2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/freezer.h>
38 #include <asm/uaccess.h>
41 #include <linux/atomic.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 #include <linux/compat.h>
48 * There are three level of locking required by epoll :
52 * 3) ep->lock (spinlock)
54 * The acquire order is the one listed above, from 1 to 3.
55 * We need a spinlock (ep->lock) because we manipulate objects
56 * from inside the poll callback, that might be triggered from
57 * a wake_up() that in turn might be called from IRQ context.
58 * So we can't sleep inside the poll callback and hence we need
59 * a spinlock. During the event transfer loop (from kernel to
60 * user space) we could end up sleeping due a copy_to_user(), so
61 * we need a lock that will allow us to sleep. This lock is a
62 * mutex (ep->mtx). It is acquired during the event transfer loop,
63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * This mutex is acquired by ep_free() during the epoll file
67 * cleanup path and it is also acquired by eventpoll_release_file()
68 * if a file has been pushed inside an epoll set and it is then
69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70 * It is also acquired when inserting an epoll fd onto another epoll
71 * fd. We do this so that we walk the epoll tree and ensure that this
72 * insertion does not create a cycle of epoll file descriptors, which
73 * could lead to deadlock. We need a global mutex to prevent two
74 * simultaneous inserts (A into B and B into A) from racing and
75 * constructing a cycle without either insert observing that it is
77 * It is necessary to acquire multiple "ep->mtx"es at once in the
78 * case when one epoll fd is added to another. In this case, we
79 * always acquire the locks in the order of nesting (i.e. after
80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81 * before e2->mtx). Since we disallow cycles of epoll file
82 * descriptors, this ensures that the mutexes are well-ordered. In
83 * order to communicate this nesting to lockdep, when walking a tree
84 * of epoll file descriptors, we use the current recursion depth as
86 * It is possible to drop the "ep->mtx" and to use the global
87 * mutex "epmutex" (together with "ep->lock") to have it working,
88 * but having "ep->mtx" will make the interface more scalable.
89 * Events that require holding "epmutex" are very rare, while for
90 * normal operations the epoll private "ep->mtx" will guarantee
91 * a better scalability.
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
97 /* Maximum number of nesting allowed inside epoll sets */
98 #define EP_MAX_NESTS 4
100 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 #define EP_UNACTIVE_PTR ((void *) -1L)
104 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 struct epoll_filefd
{
112 * Structure used to track possible nested calls, for too deep recursions
115 struct nested_call_node
{
116 struct list_head llink
;
122 * This structure is used as collector for nested calls, to check for
123 * maximum recursion dept and loop cycles.
125 struct nested_calls
{
126 struct list_head tasks_call_list
;
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
137 /* RB tree node used to link this structure to the eventpoll RB tree */
140 /* List header used to link this structure to the eventpoll ready list */
141 struct list_head rdllink
;
144 * Works together "struct eventpoll"->ovflist in keeping the
145 * single linked chain of items.
149 /* The file descriptor information this item refers to */
150 struct epoll_filefd ffd
;
152 /* Number of active wait queue attached to poll operations */
155 /* List containing poll wait queues */
156 struct list_head pwqlist
;
158 /* The "container" of this item */
159 struct eventpoll
*ep
;
161 /* List header used to link this item to the "struct file" items list */
162 struct list_head fllink
;
164 /* wakeup_source used when EPOLLWAKEUP is set */
165 struct wakeup_source __rcu
*ws
;
167 /* The structure that describe the interested events and the source fd */
168 struct epoll_event event
;
172 * This structure is stored inside the "private_data" member of the file
173 * structure and represents the main data structure for the eventpoll
177 /* Protect the access to this structure */
181 * This mutex is used to ensure that files are not removed
182 * while epoll is using them. This is held during the event
183 * collection loop, the file cleanup path, the epoll file exit
184 * code and the ctl operations.
188 /* Wait queue used by sys_epoll_wait() */
189 wait_queue_head_t wq
;
191 /* Wait queue used by file->poll() */
192 wait_queue_head_t poll_wait
;
194 /* List of ready file descriptors */
195 struct list_head rdllist
;
197 /* RB tree root used to store monitored fd structs */
201 * This is a single linked list that chains all the "struct epitem" that
202 * happened while transferring ready events to userspace w/out
205 struct epitem
*ovflist
;
207 /* wakeup_source used when ep_scan_ready_list is running */
208 struct wakeup_source
*ws
;
210 /* The user that created the eventpoll descriptor */
211 struct user_struct
*user
;
215 /* used to optimize loop detection check */
217 struct list_head visited_list_link
;
220 /* Wait structure used by the poll hooks */
221 struct eppoll_entry
{
222 /* List header used to link this structure to the "struct epitem" */
223 struct list_head llink
;
225 /* The "base" pointer is set to the container "struct epitem" */
229 * Wait queue item that will be linked to the target file wait
234 /* The wait queue head that linked the "wait" wait queue item */
235 wait_queue_head_t
*whead
;
238 /* Wrapper struct used by poll queueing */
244 /* Used by the ep_send_events() function as callback private data */
245 struct ep_send_events_data
{
247 struct epoll_event __user
*events
;
251 * Configuration options available inside /proc/sys/fs/epoll/
253 /* Maximum number of epoll watched descriptors, per user */
254 static long max_user_watches __read_mostly
;
257 * This mutex is used to serialize ep_free() and eventpoll_release_file().
259 static DEFINE_MUTEX(epmutex
);
261 /* Used to check for epoll file descriptor inclusion loops */
262 static struct nested_calls poll_loop_ncalls
;
264 /* Used for safe wake up implementation */
265 static struct nested_calls poll_safewake_ncalls
;
267 /* Used to call file's f_op->poll() under the nested calls boundaries */
268 static struct nested_calls poll_readywalk_ncalls
;
270 /* Slab cache used to allocate "struct epitem" */
271 static struct kmem_cache
*epi_cache __read_mostly
;
273 /* Slab cache used to allocate "struct eppoll_entry" */
274 static struct kmem_cache
*pwq_cache __read_mostly
;
276 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
277 static LIST_HEAD(visited_list
);
280 * List of files with newly added links, where we may need to limit the number
281 * of emanating paths. Protected by the epmutex.
283 static LIST_HEAD(tfile_check_list
);
287 #include <linux/sysctl.h>
290 static long long_max
= LONG_MAX
;
292 ctl_table epoll_table
[] = {
294 .procname
= "max_user_watches",
295 .data
= &max_user_watches
,
296 .maxlen
= sizeof(max_user_watches
),
298 .proc_handler
= proc_doulongvec_minmax
,
304 #endif /* CONFIG_SYSCTL */
306 static const struct file_operations eventpoll_fops
;
308 static inline int is_file_epoll(struct file
*f
)
310 return f
->f_op
== &eventpoll_fops
;
313 /* Setup the structure that is used as key for the RB tree */
314 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
315 struct file
*file
, int fd
)
321 /* Compare RB tree keys */
322 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
323 struct epoll_filefd
*p2
)
325 return (p1
->file
> p2
->file
? +1:
326 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
329 /* Tells us if the item is currently linked */
330 static inline int ep_is_linked(struct list_head
*p
)
332 return !list_empty(p
);
335 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_t
*p
)
337 return container_of(p
, struct eppoll_entry
, wait
);
340 /* Get the "struct epitem" from a wait queue pointer */
341 static inline struct epitem
*ep_item_from_wait(wait_queue_t
*p
)
343 return container_of(p
, struct eppoll_entry
, wait
)->base
;
346 /* Get the "struct epitem" from an epoll queue wrapper */
347 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
349 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
352 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
353 static inline int ep_op_has_event(int op
)
355 return op
!= EPOLL_CTL_DEL
;
358 /* Initialize the poll safe wake up structure */
359 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
361 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
362 spin_lock_init(&ncalls
->lock
);
366 * ep_events_available - Checks if ready events might be available.
368 * @ep: Pointer to the eventpoll context.
370 * Returns: Returns a value different than zero if ready events are available,
373 static inline int ep_events_available(struct eventpoll
*ep
)
375 return !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
379 * ep_call_nested - Perform a bound (possibly) nested call, by checking
380 * that the recursion limit is not exceeded, and that
381 * the same nested call (by the meaning of same cookie) is
384 * @ncalls: Pointer to the nested_calls structure to be used for this call.
385 * @max_nests: Maximum number of allowed nesting calls.
386 * @nproc: Nested call core function pointer.
387 * @priv: Opaque data to be passed to the @nproc callback.
388 * @cookie: Cookie to be used to identify this nested call.
389 * @ctx: This instance context.
391 * Returns: Returns the code returned by the @nproc callback, or -1 if
392 * the maximum recursion limit has been exceeded.
394 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
395 int (*nproc
)(void *, void *, int), void *priv
,
396 void *cookie
, void *ctx
)
398 int error
, call_nests
= 0;
400 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
401 struct nested_call_node
*tncur
;
402 struct nested_call_node tnode
;
404 spin_lock_irqsave(&ncalls
->lock
, flags
);
407 * Try to see if the current task is already inside this wakeup call.
408 * We use a list here, since the population inside this set is always
411 list_for_each_entry(tncur
, lsthead
, llink
) {
412 if (tncur
->ctx
== ctx
&&
413 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
415 * Ops ... loop detected or maximum nest level reached.
416 * We abort this wake by breaking the cycle itself.
423 /* Add the current task and cookie to the list */
425 tnode
.cookie
= cookie
;
426 list_add(&tnode
.llink
, lsthead
);
428 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
430 /* Call the nested function */
431 error
= (*nproc
)(priv
, cookie
, call_nests
);
433 /* Remove the current task from the list */
434 spin_lock_irqsave(&ncalls
->lock
, flags
);
435 list_del(&tnode
.llink
);
437 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
443 * As described in commit 0ccf831cb lockdep: annotate epoll
444 * the use of wait queues used by epoll is done in a very controlled
445 * manner. Wake ups can nest inside each other, but are never done
446 * with the same locking. For example:
449 * efd1 = epoll_create();
450 * efd2 = epoll_create();
451 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
452 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
454 * When a packet arrives to the device underneath "dfd", the net code will
455 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
456 * callback wakeup entry on that queue, and the wake_up() performed by the
457 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
458 * (efd1) notices that it may have some event ready, so it needs to wake up
459 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
460 * that ends up in another wake_up(), after having checked about the
461 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
462 * avoid stack blasting.
464 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
465 * this special case of epoll.
467 #ifdef CONFIG_DEBUG_LOCK_ALLOC
468 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
469 unsigned long events
, int subclass
)
473 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
474 wake_up_locked_poll(wqueue
, events
);
475 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
478 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
479 unsigned long events
, int subclass
)
481 wake_up_poll(wqueue
, events
);
485 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
487 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
493 * Perform a safe wake up of the poll wait list. The problem is that
494 * with the new callback'd wake up system, it is possible that the
495 * poll callback is reentered from inside the call to wake_up() done
496 * on the poll wait queue head. The rule is that we cannot reenter the
497 * wake up code from the same task more than EP_MAX_NESTS times,
498 * and we cannot reenter the same wait queue head at all. This will
499 * enable to have a hierarchy of epoll file descriptor of no more than
502 static void ep_poll_safewake(wait_queue_head_t
*wq
)
504 int this_cpu
= get_cpu();
506 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
507 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
512 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
514 wait_queue_head_t
*whead
;
517 /* If it is cleared by POLLFREE, it should be rcu-safe */
518 whead
= rcu_dereference(pwq
->whead
);
520 remove_wait_queue(whead
, &pwq
->wait
);
525 * This function unregisters poll callbacks from the associated file
526 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
529 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
531 struct list_head
*lsthead
= &epi
->pwqlist
;
532 struct eppoll_entry
*pwq
;
534 while (!list_empty(lsthead
)) {
535 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
537 list_del(&pwq
->llink
);
538 ep_remove_wait_queue(pwq
);
539 kmem_cache_free(pwq_cache
, pwq
);
543 /* call only when ep->mtx is held */
544 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
546 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
549 /* call only when ep->mtx is held */
550 static inline void ep_pm_stay_awake(struct epitem
*epi
)
552 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
558 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
560 return rcu_access_pointer(epi
->ws
) ? true : false;
563 /* call when ep->mtx cannot be held (ep_poll_callback) */
564 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
566 struct wakeup_source
*ws
;
569 ws
= rcu_dereference(epi
->ws
);
576 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
577 * the scan code, to call f_op->poll(). Also allows for
578 * O(NumReady) performance.
580 * @ep: Pointer to the epoll private data structure.
581 * @sproc: Pointer to the scan callback.
582 * @priv: Private opaque data passed to the @sproc callback.
583 * @depth: The current depth of recursive f_op->poll calls.
585 * Returns: The same integer error code returned by the @sproc callback.
587 static int ep_scan_ready_list(struct eventpoll
*ep
,
588 int (*sproc
)(struct eventpoll
*,
589 struct list_head
*, void *),
593 int error
, pwake
= 0;
595 struct epitem
*epi
, *nepi
;
599 * We need to lock this because we could be hit by
600 * eventpoll_release_file() and epoll_ctl().
602 mutex_lock_nested(&ep
->mtx
, depth
);
605 * Steal the ready list, and re-init the original one to the
606 * empty list. Also, set ep->ovflist to NULL so that events
607 * happening while looping w/out locks, are not lost. We cannot
608 * have the poll callback to queue directly on ep->rdllist,
609 * because we want the "sproc" callback to be able to do it
612 spin_lock_irqsave(&ep
->lock
, flags
);
613 list_splice_init(&ep
->rdllist
, &txlist
);
615 spin_unlock_irqrestore(&ep
->lock
, flags
);
618 * Now call the callback function.
620 error
= (*sproc
)(ep
, &txlist
, priv
);
622 spin_lock_irqsave(&ep
->lock
, flags
);
624 * During the time we spent inside the "sproc" callback, some
625 * other events might have been queued by the poll callback.
626 * We re-insert them inside the main ready-list here.
628 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
629 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
631 * We need to check if the item is already in the list.
632 * During the "sproc" callback execution time, items are
633 * queued into ->ovflist but the "txlist" might already
634 * contain them, and the list_splice() below takes care of them.
636 if (!ep_is_linked(&epi
->rdllink
)) {
637 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
638 ep_pm_stay_awake(epi
);
642 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
643 * releasing the lock, events will be queued in the normal way inside
646 ep
->ovflist
= EP_UNACTIVE_PTR
;
649 * Quickly re-inject items left on "txlist".
651 list_splice(&txlist
, &ep
->rdllist
);
654 if (!list_empty(&ep
->rdllist
)) {
656 * Wake up (if active) both the eventpoll wait list and
657 * the ->poll() wait list (delayed after we release the lock).
659 if (waitqueue_active(&ep
->wq
))
660 wake_up_locked(&ep
->wq
);
661 if (waitqueue_active(&ep
->poll_wait
))
664 spin_unlock_irqrestore(&ep
->lock
, flags
);
666 mutex_unlock(&ep
->mtx
);
668 /* We have to call this outside the lock */
670 ep_poll_safewake(&ep
->poll_wait
);
676 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
677 * all the associated resources. Must be called with "mtx" held.
679 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
682 struct file
*file
= epi
->ffd
.file
;
685 * Removes poll wait queue hooks. We _have_ to do this without holding
686 * the "ep->lock" otherwise a deadlock might occur. This because of the
687 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
688 * queue head lock when unregistering the wait queue. The wakeup callback
689 * will run by holding the wait queue head lock and will call our callback
690 * that will try to get "ep->lock".
692 ep_unregister_pollwait(ep
, epi
);
694 /* Remove the current item from the list of epoll hooks */
695 spin_lock(&file
->f_lock
);
696 if (ep_is_linked(&epi
->fllink
))
697 list_del_init(&epi
->fllink
);
698 spin_unlock(&file
->f_lock
);
700 rb_erase(&epi
->rbn
, &ep
->rbr
);
702 spin_lock_irqsave(&ep
->lock
, flags
);
703 if (ep_is_linked(&epi
->rdllink
))
704 list_del_init(&epi
->rdllink
);
705 spin_unlock_irqrestore(&ep
->lock
, flags
);
707 wakeup_source_unregister(ep_wakeup_source(epi
));
709 /* At this point it is safe to free the eventpoll item */
710 kmem_cache_free(epi_cache
, epi
);
712 atomic_long_dec(&ep
->user
->epoll_watches
);
717 static void ep_free(struct eventpoll
*ep
)
722 /* We need to release all tasks waiting for these file */
723 if (waitqueue_active(&ep
->poll_wait
))
724 ep_poll_safewake(&ep
->poll_wait
);
727 * We need to lock this because we could be hit by
728 * eventpoll_release_file() while we're freeing the "struct eventpoll".
729 * We do not need to hold "ep->mtx" here because the epoll file
730 * is on the way to be removed and no one has references to it
731 * anymore. The only hit might come from eventpoll_release_file() but
732 * holding "epmutex" is sufficient here.
734 mutex_lock(&epmutex
);
737 * Walks through the whole tree by unregistering poll callbacks.
739 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
740 epi
= rb_entry(rbp
, struct epitem
, rbn
);
742 ep_unregister_pollwait(ep
, epi
);
747 * Walks through the whole tree by freeing each "struct epitem". At this
748 * point we are sure no poll callbacks will be lingering around, and also by
749 * holding "epmutex" we can be sure that no file cleanup code will hit
750 * us during this operation. So we can avoid the lock on "ep->lock".
751 * We do not need to lock ep->mtx, either, we only do it to prevent
754 mutex_lock(&ep
->mtx
);
755 while ((rbp
= rb_first(&ep
->rbr
)) != NULL
) {
756 epi
= rb_entry(rbp
, struct epitem
, rbn
);
760 mutex_unlock(&ep
->mtx
);
762 mutex_unlock(&epmutex
);
763 mutex_destroy(&ep
->mtx
);
765 wakeup_source_unregister(ep
->ws
);
769 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
771 struct eventpoll
*ep
= file
->private_data
;
779 static inline unsigned int ep_item_poll(struct epitem
*epi
, poll_table
*pt
)
781 pt
->_key
= epi
->event
.events
;
783 return epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, pt
) & epi
->event
.events
;
786 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
789 struct epitem
*epi
, *tmp
;
792 init_poll_funcptr(&pt
, NULL
);
794 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
795 if (ep_item_poll(epi
, &pt
))
796 return POLLIN
| POLLRDNORM
;
799 * Item has been dropped into the ready list by the poll
800 * callback, but it's not actually ready, as far as
801 * caller requested events goes. We can remove it here.
803 __pm_relax(ep_wakeup_source(epi
));
804 list_del_init(&epi
->rdllink
);
811 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
813 return ep_scan_ready_list(priv
, ep_read_events_proc
, NULL
, call_nests
+ 1);
816 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
819 struct eventpoll
*ep
= file
->private_data
;
821 /* Insert inside our poll wait queue */
822 poll_wait(file
, &ep
->poll_wait
, wait
);
825 * Proceed to find out if wanted events are really available inside
826 * the ready list. This need to be done under ep_call_nested()
827 * supervision, since the call to f_op->poll() done on listed files
828 * could re-enter here.
830 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
831 ep_poll_readyevents_proc
, ep
, ep
, current
);
833 return pollflags
!= -1 ? pollflags
: 0;
836 #ifdef CONFIG_PROC_FS
837 static int ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
839 struct eventpoll
*ep
= f
->private_data
;
843 mutex_lock(&ep
->mtx
);
844 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
845 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
847 ret
= seq_printf(m
, "tfd: %8d events: %8x data: %16llx\n",
848 epi
->ffd
.fd
, epi
->event
.events
,
849 (long long)epi
->event
.data
);
853 mutex_unlock(&ep
->mtx
);
859 /* File callbacks that implement the eventpoll file behaviour */
860 static const struct file_operations eventpoll_fops
= {
861 #ifdef CONFIG_PROC_FS
862 .show_fdinfo
= ep_show_fdinfo
,
864 .release
= ep_eventpoll_release
,
865 .poll
= ep_eventpoll_poll
,
866 .llseek
= noop_llseek
,
870 * This is called from eventpoll_release() to unlink files from the eventpoll
871 * interface. We need to have this facility to cleanup correctly files that are
872 * closed without being removed from the eventpoll interface.
874 void eventpoll_release_file(struct file
*file
)
876 struct list_head
*lsthead
= &file
->f_ep_links
;
877 struct eventpoll
*ep
;
881 * We don't want to get "file->f_lock" because it is not
882 * necessary. It is not necessary because we're in the "struct file"
883 * cleanup path, and this means that no one is using this file anymore.
884 * So, for example, epoll_ctl() cannot hit here since if we reach this
885 * point, the file counter already went to zero and fget() would fail.
886 * The only hit might come from ep_free() but by holding the mutex
887 * will correctly serialize the operation. We do need to acquire
888 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
889 * from anywhere but ep_free().
891 * Besides, ep_remove() acquires the lock, so we can't hold it here.
893 mutex_lock(&epmutex
);
895 while (!list_empty(lsthead
)) {
896 epi
= list_first_entry(lsthead
, struct epitem
, fllink
);
899 list_del_init(&epi
->fllink
);
900 mutex_lock_nested(&ep
->mtx
, 0);
902 mutex_unlock(&ep
->mtx
);
905 mutex_unlock(&epmutex
);
908 static int ep_alloc(struct eventpoll
**pep
)
911 struct user_struct
*user
;
912 struct eventpoll
*ep
;
914 user
= get_current_user();
916 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
920 spin_lock_init(&ep
->lock
);
921 mutex_init(&ep
->mtx
);
922 init_waitqueue_head(&ep
->wq
);
923 init_waitqueue_head(&ep
->poll_wait
);
924 INIT_LIST_HEAD(&ep
->rdllist
);
926 ep
->ovflist
= EP_UNACTIVE_PTR
;
939 * Search the file inside the eventpoll tree. The RB tree operations
940 * are protected by the "mtx" mutex, and ep_find() must be called with
943 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
947 struct epitem
*epi
, *epir
= NULL
;
948 struct epoll_filefd ffd
;
950 ep_set_ffd(&ffd
, file
, fd
);
951 for (rbp
= ep
->rbr
.rb_node
; rbp
; ) {
952 epi
= rb_entry(rbp
, struct epitem
, rbn
);
953 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
968 * This is the callback that is passed to the wait queue wakeup
969 * mechanism. It is called by the stored file descriptors when they
970 * have events to report.
972 static int ep_poll_callback(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
976 struct epitem
*epi
= ep_item_from_wait(wait
);
977 struct eventpoll
*ep
= epi
->ep
;
979 if ((unsigned long)key
& POLLFREE
) {
980 ep_pwq_from_wait(wait
)->whead
= NULL
;
982 * whead = NULL above can race with ep_remove_wait_queue()
983 * which can do another remove_wait_queue() after us, so we
984 * can't use __remove_wait_queue(). whead->lock is held by
987 list_del_init(&wait
->task_list
);
990 spin_lock_irqsave(&ep
->lock
, flags
);
993 * If the event mask does not contain any poll(2) event, we consider the
994 * descriptor to be disabled. This condition is likely the effect of the
995 * EPOLLONESHOT bit that disables the descriptor when an event is received,
996 * until the next EPOLL_CTL_MOD will be issued.
998 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1002 * Check the events coming with the callback. At this stage, not
1003 * every device reports the events in the "key" parameter of the
1004 * callback. We need to be able to handle both cases here, hence the
1005 * test for "key" != NULL before the event match test.
1007 if (key
&& !((unsigned long) key
& epi
->event
.events
))
1011 * If we are transferring events to userspace, we can hold no locks
1012 * (because we're accessing user memory, and because of linux f_op->poll()
1013 * semantics). All the events that happen during that period of time are
1014 * chained in ep->ovflist and requeued later on.
1016 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
1017 if (epi
->next
== EP_UNACTIVE_PTR
) {
1018 epi
->next
= ep
->ovflist
;
1022 * Activate ep->ws since epi->ws may get
1023 * deactivated at any time.
1025 __pm_stay_awake(ep
->ws
);
1032 /* If this file is already in the ready list we exit soon */
1033 if (!ep_is_linked(&epi
->rdllink
)) {
1034 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1035 ep_pm_stay_awake_rcu(epi
);
1039 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1042 if (waitqueue_active(&ep
->wq
))
1043 wake_up_locked(&ep
->wq
);
1044 if (waitqueue_active(&ep
->poll_wait
))
1048 spin_unlock_irqrestore(&ep
->lock
, flags
);
1050 /* We have to call this outside the lock */
1052 ep_poll_safewake(&ep
->poll_wait
);
1058 * This is the callback that is used to add our wait queue to the
1059 * target file wakeup lists.
1061 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1064 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1065 struct eppoll_entry
*pwq
;
1067 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1068 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1071 add_wait_queue(whead
, &pwq
->wait
);
1072 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1075 /* We have to signal that an error occurred */
1080 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1083 struct rb_node
**p
= &ep
->rbr
.rb_node
, *parent
= NULL
;
1084 struct epitem
*epic
;
1088 epic
= rb_entry(parent
, struct epitem
, rbn
);
1089 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1091 p
= &parent
->rb_right
;
1093 p
= &parent
->rb_left
;
1095 rb_link_node(&epi
->rbn
, parent
, p
);
1096 rb_insert_color(&epi
->rbn
, &ep
->rbr
);
1101 #define PATH_ARR_SIZE 5
1103 * These are the number paths of length 1 to 5, that we are allowing to emanate
1104 * from a single file of interest. For example, we allow 1000 paths of length
1105 * 1, to emanate from each file of interest. This essentially represents the
1106 * potential wakeup paths, which need to be limited in order to avoid massive
1107 * uncontrolled wakeup storms. The common use case should be a single ep which
1108 * is connected to n file sources. In this case each file source has 1 path
1109 * of length 1. Thus, the numbers below should be more than sufficient. These
1110 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1111 * and delete can't add additional paths. Protected by the epmutex.
1113 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1114 static int path_count
[PATH_ARR_SIZE
];
1116 static int path_count_inc(int nests
)
1118 /* Allow an arbitrary number of depth 1 paths */
1122 if (++path_count
[nests
] > path_limits
[nests
])
1127 static void path_count_init(void)
1131 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1135 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1138 struct file
*file
= priv
;
1139 struct file
*child_file
;
1142 list_for_each_entry(epi
, &file
->f_ep_links
, fllink
) {
1143 child_file
= epi
->ep
->file
;
1144 if (is_file_epoll(child_file
)) {
1145 if (list_empty(&child_file
->f_ep_links
)) {
1146 if (path_count_inc(call_nests
)) {
1151 error
= ep_call_nested(&poll_loop_ncalls
,
1153 reverse_path_check_proc
,
1154 child_file
, child_file
,
1160 printk(KERN_ERR
"reverse_path_check_proc: "
1161 "file is not an ep!\n");
1168 * reverse_path_check - The tfile_check_list is list of file *, which have
1169 * links that are proposed to be newly added. We need to
1170 * make sure that those added links don't add too many
1171 * paths such that we will spend all our time waking up
1172 * eventpoll objects.
1174 * Returns: Returns zero if the proposed links don't create too many paths,
1177 static int reverse_path_check(void)
1180 struct file
*current_file
;
1182 /* let's call this for all tfiles */
1183 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1185 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1186 reverse_path_check_proc
, current_file
,
1187 current_file
, current
);
1194 static int ep_create_wakeup_source(struct epitem
*epi
)
1197 struct wakeup_source
*ws
;
1200 epi
->ep
->ws
= wakeup_source_register("eventpoll");
1205 name
= epi
->ffd
.file
->f_path
.dentry
->d_name
.name
;
1206 ws
= wakeup_source_register(name
);
1210 rcu_assign_pointer(epi
->ws
, ws
);
1215 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1216 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1218 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1220 RCU_INIT_POINTER(epi
->ws
, NULL
);
1223 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1224 * used internally by wakeup_source_remove, too (called by
1225 * wakeup_source_unregister), so we cannot use call_rcu
1228 wakeup_source_unregister(ws
);
1232 * Must be called with "mtx" held.
1234 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
1235 struct file
*tfile
, int fd
)
1237 int error
, revents
, pwake
= 0;
1238 unsigned long flags
;
1241 struct ep_pqueue epq
;
1243 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1244 if (unlikely(user_watches
>= max_user_watches
))
1246 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1249 /* Item initialization follow here ... */
1250 INIT_LIST_HEAD(&epi
->rdllink
);
1251 INIT_LIST_HEAD(&epi
->fllink
);
1252 INIT_LIST_HEAD(&epi
->pwqlist
);
1254 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1255 epi
->event
= *event
;
1257 epi
->next
= EP_UNACTIVE_PTR
;
1258 if (epi
->event
.events
& EPOLLWAKEUP
) {
1259 error
= ep_create_wakeup_source(epi
);
1261 goto error_create_wakeup_source
;
1263 RCU_INIT_POINTER(epi
->ws
, NULL
);
1266 /* Initialize the poll table using the queue callback */
1268 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1271 * Attach the item to the poll hooks and get current event bits.
1272 * We can safely use the file* here because its usage count has
1273 * been increased by the caller of this function. Note that after
1274 * this operation completes, the poll callback can start hitting
1277 revents
= ep_item_poll(epi
, &epq
.pt
);
1280 * We have to check if something went wrong during the poll wait queue
1281 * install process. Namely an allocation for a wait queue failed due
1282 * high memory pressure.
1286 goto error_unregister
;
1288 /* Add the current item to the list of active epoll hook for this file */
1289 spin_lock(&tfile
->f_lock
);
1290 list_add_tail(&epi
->fllink
, &tfile
->f_ep_links
);
1291 spin_unlock(&tfile
->f_lock
);
1294 * Add the current item to the RB tree. All RB tree operations are
1295 * protected by "mtx", and ep_insert() is called with "mtx" held.
1297 ep_rbtree_insert(ep
, epi
);
1299 /* now check if we've created too many backpaths */
1301 if (reverse_path_check())
1302 goto error_remove_epi
;
1304 /* We have to drop the new item inside our item list to keep track of it */
1305 spin_lock_irqsave(&ep
->lock
, flags
);
1307 /* If the file is already "ready" we drop it inside the ready list */
1308 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
1309 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1310 ep_pm_stay_awake(epi
);
1312 /* Notify waiting tasks that events are available */
1313 if (waitqueue_active(&ep
->wq
))
1314 wake_up_locked(&ep
->wq
);
1315 if (waitqueue_active(&ep
->poll_wait
))
1319 spin_unlock_irqrestore(&ep
->lock
, flags
);
1321 atomic_long_inc(&ep
->user
->epoll_watches
);
1323 /* We have to call this outside the lock */
1325 ep_poll_safewake(&ep
->poll_wait
);
1330 spin_lock(&tfile
->f_lock
);
1331 if (ep_is_linked(&epi
->fllink
))
1332 list_del_init(&epi
->fllink
);
1333 spin_unlock(&tfile
->f_lock
);
1335 rb_erase(&epi
->rbn
, &ep
->rbr
);
1338 ep_unregister_pollwait(ep
, epi
);
1341 * We need to do this because an event could have been arrived on some
1342 * allocated wait queue. Note that we don't care about the ep->ovflist
1343 * list, since that is used/cleaned only inside a section bound by "mtx".
1344 * And ep_insert() is called with "mtx" held.
1346 spin_lock_irqsave(&ep
->lock
, flags
);
1347 if (ep_is_linked(&epi
->rdllink
))
1348 list_del_init(&epi
->rdllink
);
1349 spin_unlock_irqrestore(&ep
->lock
, flags
);
1351 wakeup_source_unregister(ep_wakeup_source(epi
));
1353 error_create_wakeup_source
:
1354 kmem_cache_free(epi_cache
, epi
);
1360 * Modify the interest event mask by dropping an event if the new mask
1361 * has a match in the current file status. Must be called with "mtx" held.
1363 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1366 unsigned int revents
;
1369 init_poll_funcptr(&pt
, NULL
);
1372 * Set the new event interest mask before calling f_op->poll();
1373 * otherwise we might miss an event that happens between the
1374 * f_op->poll() call and the new event set registering.
1376 epi
->event
.events
= event
->events
; /* need barrier below */
1377 epi
->event
.data
= event
->data
; /* protected by mtx */
1378 if (epi
->event
.events
& EPOLLWAKEUP
) {
1379 if (!ep_has_wakeup_source(epi
))
1380 ep_create_wakeup_source(epi
);
1381 } else if (ep_has_wakeup_source(epi
)) {
1382 ep_destroy_wakeup_source(epi
);
1386 * The following barrier has two effects:
1388 * 1) Flush epi changes above to other CPUs. This ensures
1389 * we do not miss events from ep_poll_callback if an
1390 * event occurs immediately after we call f_op->poll().
1391 * We need this because we did not take ep->lock while
1392 * changing epi above (but ep_poll_callback does take
1395 * 2) We also need to ensure we do not miss _past_ events
1396 * when calling f_op->poll(). This barrier also
1397 * pairs with the barrier in wq_has_sleeper (see
1398 * comments for wq_has_sleeper).
1400 * This barrier will now guarantee ep_poll_callback or f_op->poll
1401 * (or both) will notice the readiness of an item.
1406 * Get current event bits. We can safely use the file* here because
1407 * its usage count has been increased by the caller of this function.
1409 revents
= ep_item_poll(epi
, &pt
);
1412 * If the item is "hot" and it is not registered inside the ready
1413 * list, push it inside.
1415 if (revents
& event
->events
) {
1416 spin_lock_irq(&ep
->lock
);
1417 if (!ep_is_linked(&epi
->rdllink
)) {
1418 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1419 ep_pm_stay_awake(epi
);
1421 /* Notify waiting tasks that events are available */
1422 if (waitqueue_active(&ep
->wq
))
1423 wake_up_locked(&ep
->wq
);
1424 if (waitqueue_active(&ep
->poll_wait
))
1427 spin_unlock_irq(&ep
->lock
);
1430 /* We have to call this outside the lock */
1432 ep_poll_safewake(&ep
->poll_wait
);
1437 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1440 struct ep_send_events_data
*esed
= priv
;
1442 unsigned int revents
;
1444 struct epoll_event __user
*uevent
;
1445 struct wakeup_source
*ws
;
1448 init_poll_funcptr(&pt
, NULL
);
1451 * We can loop without lock because we are passed a task private list.
1452 * Items cannot vanish during the loop because ep_scan_ready_list() is
1453 * holding "mtx" during this call.
1455 for (eventcnt
= 0, uevent
= esed
->events
;
1456 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1457 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1460 * Activate ep->ws before deactivating epi->ws to prevent
1461 * triggering auto-suspend here (in case we reactive epi->ws
1464 * This could be rearranged to delay the deactivation of epi->ws
1465 * instead, but then epi->ws would temporarily be out of sync
1466 * with ep_is_linked().
1468 ws
= ep_wakeup_source(epi
);
1471 __pm_stay_awake(ep
->ws
);
1475 list_del_init(&epi
->rdllink
);
1477 revents
= ep_item_poll(epi
, &pt
);
1480 * If the event mask intersect the caller-requested one,
1481 * deliver the event to userspace. Again, ep_scan_ready_list()
1482 * is holding "mtx", so no operations coming from userspace
1483 * can change the item.
1486 if (__put_user(revents
, &uevent
->events
) ||
1487 __put_user(epi
->event
.data
, &uevent
->data
)) {
1488 list_add(&epi
->rdllink
, head
);
1489 ep_pm_stay_awake(epi
);
1490 return eventcnt
? eventcnt
: -EFAULT
;
1494 if (epi
->event
.events
& EPOLLONESHOT
)
1495 epi
->event
.events
&= EP_PRIVATE_BITS
;
1496 else if (!(epi
->event
.events
& EPOLLET
)) {
1498 * If this file has been added with Level
1499 * Trigger mode, we need to insert back inside
1500 * the ready list, so that the next call to
1501 * epoll_wait() will check again the events
1502 * availability. At this point, no one can insert
1503 * into ep->rdllist besides us. The epoll_ctl()
1504 * callers are locked out by
1505 * ep_scan_ready_list() holding "mtx" and the
1506 * poll callback will queue them in ep->ovflist.
1508 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1509 ep_pm_stay_awake(epi
);
1517 static int ep_send_events(struct eventpoll
*ep
,
1518 struct epoll_event __user
*events
, int maxevents
)
1520 struct ep_send_events_data esed
;
1522 esed
.maxevents
= maxevents
;
1523 esed
.events
= events
;
1525 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0);
1528 static inline struct timespec
ep_set_mstimeout(long ms
)
1530 struct timespec now
, ts
= {
1531 .tv_sec
= ms
/ MSEC_PER_SEC
,
1532 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1536 return timespec_add_safe(now
, ts
);
1540 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1543 * @ep: Pointer to the eventpoll context.
1544 * @events: Pointer to the userspace buffer where the ready events should be
1546 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1547 * @timeout: Maximum timeout for the ready events fetch operation, in
1548 * milliseconds. If the @timeout is zero, the function will not block,
1549 * while if the @timeout is less than zero, the function will block
1550 * until at least one event has been retrieved (or an error
1553 * Returns: Returns the number of ready events which have been fetched, or an
1554 * error code, in case of error.
1556 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1557 int maxevents
, long timeout
)
1559 int res
= 0, eavail
, timed_out
= 0;
1560 unsigned long flags
;
1563 ktime_t expires
, *to
= NULL
;
1566 struct timespec end_time
= ep_set_mstimeout(timeout
);
1568 slack
= select_estimate_accuracy(&end_time
);
1570 *to
= timespec_to_ktime(end_time
);
1571 } else if (timeout
== 0) {
1573 * Avoid the unnecessary trip to the wait queue loop, if the
1574 * caller specified a non blocking operation.
1577 spin_lock_irqsave(&ep
->lock
, flags
);
1582 spin_lock_irqsave(&ep
->lock
, flags
);
1584 if (!ep_events_available(ep
)) {
1586 * We don't have any available event to return to the caller.
1587 * We need to sleep here, and we will be wake up by
1588 * ep_poll_callback() when events will become available.
1590 init_waitqueue_entry(&wait
, current
);
1591 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1595 * We don't want to sleep if the ep_poll_callback() sends us
1596 * a wakeup in between. That's why we set the task state
1597 * to TASK_INTERRUPTIBLE before doing the checks.
1599 set_current_state(TASK_INTERRUPTIBLE
);
1600 if (ep_events_available(ep
) || timed_out
)
1602 if (signal_pending(current
)) {
1607 spin_unlock_irqrestore(&ep
->lock
, flags
);
1608 if (!freezable_schedule_hrtimeout_range(to
, slack
,
1612 spin_lock_irqsave(&ep
->lock
, flags
);
1614 __remove_wait_queue(&ep
->wq
, &wait
);
1616 set_current_state(TASK_RUNNING
);
1619 /* Is it worth to try to dig for events ? */
1620 eavail
= ep_events_available(ep
);
1622 spin_unlock_irqrestore(&ep
->lock
, flags
);
1625 * Try to transfer events to user space. In case we get 0 events and
1626 * there's still timeout left over, we go trying again in search of
1629 if (!res
&& eavail
&&
1630 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1637 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1638 * API, to verify that adding an epoll file inside another
1639 * epoll structure, does not violate the constraints, in
1640 * terms of closed loops, or too deep chains (which can
1641 * result in excessive stack usage).
1643 * @priv: Pointer to the epoll file to be currently checked.
1644 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1645 * data structure pointer.
1646 * @call_nests: Current dept of the @ep_call_nested() call stack.
1648 * Returns: Returns zero if adding the epoll @file inside current epoll
1649 * structure @ep does not violate the constraints, or -1 otherwise.
1651 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1654 struct file
*file
= priv
;
1655 struct eventpoll
*ep
= file
->private_data
;
1656 struct eventpoll
*ep_tovisit
;
1657 struct rb_node
*rbp
;
1660 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1662 list_add(&ep
->visited_list_link
, &visited_list
);
1663 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1664 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1665 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1666 ep_tovisit
= epi
->ffd
.file
->private_data
;
1667 if (ep_tovisit
->visited
)
1669 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1670 ep_loop_check_proc
, epi
->ffd
.file
,
1671 ep_tovisit
, current
);
1676 * If we've reached a file that is not associated with
1677 * an ep, then we need to check if the newly added
1678 * links are going to add too many wakeup paths. We do
1679 * this by adding it to the tfile_check_list, if it's
1680 * not already there, and calling reverse_path_check()
1681 * during ep_insert().
1683 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1684 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1688 mutex_unlock(&ep
->mtx
);
1694 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1695 * another epoll file (represented by @ep) does not create
1696 * closed loops or too deep chains.
1698 * @ep: Pointer to the epoll private data structure.
1699 * @file: Pointer to the epoll file to be checked.
1701 * Returns: Returns zero if adding the epoll @file inside current epoll
1702 * structure @ep does not violate the constraints, or -1 otherwise.
1704 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1707 struct eventpoll
*ep_cur
, *ep_next
;
1709 ret
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1710 ep_loop_check_proc
, file
, ep
, current
);
1711 /* clear visited list */
1712 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1713 visited_list_link
) {
1714 ep_cur
->visited
= 0;
1715 list_del(&ep_cur
->visited_list_link
);
1720 static void clear_tfile_check_list(void)
1724 /* first clear the tfile_check_list */
1725 while (!list_empty(&tfile_check_list
)) {
1726 file
= list_first_entry(&tfile_check_list
, struct file
,
1728 list_del_init(&file
->f_tfile_llink
);
1730 INIT_LIST_HEAD(&tfile_check_list
);
1734 * Open an eventpoll file descriptor.
1736 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1739 struct eventpoll
*ep
= NULL
;
1742 /* Check the EPOLL_* constant for consistency. */
1743 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1745 if (flags
& ~EPOLL_CLOEXEC
)
1748 * Create the internal data structure ("struct eventpoll").
1750 error
= ep_alloc(&ep
);
1754 * Creates all the items needed to setup an eventpoll file. That is,
1755 * a file structure and a free file descriptor.
1757 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
1762 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
1763 O_RDWR
| (flags
& O_CLOEXEC
));
1765 error
= PTR_ERR(file
);
1769 fd_install(fd
, file
);
1779 SYSCALL_DEFINE1(epoll_create
, int, size
)
1784 return sys_epoll_create1(0);
1788 * The following function implements the controller interface for
1789 * the eventpoll file that enables the insertion/removal/change of
1790 * file descriptors inside the interest set.
1792 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
1793 struct epoll_event __user
*, event
)
1796 int did_lock_epmutex
= 0;
1798 struct eventpoll
*ep
;
1800 struct epoll_event epds
;
1803 if (ep_op_has_event(op
) &&
1804 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
1812 /* Get the "struct file *" for the target file */
1817 /* The target file descriptor must support poll */
1819 if (!tf
.file
->f_op
|| !tf
.file
->f_op
->poll
)
1820 goto error_tgt_fput
;
1822 /* Check if EPOLLWAKEUP is allowed */
1823 if ((epds
.events
& EPOLLWAKEUP
) && !capable(CAP_BLOCK_SUSPEND
))
1824 epds
.events
&= ~EPOLLWAKEUP
;
1827 * We have to check that the file structure underneath the file descriptor
1828 * the user passed to us _is_ an eventpoll file. And also we do not permit
1829 * adding an epoll file descriptor inside itself.
1832 if (f
.file
== tf
.file
|| !is_file_epoll(f
.file
))
1833 goto error_tgt_fput
;
1836 * At this point it is safe to assume that the "private_data" contains
1837 * our own data structure.
1839 ep
= f
.file
->private_data
;
1842 * When we insert an epoll file descriptor, inside another epoll file
1843 * descriptor, there is the change of creating closed loops, which are
1844 * better be handled here, than in more critical paths. While we are
1845 * checking for loops we also determine the list of files reachable
1846 * and hang them on the tfile_check_list, so we can check that we
1847 * haven't created too many possible wakeup paths.
1849 * We need to hold the epmutex across both ep_insert and ep_remove
1850 * b/c we want to make sure we are looking at a coherent view of
1853 if (op
== EPOLL_CTL_ADD
|| op
== EPOLL_CTL_DEL
) {
1854 mutex_lock(&epmutex
);
1855 did_lock_epmutex
= 1;
1857 if (op
== EPOLL_CTL_ADD
) {
1858 if (is_file_epoll(tf
.file
)) {
1860 if (ep_loop_check(ep
, tf
.file
) != 0) {
1861 clear_tfile_check_list();
1862 goto error_tgt_fput
;
1865 list_add(&tf
.file
->f_tfile_llink
, &tfile_check_list
);
1868 mutex_lock_nested(&ep
->mtx
, 0);
1871 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1872 * above, we can be sure to be able to use the item looked up by
1873 * ep_find() till we release the mutex.
1875 epi
= ep_find(ep
, tf
.file
, fd
);
1881 epds
.events
|= POLLERR
| POLLHUP
;
1882 error
= ep_insert(ep
, &epds
, tf
.file
, fd
);
1885 clear_tfile_check_list();
1889 error
= ep_remove(ep
, epi
);
1895 epds
.events
|= POLLERR
| POLLHUP
;
1896 error
= ep_modify(ep
, epi
, &epds
);
1901 mutex_unlock(&ep
->mtx
);
1904 if (did_lock_epmutex
)
1905 mutex_unlock(&epmutex
);
1916 * Implement the event wait interface for the eventpoll file. It is the kernel
1917 * part of the user space epoll_wait(2).
1919 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
1920 int, maxevents
, int, timeout
)
1924 struct eventpoll
*ep
;
1926 /* The maximum number of event must be greater than zero */
1927 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
1930 /* Verify that the area passed by the user is writeable */
1931 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
)))
1934 /* Get the "struct file *" for the eventpoll file */
1940 * We have to check that the file structure underneath the fd
1941 * the user passed to us _is_ an eventpoll file.
1944 if (!is_file_epoll(f
.file
))
1948 * At this point it is safe to assume that the "private_data" contains
1949 * our own data structure.
1951 ep
= f
.file
->private_data
;
1953 /* Time to fish for events ... */
1954 error
= ep_poll(ep
, events
, maxevents
, timeout
);
1962 * Implement the event wait interface for the eventpoll file. It is the kernel
1963 * part of the user space epoll_pwait(2).
1965 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
1966 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
1970 sigset_t ksigmask
, sigsaved
;
1973 * If the caller wants a certain signal mask to be set during the wait,
1977 if (sigsetsize
!= sizeof(sigset_t
))
1979 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
1981 sigsaved
= current
->blocked
;
1982 set_current_blocked(&ksigmask
);
1985 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
1988 * If we changed the signal mask, we need to restore the original one.
1989 * In case we've got a signal while waiting, we do not restore the
1990 * signal mask yet, and we allow do_signal() to deliver the signal on
1991 * the way back to userspace, before the signal mask is restored.
1994 if (error
== -EINTR
) {
1995 memcpy(¤t
->saved_sigmask
, &sigsaved
,
1997 set_restore_sigmask();
1999 set_current_blocked(&sigsaved
);
2005 #ifdef CONFIG_COMPAT
2006 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2007 struct epoll_event __user
*, events
,
2008 int, maxevents
, int, timeout
,
2009 const compat_sigset_t __user
*, sigmask
,
2010 compat_size_t
, sigsetsize
)
2013 compat_sigset_t csigmask
;
2014 sigset_t ksigmask
, sigsaved
;
2017 * If the caller wants a certain signal mask to be set during the wait,
2021 if (sigsetsize
!= sizeof(compat_sigset_t
))
2023 if (copy_from_user(&csigmask
, sigmask
, sizeof(csigmask
)))
2025 sigset_from_compat(&ksigmask
, &csigmask
);
2026 sigsaved
= current
->blocked
;
2027 set_current_blocked(&ksigmask
);
2030 err
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
2033 * If we changed the signal mask, we need to restore the original one.
2034 * In case we've got a signal while waiting, we do not restore the
2035 * signal mask yet, and we allow do_signal() to deliver the signal on
2036 * the way back to userspace, before the signal mask is restored.
2039 if (err
== -EINTR
) {
2040 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2042 set_restore_sigmask();
2044 set_current_blocked(&sigsaved
);
2051 static int __init
eventpoll_init(void)
2057 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2059 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2061 BUG_ON(max_user_watches
< 0);
2064 * Initialize the structure used to perform epoll file descriptor
2065 * inclusion loops checks.
2067 ep_nested_calls_init(&poll_loop_ncalls
);
2069 /* Initialize the structure used to perform safe poll wait head wake ups */
2070 ep_nested_calls_init(&poll_safewake_ncalls
);
2072 /* Initialize the structure used to perform file's f_op->poll() calls */
2073 ep_nested_calls_init(&poll_readywalk_ncalls
);
2076 * We can have many thousands of epitems, so prevent this from
2077 * using an extra cache line on 64-bit (and smaller) CPUs
2079 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2081 /* Allocates slab cache used to allocate "struct epitem" items */
2082 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2083 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2085 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2086 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2087 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
2091 fs_initcall(eventpoll_init
);