gfp_mask);
1664 dump_stack();
1665 show_mem();
1667 got_pg:
1668 return page;
1670 EXPORT_SYMBOL(__alloc_pages_nodemask);
1673 * Common helper functions.
1675 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1677 struct page * page;
1678 page = alloc_pages(gfp_mask, order);
1679 if (!page)
1680 return 0;
1681 return (unsigned long) page_address(page);
1684 EXPORT_SYMBOL(__get_free_pages);
1686 unsigned long get_zeroed_page(gfp_t gfp_mask)
1688 struct page * page;
1691 * get_zeroed_page() returns a 32-bit address, which cannot represent
1692 * a highmem page
1694 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1696 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1697 if (page)
1698 return (unsigned long) page_address(page);
1699 return 0;
1702 EXPORT_SYMBOL(get_zeroed_page);
1704 void __pagevec_free(struct pagevec *pvec)
1706 int i = pagevec_count(pvec);
1708 while (--i >= 0)
1709 free_hot_cold_page(pvec->pages[i], pvec->cold);
1712 void __free_pages(struct page *page, unsigned int order)
1714 if (put_page_testzero(page)) {
1715 if (order == 0)
1716 free_hot_page(page);
1717 else
1718 __free_pages_ok(page, order);
1722 EXPORT_SYMBOL(__free_pages);
1724 void free_pages(unsigned long addr, unsigned int order)
1726 if (addr != 0) {
1727 VM_BUG_ON(!virt_addr_valid((void *)addr));
1728 __free_pages(virt_to_page((void *)addr), order);
1732 EXPORT_SYMBOL(free_pages);
1735 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1736 * @size: the number of bytes to allocate
1737 * @gfp_mask: GFP flags for the allocation
1739 * This function is similar to alloc_pages(), except that it allocates the
1740 * minimum number of pages to satisfy the request. alloc_pages() can only
1741 * allocate memory in power-of-two pages.
1743 * This function is also limited by MAX_ORDER.
1745 * Memory allocated by this function must be released by free_pages_exact().
1747 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1749 unsigned int order = get_order(size);
1750 unsigned long addr;
1752 addr = __get_free_pages(gfp_mask, order);
1753 if (addr) {
1754 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1755 unsigned long used = addr + PAGE_ALIGN(size);
1757 split_page(virt_to_page(addr), order);
1758 while (used < alloc_end) {
1759 free_page(used);
1760 used += PAGE_SIZE;
1764 return (void *)addr;
1766 EXPORT_SYMBOL(alloc_pages_exact);
1769 * free_pages_exact - release memory allocated via alloc_pages_exact()
1770 * @virt: the value returned by alloc_pages_exact.
1771 * @size: size of allocation, same value as passed to alloc_pages_exact().
1773 * Release the memory allocated by a previous call to alloc_pages_exact.
1775 void free_pages_exact(void *virt, size_t size)
1777 unsigned long addr = (unsigned long)virt;
1778 unsigned long end = addr + PAGE_ALIGN(size);
1780 while (addr < end) {
1781 free_page(addr);
1782 addr += PAGE_SIZE;
1785 EXPORT_SYMBOL(free_pages_exact);
1787 static unsigned int nr_free_zone_pages(int offset)
1789 struct zoneref *z;
1790 struct zone *zone;
1792 /* Just pick one node, since fallback list is circular */
1793 unsigned int sum = 0;
1795 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1797 for_each_zone_zonelist(zone, z, zonelist, offset) {
1798 unsigned long size = zone->present_pages;
1799 unsigned long high = zone->pages_high;
1800 if (size > high)
1801 sum += size - high;
1804 return sum;
1808 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1810 unsigned int nr_free_buffer_pages(void)
1812 return nr_free_zone_pages(gfp_zone(GFP_USER));
1814 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1817 * Amount of free RAM allocatable within all zones
1819 unsigned int nr_free_pagecache_pages(void)
1821 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1824 static inline void show_node(struct zone *zone)
1826 if (NUMA_BUILD)
1827 printk("Node %d ", zone_to_nid(zone));
1830 void si_meminfo(struct sysinfo *val)
1832 val->totalram = totalram_pages;
1833 val->sharedram = 0;
1834 val->freeram = global_page_state(NR_FREE_PAGES);
1835 val->bufferram = nr_blockdev_pages();
1836 val->totalhigh = totalhigh_pages;
1837 val->freehigh = nr_free_highpages();
1838 val->mem_unit = PAGE_SIZE;
1841 EXPORT_SYMBOL(si_meminfo);
1843 #ifdef CONFIG_NUMA
1844 void si_meminfo_node(struct sysinfo *val, int nid)
1846 pg_data_t *pgdat = NODE_DATA(nid);
1848 val->totalram = pgdat->node_present_pages;
1849 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1850 #ifdef CONFIG_HIGHMEM
1851 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1852 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1853 NR_FREE_PAGES);
1854 #else
1855 val->totalhigh = 0;
1856 val->freehigh = 0;
1857 #endif
1858 val->mem_unit = PAGE_SIZE;
1860 #endif
1862 #define K(x) ((x) << (PAGE_SHIFT-10))
1865 * Show free area list (used inside shift_scroll-lock stuff)
1866 * We also calculate the percentage fragmentation. We do this by counting the
1867 * memory on each free list with the exception of the first item on the list.
1869 void show_free_areas(void)
1871 int cpu;
1872 struct zone *zone;
1874 for_each_populated_zone(zone) {
1875 show_node(zone);
1876 printk("%s per-cpu:\n", zone->name);
1878 for_each_online_cpu(cpu) {
1879 struct per_cpu_pageset *pageset;
1881 pageset = zone_pcp(zone, cpu);
1883 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1884 cpu, pageset->pcp.high,
1885 pageset->pcp.batch, pageset->pcp.count);
1889 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1890 " inactive_file:%lu"
1891 //TODO: check/adjust line lengths
1892 #ifdef CONFIG_UNEVICTABLE_LRU
1893 " unevictable:%lu"
1894 #endif
1895 " dirty:%lu writeback:%lu unstable:%lu\n"
1896 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1897 global_page_state(NR_ACTIVE_ANON),
1898 global_page_state(NR_ACTIVE_FILE),
1899 global_page_state(NR_INACTIVE_ANON),
1900 global_page_state(NR_INACTIVE_FILE),
1901 #ifdef CONFIG_UNEVICTABLE_LRU
1902 global_page_state(NR_UNEVICTABLE),
1903 #endif
1904 global_page_state(NR_FILE_DIRTY),
1905 global_page_state(NR_WRITEBACK),
1906 global_page_state(NR_UNSTABLE_NFS),
1907 global_page_state(NR_FREE_PAGES),
1908 global_page_state(NR_SLAB_RECLAIMABLE) +
1909 global_page_state(NR_SLAB_UNRECLAIMABLE),
1910 global_page_state(NR_FILE_MAPPED),
1911 global_page_state(NR_PAGETABLE),
1912 global_page_state(NR_BOUNCE));
1914 for_each_populated_zone(zone) {
1915 int i;
1917 show_node(zone);
1918 printk("%s"
1919 " free:%lukB"
1920 " min:%lukB"
1921 " low:%lukB"
1922 " high:%lukB"
1923 " active_anon:%lukB"
1924 " inactive_anon:%lukB"
1925 " active_file:%lukB"
1926 " inactive_file:%lukB"
1927 #ifdef CONFIG_UNEVICTABLE_LRU
1928 " unevictable:%lukB"
1929 #endif
1930 " present:%lukB"
1931 " pages_scanned:%lu"
1932 " all_unreclaimable? %s"
1933 "\n",
1934 zone->name,
1935 K(zone_page_state(zone, NR_FREE_PAGES)),
1936 K(zone->pages_min),
1937 K(zone->pages_low),
1938 K(zone->pages_high),
1939 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1940 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1941 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1942 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1943 #ifdef CONFIG_UNEVICTABLE_LRU
1944 K(zone_page_state(zone, NR_UNEVICTABLE)),
1945 #endif
1946 K(zone->present_pages),
1947 zone->pages_scanned,
1948 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1950 printk("lowmem_reserve[]:");
1951 for (i = 0; i < MAX_NR_ZONES; i++)
1952 printk(" %lu", zone->lowmem_reserve[i]);
1953 printk("\n");
1956 for_each_populated_zone(zone) {
1957 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1959 show_node(zone);
1960 printk("%s: ", zone->name);
1962 spin_lock_irqsave(&zone->lock, flags);
1963 for (order = 0; order < MAX_ORDER; order++) {
1964 nr[order] = zone->free_area[order].nr_free;
1965 total += nr[order] << order;
1967 spin_unlock_irqrestore(&zone->lock, flags);
1968 for (order = 0; order < MAX_ORDER; order++)
1969 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1970 printk("= %lukB\n", K(total));
1973 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1975 show_swap_cache_info();
1978 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1980 zoneref->zone = zone;
1981 zoneref->zone_idx = zone_idx(zone);
1985 * Builds allocation fallback zone lists.
1987 * Add all populated zones of a node to the zonelist.
1989 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1990 int nr_zones, enum zone_type zone_type)
1992 struct zone *zone;
1994 BUG_ON(zone_type >= MAX_NR_ZONES);
1995 zone_type++;
1997 do {
1998 zone_type--;
1999 zone = pgdat->node_zones + zone_type;
2000 if (populated_zone(zone)) {
2001 zoneref_set_zone(zone,
2002 &zonelist->_zonerefs[nr_zones++]);
2003 check_highest_zone(zone_type);
2006 } while (zone_type);
2007 return nr_zones;
2012 * zonelist_order:
2013 * 0 = automatic detection of better ordering.
2014 * 1 = order by ([node] distance, -zonetype)
2015 * 2 = order by (-zonetype, [node] distance)
2017 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2018 * the same zonelist. So only NUMA can configure this param.
2020 #define ZONELIST_ORDER_DEFAULT 0
2021 #define ZONELIST_ORDER_NODE 1
2022 #define ZONELIST_ORDER_ZONE 2
2024 /* zonelist order in the kernel.
2025 * set_zonelist_order() will set this to NODE or ZONE.
2027 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2028 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2031 #ifdef CONFIG_NUMA
2032 /* The value user specified ....changed by config */
2033 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2034 /* string for sysctl */
2035 #define NUMA_ZONELIST_ORDER_LEN 16
2036 char numa_zonelist_order[16] = "default";
2039 * interface for configure zonelist ordering.
2040 * command line option "numa_zonelist_order"
2041 * = "[dD]efault - default, automatic configuration.
2042 * = "[nN]ode - order by node locality, then by zone within node
2043 * = "[zZ]one - order by zone, then by locality within zone
2046 static int __parse_numa_zonelist_order(char *s)
2048 if (*s == 'd' || *s == 'D') {
2049 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2050 } else if (*s == 'n' || *s == 'N') {
2051 user_zonelist_order = ZONELIST_ORDER_NODE;
2052 } else if (*s == 'z' || *s == 'Z') {
2053 user_zonelist_order = ZONELIST_ORDER_ZONE;
2054 } else {
2055 printk(KERN_WARNING
2056 "Ignoring invalid numa_zonelist_order value: "
2057 "%s\n", s);
2058 return -EINVAL;
2060 return 0;
2063 static __init int setup_numa_zonelist_order(char *s)
2065 if (s)
2066 return __parse_numa_zonelist_order(s);
2067 return 0;
2069 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2072 * sysctl handler for numa_zonelist_order
2074 int numa_zonelist_order_handler(ctl_table *table, int write,
2075 struct file *file, void __user *buffer, size_t *length,
2076 loff_t *ppos)
2078 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2079 int ret;
2081 if (write)
2082 strncpy(saved_string, (char*)table->data,
2083 NUMA_ZONELIST_ORDER_LEN);
2084 ret = proc_dostring(table, write, file, buffer, length, ppos);
2085 if (ret)
2086 return ret;
2087 if (write) {
2088 int oldval = user_zonelist_order;
2089 if (__parse_numa_zonelist_order((char*)table->data)) {
2091 * bogus value. restore saved string
2093 strncpy((char*)table->data, saved_string,
2094 NUMA_ZONELIST_ORDER_LEN);
2095 user_zonelist_order = oldval;
2096 } else if (oldval != user_zonelist_order)
2097 build_all_zonelists();
2099 return 0;
2103 #define MAX_NODE_LOAD (num_online_nodes())
2104 static int node_load[MAX_NUMNODES];
2107 * find_next_best_node - find the next node that should appear in a given node's fallback list
2108 * @node: node whose fallback list we're appending
2109 * @used_node_mask: nodemask_t of already used nodes
2111 * We use a number of factors to determine which is the next node that should
2112 * appear on a given node's fallback list. The node should not have appeared
2113 * already in @node's fallback list, and it should be the next closest node
2114 * according to the distance array (which contains arbitrary distance values
2115 * from each node to each node in the system), and should also prefer nodes
2116 * with no CPUs, since presumably they'll have very little allocation pressure
2117 * on them otherwise.
2118 * It returns -1 if no node is found.
2120 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2122 int n, val;
2123 int min_val = INT_MAX;
2124 int best_node = -1;
2125 const struct cpumask *tmp = cpumask_of_node(0);
2127 /* Use the local node if we haven't already */
2128 if (!node_isset(node, *used_node_mask)) {
2129 node_set(node, *used_node_mask);
2130 return node;
2133 for_each_node_state(n, N_HIGH_MEMORY) {
2135 /* Don't want a node to appear more than once */
2136 if (node_isset(n, *used_node_mask))
2137 continue;
2139 /* Use the distance array to find the distance */
2140 val = node_distance(node, n);
2142 /* Penalize nodes under us ("prefer the next node") */
2143 val += (n < node);
2145 /* Give preference to headless and unused nodes */
2146 tmp = cpumask_of_node(n);
2147 if (!cpumask_empty(tmp))
2148 val += PENALTY_FOR_NODE_WITH_CPUS;
2150 /* Slight preference for less loaded node */
2151 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2152 val += node_load[n];
2154 if (val < min_val) {
2155 min_val = val;
2156 best_node = n;
2160 if (best_node >= 0)
2161 node_set(best_node, *used_node_mask);
2163 return best_node;
2168 * Build zonelists ordered by node and zones within node.
2169 * This results in maximum locality--normal zone overflows into local
2170 * DMA zone, if any--but risks exhausting DMA zone.
2172 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2174 int j;
2175 struct zonelist *zonelist;
2177 zonelist = &pgdat->node_zonelists[0];
2178 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2180 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2181 MAX_NR_ZONES - 1);
2182 zonelist->_zonerefs[j].zone = NULL;
2183 zonelist->_zonerefs[j].zone_idx = 0;
2187 * Build gfp_thisnode zonelists
2189 static void build_thisnode_zonelists(pg_data_t *pgdat)
2191 int j;
2192 struct zonelist *zonelist;
2194 zonelist = &pgdat->node_zonelists[1];
2195 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2196 zonelist->_zonerefs[j].zone = NULL;
2197 zonelist->_zonerefs[j].zone_idx = 0;
2201 * Build zonelists ordered by zone and nodes within zones.
2202 * This results in conserving DMA zone[s] until all Normal memory is
2203 * exhausted, but results in overflowing to remote node while memory
2204 * may still exist in local DMA zone.
2206 static int node_order[MAX_NUMNODES];
2208 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2210 int pos, j, node;
2211 int zone_type; /* needs to be signed */
2212 struct zone *z;
2213 struct zonelist *zonelist;
2215 zonelist = &pgdat->node_zonelists[0];
2216 pos = 0;
2217 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2218 for (j = 0; j < nr_nodes; j++) {
2219 node = node_order[j];
2220 z = &NODE_DATA(node)->node_zones[zone_type];
2221 if (populated_zone(z)) {
2222 zoneref_set_zone(z,
2223 &zonelist->_zonerefs[pos++]);
2224 check_highest_zone(zone_type);
2228 zonelist->_zonerefs[pos].zone = NULL;
2229 zonelist->_zonerefs[pos].zone_idx = 0;
2232 static int default_zonelist_order(void)
2234 int nid, zone_type;
2235 unsigned long low_kmem_size,total_size;
2236 struct zone *z;
2237 int average_size;
2239 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2240 * If they are really small and used heavily, the system can fall
2241 * into OOM very easily.
2242 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2244 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2245 low_kmem_size = 0;
2246 total_size = 0;
2247 for_each_online_node(nid) {
2248 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2249 z = &NODE_DATA(nid)->node_zones[zone_type];
2250 if (populated_zone(z)) {
2251 if (zone_type < ZONE_NORMAL)
2252 low_kmem_size += z->present_pages;
2253 total_size += z->present_pages;
2257 if (!low_kmem_size || /* there are no DMA area. */
2258 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2259 return ZONELIST_ORDER_NODE;
2261 * look into each node's config.
2262 * If there is a node whose DMA/DMA32 memory is very big area on
2263 * local memory, NODE_ORDER may be suitable.
2265 average_size = total_size /
2266 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2267 for_each_online_node(nid) {
2268 low_kmem_size = 0;
2269 total_size = 0;
2270 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2271 z = &NODE_DATA(nid)->node_zones[zone_type];
2272 if (populated_zone(z)) {
2273 if (zone_type < ZONE_NORMAL)
2274 low_kmem_size += z->present_pages;
2275 total_size += z->present_pages;
2278 if (low_kmem_size &&
2279 total_size > average_size && /* ignore small node */
2280 low_kmem_size > total_size * 70/100)
2281 return ZONELIST_ORDER_NODE;
2283 return ZONELIST_ORDER_ZONE;
2286 static void set_zonelist_order(void)
2288 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2289 current_zonelist_order = default_zonelist_order();
2290 else
2291 current_zonelist_order = user_zonelist_order;
2294 static void build_zonelists(pg_data_t *pgdat)
2296 int j, node, load;
2297 enum zone_type i;
2298 nodemask_t used_mask;
2299 int local_node, prev_node;
2300 struct zonelist *zonelist;
2301 int order = current_zonelist_order;
2303 /* initialize zonelists */
2304 for (i = 0; i < MAX_ZONELISTS; i++) {
2305 zonelist = pgdat->node_zonelists + i;
2306 zonelist->_zonerefs[0].zone = NULL;
2307 zonelist->_zonerefs[0].zone_idx = 0;
2310 /* NUMA-aware ordering of nodes */
2311 local_node = pgdat->node_id;
2312 load = num_online_nodes();
2313 prev_node = local_node;
2314 nodes_clear(used_mask);
2316 memset(node_load, 0, sizeof(node_load));
2317 memset(node_order, 0, sizeof(node_order));
2318 j = 0;
2320 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2321 int distance = node_distance(local_node, node);
2324 * If another node is sufficiently far away then it is better
2325 * to reclaim pages in a zone before going off node.
2327 if (distance > RECLAIM_DISTANCE)
2328 zone_reclaim_mode = 1;
2331 * We don't want to pressure a particular node.
2332 * So adding penalty to the first node in same
2333 * distance group to make it round-robin.
2335 if (distance != node_distance(local_node, prev_node))
2336 node_load[node] = load;
2338 prev_node = node;
2339 load--;
2340 if (order == ZONELIST_ORDER_NODE)
2341 build_zonelists_in_node_order(pgdat, node);
2342 else
2343 node_order[j++] = node; /* remember order */
2346 if (order == ZONELIST_ORDER_ZONE) {
2347 /* calculate node order -- i.e., DMA last! */
2348 build_zonelists_in_zone_order(pgdat, j);
2351 build_thisnode_zonelists(pgdat);
2354 /* Construct the zonelist performance cache - see further mmzone.h */
2355 static void build_zonelist_cache(pg_data_t *pgdat)
2357 struct zonelist *zonelist;
2358 struct zonelist_cache *zlc;
2359 struct zoneref *z;
2361 zonelist = &pgdat->node_zonelists[0];
2362 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2363 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2364 for (z = zonelist->_zonerefs; z->zone; z++)
2365 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2369 #else /* CONFIG_NUMA */
2371 static void set_zonelist_order(void)
2373 current_zonelist_order = ZONELIST_ORDER_ZONE;
2376 static void build_zonelists(pg_data_t *pgdat)
2378 int node, local_node;
2379 enum zone_type j;
2380 struct zonelist *zonelist;
2382 local_node = pgdat->node_id;
2384 zonelist = &pgdat->node_zonelists[0];
2385 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2388 * Now we build the zonelist so that it contains the zones
2389 * of all the other nodes.
2390 * We don't want to pressure a particular node, so when
2391 * building the zones for node N, we make sure that the
2392 * zones coming right after the local ones are those from
2393 * node N+1 (modulo N)
2395 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2396 if (!node_online(node))
2397 continue;
2398 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2399 MAX_NR_ZONES - 1);
2401 for (node = 0; node < local_node; node++) {
2402 if (!node_online(node))
2403 continue;
2404 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2405 MAX_NR_ZONES - 1);
2408 zonelist->_zonerefs[j].zone = NULL;
2409 zonelist->_zonerefs[j].zone_idx = 0;
2412 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2413 static void build_zonelist_cache(pg_data_t *pgdat)
2415 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2418 #endif /* CONFIG_NUMA */
2420 /* return values int ....just for stop_machine() */
2421 static int __build_all_zonelists(void *dummy)
2423 int nid;
2425 for_each_online_node(nid) {
2426 pg_data_t *pgdat = NODE_DATA(nid);
2428 build_zonelists(pgdat);
2429 build_zonelist_cache(pgdat);
2431 return 0;
2434 void build_all_zonelists(void)
2436 set_zonelist_order();
2438 if (system_state == SYSTEM_BOOTING) {
2439 __build_all_zonelists(NULL);
2440 mminit_verify_zonelist();
2441 cpuset_init_current_mems_allowed();
2442 } else {
2443 /* we have to stop all cpus to guarantee there is no user
2444 of zonelist */
2445 stop_machine(__build_all_zonelists, NULL, NULL);
2446 /* cpuset refresh routine should be here */
2448 vm_total_pages = nr_free_pagecache_pages();
2450 * Disable grouping by mobility if the number of pages in the
2451 * system is too low to allow the mechanism to work. It would be
2452 * more accurate, but expensive to check per-zone. This check is
2453 * made on memory-hotadd so a system can start with mobility
2454 * disabled and enable it later
2456 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2457 page_group_by_mobility_disabled = 1;
2458 else
2459 page_group_by_mobility_disabled = 0;
2461 printk("Built %i zonelists in %s order, mobility grouping %s. "
2462 "Total pages: %ld\n",
2463 num_online_nodes(),
2464 zonelist_order_name[current_zonelist_order],
2465 page_group_by_mobility_disabled ? "off" : "on",
2466 vm_total_pages);
2467 #ifdef CONFIG_NUMA
2468 printk("Policy zone: %s\n", zone_names[policy_zone]);
2469 #endif
2473 * Helper functions to size the waitqueue hash table.
2474 * Essentially these want to choose hash table sizes sufficiently
2475 * large so that collisions trying to wait on pages are rare.
2476 * But in fact, the number of active page waitqueues on typical
2477 * systems is ridiculously low, less than 200. So this is even
2478 * conservative, even though it seems large.
2480 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2481 * waitqueues, i.e. the size of the waitq table given the number of pages.
2483 #define PAGES_PER_WAITQUEUE 256
2485 #ifndef CONFIG_MEMORY_HOTPLUG
2486 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2488 unsigned long size = 1;
2490 pages /= PAGES_PER_WAITQUEUE;
2492 while (size < pages)
2493 size <<= 1;
2496 * Once we have dozens or even hundreds of threads sleeping
2497 * on IO we've got bigger problems than wait queue collision.
2498 * Limit the size of the wait table to a reasonable size.
2500 size = min(size, 4096UL);
2502 return max(size, 4UL);
2504 #else
2506 * A zone's size might be changed by hot-add, so it is not possible to determine
2507 * a suitable size for its wait_table. So we use the maximum size now.
2509 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2511 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2512 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2513 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2515 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2516 * or more by the traditional way. (See above). It equals:
2518 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2519 * ia64(16K page size) : = ( 8G + 4M)byte.
2520 * powerpc (64K page size) : = (32G +16M)byte.
2522 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2524 return 4096UL;
2526 #endif
2529 * This is an integer logarithm so that shifts can be used later
2530 * to extract the more random high bits from the multiplicative
2531 * hash function before the remainder is taken.
2533 static inline unsigned long wait_table_bits(unsigned long size)
2535 return ffz(~size);
2538 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2541 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2542 * of blocks reserved is based on zone->pages_min. The memory within the
2543 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2544 * higher will lead to a bigger reserve which will get freed as contiguous
2545 * blocks as reclaim kicks in
2547 static void setup_zone_migrate_reserve(struct zone *zone)
2549 unsigned long start_pfn, pfn, end_pfn;
2550 struct page *page;
2551 unsigned long reserve, block_migratetype;
2553 /* Get the start pfn, end pfn and the number of blocks to reserve */
2554 start_pfn = zone->zone_start_pfn;
2555 end_pfn = start_pfn + zone->spanned_pages;
2556 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2557 pageblock_order;
2559 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2560 if (!pfn_valid(pfn))
2561 continue;
2562 page = pfn_to_page(pfn);
2564 /* Watch out for overlapping nodes */
2565 if (page_to_nid(page) != zone_to_nid(zone))
2566 continue;
2568 /* Blocks with reserved pages will never free, skip them. */
2569 if (PageReserved(page))
2570 continue;
2572 block_migratetype = get_pageblock_migratetype(page);
2574 /* If this block is reserved, account for it */
2575 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2576 reserve--;
2577 continue;
2580 /* Suitable for reserving if this block is movable */
2581 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2582 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2583 move_freepages_block(zone, page, MIGRATE_RESERVE);
2584 reserve--;
2585 continue;
2589 * If the reserve is met and this is a previous reserved block,
2590 * take it back
2592 if (block_migratetype == MIGRATE_RESERVE) {
2593 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2594 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2600 * Initially all pages are reserved - free ones are freed
2601 * up by free_all_bootmem() once the early boot process is
2602 * done. Non-atomic initialization, single-pass.
2604 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2605 unsigned long start_pfn, enum memmap_context context)
2607 struct page *page;
2608 unsigned long end_pfn = start_pfn + size;
2609 unsigned long pfn;
2610 struct zone *z;
2612 if (highest_memmap_pfn < end_pfn - 1)
2613 highest_memmap_pfn = end_pfn - 1;
2615 z = &NODE_DATA(nid)->node_zones[zone];
2616 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2618 * There can be holes in boot-time mem_map[]s
2619 * handed to this function. They do not
2620 * exist on hotplugged memory.
2622 if (context == MEMMAP_EARLY) {
2623 if (!early_pfn_valid(pfn))
2624 continue;
2625 if (!early_pfn_in_nid(pfn, nid))
2626 continue;
2628 page = pfn_to_page(pfn);
2629 set_page_links(page, zone, nid, pfn);
2630 mminit_verify_page_links(page, zone, nid, pfn);
2631 init_page_count(page);
2632 reset_page_mapcount(page);
2633 SetPageReserved(page);
2635 * Mark the block movable so that blocks are reserved for
2636 * movable at startup. This will force kernel allocations
2637 * to reserve their blocks rather than leaking throughout
2638 * the address space during boot when many long-lived
2639 * kernel allocations are made. Later some blocks near
2640 * the start are marked MIGRATE_RESERVE by
2641 * setup_zone_migrate_reserve()
2643 * bitmap is created for zone's valid pfn range. but memmap
2644 * can be created for invalid pages (for alignment)
2645 * check here not to call set_pageblock_migratetype() against
2646 * pfn out of zone.
2648 if ((z->zone_start_pfn <= pfn)
2649 && (pfn < z->zone_start_pfn + z->spanned_pages)
2650 && !(pfn & (pageblock_nr_pages - 1)))
2651 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2653 INIT_LIST_HEAD(&page->lru);
2654 #ifdef WANT_PAGE_VIRTUAL
2655 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2656 if (!is_highmem_idx(zone))
2657 set_page_address(page, __va(pfn << PAGE_SHIFT));
2658 #endif
2662 static void __meminit zone_init_free_lists(struct zone *zone)
2664 int order, t;
2665 for_each_migratetype_order(order, t) {
2666 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2667 zone->free_area[order].nr_free = 0;
2671 #ifndef __HAVE_ARCH_MEMMAP_INIT
2672 #define memmap_init(size, nid, zone, start_pfn) \
2673 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2674 #endif
2676 static int zone_batchsize(struct zone *zone)
2678 #ifdef CONFIG_MMU
2679 int batch;
2682 * The per-cpu-pages pools are set to around 1000th of the
2683 * size of the zone. But no more than 1/2 of a meg.
2685 * OK, so we don't know how big the cache is. So guess.
2687 batch = zone->present_pages / 1024;
2688 if (batch * PAGE_SIZE > 512 * 1024)
2689 batch = (512 * 1024) / PAGE_SIZE;
2690 batch /= 4; /* We effectively *= 4 below */
2691 if (batch < 1)
2692 batch = 1;
2695 * Clamp the batch to a 2^n - 1 value. Having a power
2696 * of 2 value was found to be more likely to have
2697 * suboptimal cache aliasing properties in some cases.
2699 * For example if 2 tasks are alternately allocating
2700 * batches of pages, one task can end up with a lot
2701 * of pages of one half of the possible page colors
2702 * and the other with pages of the other colors.
2704 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2706 return batch;
2708 #else
2709 /* The deferral and batching of frees should be suppressed under NOMMU
2710 * conditions.
2712 * The problem is that NOMMU needs to be able to allocate large chunks
2713 * of contiguous memory as there's no hardware page translation to
2714 * assemble apparent contiguous memory from discontiguous pages.
2716 * Queueing large contiguous runs of pages for batching, however,
2717 * causes the pages to actually be freed in smaller chunks. As there
2718 * can be a significant delay between the individual batches being
2719 * recycled, this leads to the once large chunks of space being
2720 * fragmented and becoming unavailable for high-order allocations.
2722 return 0;
2723 #endif
2726 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2728 struct per_cpu_pages *pcp;
2730 memset(p, 0, sizeof(*p));
2732 pcp = &p->pcp;
2733 pcp->count = 0;
2734 pcp->high = 6 * batch;
2735 pcp->batch = max(1UL, 1 * batch);
2736 INIT_LIST_HEAD(&pcp->list);
2740 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2741 * to the value high for the pageset p.
2744 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2745 unsigned long high)
2747 struct per_cpu_pages *pcp;
2749 pcp = &p->pcp;
2750 pcp->high = high;
2751 pcp->batch = max(1UL, high/4);
2752 if ((high/4) > (PAGE_SHIFT * 8))
2753 pcp->batch = PAGE_SHIFT * 8;
2757 #ifdef CONFIG_NUMA
2759 * Boot pageset table. One per cpu which is going to be used for all
2760 * zones and all nodes. The parameters will be set in such a way
2761 * that an item put on a list will immediately be handed over to
2762 * the buddy list. This is safe since pageset manipulation is done
2763 * with interrupts disabled.
2765 * Some NUMA counter updates may also be caught by the boot pagesets.
2767 * The boot_pagesets must be kept even after bootup is complete for
2768 * unused processors and/or zones. They do play a role for bootstrapping
2769 * hotplugged processors.
2771 * zoneinfo_show() and maybe other functions do
2772 * not check if the processor is online before following the pageset pointer.
2773 * Other parts of the kernel may not check if the zone is available.
2775 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2778 * Dynamically allocate memory for the
2779 * per cpu pageset array in struct zone.
2781 static int __cpuinit process_zones(int cpu)
2783 struct zone *zone, *dzone;
2784 int node = cpu_to_node(cpu);
2786 node_set_state(node, N_CPU); /* this node has a cpu */
2788 for_each_populated_zone(zone) {
2789 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2790 GFP_KERNEL, node);
2791 if (!zone_pcp(zone, cpu))
2792 goto bad;
2794 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2796 if (percpu_pagelist_fraction)
2797 setup_pagelist_highmark(zone_pcp(zone, cpu),
2798 (zone->present_pages / percpu_pagelist_fraction));
2801 return 0;
2802 bad:
2803 for_each_zone(dzone) {
2804 if (!populated_zone(dzone))
2805 continue;
2806 if (dzone == zone)
2807 break;
2808 kfree(zone_pcp(dzone, cpu));
2809 zone_pcp(dzone, cpu) = NULL;
2811 return -ENOMEM;
2814 static inline void free_zone_pagesets(int cpu)
2816 struct zone *zone;
2818 for_each_zone(zone) {
2819 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2821 /* Free per_cpu_pageset if it is slab allocated */
2822 if (pset != &boot_pageset[cpu])
2823 kfree(pset);
2824 zone_pcp(zone, cpu) = NULL;
2828 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2829 unsigned long action,
2830 void *hcpu)
2832 int cpu = (long)hcpu;
2833 int ret = NOTIFY_OK;
2835 switch (action) {
2836 case CPU_UP_PREPARE:
2837 case CPU_UP_PREPARE_FROZEN:
2838 if (process_zones(cpu))
2839 ret = NOTIFY_BAD;
2840 break;
2841 case CPU_UP_CANCELED:
2842 case CPU_UP_CANCELED_FROZEN:
2843 case CPU_DEAD:
2844 case CPU_DEAD_FROZEN:
2845 free_zone_pagesets(cpu);
2846 break;
2847 default:
2848 break;
2850 return ret;
2853 static struct notifier_block __cpuinitdata pageset_notifier =
2854 { &pageset_cpuup_callback, NULL, 0 };
2856 void __init setup_per_cpu_pageset(void)
2858 int err;
2860 /* Initialize per_cpu_pageset for cpu 0.
2861 * A cpuup callback will do this for every cpu
2862 * as it comes online
2864 err = process_zones(smp_processor_id());
2865 BUG_ON(err);
2866 register_cpu_notifier(&pageset_notifier);
2869 #endif
2871 static noinline __init_refok
2872 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2874 int i;
2875 struct pglist_data *pgdat = zone->zone_pgdat;
2876 size_t alloc_size;
2879 * The per-page waitqueue mechanism uses hashed waitqueues
2880 * per zone.
2882 zone->wait_table_hash_nr_entries =
2883 wait_table_hash_nr_entries(zone_size_pages);
2884 zone->wait_table_bits =
2885 wait_table_bits(zone->wait_table_hash_nr_entries);
2886 alloc_size = zone->wait_table_hash_nr_entries
2887 * sizeof(wait_queue_head_t);
2889 if (!slab_is_available()) {
2890 zone->wait_table = (wait_queue_head_t *)
2891 alloc_bootmem_node(pgdat, alloc_size);
2892 } else {
2894 * This case means that a zone whose size was 0 gets new memory
2895 * via memory hot-add.
2896 * But it may be the case that a new node was hot-added. In
2897 * this case vmalloc() will not be able to use this new node's
2898 * memory - this wait_table must be initialized to use this new
2899 * node itself as well.
2900 * To use this new node's memory, further consideration will be
2901 * necessary.
2903 zone->wait_table = vmalloc(alloc_size);
2905 if (!zone->wait_table)
2906 return -ENOMEM;
2908 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2909 init_waitqueue_head(zone->wait_table + i);
2911 return 0;
2914 static __meminit void zone_pcp_init(struct zone *zone)
2916 int cpu;
2917 unsigned long batch = zone_batchsize(zone);
2919 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2920 #ifdef CONFIG_NUMA
2921 /* Early boot. Slab allocator not functional yet */
2922 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2923 setup_pageset(&boot_pageset[cpu],0);
2924 #else
2925 setup_pageset(zone_pcp(zone,cpu), batch);
2926 #endif
2928 if (zone->present_pages)
2929 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2930 zone->name, zone->present_pages, batch);
2933 __meminit int init_currently_empty_zone(struct zone *zone,
2934 unsigned long zone_start_pfn,
2935 unsigned long size,
2936 enum memmap_context context)
2938 struct pglist_data *pgdat = zone->zone_pgdat;
2939 int ret;
2940 ret = zone_wait_table_init(zone, size);
2941 if (ret)
2942 return ret;
2943 pgdat->nr_zones = zone_idx(zone) + 1;
2945 zone->zone_start_pfn = zone_start_pfn;
2947 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2948 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2949 pgdat->node_id,
2950 (unsigned long)zone_idx(zone),
2951 zone_start_pfn, (zone_start_pfn + size));
2953 zone_init_free_lists(zone);
2955 return 0;
2958 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2960 * Basic iterator support. Return the first range of PFNs for a node
2961 * Note: nid == MAX_NUMNODES returns first region regardless of node
2963 static int __meminit first_active_region_index_in_nid(int nid)
2965 int i;
2967 for (i = 0; i < nr_nodemap_entries; i++)
2968 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2969 return i;
2971 return -1;
2975 * Basic iterator support. Return the next active range of PFNs for a node
2976 * Note: nid == MAX_NUMNODES returns next region regardless of node
2978 static int __meminit next_active_region_index_in_nid(int index, int nid)
2980 for (index = index + 1; index < nr_nodemap_entries; index++)
2981 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2982 return index;
2984 return -1;
2987 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2989 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2990 * Architectures may implement their own version but if add_active_range()
2991 * was used and there are no special requirements, this is a convenient
2992 * alternative
2994 int __meminit __early_pfn_to_nid(unsigned long pfn)
2996 int i;
2998 for (i = 0; i < nr_nodemap_entries; i++) {
2999 unsigned long start_pfn = early_node_map[i].start_pfn;
3000 unsigned long end_pfn = early_node_map[i].end_pfn;
3002 if (start_pfn <= pfn && pfn < end_pfn)
3003 return early_node_map[i].nid;
3005 /* This is a memory hole */
3006 return -1;
3008 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3010 int __meminit early_pfn_to_nid(unsigned long pfn)
3012 int nid;
3014 nid = __early_pfn_to_nid(pfn);
3015 if (nid >= 0)
3016 return nid;
3017 /* just returns 0 */
3018 return 0;
3021 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3022 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3024 int nid;
3026 nid = __early_pfn_to_nid(pfn);
3027 if (nid >= 0 && nid != node)
3028 return false;
3029 return true;
3031 #endif
3033 /* Basic iterator support to walk early_node_map[] */
3034 #define for_each_active_range_index_in_nid(i, nid) \
3035 for (i = first_active_region_index_in_nid(nid); i != -1; \
3036 i = next_active_region_index_in_nid(i, nid))
3039 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3040 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3041 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3043 * If an architecture guarantees that all ranges registered with
3044 * add_active_ranges() contain no holes and may be freed, this
3045 * this function may be used instead of calling free_bootmem() manually.
3047 void __init free_bootmem_with_active_regions(int nid,
3048 unsigned long max_low_pfn)
3050 int i;
3052 for_each_active_range_index_in_nid(i, nid) {
3053 unsigned long size_pages = 0;
3054 unsigned long end_pfn = early_node_map[i].end_pfn;
3056 if (early_node_map[i].start_pfn >= max_low_pfn)
3057 continue;
3059 if (end_pfn > max_low_pfn)
3060 end_pfn = max_low_pfn;
3062 size_pages = end_pfn - early_node_map[i].start_pfn;
3063 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3064 PFN_PHYS(early_node_map[i].start_pfn),
3065 size_pages << PAGE_SHIFT);
3069 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3071 int i;
3072 int ret;
3074 for_each_active_range_index_in_nid(i, nid) {
3075 ret = work_fn(early_node_map[i].start_pfn,
3076 early_node_map[i].end_pfn, data);
3077 if (ret)
3078 break;
3082 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3083 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3085 * If an architecture guarantees that all ranges registered with
3086 * add_active_ranges() contain no holes and may be freed, this
3087 * function may be used instead of calling memory_present() manually.
3089 void __init sparse_memory_present_with_active_regions(int nid)
3091 int i;
3093 for_each_active_range_index_in_nid(i, nid)
3094 memory_present(early_node_map[i].nid,
3095 early_node_map[i].start_pfn,
3096 early_node_map[i].end_pfn);
3100 * get_pfn_range_for_nid - Return the start and end page frames for a node
3101 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3102 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3103 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3105 * It returns the start and end page frame of a node based on information
3106 * provided by an arch calling add_active_range(). If called for a node
3107 * with no available memory, a warning is printed and the start and end
3108 * PFNs will be 0.
3110 void __meminit get_pfn_range_for_nid(unsigned int nid,
3111 unsigned long *start_pfn, unsigned long *end_pfn)
3113 int i;
3114 *start_pfn = -1UL;
3115 *end_pfn = 0;
3117 for_each_active_range_index_in_nid(i, nid) {
3118 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3119 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3122 if (*start_pfn == -1UL)
3123 *start_pfn = 0;
3127 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3128 * assumption is made that zones within a node are ordered in monotonic
3129 * increasing memory addresses so that the "highest" populated zone is used
3131 static void __init find_usable_zone_for_movable(void)
3133 int zone_index;
3134 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3135 if (zone_index == ZONE_MOVABLE)
3136 continue;
3138 if (arch_zone_highest_possible_pfn[zone_index] >
3139 arch_zone_lowest_possible_pfn[zone_index])
3140 break;
3143 VM_BUG_ON(zone_index == -1);
3144 movable_zone = zone_index;
3148 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3149 * because it is sized independant of architecture. Unlike the other zones,
3150 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3151 * in each node depending on the size of each node and how evenly kernelcore
3152 * is distributed. This helper function adjusts the zone ranges
3153 * provided by the architecture for a given node by using the end of the
3154 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3155 * zones within a node are in order of monotonic increases memory addresses
3157 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3158 unsigned long zone_type,
3159 unsigned long node_start_pfn,
3160 unsigned long node_end_pfn,
3161 unsigned long *zone_start_pfn,
3162 unsigned long *zone_end_pfn)
3164 /* Only adjust if ZONE_MOVABLE is on this node */
3165 if (zone_movable_pfn[nid]) {
3166 /* Size ZONE_MOVABLE */
3167 if (zone_type == ZONE_MOVABLE) {
3168 *zone_start_pfn = zone_movable_pfn[nid];
3169 *zone_end_pfn = min(node_end_pfn,
3170 arch_zone_highest_possible_pfn[movable_zone]);
3172 /* Adjust for ZONE_MOVABLE starting within this range */
3173 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3174 *zone_end_pfn > zone_movable_pfn[nid]) {
3175 *zone_end_pfn = zone_movable_pfn[nid];
3177 /* Check if this whole range is within ZONE_MOVABLE */
3178 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3179 *zone_start_pfn = *zone_end_pfn;
3184 * Return the number of pages a zone spans in a node, including holes
3185 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3187 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3188 unsigned long zone_type,
3189 unsigned long *ignored)
3191 unsigned long node_start_pfn, node_end_pfn;
3192 unsigned long zone_start_pfn, zone_end_pfn;
3194 /* Get the start and end of the node and zone */
3195 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3196 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3197 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3198 adjust_zone_range_for_zone_movable(nid, zone_type,
3199 node_start_pfn, node_end_pfn,
3200 &zone_start_pfn, &zone_end_pfn);
3202 /* Check that this node has pages within the zone's required range */
3203 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3204 return 0;
3206 /* Move the zone boundaries inside the node if necessary */
3207 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3208 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3210 /* Return the spanned pages */
3211 return zone_end_pfn - zone_start_pfn;
3215 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3216 * then all holes in the requested range will be accounted for.
3218 static unsigned long __meminit __absent_pages_in_range(int nid,
3219 unsigned long range_start_pfn,
3220 unsigned long range_end_pfn)
3222 int i = 0;
3223 unsigned long prev_end_pfn = 0, hole_pages = 0;
3224 unsigned long start_pfn;
3226 /* Find the end_pfn of the first active range of pfns in the node */
3227 i = first_active_region_index_in_nid(nid);
3228 if (i == -1)
3229 return 0;
3231 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3233 /* Account for ranges before physical memory on this node */
3234 if (early_node_map[i].start_pfn > range_start_pfn)
3235 hole_pages = prev_end_pfn - range_start_pfn;
3237 /* Find all holes for the zone within the node */
3238 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3240 /* No need to continue if prev_end_pfn is outside the zone */
3241 if (prev_end_pfn >= range_end_pfn)
3242 break;
3244 /* Make sure the end of the zone is not within the hole */
3245 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3246 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3248 /* Update the hole size cound and move on */
3249 if (start_pfn > range_start_pfn) {
3250 BUG_ON(prev_end_pfn > start_pfn);
3251 hole_pages += start_pfn - prev_end_pfn;
3253 prev_end_pfn = early_node_map[i].end_pfn;
3256 /* Account for ranges past physical memory on this node */
3257 if (range_end_pfn > prev_end_pfn)
3258 hole_pages += range_end_pfn -
3259 max(range_start_pfn, prev_end_pfn);
3261 return hole_pages;
3265 * absent_pages_in_range - Return number of page frames in holes within a range
3266 * @start_pfn: The start PFN to start searching for holes
3267 * @end_pfn: The end PFN to stop searching for holes
3269 * It returns the number of pages frames in memory holes within a range.
3271 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3272 unsigned long end_pfn)
3274 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3277 /* Return the number of page frames in holes in a zone on a node */
3278 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3279 unsigned long zone_type,
3280 unsigned long *ignored)
3282 unsigned long node_start_pfn, node_end_pfn;
3283 unsigned long zone_start_pfn, zone_end_pfn;
3285 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3286 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3287 node_start_pfn);
3288 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3289 node_end_pfn);
3291 adjust_zone_range_for_zone_movable(nid, zone_type,
3292 node_start_pfn, node_end_pfn,
3293 &zone_start_pfn, &zone_end_pfn);
3294 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3297 #else
3298 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3299 unsigned long zone_type,
3300 unsigned long *zones_size)
3302 return zones_size[zone_type];
3305 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3306 unsigned long zone_type,
3307 unsigned long *zholes_size)
3309 if (!zholes_size)
3310 return 0;
3312 return zholes_size[zone_type];
3315 #endif
3317 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3318 unsigned long *zones_size, unsigned long *zholes_size)
3320 unsigned long realtotalpages, totalpages = 0;
3321 enum zone_type i;
3323 for (i = 0; i < MAX_NR_ZONES; i++)
3324 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3325 zones_size);
3326 pgdat->node_spanned_pages = totalpages;
3328 realtotalpages = totalpages;
3329 for (i = 0; i < MAX_NR_ZONES; i++)
3330 realtotalpages -=
3331 zone_absent_pages_in_node(pgdat->node_id, i,
3332 zholes_size);
3333 pgdat->node_present_pages = realtotalpages;
3334 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3335 realtotalpages);
3338 #ifndef CONFIG_SPARSEMEM
3340 * Calculate the size of the zone->blockflags rounded to an unsigned long
3341 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3342 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3343 * round what is now in bits to nearest long in bits, then return it in
3344 * bytes.
3346 static unsigned long __init usemap_size(unsigned long zonesize)
3348 unsigned long usemapsize;
3350 usemapsize = roundup(zonesize, pageblock_nr_pages);
3351 usemapsize = usemapsize >> pageblock_order;
3352 usemapsize *= NR_PAGEBLOCK_BITS;
3353 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3355 return usemapsize / 8;
3358 static void __init setup_usemap(struct pglist_data *pgdat,
3359 struct zone *zone, unsigned long zonesize)
3361 unsigned long usemapsize = usemap_size(zonesize);
3362 zone->pageblock_flags = NULL;
3363 if (usemapsize)
3364 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3366 #else
3367 static void inline setup_usemap(struct pglist_data *pgdat,
3368 struct zone *zone, unsigned long zonesize) {}
3369 #endif /* CONFIG_SPARSEMEM */
3371 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3373 /* Return a sensible default order for the pageblock size. */
3374 static inline int pageblock_default_order(void)
3376 if (HPAGE_SHIFT > PAGE_SHIFT)
3377 return HUGETLB_PAGE_ORDER;
3379 return MAX_ORDER-1;
3382 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3383 static inline void __init set_pageblock_order(unsigned int order)
3385 /* Check that pageblock_nr_pages has not already been setup */
3386 if (pageblock_order)
3387 return;
3390 * Assume the largest contiguous order of interest is a huge page.
3391 * This value may be variable depending on boot parameters on IA64
3393 pageblock_order = order;
3395 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3398 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3399 * and pageblock_default_order() are unused as pageblock_order is set
3400 * at compile-time. See include/linux/pageblock-flags.h for the values of
3401 * pageblock_order based on the kernel config
3403 static inline int pageblock_default_order(unsigned int order)
3405 return MAX_ORDER-1;
3407 #define set_pageblock_order(x) do {} while (0)
3409 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3412 * Set up the zone data structures:
3413 * - mark all pages reserved
3414 * - mark all memory queues empty
3415 * - clear the memory bitmaps
3417 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3418 unsigned long *zones_size, unsigned long *zholes_size)
3420 enum zone_type j;
3421 int nid = pgdat->node_id;
3422 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3423 int ret;
3425 pgdat_resize_init(pgdat);
3426 pgdat->nr_zones = 0;
3427 init_waitqueue_head(&pgdat->kswapd_wait);
3428 pgdat->kswapd_max_order = 0;
3429 pgdat_page_cgroup_init(pgdat);
3431 for (j = 0; j < MAX_NR_ZONES; j++) {
3432 struct zone *zone = pgdat->node_zones + j;
3433 unsigned long size, realsize, memmap_pages;
3434 enum lru_list l;
3436 size = zone_spanned_pages_in_node(nid, j, zones_size);
3437 realsize = size - zone_absent_pages_in_node(nid, j,
3438 zholes_size);
3441 * Adjust realsize so that it accounts for how much memory
3442 * is used by this zone for memmap. This affects the watermark
3443 * and per-cpu initialisations
3445 memmap_pages =
3446 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3447 if (realsize >= memmap_pages) {
3448 realsize -= memmap_pages;
3449 if (memmap_pages)
3450 printk(KERN_DEBUG
3451 " %s zone: %lu pages used for memmap\n",
3452 zone_names[j], memmap_pages);
3453 } else
3454 printk(KERN_WARNING
3455 " %s zone: %lu pages exceeds realsize %lu\n",
3456 zone_names[j], memmap_pages, realsize);
3458 /* Account for reserved pages */
3459 if (j == 0 && realsize > dma_reserve) {
3460 realsize -= dma_reserve;
3461 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3462 zone_names[0], dma_reserve);
3465 if (!is_highmem_idx(j))
3466 nr_kernel_pages += realsize;
3467 nr_all_pages += realsize;
3469 zone->spanned_pages = size;
3470 zone->present_pages = realsize;
3471 #ifdef CONFIG_NUMA
3472 zone->node = nid;
3473 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3474 / 100;
3475 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3476 #endif
3477 zone->name = zone_names[j];
3478 spin_lock_init(&zone->lock);
3479 spin_lock_init(&zone->lru_lock);
3480 zone_seqlock_init(zone);
3481 zone->zone_pgdat = pgdat;
3483 zone->prev_priority = DEF_PRIORITY;
3485 zone_pcp_init(zone);
3486 for_each_lru(l) {
3487 INIT_LIST_HEAD(&zone->lru[l].list);
3488 zone->lru[l].nr_scan = 0;
3490 zone->reclaim_stat.recent_rotated[0] = 0;
3491 zone->reclaim_stat.recent_rotated[1] = 0;
3492 zone->reclaim_stat.recent_scanned[0] = 0;
3493 zone->reclaim_stat.recent_scanned[1] = 0;
3494 zap_zone_vm_stats(zone);
3495 zone->flags = 0;
3496 if (!size)
3497 continue;
3499 set_pageblock_order(pageblock_default_order());
3500 setup_usemap(pgdat, zone, size);
3501 ret = init_currently_empty_zone(zone, zone_start_pfn,
3502 size, MEMMAP_EARLY);
3503 BUG_ON(ret);
3504 memmap_init(size, nid, j, zone_start_pfn);
3505 zone_start_pfn += size;
3509 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3511 /* Skip empty nodes */
3512 if (!pgdat->node_spanned_pages)
3513 return;
3515 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3516 /* ia64 gets its own node_mem_map, before this, without bootmem */
3517 if (!pgdat->node_mem_map) {
3518 unsigned long size, start, end;
3519 struct page *map;
3522 * The zone's endpoints aren't required to be MAX_ORDER
3523 * aligned but the node_mem_map endpoints must be in order
3524 * for the buddy allocator to function correctly.
3526 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3527 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3528 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3529 size = (end - start) * sizeof(struct page);
3530 map = alloc_remap(pgdat->node_id, size);
3531 if (!map)
3532 map = alloc_bootmem_node(pgdat, size);
3533 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3535 #ifndef CONFIG_NEED_MULTIPLE_NODES
3537 * With no DISCONTIG, the global mem_map is just set as node 0's
3539 if (pgdat == NODE_DATA(0)) {
3540 mem_map = NODE_DATA(0)->node_mem_map;
3541 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3542 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3543 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3544 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3546 #endif
3547 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3550 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3551 unsigned long node_start_pfn, unsigned long *zholes_size)
3553 pg_data_t *pgdat = NODE_DATA(nid);
3555 pgdat->node_id = nid;
3556 pgdat->node_start_pfn = node_start_pfn;
3557 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3559 alloc_node_mem_map(pgdat);
3560 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3561 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3562 nid, (unsigned long)pgdat,
3563 (unsigned long)pgdat->node_mem_map);
3564 #endif
3566 free_area_init_core(pgdat, zones_size, zholes_size);
3569 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3571 #if MAX_NUMNODES > 1
3573 * Figure out the number of possible node ids.
3575 static void __init setup_nr_node_ids(void)
3577 unsigned int node;
3578 unsigned int highest = 0;
3580 for_each_node_mask(node, node_possible_map)
3581 highest = node;
3582 nr_node_ids = highest + 1;
3584 #else
3585 static inline void setup_nr_node_ids(void)
3588 #endif
3591 * add_active_range - Register a range of PFNs backed by physical memory
3592 * @nid: The node ID the range resides on
3593 * @start_pfn: The start PFN of the available physical memory
3594 * @end_pfn: The end PFN of the available physical memory
3596 * These ranges are stored in an early_node_map[] and later used by
3597 * free_area_init_nodes() to calculate zone sizes and holes. If the
3598 * range spans a memory hole, it is up to the architecture to ensure
3599 * the memory is not freed by the bootmem allocator. If possible
3600 * the range being registered will be merged with existing ranges.
3602 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3603 unsigned long end_pfn)
3605 int i;
3607 mminit_dprintk(MMINIT_TRACE, "memory_register",
3608 "Entering add_active_range(%d, %#lx, %#lx) "
3609 "%d entries of %d used\n",
3610 nid, start_pfn, end_pfn,
3611 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3613 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3615 /* Merge with existing active regions if possible */
3616 for (i = 0; i < nr_nodemap_entries; i++) {
3617 if (early_node_map[i].nid != nid)
3618 continue;
3620 /* Skip if an existing region covers this new one */
3621 if (start_pfn >= early_node_map[i].start_pfn &&
3622 end_pfn <= early_node_map[i].end_pfn)
3623 return;
3625 /* Merge forward if suitable */
3626 if (start_pfn <= early_node_map[i].end_pfn &&
3627 end_pfn > early_node_map[i].end_pfn) {
3628 early_node_map[i].end_pfn = end_pfn;
3629 return;
3632 /* Merge backward if suitable */
3633 if (start_pfn < early_node_map[i].end_pfn &&
3634 end_pfn >= early_node_map[i].start_pfn) {
3635 early_node_map[i].start_pfn = start_pfn;
3636 return;
3640 /* Check that early_node_map is large enough */
3641 if (i >= MAX_ACTIVE_REGIONS) {
3642 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3643 MAX_ACTIVE_REGIONS);
3644 return;
3647 early_node_map[i].nid = nid;
3648 early_node_map[i].start_pfn = start_pfn;
3649 early_node_map[i].end_pfn = end_pfn;
3650 nr_nodemap_entries = i + 1;
3654 * remove_active_range - Shrink an existing registered range of PFNs
3655 * @nid: The node id the range is on that should be shrunk
3656 * @start_pfn: The new PFN of the range
3657 * @end_pfn: The new PFN of the range
3659 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3660 * The map is kept near the end physical page range that has already been
3661 * registered. This function allows an arch to shrink an existing registered
3662 * range.
3664 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3665 unsigned long end_pfn)
3667 int i, j;
3668 int removed = 0;
3670 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3671 nid, start_pfn, end_pfn);
3673 /* Find the old active region end and shrink */
3674 for_each_active_range_index_in_nid(i, nid) {
3675 if (early_node_map[i].start_pfn >= start_pfn &&
3676 early_node_map[i].end_pfn <= end_pfn) {
3677 /* clear it */
3678 early_node_map[i].start_pfn = 0;
3679 early_node_map[i].end_pfn = 0;
3680 removed = 1;
3681 continue;
3683 if (early_node_map[i].start_pfn < start_pfn &&
3684 early_node_map[i].end_pfn > start_pfn) {
3685 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3686 early_node_map[i].end_pfn = start_pfn;
3687 if (temp_end_pfn > end_pfn)
3688 add_active_range(nid, end_pfn, temp_end_pfn);
3689 continue;
3691 if (early_node_map[i].start_pfn >= start_pfn &&
3692 early_node_map[i].end_pfn > end_pfn &&
3693 early_node_map[i].start_pfn < end_pfn) {
3694 early_node_map[i].start_pfn = end_pfn;
3695 continue;
3699 if (!removed)
3700 return;
3702 /* remove the blank ones */
3703 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3704 if (early_node_map[i].nid != nid)
3705 continue;
3706 if (early_node_map[i].end_pfn)
3707 continue;
3708 /* we found it, get rid of it */
3709 for (j = i; j < nr_nodemap_entries - 1; j++)
3710 memcpy(&early_node_map[j], &early_node_map[j+1],
3711 sizeof(early_node_map[j]));
3712 j = nr_nodemap_entries - 1;
3713 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3714 nr_nodemap_entries--;
3719 * remove_all_active_ranges - Remove all currently registered regions
3721 * During discovery, it may be found that a table like SRAT is invalid
3722 * and an alternative discovery method must be used. This function removes
3723 * all currently registered regions.
3725 void __init remove_all_active_ranges(void)
3727 memset(early_node_map, 0, sizeof(early_node_map));
3728 nr_nodemap_entries = 0;
3731 /* Compare two active node_active_regions */
3732 static int __init cmp_node_active_region(const void *a, const void *b)
3734 struct node_active_region *arange = (struct node_active_region *)a;
3735 struct node_active_region *brange = (struct node_active_region *)b;
3737 /* Done this way to avoid overflows */
3738 if (arange->start_pfn > brange->start_pfn)
3739 return 1;
3740 if (arange->start_pfn < brange->start_pfn)
3741 return -1;
3743 return 0;
3746 /* sort the node_map by start_pfn */
3747 static void __init sort_node_map(void)
3749 sort(early_node_map, (size_t)nr_nodemap_entries,
3750 sizeof(struct node_active_region),
3751 cmp_node_active_region, NULL);
3754 /* Find the lowest pfn for a node */
3755 static unsigned long __init find_min_pfn_for_node(int nid)
3757 int i;
3758 unsigned long min_pfn = ULONG_MAX;
3760 /* Assuming a sorted map, the first range found has the starting pfn */
3761 for_each_active_range_index_in_nid(i, nid)
3762 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3764 if (min_pfn == ULONG_MAX) {
3765 printk(KERN_WARNING
3766 "Could not find start_pfn for node %d\n", nid);
3767 return 0;
3770 return min_pfn;
3774 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3776 * It returns the minimum PFN based on information provided via
3777 * add_active_range().
3779 unsigned long __init find_min_pfn_with_active_regions(void)
3781 return find_min_pfn_for_node(MAX_NUMNODES);
3785 * early_calculate_totalpages()
3786 * Sum pages in active regions for movable zone.
3787 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3789 static unsigned long __init early_calculate_totalpages(void)
3791 int i;
3792 unsigned long totalpages = 0;
3794 for (i = 0; i < nr_nodemap_entries; i++) {
3795 unsigned long pages = early_node_map[i].end_pfn -
3796 early_node_map[i].start_pfn;
3797 totalpages += pages;
3798 if (pages)
3799 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3801 return totalpages;
3805 * Find the PFN the Movable zone begins in each node. Kernel memory
3806 * is spread evenly between nodes as long as the nodes have enough
3807 * memory. When they don't, some nodes will have more kernelcore than
3808 * others
3810 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3812 int i, nid;
3813 unsigned long usable_startpfn;
3814 unsigned long kernelcore_node, kernelcore_remaining;
3815 unsigned long totalpages = early_calculate_totalpages();
3816 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3819 * If movablecore was specified, calculate what size of
3820 * kernelcore that corresponds so that memory usable for
3821 * any allocation type is evenly spread. If both kernelcore
3822 * and movablecore are specified, then the value of kernelcore
3823 * will be used for required_kernelcore if it's greater than
3824 * what movablecore would have allowed.
3826 if (required_movablecore) {
3827 unsigned long corepages;
3830 * Round-up so that ZONE_MOVABLE is at least as large as what
3831 * was requested by the user
3833 required_movablecore =
3834 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3835 corepages = totalpages - required_movablecore;
3837 required_kernelcore = max(required_kernelcore, corepages);
3840 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3841 if (!required_kernelcore)
3842 return;
3844 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3845 find_usable_zone_for_movable();
3846 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3848 restart:
3849 /* Spread kernelcore memory as evenly as possible throughout nodes */
3850 kernelcore_node = required_kernelcore / usable_nodes;
3851 for_each_node_state(nid, N_HIGH_MEMORY) {
3853 * Recalculate kernelcore_node if the division per node
3854 * now exceeds what is necessary to satisfy the requested
3855 * amount of memory for the kernel
3857 if (required_kernelcore < kernelcore_node)
3858 kernelcore_node = required_kernelcore / usable_nodes;
3861 * As the map is walked, we track how much memory is usable
3862 * by the kernel using kernelcore_remaining. When it is
3863 * 0, the rest of the node is usable by ZONE_MOVABLE
3865 kernelcore_remaining = kernelcore_node;
3867 /* Go through each range of PFNs within this node */
3868 for_each_active_range_index_in_nid(i, nid) {
3869 unsigned long start_pfn, end_pfn;
3870 unsigned long size_pages;
3872 start_pfn = max(early_node_map[i].start_pfn,
3873 zone_movable_pfn[nid]);
3874 end_pfn = early_node_map[i].end_pfn;
3875 if (start_pfn >= end_pfn)
3876 continue;
3878 /* Account for what is only usable for kernelcore */
3879 if (start_pfn < usable_startpfn) {
3880 unsigned long kernel_pages;
3881 kernel_pages = min(end_pfn, usable_startpfn)
3882 - start_pfn;
3884 kernelcore_remaining -= min(kernel_pages,
3885 kernelcore_remaining);
3886 required_kernelcore -= min(kernel_pages,
3887 required_kernelcore);
3889 /* Continue if range is now fully accounted */
3890 if (end_pfn <= usable_startpfn) {
3893 * Push zone_movable_pfn to the end so
3894 * that if we have to rebalance
3895 * kernelcore across nodes, we will
3896 * not double account here
3898 zone_movable_pfn[nid] = end_pfn;
3899 continue;
3901 start_pfn = usable_startpfn;
3905 * The usable PFN range for ZONE_MOVABLE is from
3906 * start_pfn->end_pfn. Calculate size_pages as the
3907 * number of pages used as kernelcore
3909 size_pages = end_pfn - start_pfn;
3910 if (size_pages > kernelcore_remaining)
3911 size_pages = kernelcore_remaining;
3912 zone_movable_pfn[nid] = start_pfn + size_pages;
3915 * Some kernelcore has been met, update counts and
3916 * break if the kernelcore for this node has been
3917 * satisified
3919 required_kernelcore -= min(required_kernelcore,
3920 size_pages);
3921 kernelcore_remaining -= size_pages;
3922 if (!kernelcore_remaining)
3923 break;
3928 * If there is still required_kernelcore, we do another pass with one
3929 * less node in the count. This will push zone_movable_pfn[nid] further
3930 * along on the nodes that still have memory until kernelcore is
3931 * satisified
3933 usable_nodes--;
3934 if (usable_nodes && required_kernelcore > usable_nodes)
3935 goto restart;
3937 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3938 for (nid = 0; nid < MAX_NUMNODES; nid++)
3939 zone_movable_pfn[nid] =
3940 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3943 /* Any regular memory on that node ? */
3944 static void check_for_regular_memory(pg_data_t *pgdat)
3946 #ifdef CONFIG_HIGHMEM
3947 enum zone_type zone_type;
3949 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3950 struct zone *zone = &pgdat->node_zones[zone_type];
3951 if (zone->present_pages)
3952 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3954 #endif
3958 * free_area_init_nodes - Initialise all pg_data_t and zone data
3959 * @max_zone_pfn: an array of max PFNs for each zone
3961 * This will call free_area_init_node() for each active node in the system.
3962 * Using the page ranges provided by add_active_range(), the size of each
3963 * zone in each node and their holes is calculated. If the maximum PFN
3964 * between two adjacent zones match, it is assumed that the zone is empty.
3965 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3966 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3967 * starts where the previous one ended. For example, ZONE_DMA32 starts
3968 * at arch_max_dma_pfn.
3970 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3972 unsigned long nid;
3973 int i;
3975 /* Sort early_node_map as initialisation assumes it is sorted */
3976 sort_node_map();
3978 /* Record where the zone boundaries are */
3979 memset(arch_zone_lowest_possible_pfn, 0,
3980 sizeof(arch_zone_lowest_possible_pfn));
3981 memset(arch_zone_highest_possible_pfn, 0,
3982 sizeof(arch_zone_highest_possible_pfn));
3983 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3984 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3985 for (i = 1; i < MAX_NR_ZONES; i++) {
3986 if (i == ZONE_MOVABLE)
3987 continue;
3988 arch_zone_lowest_possible_pfn[i] =
3989 arch_zone_highest_possible_pfn[i-1];
3990 arch_zone_highest_possible_pfn[i] =
3991 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3993 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3994 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3996 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3997 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3998 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4000 /* Print out the zone ranges */
4001 printk("Zone PFN ranges:\n");
4002 for (i = 0; i < MAX_NR_ZONES; i++) {
4003 if (i == ZONE_MOVABLE)
4004 continue;
4005 printk(" %-8s %0#10lx -> %0#10lx\n",
4006 zone_names[i],
4007 arch_zone_lowest_possible_pfn[i],
4008 arch_zone_highest_possible_pfn[i]);
4011 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4012 printk("Movable zone start PFN for each node\n");
4013 for (i = 0; i < MAX_NUMNODES; i++) {
4014 if (zone_movable_pfn[i])
4015 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4018 /* Print out the early_node_map[] */
4019 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4020 for (i = 0; i < nr_nodemap_entries; i++)
4021 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4022 early_node_map[i].start_pfn,
4023 early_node_map[i].end_pfn);
4025 /* Initialise every node */
4026 mminit_verify_pageflags_layout();
4027 setup_nr_node_ids();
4028 for_each_online_node(nid) {
4029 pg_data_t *pgdat = NODE_DATA(nid);
4030 free_area_init_node(nid, NULL,
4031 find_min_pfn_for_node(nid), NULL);
4033 /* Any memory on that node */
4034 if (pgdat->node_present_pages)
4035 node_set_state(nid, N_HIGH_MEMORY);
4036 check_for_regular_memory(pgdat);
4040 static int __init cmdline_parse_core(char *p, unsigned long *core)
4042 unsigned long long coremem;
4043 if (!p)
4044 return -EINVAL;
4046 coremem = memparse(p, &p);
4047 *core = coremem >> PAGE_SHIFT;
4049 /* Paranoid check that UL is enough for the coremem value */
4050 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4052 return 0;
4056 * kernelcore=size sets the amount of memory for use for allocations that
4057 * cannot be reclaimed or migrated.
4059 static int __init cmdline_parse_kernelcore(char *p)
4061 return cmdline_parse_core(p, &required_kernelcore);
4065 * movablecore=size sets the amount of memory for use for allocations that
4066 * can be reclaimed or migrated.
4068 static int __init cmdline_parse_movablecore(char *p)
4070 return cmdline_parse_core(p, &required_movablecore);
4073 early_param("kernelcore", cmdline_parse_kernelcore);
4074 early_param("movablecore", cmdline_parse_movablecore);
4076 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4079 * set_dma_reserve - set the specified number of pages reserved in the first zone
4080 * @new_dma_reserve: The number of pages to mark reserved
4082 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4083 * In the DMA zone, a significant percentage may be consumed by kernel image
4084 * and other unfreeable allocations which can skew the watermarks badly. This
4085 * function may optionally be used to account for unfreeable pages in the
4086 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4087 * smaller per-cpu batchsize.
4089 void __init set_dma_reserve(unsigned long new_dma_reserve)
4091 dma_reserve = new_dma_reserve;
4094 #ifndef CONFIG_NEED_MULTIPLE_NODES
4095 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4096 EXPORT_SYMBOL(contig_page_data);
4097 #endif
4099 void __init free_area_init(unsigned long *zones_size)
4101 free_area_init_node(0, zones_size,
4102 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4105 static int page_alloc_cpu_notify(struct notifier_block *self,
4106 unsigned long action, void *hcpu)
4108 int cpu = (unsigned long)hcpu;
4110 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4111 drain_pages(cpu);
4114 * Spill the event counters of the dead processor
4115 * into the current processors event counters.
4116 * This artificially elevates the count of the current
4117 * processor.
4119 vm_events_fold_cpu(cpu);
4122 * Zero the differential counters of the dead processor
4123 * so that the vm statistics are consistent.
4125 * This is only okay since the processor is dead and cannot
4126 * race with what we are doing.
4128 refresh_cpu_vm_stats(cpu);
4130 return NOTIFY_OK;
4133 void __init page_alloc_init(void)
4135 hotcpu_notifier(page_alloc_cpu_notify, 0);
4139 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4140 * or min_free_kbytes changes.
4142 static void calculate_totalreserve_pages(void)
4144 struct pglist_data *pgdat;
4145 unsigned long reserve_pages = 0;
4146 enum zone_type i, j;
4148 for_each_online_pgdat(pgdat) {
4149 for (i = 0; i < MAX_NR_ZONES; i++) {
4150 struct zone *zone = pgdat->node_zones + i;
4151 unsigned long max = 0;
4153 /* Find valid and maximum lowmem_reserve in the zone */
4154 for (j = i; j < MAX_NR_ZONES; j++) {
4155 if (zone->lowmem_reserve[j] > max)
4156 max = zone->lowmem_reserve[j];
4159 /* we treat pages_high as reserved pages. */
4160 max += zone->pages_high;
4162 if (max > zone->present_pages)
4163 max = zone->present_pages;
4164 reserve_pages += max;
4167 totalreserve_pages = reserve_pages;
4171 * setup_per_zone_lowmem_reserve - called whenever
4172 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4173 * has a correct pages reserved value, so an adequate number of
4174 * pages are left in the zone after a successful __alloc_pages().
4176 static void setup_per_zone_lowmem_reserve(void)
4178 struct pglist_data *pgdat;
4179 enum zone_type j, idx;
4181 for_each_online_pgdat(pgdat) {
4182 for (j = 0; j < MAX_NR_ZONES; j++) {
4183 struct zone *zone = pgdat->node_zones + j;
4184 unsigned long present_pages = zone->present_pages;
4186 zone->lowmem_reserve[j] = 0;
4188 idx = j;
4189 while (idx) {
4190 struct zone *lower_zone;
4192 idx--;
4194 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4195 sysctl_lowmem_reserve_ratio[idx] = 1;
4197 lower_zone = pgdat->node_zones + idx;
4198 lower_zone->lowmem_reserve[j] = present_pages /
4199 sysctl_lowmem_reserve_ratio[idx];
4200 present_pages += lower_zone->present_pages;
4205 /* update totalreserve_pages */
4206 calculate_totalreserve_pages();
4210 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4212 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4213 * with respect to min_free_kbytes.
4215 void setup_per_zone_pages_min(void)
4217 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4218 unsigned long lowmem_pages = 0;
4219 struct zone *zone;
4220 unsigned long flags;
4222 /* Calculate total number of !ZONE_HIGHMEM pages */
4223 for_each_zone(zone) {
4224 if (!is_highmem(zone))
4225 lowmem_pages += zone->present_pages;
4228 for_each_zone(zone) {
4229 u64 tmp;
4231 spin_lock_irqsave(&zone->lock, flags);
4232 tmp = (u64)pages_min * zone->present_pages;
4233 do_div(tmp, lowmem_pages);
4234 if (is_highmem(zone)) {
4236 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4237 * need highmem pages, so cap pages_min to a small
4238 * value here.
4240 * The (pages_high-pages_low) and (pages_low-pages_min)
4241 * deltas controls asynch page reclaim, and so should
4242 * not be capped for highmem.
4244 int min_pages;
4246 min_pages = zone->present_pages / 1024;
4247 if (min_pages < SWAP_CLUSTER_MAX)
4248 min_pages = SWAP_CLUSTER_MAX;
4249 if (min_pages > 128)
4250 min_pages = 128;
4251 zone->pages_min = min_pages;
4252 } else {
4254 * If it's a lowmem zone, reserve a number of pages
4255 * proportionate to the zone's size.
4257 zone->pages_min = tmp;
4260 zone->pages_low = zone->pages_min + (tmp >> 2);
4261 zone->pages_high = zone->pages_min + (tmp >> 1);
4262 setup_zone_migrate_reserve(zone);
4263 spin_unlock_irqrestore(&zone->lock, flags);
4266 /* update totalreserve_pages */
4267 calculate_totalreserve_pages();
4271 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4273 * The inactive anon list should be small enough that the VM never has to
4274 * do too much work, but large enough that each inactive page has a chance
4275 * to be referenced again before it is swapped out.
4277 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4278 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4279 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4280 * the anonymous pages are kept on the inactive list.
4282 * total target max
4283 * memory ratio inactive anon
4284 * -------------------------------------
4285 * 10MB 1 5MB
4286 * 100MB 1 50MB
4287 * 1GB 3 250MB
4288 * 10GB 10 0.9GB
4289 * 100GB 31 3GB
4290 * 1TB 101 10GB
4291 * 10TB 320 32GB
4293 static void setup_per_zone_inactive_ratio(void)
4295 struct zone *zone;
4297 for_each_zone(zone) {
4298 unsigned int gb, ratio;
4300 /* Zone size in gigabytes */
4301 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4302 ratio = int_sqrt(10 * gb);
4303 if (!ratio)
4304 ratio = 1;
4306 zone->inactive_ratio = ratio;
4311 * Initialise min_free_kbytes.
4313 * For small machines we want it small (128k min). For large machines
4314 * we want it large (64MB max). But it is not linear, because network
4315 * bandwidth does not increase linearly with machine size. We use
4317 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4318 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4320 * which yields
4322 * 16MB: 512k
4323 * 32MB: 724k
4324 * 64MB: 1024k
4325 * 128MB: 1448k
4326 * 256MB: 2048k
4327 * 512MB: 2896k
4328 * 1024MB: 4096k
4329 * 2048MB: 5792k
4330 * 4096MB: 8192k
4331 * 8192MB: 11584k
4332 * 16384MB: 16384k
4334 static int __init init_per_zone_pages_min(void)
4336 unsigned long lowmem_kbytes;
4338 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4340 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4341 if (min_free_kbytes < 128)
4342 min_free_kbytes = 128;
4343 if (min_free_kbytes > 65536)
4344 min_free_kbytes = 65536;
4345 setup_per_zone_pages_min();
4346 setup_per_zone_lowmem_reserve();
4347 setup_per_zone_inactive_ratio();
4348 return 0;
4350 module_init(init_per_zone_pages_min)
4353 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4354 * that we can call two helper functions whenever min_free_kbytes
4355 * changes.
4357 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4358 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4360 proc_dointvec(table, write, file, buffer, length, ppos);
4361 if (write)
4362 setup_per_zone_pages_min();
4363 return 0;
4366 #ifdef CONFIG_NUMA
4367 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4368 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4370 struct zone *zone;
4371 int rc;
4373 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4374 if (rc)
4375 return rc;
4377 for_each_zone(zone)
4378 zone->min_unmapped_pages = (zone->present_pages *
4379 sysctl_min_unmapped_ratio) / 100;
4380 return 0;
4383 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4384 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4386 struct zone *zone;
4387 int rc;
4389 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4390 if (rc)
4391 return rc;
4393 for_each_zone(zone)
4394 zone->min_slab_pages = (zone->present_pages *
4395 sysctl_min_slab_ratio) / 100;
4396 return 0;
4398 #endif
4401 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4402 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4403 * whenever sysctl_lowmem_reserve_ratio changes.
4405 * The reserve ratio obviously has absolutely no relation with the
4406 * pages_min watermarks. The lowmem reserve ratio can only make sense
4407 * if in function of the boot time zone sizes.
4409 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4410 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4412 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4413 setup_per_zone_lowmem_reserve();
4414 return 0;
4418 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4419 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4420 * can have before it gets flushed back to buddy allocator.
4423 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4424 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4426 struct zone *zone;
4427 unsigned int cpu;
4428 int ret;
4430 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4431 if (!write || (ret == -EINVAL))
4432 return ret;
4433 for_each_zone(zone) {
4434 for_each_online_cpu(cpu) {
4435 unsigned long high;
4436 high = zone->present_pages / percpu_pagelist_fraction;
4437 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4440 return 0;
4443 int hashdist = HASHDIST_DEFAULT;
4445 #ifdef CONFIG_NUMA
4446 static int __init set_hashdist(char *str)
4448 if (!str)
4449 return 0;
4450 hashdist = simple_strtoul(str, &str, 0);
4451 return 1;
4453 __setup("hashdist=", set_hashdist);
4454 #endif
4457 * allocate a large system hash table from bootmem
4458 * - it is assumed that the hash table must contain an exact power-of-2
4459 * quantity of entries
4460 * - limit is the number of hash buckets, not the total allocation size
4462 void *__init alloc_large_system_hash(const char *tablename,
4463 unsigned long bucketsize,
4464 unsigned long numentries,
4465 int scale,
4466 int flags,
4467 unsigned int *_hash_shift,
4468 unsigned int *_hash_mask,
4469 unsigned long limit)
4471 unsigned long long max = limit;
4472 unsigned long log2qty, size;
4473 void *table = NULL;
4475 /* allow the kernel cmdline to have a say */
4476 if (!numentries) {
4477 /* round applicable memory size up to nearest megabyte */
4478 numentries = nr_kernel_pages;
4479 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4480 numentries >>= 20 - PAGE_SHIFT;
4481 numentries <<= 20 - PAGE_SHIFT;
4483 /* limit to 1 bucket per 2^scale bytes of low memory */
4484 if (scale > PAGE_SHIFT)
4485 numentries >>= (scale - PAGE_SHIFT);
4486 else
4487 numentries <<= (PAGE_SHIFT - scale);
4489 /* Make sure we've got at least a 0-order allocation.. */
4490 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4491 numentries = PAGE_SIZE / bucketsize;
4493 numentries = roundup_pow_of_two(numentries);
4495 /* limit allocation size to 1/16 total memory by default */
4496 if (max == 0) {
4497 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4498 do_div(max, bucketsize);
4501 if (numentries > max)
4502 numentries = max;
4504 log2qty = ilog2(numentries);
4506 do {
4507 size = bucketsize << log2qty;
4508 if (flags & HASH_EARLY)
4509 table = alloc_bootmem_nopanic(size);
4510 else if (hashdist)
4511 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4512 else {
4513 unsigned long order = get_order(size);
4515 if (order < MAX_ORDER)
4516 table = (void *)__get_free_pages(GFP_ATOMIC,
4517 order);
4519 * If bucketsize is not a power-of-two, we may free
4520 * some pages at the end of hash table.
4522 if (table) {
4523 unsigned long alloc_end = (unsigned long)table +
4524 (PAGE_SIZE << order);
4525 unsigned long used = (unsigned long)table +
4526 PAGE_ALIGN(size);
4527 split_page(virt_to_page(table), order);
4528 while (used < alloc_end) {
4529 free_page(used);
4530 used += PAGE_SIZE;
4534 } while (!table && size > PAGE_SIZE && --log2qty);
4536 if (!table)
4537 panic("Failed to allocate %s hash table\n", tablename);
4539 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4540 tablename,
4541 (1U << log2qty),
4542 ilog2(size) - PAGE_SHIFT,
4543 size);
4545 if (_hash_shift)
4546 *_hash_shift = log2qty;
4547 if (_hash_mask)
4548 *_hash_mask = (1 << log2qty) - 1;
4551 * If hashdist is set, the table allocation is done with __vmalloc()
4552 * which invokes the kmemleak_alloc() callback. This function may also
4553 * be called before the slab and kmemleak are initialised when
4554 * kmemleak simply buffers the request to be executed later
4555 * (GFP_ATOMIC flag ignored in this case).
4557 if (!hashdist)
4558 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4560 return table;
4563 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4564 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4565 unsigned long pfn)
4567 #ifdef CONFIG_SPARSEMEM
4568 return __pfn_to_section(pfn)->pageblock_flags;
4569 #else
4570 return zone->pageblock_flags;
4571 #endif /* CONFIG_SPARSEMEM */
4574 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4576 #ifdef CONFIG_SPARSEMEM
4577 pfn &= (PAGES_PER_SECTION-1);
4578 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4579 #else
4580 pfn = pfn - zone->zone_start_pfn;
4581 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4582 #endif /* CONFIG_SPARSEMEM */
4586 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4587 * @page: The page within the block of interest
4588 * @start_bitidx: The first bit of interest to retrieve
4589 * @end_bitidx: The last bit of interest
4590 * returns pageblock_bits flags
4592 unsigned long get_pageblock_flags_group(struct page *page,
4593 int start_bitidx, int end_bitidx)
4595 struct zone *zone;
4596 unsigned long *bitmap;
4597 unsigned long pfn, bitidx;
4598 unsigned long flags = 0;
4599 unsigned long value = 1;
4601 zone = page_zone(page);
4602 pfn = page_to_pfn(page);
4603 bitmap = get_pageblock_bitmap(zone, pfn);
4604 bitidx = pfn_to_bitidx(zone, pfn);
4606 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4607 if (test_bit(bitidx + start_bitidx, bitmap))
4608 flags |= value;
4610 return flags;
4614 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4615 * @page: The page within the block of interest
4616 * @start_bitidx: The first bit of interest
4617 * @end_bitidx: The last bit of interest
4618 * @flags: The flags to set
4620 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4621 int start_bitidx, int end_bitidx)
4623 struct zone *zone;
4624 unsigned long *bitmap;
4625 unsigned long pfn, bitidx;
4626 unsigned long value = 1;
4628 zone = page_zone(page);
4629 pfn = page_to_pfn(page);
4630 bitmap = get_pageblock_bitmap(zone, pfn);
4631 bitidx = pfn_to_bitidx(zone, pfn);
4632 VM_BUG_ON(pfn < zone->zone_start_pfn);
4633 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4635 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4636 if (flags & value)
4637 __set_bit(bitidx + start_bitidx, bitmap);
4638 else
4639 __clear_bit(bitidx + start_bitidx, bitmap);
4643 * This is designed as sub function...plz see page_isolation.c also.
4644 * set/clear page block's type to be ISOLATE.
4645 * page allocater never alloc memory from ISOLATE block.
4648 int set_migratetype_isolate(struct page *page)
4650 struct zone *zone;
4651 unsigned long flags;
4652 int ret = -EBUSY;
4654 zone = page_zone(page);
4655 spin_lock_irqsave(&zone->lock, flags);
4657 * In future, more migrate types will be able to be isolation target.
4659 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4660 goto out;
4661 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4662 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4663 ret = 0;
4664 out:
4665 spin_unlock_irqrestore(&zone->lock, flags);
4666 if (!ret)
4667 drain_all_pages();
4668 return ret;
4671 void unset_migratetype_isolate(struct page *page)
4673 struct zone *zone;
4674 unsigned long flags;
4675 zone = page_zone(page);
4676 spin_lock_irqsave(&zone->lock, flags);
4677 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4678 goto out;
4679 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4680 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4681 out:
4682 spin_unlock_irqrestore(&zone->lock, flags);
4685 #ifdef CONFIG_MEMORY_HOTREMOVE
4687 * All pages in the range must be isolated before calling this.
4689 void
4690 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4692 struct page *page;
4693 struct zone *zone;
4694 int order, i;
4695 unsigned long pfn;
4696 unsigned long flags;
4697 /* find the first valid pfn */
4698 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4699 if (pfn_valid(pfn))
4700 break;
4701 if (pfn == end_pfn)
4702 return;
4703 zone = page_zone(pfn_to_page(pfn));
4704 spin_lock_irqsave(&zone->lock, flags);
4705 pfn = start_pfn;
4706 while (pfn < end_pfn) {
4707 if (!pfn_valid(pfn)) {
4708 pfn++;
4709 continue;
4711 page = pfn_to_page(pfn);
4712 BUG_ON(page_count(page));
4713 BUG_ON(!PageBuddy(page));
4714 order = page_order(page);
4715 #ifdef CONFIG_DEBUG_VM
4716 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4717 pfn, 1 << order, end_pfn);
4718 #endif
4719 list_del(&page->lru);
4720 rmv_page_order(page);
4721 zone->free_area[order].nr_free--;
4722 __mod_zone_page_state(zone, NR_FREE_PAGES,
4723 - (1UL << order));
4724 for (i = 0; i < (1 << order); i++)
4725 SetPageReserved((page+i));
4726 pfn += (1 << order);
4728 spin_unlock_irqrestore(&zone->lock, flags);
4730 #endif