2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
23 #include <asm/pgtable.h>
26 #include <linux/hugetlb.h>
29 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
30 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
31 unsigned long hugepages_treat_as_movable
;
33 static int max_hstate
;
34 unsigned int default_hstate_idx
;
35 struct hstate hstates
[HUGE_MAX_HSTATE
];
37 __initdata
LIST_HEAD(huge_boot_pages
);
39 /* for command line parsing */
40 static struct hstate
* __initdata parsed_hstate
;
41 static unsigned long __initdata default_hstate_max_huge_pages
;
42 static unsigned long __initdata default_hstate_size
;
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 static DEFINE_SPINLOCK(hugetlb_lock
);
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
61 * down_write(&mm->mmap_sem);
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
67 struct list_head link
;
72 static long region_add(struct list_head
*head
, long f
, long t
)
74 struct file_region
*rg
, *nrg
, *trg
;
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg
, head
, link
)
81 /* Round our left edge to the current segment if it encloses us. */
85 /* Check for and consume any regions we now overlap with. */
87 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
88 if (&rg
->link
== head
)
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
108 static long region_chg(struct list_head
*head
, long f
, long t
)
110 struct file_region
*rg
, *nrg
;
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg
, head
, link
)
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg
->link
== head
|| t
< rg
->from
) {
122 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
127 INIT_LIST_HEAD(&nrg
->link
);
128 list_add(&nrg
->link
, rg
->link
.prev
);
133 /* Round our left edge to the current segment if it encloses us. */
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
140 if (&rg
->link
== head
)
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
152 chg
-= rg
->to
- rg
->from
;
157 static long region_truncate(struct list_head
*head
, long end
)
159 struct file_region
*rg
, *trg
;
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg
, head
, link
)
166 if (&rg
->link
== head
)
169 /* If we are in the middle of a region then adjust it. */
170 if (end
> rg
->from
) {
173 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
178 if (&rg
->link
== head
)
180 chg
+= rg
->to
- rg
->from
;
187 static long region_count(struct list_head
*head
, long f
, long t
)
189 struct file_region
*rg
;
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg
, head
, link
) {
202 seg_from
= max(rg
->from
, f
);
203 seg_to
= min(rg
->to
, t
);
205 chg
+= seg_to
- seg_from
;
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
215 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
216 struct vm_area_struct
*vma
, unsigned long address
)
218 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
219 (vma
->vm_pgoff
>> huge_page_order(h
));
223 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
224 * bits of the reservation map pointer, which are always clear due to
227 #define HPAGE_RESV_OWNER (1UL << 0)
228 #define HPAGE_RESV_UNMAPPED (1UL << 1)
229 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
232 * These helpers are used to track how many pages are reserved for
233 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
234 * is guaranteed to have their future faults succeed.
236 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
237 * the reserve counters are updated with the hugetlb_lock held. It is safe
238 * to reset the VMA at fork() time as it is not in use yet and there is no
239 * chance of the global counters getting corrupted as a result of the values.
241 * The private mapping reservation is represented in a subtly different
242 * manner to a shared mapping. A shared mapping has a region map associated
243 * with the underlying file, this region map represents the backing file
244 * pages which have ever had a reservation assigned which this persists even
245 * after the page is instantiated. A private mapping has a region map
246 * associated with the original mmap which is attached to all VMAs which
247 * reference it, this region map represents those offsets which have consumed
248 * reservation ie. where pages have been instantiated.
250 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
252 return (unsigned long)vma
->vm_private_data
;
255 static void set_vma_private_data(struct vm_area_struct
*vma
,
258 vma
->vm_private_data
= (void *)value
;
263 struct list_head regions
;
266 static struct resv_map
*resv_map_alloc(void)
268 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
272 kref_init(&resv_map
->refs
);
273 INIT_LIST_HEAD(&resv_map
->regions
);
278 static void resv_map_release(struct kref
*ref
)
280 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
282 /* Clear out any active regions before we release the map. */
283 region_truncate(&resv_map
->regions
, 0);
287 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
289 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
290 if (!(vma
->vm_flags
& VM_SHARED
))
291 return (struct resv_map
*)(get_vma_private_data(vma
) &
296 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
298 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
299 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
301 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
302 HPAGE_RESV_MASK
) | (unsigned long)map
);
305 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
307 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
308 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
310 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
313 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
315 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
317 return (get_vma_private_data(vma
) & flag
) != 0;
320 /* Decrement the reserved pages in the hugepage pool by one */
321 static void decrement_hugepage_resv_vma(struct hstate
*h
,
322 struct vm_area_struct
*vma
)
324 if (vma
->vm_flags
& VM_NORESERVE
)
327 if (vma
->vm_flags
& VM_SHARED
) {
328 /* Shared mappings always use reserves */
329 h
->resv_huge_pages
--;
330 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
332 * Only the process that called mmap() has reserves for
335 h
->resv_huge_pages
--;
339 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
340 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
342 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
343 if (!(vma
->vm_flags
& VM_SHARED
))
344 vma
->vm_private_data
= (void *)0;
347 /* Returns true if the VMA has associated reserve pages */
348 static int vma_has_reserves(struct vm_area_struct
*vma
)
350 if (vma
->vm_flags
& VM_SHARED
)
352 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
357 static void clear_gigantic_page(struct page
*page
,
358 unsigned long addr
, unsigned long sz
)
361 struct page
*p
= page
;
364 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++, p
= mem_map_next(p
, page
, i
)) {
366 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
369 static void clear_huge_page(struct page
*page
,
370 unsigned long addr
, unsigned long sz
)
374 if (unlikely(sz
> MAX_ORDER_NR_PAGES
))
375 return clear_gigantic_page(page
, addr
, sz
);
378 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
380 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
384 static void copy_gigantic_page(struct page
*dst
, struct page
*src
,
385 unsigned long addr
, struct vm_area_struct
*vma
)
388 struct hstate
*h
= hstate_vma(vma
);
389 struct page
*dst_base
= dst
;
390 struct page
*src_base
= src
;
392 for (i
= 0; i
< pages_per_huge_page(h
); ) {
394 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
397 dst
= mem_map_next(dst
, dst_base
, i
);
398 src
= mem_map_next(src
, src_base
, i
);
401 static void copy_huge_page(struct page
*dst
, struct page
*src
,
402 unsigned long addr
, struct vm_area_struct
*vma
)
405 struct hstate
*h
= hstate_vma(vma
);
407 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
))
408 return copy_gigantic_page(dst
, src
, addr
, vma
);
411 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
413 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
417 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
419 int nid
= page_to_nid(page
);
420 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
421 h
->free_huge_pages
++;
422 h
->free_huge_pages_node
[nid
]++;
425 static struct page
*dequeue_huge_page(struct hstate
*h
)
428 struct page
*page
= NULL
;
430 for (nid
= 0; nid
< MAX_NUMNODES
; ++nid
) {
431 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
432 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
434 list_del(&page
->lru
);
435 h
->free_huge_pages
--;
436 h
->free_huge_pages_node
[nid
]--;
443 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
444 struct vm_area_struct
*vma
,
445 unsigned long address
, int avoid_reserve
)
448 struct page
*page
= NULL
;
449 struct mempolicy
*mpol
;
450 nodemask_t
*nodemask
;
451 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
452 htlb_alloc_mask
, &mpol
, &nodemask
);
457 * A child process with MAP_PRIVATE mappings created by their parent
458 * have no page reserves. This check ensures that reservations are
459 * not "stolen". The child may still get SIGKILLed
461 if (!vma_has_reserves(vma
) &&
462 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
465 /* If reserves cannot be used, ensure enough pages are in the pool */
466 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
469 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
470 MAX_NR_ZONES
- 1, nodemask
) {
471 nid
= zone_to_nid(zone
);
472 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
) &&
473 !list_empty(&h
->hugepage_freelists
[nid
])) {
474 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
476 list_del(&page
->lru
);
477 h
->free_huge_pages
--;
478 h
->free_huge_pages_node
[nid
]--;
481 decrement_hugepage_resv_vma(h
, vma
);
490 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
494 VM_BUG_ON(h
->order
>= MAX_ORDER
);
497 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
498 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
499 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
500 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
501 1 << PG_private
| 1<< PG_writeback
);
503 set_compound_page_dtor(page
, NULL
);
504 set_page_refcounted(page
);
505 arch_release_hugepage(page
);
506 __free_pages(page
, huge_page_order(h
));
509 struct hstate
*size_to_hstate(unsigned long size
)
514 if (huge_page_size(h
) == size
)
520 static void free_huge_page(struct page
*page
)
523 * Can't pass hstate in here because it is called from the
524 * compound page destructor.
526 struct hstate
*h
= page_hstate(page
);
527 int nid
= page_to_nid(page
);
528 struct address_space
*mapping
;
530 mapping
= (struct address_space
*) page_private(page
);
531 set_page_private(page
, 0);
532 BUG_ON(page_count(page
));
533 INIT_LIST_HEAD(&page
->lru
);
535 spin_lock(&hugetlb_lock
);
536 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
537 update_and_free_page(h
, page
);
538 h
->surplus_huge_pages
--;
539 h
->surplus_huge_pages_node
[nid
]--;
541 enqueue_huge_page(h
, page
);
543 spin_unlock(&hugetlb_lock
);
545 hugetlb_put_quota(mapping
, 1);
549 * Increment or decrement surplus_huge_pages. Keep node-specific counters
550 * balanced by operating on them in a round-robin fashion.
551 * Returns 1 if an adjustment was made.
553 static int adjust_pool_surplus(struct hstate
*h
, int delta
)
559 VM_BUG_ON(delta
!= -1 && delta
!= 1);
561 nid
= next_node(nid
, node_online_map
);
562 if (nid
== MAX_NUMNODES
)
563 nid
= first_node(node_online_map
);
565 /* To shrink on this node, there must be a surplus page */
566 if (delta
< 0 && !h
->surplus_huge_pages_node
[nid
])
568 /* Surplus cannot exceed the total number of pages */
569 if (delta
> 0 && h
->surplus_huge_pages_node
[nid
] >=
570 h
->nr_huge_pages_node
[nid
])
573 h
->surplus_huge_pages
+= delta
;
574 h
->surplus_huge_pages_node
[nid
] += delta
;
577 } while (nid
!= prev_nid
);
583 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
585 set_compound_page_dtor(page
, free_huge_page
);
586 spin_lock(&hugetlb_lock
);
588 h
->nr_huge_pages_node
[nid
]++;
589 spin_unlock(&hugetlb_lock
);
590 put_page(page
); /* free it into the hugepage allocator */
593 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
597 if (h
->order
>= MAX_ORDER
)
600 page
= alloc_pages_node(nid
,
601 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
602 __GFP_REPEAT
|__GFP_NOWARN
,
605 if (arch_prepare_hugepage(page
)) {
606 __free_pages(page
, huge_page_order(h
));
609 prep_new_huge_page(h
, page
, nid
);
616 * Use a helper variable to find the next node and then
617 * copy it back to hugetlb_next_nid afterwards:
618 * otherwise there's a window in which a racer might
619 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
620 * But we don't need to use a spin_lock here: it really
621 * doesn't matter if occasionally a racer chooses the
622 * same nid as we do. Move nid forward in the mask even
623 * if we just successfully allocated a hugepage so that
624 * the next caller gets hugepages on the next node.
626 static int hstate_next_node(struct hstate
*h
)
629 next_nid
= next_node(h
->hugetlb_next_nid
, node_online_map
);
630 if (next_nid
== MAX_NUMNODES
)
631 next_nid
= first_node(node_online_map
);
632 h
->hugetlb_next_nid
= next_nid
;
636 static int alloc_fresh_huge_page(struct hstate
*h
)
643 start_nid
= h
->hugetlb_next_nid
;
646 page
= alloc_fresh_huge_page_node(h
, h
->hugetlb_next_nid
);
649 next_nid
= hstate_next_node(h
);
650 } while (!page
&& h
->hugetlb_next_nid
!= start_nid
);
653 count_vm_event(HTLB_BUDDY_PGALLOC
);
655 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
660 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
661 struct vm_area_struct
*vma
, unsigned long address
)
666 if (h
->order
>= MAX_ORDER
)
670 * Assume we will successfully allocate the surplus page to
671 * prevent racing processes from causing the surplus to exceed
674 * This however introduces a different race, where a process B
675 * tries to grow the static hugepage pool while alloc_pages() is
676 * called by process A. B will only examine the per-node
677 * counters in determining if surplus huge pages can be
678 * converted to normal huge pages in adjust_pool_surplus(). A
679 * won't be able to increment the per-node counter, until the
680 * lock is dropped by B, but B doesn't drop hugetlb_lock until
681 * no more huge pages can be converted from surplus to normal
682 * state (and doesn't try to convert again). Thus, we have a
683 * case where a surplus huge page exists, the pool is grown, and
684 * the surplus huge page still exists after, even though it
685 * should just have been converted to a normal huge page. This
686 * does not leak memory, though, as the hugepage will be freed
687 * once it is out of use. It also does not allow the counters to
688 * go out of whack in adjust_pool_surplus() as we don't modify
689 * the node values until we've gotten the hugepage and only the
690 * per-node value is checked there.
692 spin_lock(&hugetlb_lock
);
693 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
694 spin_unlock(&hugetlb_lock
);
698 h
->surplus_huge_pages
++;
700 spin_unlock(&hugetlb_lock
);
702 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
703 __GFP_REPEAT
|__GFP_NOWARN
,
706 if (page
&& arch_prepare_hugepage(page
)) {
707 __free_pages(page
, huge_page_order(h
));
711 spin_lock(&hugetlb_lock
);
714 * This page is now managed by the hugetlb allocator and has
715 * no users -- drop the buddy allocator's reference.
717 put_page_testzero(page
);
718 VM_BUG_ON(page_count(page
));
719 nid
= page_to_nid(page
);
720 set_compound_page_dtor(page
, free_huge_page
);
722 * We incremented the global counters already
724 h
->nr_huge_pages_node
[nid
]++;
725 h
->surplus_huge_pages_node
[nid
]++;
726 __count_vm_event(HTLB_BUDDY_PGALLOC
);
729 h
->surplus_huge_pages
--;
730 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
732 spin_unlock(&hugetlb_lock
);
738 * Increase the hugetlb pool such that it can accomodate a reservation
741 static int gather_surplus_pages(struct hstate
*h
, int delta
)
743 struct list_head surplus_list
;
744 struct page
*page
, *tmp
;
746 int needed
, allocated
;
748 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
750 h
->resv_huge_pages
+= delta
;
755 INIT_LIST_HEAD(&surplus_list
);
759 spin_unlock(&hugetlb_lock
);
760 for (i
= 0; i
< needed
; i
++) {
761 page
= alloc_buddy_huge_page(h
, NULL
, 0);
764 * We were not able to allocate enough pages to
765 * satisfy the entire reservation so we free what
766 * we've allocated so far.
768 spin_lock(&hugetlb_lock
);
773 list_add(&page
->lru
, &surplus_list
);
778 * After retaking hugetlb_lock, we need to recalculate 'needed'
779 * because either resv_huge_pages or free_huge_pages may have changed.
781 spin_lock(&hugetlb_lock
);
782 needed
= (h
->resv_huge_pages
+ delta
) -
783 (h
->free_huge_pages
+ allocated
);
788 * The surplus_list now contains _at_least_ the number of extra pages
789 * needed to accomodate the reservation. Add the appropriate number
790 * of pages to the hugetlb pool and free the extras back to the buddy
791 * allocator. Commit the entire reservation here to prevent another
792 * process from stealing the pages as they are added to the pool but
793 * before they are reserved.
796 h
->resv_huge_pages
+= delta
;
799 /* Free the needed pages to the hugetlb pool */
800 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
803 list_del(&page
->lru
);
804 enqueue_huge_page(h
, page
);
807 /* Free unnecessary surplus pages to the buddy allocator */
808 if (!list_empty(&surplus_list
)) {
809 spin_unlock(&hugetlb_lock
);
810 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
811 list_del(&page
->lru
);
813 * The page has a reference count of zero already, so
814 * call free_huge_page directly instead of using
815 * put_page. This must be done with hugetlb_lock
816 * unlocked which is safe because free_huge_page takes
817 * hugetlb_lock before deciding how to free the page.
819 free_huge_page(page
);
821 spin_lock(&hugetlb_lock
);
828 * When releasing a hugetlb pool reservation, any surplus pages that were
829 * allocated to satisfy the reservation must be explicitly freed if they were
832 static void return_unused_surplus_pages(struct hstate
*h
,
833 unsigned long unused_resv_pages
)
837 unsigned long nr_pages
;
840 * We want to release as many surplus pages as possible, spread
841 * evenly across all nodes. Iterate across all nodes until we
842 * can no longer free unreserved surplus pages. This occurs when
843 * the nodes with surplus pages have no free pages.
845 unsigned long remaining_iterations
= num_online_nodes();
847 /* Uncommit the reservation */
848 h
->resv_huge_pages
-= unused_resv_pages
;
850 /* Cannot return gigantic pages currently */
851 if (h
->order
>= MAX_ORDER
)
854 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
856 while (remaining_iterations
-- && nr_pages
) {
857 nid
= next_node(nid
, node_online_map
);
858 if (nid
== MAX_NUMNODES
)
859 nid
= first_node(node_online_map
);
861 if (!h
->surplus_huge_pages_node
[nid
])
864 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
865 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
867 list_del(&page
->lru
);
868 update_and_free_page(h
, page
);
869 h
->free_huge_pages
--;
870 h
->free_huge_pages_node
[nid
]--;
871 h
->surplus_huge_pages
--;
872 h
->surplus_huge_pages_node
[nid
]--;
874 remaining_iterations
= num_online_nodes();
880 * Determine if the huge page at addr within the vma has an associated
881 * reservation. Where it does not we will need to logically increase
882 * reservation and actually increase quota before an allocation can occur.
883 * Where any new reservation would be required the reservation change is
884 * prepared, but not committed. Once the page has been quota'd allocated
885 * an instantiated the change should be committed via vma_commit_reservation.
886 * No action is required on failure.
888 static int vma_needs_reservation(struct hstate
*h
,
889 struct vm_area_struct
*vma
, unsigned long addr
)
891 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
892 struct inode
*inode
= mapping
->host
;
894 if (vma
->vm_flags
& VM_SHARED
) {
895 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
896 return region_chg(&inode
->i_mapping
->private_list
,
899 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
904 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
905 struct resv_map
*reservations
= vma_resv_map(vma
);
907 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
913 static void vma_commit_reservation(struct hstate
*h
,
914 struct vm_area_struct
*vma
, unsigned long addr
)
916 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
917 struct inode
*inode
= mapping
->host
;
919 if (vma
->vm_flags
& VM_SHARED
) {
920 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
921 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
923 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
924 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
925 struct resv_map
*reservations
= vma_resv_map(vma
);
927 /* Mark this page used in the map. */
928 region_add(&reservations
->regions
, idx
, idx
+ 1);
932 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
933 unsigned long addr
, int avoid_reserve
)
935 struct hstate
*h
= hstate_vma(vma
);
937 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
938 struct inode
*inode
= mapping
->host
;
942 * Processes that did not create the mapping will have no reserves and
943 * will not have accounted against quota. Check that the quota can be
944 * made before satisfying the allocation
945 * MAP_NORESERVE mappings may also need pages and quota allocated
946 * if no reserve mapping overlaps.
948 chg
= vma_needs_reservation(h
, vma
, addr
);
952 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
953 return ERR_PTR(-ENOSPC
);
955 spin_lock(&hugetlb_lock
);
956 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
957 spin_unlock(&hugetlb_lock
);
960 page
= alloc_buddy_huge_page(h
, vma
, addr
);
962 hugetlb_put_quota(inode
->i_mapping
, chg
);
963 return ERR_PTR(-VM_FAULT_OOM
);
967 set_page_refcounted(page
);
968 set_page_private(page
, (unsigned long) mapping
);
970 vma_commit_reservation(h
, vma
, addr
);
975 __attribute__((weak
)) int alloc_bootmem_huge_page(struct hstate
*h
)
977 struct huge_bootmem_page
*m
;
978 int nr_nodes
= nodes_weight(node_online_map
);
983 addr
= __alloc_bootmem_node_nopanic(
984 NODE_DATA(h
->hugetlb_next_nid
),
985 huge_page_size(h
), huge_page_size(h
), 0);
989 * Use the beginning of the huge page to store the
990 * huge_bootmem_page struct (until gather_bootmem
991 * puts them into the mem_map).
1003 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1004 /* Put them into a private list first because mem_map is not up yet */
1005 list_add(&m
->list
, &huge_boot_pages
);
1010 static void prep_compound_huge_page(struct page
*page
, int order
)
1012 if (unlikely(order
> (MAX_ORDER
- 1)))
1013 prep_compound_gigantic_page(page
, order
);
1015 prep_compound_page(page
, order
);
1018 /* Put bootmem huge pages into the standard lists after mem_map is up */
1019 static void __init
gather_bootmem_prealloc(void)
1021 struct huge_bootmem_page
*m
;
1023 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1024 struct page
*page
= virt_to_page(m
);
1025 struct hstate
*h
= m
->hstate
;
1026 __ClearPageReserved(page
);
1027 WARN_ON(page_count(page
) != 1);
1028 prep_compound_huge_page(page
, h
->order
);
1029 prep_new_huge_page(h
, page
, page_to_nid(page
));
1033 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1037 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1038 if (h
->order
>= MAX_ORDER
) {
1039 if (!alloc_bootmem_huge_page(h
))
1041 } else if (!alloc_fresh_huge_page(h
))
1044 h
->max_huge_pages
= i
;
1047 static void __init
hugetlb_init_hstates(void)
1051 for_each_hstate(h
) {
1052 /* oversize hugepages were init'ed in early boot */
1053 if (h
->order
< MAX_ORDER
)
1054 hugetlb_hstate_alloc_pages(h
);
1058 static char * __init
memfmt(char *buf
, unsigned long n
)
1060 if (n
>= (1UL << 30))
1061 sprintf(buf
, "%lu GB", n
>> 30);
1062 else if (n
>= (1UL << 20))
1063 sprintf(buf
, "%lu MB", n
>> 20);
1065 sprintf(buf
, "%lu KB", n
>> 10);
1069 static void __init
report_hugepages(void)
1073 for_each_hstate(h
) {
1075 printk(KERN_INFO
"HugeTLB registered %s page size, "
1076 "pre-allocated %ld pages\n",
1077 memfmt(buf
, huge_page_size(h
)),
1078 h
->free_huge_pages
);
1082 #ifdef CONFIG_HIGHMEM
1083 static void try_to_free_low(struct hstate
*h
, unsigned long count
)
1087 if (h
->order
>= MAX_ORDER
)
1090 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
1091 struct page
*page
, *next
;
1092 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1093 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1094 if (count
>= h
->nr_huge_pages
)
1096 if (PageHighMem(page
))
1098 list_del(&page
->lru
);
1099 update_and_free_page(h
, page
);
1100 h
->free_huge_pages
--;
1101 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1106 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
)
1111 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1112 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
)
1114 unsigned long min_count
, ret
;
1116 if (h
->order
>= MAX_ORDER
)
1117 return h
->max_huge_pages
;
1120 * Increase the pool size
1121 * First take pages out of surplus state. Then make up the
1122 * remaining difference by allocating fresh huge pages.
1124 * We might race with alloc_buddy_huge_page() here and be unable
1125 * to convert a surplus huge page to a normal huge page. That is
1126 * not critical, though, it just means the overall size of the
1127 * pool might be one hugepage larger than it needs to be, but
1128 * within all the constraints specified by the sysctls.
1130 spin_lock(&hugetlb_lock
);
1131 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1132 if (!adjust_pool_surplus(h
, -1))
1136 while (count
> persistent_huge_pages(h
)) {
1138 * If this allocation races such that we no longer need the
1139 * page, free_huge_page will handle it by freeing the page
1140 * and reducing the surplus.
1142 spin_unlock(&hugetlb_lock
);
1143 ret
= alloc_fresh_huge_page(h
);
1144 spin_lock(&hugetlb_lock
);
1151 * Decrease the pool size
1152 * First return free pages to the buddy allocator (being careful
1153 * to keep enough around to satisfy reservations). Then place
1154 * pages into surplus state as needed so the pool will shrink
1155 * to the desired size as pages become free.
1157 * By placing pages into the surplus state independent of the
1158 * overcommit value, we are allowing the surplus pool size to
1159 * exceed overcommit. There are few sane options here. Since
1160 * alloc_buddy_huge_page() is checking the global counter,
1161 * though, we'll note that we're not allowed to exceed surplus
1162 * and won't grow the pool anywhere else. Not until one of the
1163 * sysctls are changed, or the surplus pages go out of use.
1165 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1166 min_count
= max(count
, min_count
);
1167 try_to_free_low(h
, min_count
);
1168 while (min_count
< persistent_huge_pages(h
)) {
1169 struct page
*page
= dequeue_huge_page(h
);
1172 update_and_free_page(h
, page
);
1174 while (count
< persistent_huge_pages(h
)) {
1175 if (!adjust_pool_surplus(h
, 1))
1179 ret
= persistent_huge_pages(h
);
1180 spin_unlock(&hugetlb_lock
);
1184 #define HSTATE_ATTR_RO(_name) \
1185 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1187 #define HSTATE_ATTR(_name) \
1188 static struct kobj_attribute _name##_attr = \
1189 __ATTR(_name, 0644, _name##_show, _name##_store)
1191 static struct kobject
*hugepages_kobj
;
1192 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1194 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
)
1197 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1198 if (hstate_kobjs
[i
] == kobj
)
1204 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1205 struct kobj_attribute
*attr
, char *buf
)
1207 struct hstate
*h
= kobj_to_hstate(kobj
);
1208 return sprintf(buf
, "%lu\n", h
->nr_huge_pages
);
1210 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1211 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1214 unsigned long input
;
1215 struct hstate
*h
= kobj_to_hstate(kobj
);
1217 err
= strict_strtoul(buf
, 10, &input
);
1221 h
->max_huge_pages
= set_max_huge_pages(h
, input
);
1225 HSTATE_ATTR(nr_hugepages
);
1227 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1228 struct kobj_attribute
*attr
, char *buf
)
1230 struct hstate
*h
= kobj_to_hstate(kobj
);
1231 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1233 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1234 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1237 unsigned long input
;
1238 struct hstate
*h
= kobj_to_hstate(kobj
);
1240 err
= strict_strtoul(buf
, 10, &input
);
1244 spin_lock(&hugetlb_lock
);
1245 h
->nr_overcommit_huge_pages
= input
;
1246 spin_unlock(&hugetlb_lock
);
1250 HSTATE_ATTR(nr_overcommit_hugepages
);
1252 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1253 struct kobj_attribute
*attr
, char *buf
)
1255 struct hstate
*h
= kobj_to_hstate(kobj
);
1256 return sprintf(buf
, "%lu\n", h
->free_huge_pages
);
1258 HSTATE_ATTR_RO(free_hugepages
);
1260 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1261 struct kobj_attribute
*attr
, char *buf
)
1263 struct hstate
*h
= kobj_to_hstate(kobj
);
1264 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1266 HSTATE_ATTR_RO(resv_hugepages
);
1268 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1269 struct kobj_attribute
*attr
, char *buf
)
1271 struct hstate
*h
= kobj_to_hstate(kobj
);
1272 return sprintf(buf
, "%lu\n", h
->surplus_huge_pages
);
1274 HSTATE_ATTR_RO(surplus_hugepages
);
1276 static struct attribute
*hstate_attrs
[] = {
1277 &nr_hugepages_attr
.attr
,
1278 &nr_overcommit_hugepages_attr
.attr
,
1279 &free_hugepages_attr
.attr
,
1280 &resv_hugepages_attr
.attr
,
1281 &surplus_hugepages_attr
.attr
,
1285 static struct attribute_group hstate_attr_group
= {
1286 .attrs
= hstate_attrs
,
1289 static int __init
hugetlb_sysfs_add_hstate(struct hstate
*h
)
1293 hstate_kobjs
[h
- hstates
] = kobject_create_and_add(h
->name
,
1295 if (!hstate_kobjs
[h
- hstates
])
1298 retval
= sysfs_create_group(hstate_kobjs
[h
- hstates
],
1299 &hstate_attr_group
);
1301 kobject_put(hstate_kobjs
[h
- hstates
]);
1306 static void __init
hugetlb_sysfs_init(void)
1311 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1312 if (!hugepages_kobj
)
1315 for_each_hstate(h
) {
1316 err
= hugetlb_sysfs_add_hstate(h
);
1318 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1323 static void __exit
hugetlb_exit(void)
1327 for_each_hstate(h
) {
1328 kobject_put(hstate_kobjs
[h
- hstates
]);
1331 kobject_put(hugepages_kobj
);
1333 module_exit(hugetlb_exit
);
1335 static int __init
hugetlb_init(void)
1337 /* Some platform decide whether they support huge pages at boot
1338 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1339 * there is no such support
1341 if (HPAGE_SHIFT
== 0)
1344 if (!size_to_hstate(default_hstate_size
)) {
1345 default_hstate_size
= HPAGE_SIZE
;
1346 if (!size_to_hstate(default_hstate_size
))
1347 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1349 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1350 if (default_hstate_max_huge_pages
)
1351 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1353 hugetlb_init_hstates();
1355 gather_bootmem_prealloc();
1359 hugetlb_sysfs_init();
1363 module_init(hugetlb_init
);
1365 /* Should be called on processing a hugepagesz=... option */
1366 void __init
hugetlb_add_hstate(unsigned order
)
1371 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1372 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1375 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1377 h
= &hstates
[max_hstate
++];
1379 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1380 h
->nr_huge_pages
= 0;
1381 h
->free_huge_pages
= 0;
1382 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1383 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1384 h
->hugetlb_next_nid
= first_node(node_online_map
);
1385 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1386 huge_page_size(h
)/1024);
1391 static int __init
hugetlb_nrpages_setup(char *s
)
1394 static unsigned long *last_mhp
;
1397 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1398 * so this hugepages= parameter goes to the "default hstate".
1401 mhp
= &default_hstate_max_huge_pages
;
1403 mhp
= &parsed_hstate
->max_huge_pages
;
1405 if (mhp
== last_mhp
) {
1406 printk(KERN_WARNING
"hugepages= specified twice without "
1407 "interleaving hugepagesz=, ignoring\n");
1411 if (sscanf(s
, "%lu", mhp
) <= 0)
1415 * Global state is always initialized later in hugetlb_init.
1416 * But we need to allocate >= MAX_ORDER hstates here early to still
1417 * use the bootmem allocator.
1419 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1420 hugetlb_hstate_alloc_pages(parsed_hstate
);
1426 __setup("hugepages=", hugetlb_nrpages_setup
);
1428 static int __init
hugetlb_default_setup(char *s
)
1430 default_hstate_size
= memparse(s
, &s
);
1433 __setup("default_hugepagesz=", hugetlb_default_setup
);
1435 static unsigned int cpuset_mems_nr(unsigned int *array
)
1438 unsigned int nr
= 0;
1440 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1446 #ifdef CONFIG_SYSCTL
1447 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1448 struct file
*file
, void __user
*buffer
,
1449 size_t *length
, loff_t
*ppos
)
1451 struct hstate
*h
= &default_hstate
;
1455 tmp
= h
->max_huge_pages
;
1458 table
->maxlen
= sizeof(unsigned long);
1459 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1462 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
);
1467 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1468 struct file
*file
, void __user
*buffer
,
1469 size_t *length
, loff_t
*ppos
)
1471 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
1472 if (hugepages_treat_as_movable
)
1473 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1475 htlb_alloc_mask
= GFP_HIGHUSER
;
1479 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1480 struct file
*file
, void __user
*buffer
,
1481 size_t *length
, loff_t
*ppos
)
1483 struct hstate
*h
= &default_hstate
;
1487 tmp
= h
->nr_overcommit_huge_pages
;
1490 table
->maxlen
= sizeof(unsigned long);
1491 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1494 spin_lock(&hugetlb_lock
);
1495 h
->nr_overcommit_huge_pages
= tmp
;
1496 spin_unlock(&hugetlb_lock
);
1502 #endif /* CONFIG_SYSCTL */
1504 void hugetlb_report_meminfo(struct seq_file
*m
)
1506 struct hstate
*h
= &default_hstate
;
1508 "HugePages_Total: %5lu\n"
1509 "HugePages_Free: %5lu\n"
1510 "HugePages_Rsvd: %5lu\n"
1511 "HugePages_Surp: %5lu\n"
1512 "Hugepagesize: %8lu kB\n",
1516 h
->surplus_huge_pages
,
1517 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1520 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1522 struct hstate
*h
= &default_hstate
;
1524 "Node %d HugePages_Total: %5u\n"
1525 "Node %d HugePages_Free: %5u\n"
1526 "Node %d HugePages_Surp: %5u\n",
1527 nid
, h
->nr_huge_pages_node
[nid
],
1528 nid
, h
->free_huge_pages_node
[nid
],
1529 nid
, h
->surplus_huge_pages_node
[nid
]);
1532 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1533 unsigned long hugetlb_total_pages(void)
1535 struct hstate
*h
= &default_hstate
;
1536 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1539 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
1543 spin_lock(&hugetlb_lock
);
1545 * When cpuset is configured, it breaks the strict hugetlb page
1546 * reservation as the accounting is done on a global variable. Such
1547 * reservation is completely rubbish in the presence of cpuset because
1548 * the reservation is not checked against page availability for the
1549 * current cpuset. Application can still potentially OOM'ed by kernel
1550 * with lack of free htlb page in cpuset that the task is in.
1551 * Attempt to enforce strict accounting with cpuset is almost
1552 * impossible (or too ugly) because cpuset is too fluid that
1553 * task or memory node can be dynamically moved between cpusets.
1555 * The change of semantics for shared hugetlb mapping with cpuset is
1556 * undesirable. However, in order to preserve some of the semantics,
1557 * we fall back to check against current free page availability as
1558 * a best attempt and hopefully to minimize the impact of changing
1559 * semantics that cpuset has.
1562 if (gather_surplus_pages(h
, delta
) < 0)
1565 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
1566 return_unused_surplus_pages(h
, delta
);
1573 return_unused_surplus_pages(h
, (unsigned long) -delta
);
1576 spin_unlock(&hugetlb_lock
);
1580 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
1582 struct resv_map
*reservations
= vma_resv_map(vma
);
1585 * This new VMA should share its siblings reservation map if present.
1586 * The VMA will only ever have a valid reservation map pointer where
1587 * it is being copied for another still existing VMA. As that VMA
1588 * has a reference to the reservation map it cannot dissappear until
1589 * after this open call completes. It is therefore safe to take a
1590 * new reference here without additional locking.
1593 kref_get(&reservations
->refs
);
1596 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
1598 struct hstate
*h
= hstate_vma(vma
);
1599 struct resv_map
*reservations
= vma_resv_map(vma
);
1600 unsigned long reserve
;
1601 unsigned long start
;
1605 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
1606 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
1608 reserve
= (end
- start
) -
1609 region_count(&reservations
->regions
, start
, end
);
1611 kref_put(&reservations
->refs
, resv_map_release
);
1614 hugetlb_acct_memory(h
, -reserve
);
1615 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
1621 * We cannot handle pagefaults against hugetlb pages at all. They cause
1622 * handle_mm_fault() to try to instantiate regular-sized pages in the
1623 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1626 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1632 struct vm_operations_struct hugetlb_vm_ops
= {
1633 .fault
= hugetlb_vm_op_fault
,
1634 .open
= hugetlb_vm_op_open
,
1635 .close
= hugetlb_vm_op_close
,
1638 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
1645 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
1647 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
1649 entry
= pte_mkyoung(entry
);
1650 entry
= pte_mkhuge(entry
);
1655 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
1656 unsigned long address
, pte_t
*ptep
)
1660 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
1661 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
1662 update_mmu_cache(vma
, address
, entry
);
1667 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
1668 struct vm_area_struct
*vma
)
1670 pte_t
*src_pte
, *dst_pte
, entry
;
1671 struct page
*ptepage
;
1674 struct hstate
*h
= hstate_vma(vma
);
1675 unsigned long sz
= huge_page_size(h
);
1677 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
1679 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
1680 src_pte
= huge_pte_offset(src
, addr
);
1683 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
1687 /* If the pagetables are shared don't copy or take references */
1688 if (dst_pte
== src_pte
)
1691 spin_lock(&dst
->page_table_lock
);
1692 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
1693 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
1695 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
1696 entry
= huge_ptep_get(src_pte
);
1697 ptepage
= pte_page(entry
);
1699 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
1701 spin_unlock(&src
->page_table_lock
);
1702 spin_unlock(&dst
->page_table_lock
);
1710 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1711 unsigned long end
, struct page
*ref_page
)
1713 struct mm_struct
*mm
= vma
->vm_mm
;
1714 unsigned long address
;
1719 struct hstate
*h
= hstate_vma(vma
);
1720 unsigned long sz
= huge_page_size(h
);
1723 * A page gathering list, protected by per file i_mmap_lock. The
1724 * lock is used to avoid list corruption from multiple unmapping
1725 * of the same page since we are using page->lru.
1727 LIST_HEAD(page_list
);
1729 WARN_ON(!is_vm_hugetlb_page(vma
));
1730 BUG_ON(start
& ~huge_page_mask(h
));
1731 BUG_ON(end
& ~huge_page_mask(h
));
1733 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1734 spin_lock(&mm
->page_table_lock
);
1735 for (address
= start
; address
< end
; address
+= sz
) {
1736 ptep
= huge_pte_offset(mm
, address
);
1740 if (huge_pmd_unshare(mm
, &address
, ptep
))
1744 * If a reference page is supplied, it is because a specific
1745 * page is being unmapped, not a range. Ensure the page we
1746 * are about to unmap is the actual page of interest.
1749 pte
= huge_ptep_get(ptep
);
1750 if (huge_pte_none(pte
))
1752 page
= pte_page(pte
);
1753 if (page
!= ref_page
)
1757 * Mark the VMA as having unmapped its page so that
1758 * future faults in this VMA will fail rather than
1759 * looking like data was lost
1761 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
1764 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1765 if (huge_pte_none(pte
))
1768 page
= pte_page(pte
);
1770 set_page_dirty(page
);
1771 list_add(&page
->lru
, &page_list
);
1773 spin_unlock(&mm
->page_table_lock
);
1774 flush_tlb_range(vma
, start
, end
);
1775 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1776 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
1777 list_del(&page
->lru
);
1782 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1783 unsigned long end
, struct page
*ref_page
)
1785 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1786 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
1787 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1791 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1792 * mappping it owns the reserve page for. The intention is to unmap the page
1793 * from other VMAs and let the children be SIGKILLed if they are faulting the
1796 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1797 struct page
*page
, unsigned long address
)
1799 struct hstate
*h
= hstate_vma(vma
);
1800 struct vm_area_struct
*iter_vma
;
1801 struct address_space
*mapping
;
1802 struct prio_tree_iter iter
;
1806 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1807 * from page cache lookup which is in HPAGE_SIZE units.
1809 address
= address
& huge_page_mask(h
);
1810 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
1811 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
1812 mapping
= (struct address_space
*)page_private(page
);
1814 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1815 /* Do not unmap the current VMA */
1816 if (iter_vma
== vma
)
1820 * Unmap the page from other VMAs without their own reserves.
1821 * They get marked to be SIGKILLed if they fault in these
1822 * areas. This is because a future no-page fault on this VMA
1823 * could insert a zeroed page instead of the data existing
1824 * from the time of fork. This would look like data corruption
1826 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
1827 unmap_hugepage_range(iter_vma
,
1828 address
, address
+ huge_page_size(h
),
1835 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1836 unsigned long address
, pte_t
*ptep
, pte_t pte
,
1837 struct page
*pagecache_page
)
1839 struct hstate
*h
= hstate_vma(vma
);
1840 struct page
*old_page
, *new_page
;
1842 int outside_reserve
= 0;
1844 old_page
= pte_page(pte
);
1847 /* If no-one else is actually using this page, avoid the copy
1848 * and just make the page writable */
1849 avoidcopy
= (page_count(old_page
) == 1);
1851 set_huge_ptep_writable(vma
, address
, ptep
);
1856 * If the process that created a MAP_PRIVATE mapping is about to
1857 * perform a COW due to a shared page count, attempt to satisfy
1858 * the allocation without using the existing reserves. The pagecache
1859 * page is used to determine if the reserve at this address was
1860 * consumed or not. If reserves were used, a partial faulted mapping
1861 * at the time of fork() could consume its reserves on COW instead
1862 * of the full address range.
1864 if (!(vma
->vm_flags
& VM_SHARED
) &&
1865 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
1866 old_page
!= pagecache_page
)
1867 outside_reserve
= 1;
1869 page_cache_get(old_page
);
1870 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
1872 if (IS_ERR(new_page
)) {
1873 page_cache_release(old_page
);
1876 * If a process owning a MAP_PRIVATE mapping fails to COW,
1877 * it is due to references held by a child and an insufficient
1878 * huge page pool. To guarantee the original mappers
1879 * reliability, unmap the page from child processes. The child
1880 * may get SIGKILLed if it later faults.
1882 if (outside_reserve
) {
1883 BUG_ON(huge_pte_none(pte
));
1884 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
1885 BUG_ON(page_count(old_page
) != 1);
1886 BUG_ON(huge_pte_none(pte
));
1887 goto retry_avoidcopy
;
1892 return -PTR_ERR(new_page
);
1895 spin_unlock(&mm
->page_table_lock
);
1896 copy_huge_page(new_page
, old_page
, address
, vma
);
1897 __SetPageUptodate(new_page
);
1898 spin_lock(&mm
->page_table_lock
);
1900 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
1901 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
1903 huge_ptep_clear_flush(vma
, address
, ptep
);
1904 set_huge_pte_at(mm
, address
, ptep
,
1905 make_huge_pte(vma
, new_page
, 1));
1906 /* Make the old page be freed below */
1907 new_page
= old_page
;
1909 page_cache_release(new_page
);
1910 page_cache_release(old_page
);
1914 /* Return the pagecache page at a given address within a VMA */
1915 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
1916 struct vm_area_struct
*vma
, unsigned long address
)
1918 struct address_space
*mapping
;
1921 mapping
= vma
->vm_file
->f_mapping
;
1922 idx
= vma_hugecache_offset(h
, vma
, address
);
1924 return find_lock_page(mapping
, idx
);
1927 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1928 unsigned long address
, pte_t
*ptep
, int write_access
)
1930 struct hstate
*h
= hstate_vma(vma
);
1931 int ret
= VM_FAULT_SIGBUS
;
1935 struct address_space
*mapping
;
1939 * Currently, we are forced to kill the process in the event the
1940 * original mapper has unmapped pages from the child due to a failed
1941 * COW. Warn that such a situation has occured as it may not be obvious
1943 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
1945 "PID %d killed due to inadequate hugepage pool\n",
1950 mapping
= vma
->vm_file
->f_mapping
;
1951 idx
= vma_hugecache_offset(h
, vma
, address
);
1954 * Use page lock to guard against racing truncation
1955 * before we get page_table_lock.
1958 page
= find_lock_page(mapping
, idx
);
1960 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
1963 page
= alloc_huge_page(vma
, address
, 0);
1965 ret
= -PTR_ERR(page
);
1968 clear_huge_page(page
, address
, huge_page_size(h
));
1969 __SetPageUptodate(page
);
1971 if (vma
->vm_flags
& VM_SHARED
) {
1973 struct inode
*inode
= mapping
->host
;
1975 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
1983 spin_lock(&inode
->i_lock
);
1984 inode
->i_blocks
+= blocks_per_huge_page(h
);
1985 spin_unlock(&inode
->i_lock
);
1991 * If we are going to COW a private mapping later, we examine the
1992 * pending reservations for this page now. This will ensure that
1993 * any allocations necessary to record that reservation occur outside
1996 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
))
1997 if (vma_needs_reservation(h
, vma
, address
) < 0) {
1999 goto backout_unlocked
;
2002 spin_lock(&mm
->page_table_lock
);
2003 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2008 if (!huge_pte_none(huge_ptep_get(ptep
)))
2011 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2012 && (vma
->vm_flags
& VM_SHARED
)));
2013 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2015 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
2016 /* Optimization, do the COW without a second fault */
2017 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2020 spin_unlock(&mm
->page_table_lock
);
2026 spin_unlock(&mm
->page_table_lock
);
2033 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2034 unsigned long address
, int write_access
)
2039 struct page
*pagecache_page
= NULL
;
2040 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2041 struct hstate
*h
= hstate_vma(vma
);
2043 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2045 return VM_FAULT_OOM
;
2048 * Serialize hugepage allocation and instantiation, so that we don't
2049 * get spurious allocation failures if two CPUs race to instantiate
2050 * the same page in the page cache.
2052 mutex_lock(&hugetlb_instantiation_mutex
);
2053 entry
= huge_ptep_get(ptep
);
2054 if (huge_pte_none(entry
)) {
2055 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
2062 * If we are going to COW the mapping later, we examine the pending
2063 * reservations for this page now. This will ensure that any
2064 * allocations necessary to record that reservation occur outside the
2065 * spinlock. For private mappings, we also lookup the pagecache
2066 * page now as it is used to determine if a reservation has been
2069 if (write_access
&& !pte_write(entry
)) {
2070 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2075 if (!(vma
->vm_flags
& VM_SHARED
))
2076 pagecache_page
= hugetlbfs_pagecache_page(h
,
2080 spin_lock(&mm
->page_table_lock
);
2081 /* Check for a racing update before calling hugetlb_cow */
2082 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2083 goto out_page_table_lock
;
2087 if (!pte_write(entry
)) {
2088 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2090 goto out_page_table_lock
;
2092 entry
= pte_mkdirty(entry
);
2094 entry
= pte_mkyoung(entry
);
2095 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, write_access
))
2096 update_mmu_cache(vma
, address
, entry
);
2098 out_page_table_lock
:
2099 spin_unlock(&mm
->page_table_lock
);
2101 if (pagecache_page
) {
2102 unlock_page(pagecache_page
);
2103 put_page(pagecache_page
);
2107 mutex_unlock(&hugetlb_instantiation_mutex
);
2112 /* Can be overriden by architectures */
2113 __attribute__((weak
)) struct page
*
2114 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2115 pud_t
*pud
, int write
)
2121 static int huge_zeropage_ok(pte_t
*ptep
, int write
, int shared
)
2123 if (!ptep
|| write
|| shared
)
2126 return huge_pte_none(huge_ptep_get(ptep
));
2129 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2130 struct page
**pages
, struct vm_area_struct
**vmas
,
2131 unsigned long *position
, int *length
, int i
,
2134 unsigned long pfn_offset
;
2135 unsigned long vaddr
= *position
;
2136 int remainder
= *length
;
2137 struct hstate
*h
= hstate_vma(vma
);
2138 int zeropage_ok
= 0;
2139 int shared
= vma
->vm_flags
& VM_SHARED
;
2141 spin_lock(&mm
->page_table_lock
);
2142 while (vaddr
< vma
->vm_end
&& remainder
) {
2147 * Some archs (sparc64, sh*) have multiple pte_ts to
2148 * each hugepage. We have to make * sure we get the
2149 * first, for the page indexing below to work.
2151 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2152 if (huge_zeropage_ok(pte
, write
, shared
))
2156 (huge_pte_none(huge_ptep_get(pte
)) && !zeropage_ok
) ||
2157 (write
&& !pte_write(huge_ptep_get(pte
)))) {
2160 spin_unlock(&mm
->page_table_lock
);
2161 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
2162 spin_lock(&mm
->page_table_lock
);
2163 if (!(ret
& VM_FAULT_ERROR
))
2172 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2173 page
= pte_page(huge_ptep_get(pte
));
2177 pages
[i
] = ZERO_PAGE(0);
2179 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2190 if (vaddr
< vma
->vm_end
&& remainder
&&
2191 pfn_offset
< pages_per_huge_page(h
)) {
2193 * We use pfn_offset to avoid touching the pageframes
2194 * of this compound page.
2199 spin_unlock(&mm
->page_table_lock
);
2200 *length
= remainder
;
2206 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2207 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2209 struct mm_struct
*mm
= vma
->vm_mm
;
2210 unsigned long start
= address
;
2213 struct hstate
*h
= hstate_vma(vma
);
2215 BUG_ON(address
>= end
);
2216 flush_cache_range(vma
, address
, end
);
2218 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2219 spin_lock(&mm
->page_table_lock
);
2220 for (; address
< end
; address
+= huge_page_size(h
)) {
2221 ptep
= huge_pte_offset(mm
, address
);
2224 if (huge_pmd_unshare(mm
, &address
, ptep
))
2226 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2227 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2228 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2229 set_huge_pte_at(mm
, address
, ptep
, pte
);
2232 spin_unlock(&mm
->page_table_lock
);
2233 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2235 flush_tlb_range(vma
, start
, end
);
2238 int hugetlb_reserve_pages(struct inode
*inode
,
2240 struct vm_area_struct
*vma
)
2243 struct hstate
*h
= hstate_inode(inode
);
2245 if (vma
&& vma
->vm_flags
& VM_NORESERVE
)
2249 * Shared mappings base their reservation on the number of pages that
2250 * are already allocated on behalf of the file. Private mappings need
2251 * to reserve the full area even if read-only as mprotect() may be
2252 * called to make the mapping read-write. Assume !vma is a shm mapping
2254 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2255 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2257 struct resv_map
*resv_map
= resv_map_alloc();
2263 set_vma_resv_map(vma
, resv_map
);
2264 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2270 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2272 ret
= hugetlb_acct_memory(h
, chg
);
2274 hugetlb_put_quota(inode
->i_mapping
, chg
);
2277 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2278 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2282 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2284 struct hstate
*h
= hstate_inode(inode
);
2285 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2287 spin_lock(&inode
->i_lock
);
2288 inode
->i_blocks
-= blocks_per_huge_page(h
);
2289 spin_unlock(&inode
->i_lock
);
2291 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2292 hugetlb_acct_memory(h
, -(chg
- freed
));