2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similar to the mechanism is used by JFFS2.
34 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35 * write size (@c->max_write_size). The latter is the maximum amount of bytes
36 * the underlying flash is able to program at a time, and writing in
37 * @c->max_write_size units should presumably be faster. Obviously,
38 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39 * @c->max_write_size bytes in size for maximum performance. However, when a
40 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41 * boundary) which contains data is written, not the whole write-buffer,
42 * because this is more space-efficient.
44 * This optimization adds few complications to the code. Indeed, on the one
45 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46 * also means aligning writes at the @c->max_write_size bytes offsets. On the
47 * other hand, we do not want to waste space when synchronizing the write
48 * buffer, so during synchronization we writes in smaller chunks. And this makes
49 * the next write offset to be not aligned to @c->max_write_size bytes. So the
50 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51 * to @c->max_write_size bytes again. We do this by temporarily shrinking
52 * write-buffer size (@wbuf->size).
54 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55 * mutexes defined inside these objects. Since sometimes upper-level code
56 * has to lock the write-buffer (e.g. journal space reservation code), many
57 * functions related to write-buffers have "nolock" suffix which means that the
58 * caller has to lock the write-buffer before calling this function.
60 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61 * aligned, UBIFS starts the next node from the aligned address, and the padded
62 * bytes may contain any rubbish. In other words, UBIFS does not put padding
63 * bytes in those small gaps. Common headers of nodes store real node lengths,
64 * not aligned lengths. Indexing nodes also store real lengths in branches.
66 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67 * uses padding nodes or padding bytes, if the padding node does not fit.
69 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70 * they are read from the flash media.
73 #include <linux/crc32.h>
74 #include <linux/slab.h>
78 * ubifs_ro_mode - switch UBIFS to read read-only mode.
79 * @c: UBIFS file-system description object
80 * @err: error code which is the reason of switching to R/O mode
82 void ubifs_ro_mode(struct ubifs_info
*c
, int err
)
86 c
->no_chk_data_crc
= 0;
87 c
->vfs_sb
->s_flags
|= MS_RDONLY
;
88 ubifs_warn("switched to read-only mode, error %d", err
);
94 * Below are simple wrappers over UBI I/O functions which include some
95 * additional checks and UBIFS debugging stuff. See corresponding UBI function
96 * for more information.
99 int ubifs_leb_read(const struct ubifs_info
*c
, int lnum
, void *buf
, int offs
,
100 int len
, int even_ebadmsg
)
104 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
106 * In case of %-EBADMSG print the error message only if the
107 * @even_ebadmsg is true.
109 if (err
&& (err
!= -EBADMSG
|| even_ebadmsg
)) {
110 ubifs_err("reading %d bytes from LEB %d:%d failed, error %d",
111 len
, lnum
, offs
, err
);
117 int ubifs_leb_write(struct ubifs_info
*c
, int lnum
, const void *buf
, int offs
,
122 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
125 if (!dbg_is_tst_rcvry(c
))
126 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, len
);
128 err
= dbg_leb_write(c
, lnum
, buf
, offs
, len
);
130 ubifs_err("writing %d bytes to LEB %d:%d failed, error %d",
131 len
, lnum
, offs
, err
);
132 ubifs_ro_mode(c
, err
);
138 int ubifs_leb_change(struct ubifs_info
*c
, int lnum
, const void *buf
, int len
)
142 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
145 if (!dbg_is_tst_rcvry(c
))
146 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, len
);
148 err
= dbg_leb_change(c
, lnum
, buf
, len
);
150 ubifs_err("changing %d bytes in LEB %d failed, error %d",
152 ubifs_ro_mode(c
, err
);
158 int ubifs_leb_unmap(struct ubifs_info
*c
, int lnum
)
162 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
165 if (!dbg_is_tst_rcvry(c
))
166 err
= ubi_leb_unmap(c
->ubi
, lnum
);
168 err
= dbg_leb_unmap(c
, lnum
);
170 ubifs_err("unmap LEB %d failed, error %d", lnum
, err
);
171 ubifs_ro_mode(c
, err
);
177 int ubifs_leb_map(struct ubifs_info
*c
, int lnum
)
181 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
184 if (!dbg_is_tst_rcvry(c
))
185 err
= ubi_leb_map(c
->ubi
, lnum
);
187 err
= dbg_leb_map(c
, lnum
);
189 ubifs_err("mapping LEB %d failed, error %d", lnum
, err
);
190 ubifs_ro_mode(c
, err
);
196 int ubifs_is_mapped(const struct ubifs_info
*c
, int lnum
)
200 err
= ubi_is_mapped(c
->ubi
, lnum
);
202 ubifs_err("ubi_is_mapped failed for LEB %d, error %d",
210 * ubifs_check_node - check node.
211 * @c: UBIFS file-system description object
212 * @buf: node to check
213 * @lnum: logical eraseblock number
214 * @offs: offset within the logical eraseblock
215 * @quiet: print no messages
216 * @must_chk_crc: indicates whether to always check the CRC
218 * This function checks node magic number and CRC checksum. This function also
219 * validates node length to prevent UBIFS from becoming crazy when an attacker
220 * feeds it a file-system image with incorrect nodes. For example, too large
221 * node length in the common header could cause UBIFS to read memory outside of
222 * allocated buffer when checking the CRC checksum.
224 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
225 * true, which is controlled by corresponding UBIFS mount option. However, if
226 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
227 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
228 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
229 * is checked. This is because during mounting or re-mounting from R/O mode to
230 * R/W mode we may read journal nodes (when replying the journal or doing the
231 * recovery) and the journal nodes may potentially be corrupted, so checking is
234 * This function returns zero in case of success and %-EUCLEAN in case of bad
237 int ubifs_check_node(const struct ubifs_info
*c
, const void *buf
, int lnum
,
238 int offs
, int quiet
, int must_chk_crc
)
240 int err
= -EINVAL
, type
, node_len
;
241 uint32_t crc
, node_crc
, magic
;
242 const struct ubifs_ch
*ch
= buf
;
244 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
245 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
247 magic
= le32_to_cpu(ch
->magic
);
248 if (magic
!= UBIFS_NODE_MAGIC
) {
250 ubifs_err("bad magic %#08x, expected %#08x",
251 magic
, UBIFS_NODE_MAGIC
);
256 type
= ch
->node_type
;
257 if (type
< 0 || type
>= UBIFS_NODE_TYPES_CNT
) {
259 ubifs_err("bad node type %d", type
);
263 node_len
= le32_to_cpu(ch
->len
);
264 if (node_len
+ offs
> c
->leb_size
)
267 if (c
->ranges
[type
].max_len
== 0) {
268 if (node_len
!= c
->ranges
[type
].len
)
270 } else if (node_len
< c
->ranges
[type
].min_len
||
271 node_len
> c
->ranges
[type
].max_len
)
274 if (!must_chk_crc
&& type
== UBIFS_DATA_NODE
&& !c
->mounting
&&
275 !c
->remounting_rw
&& c
->no_chk_data_crc
)
278 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
279 node_crc
= le32_to_cpu(ch
->crc
);
280 if (crc
!= node_crc
) {
282 ubifs_err("bad CRC: calculated %#08x, read %#08x",
292 ubifs_err("bad node length %d", node_len
);
295 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
296 ubifs_dump_node(c
, buf
);
303 * ubifs_pad - pad flash space.
304 * @c: UBIFS file-system description object
305 * @buf: buffer to put padding to
306 * @pad: how many bytes to pad
308 * The flash media obliges us to write only in chunks of %c->min_io_size and
309 * when we have to write less data we add padding node to the write-buffer and
310 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
311 * media is being scanned. If the amount of wasted space is not enough to fit a
312 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
313 * pattern (%UBIFS_PADDING_BYTE).
315 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
318 void ubifs_pad(const struct ubifs_info
*c
, void *buf
, int pad
)
322 ubifs_assert(pad
>= 0 && !(pad
& 7));
324 if (pad
>= UBIFS_PAD_NODE_SZ
) {
325 struct ubifs_ch
*ch
= buf
;
326 struct ubifs_pad_node
*pad_node
= buf
;
328 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
329 ch
->node_type
= UBIFS_PAD_NODE
;
330 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
331 ch
->padding
[0] = ch
->padding
[1] = 0;
333 ch
->len
= cpu_to_le32(UBIFS_PAD_NODE_SZ
);
334 pad
-= UBIFS_PAD_NODE_SZ
;
335 pad_node
->pad_len
= cpu_to_le32(pad
);
336 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, UBIFS_PAD_NODE_SZ
- 8);
337 ch
->crc
= cpu_to_le32(crc
);
338 memset(buf
+ UBIFS_PAD_NODE_SZ
, 0, pad
);
340 /* Too little space, padding node won't fit */
341 memset(buf
, UBIFS_PADDING_BYTE
, pad
);
345 * next_sqnum - get next sequence number.
346 * @c: UBIFS file-system description object
348 static unsigned long long next_sqnum(struct ubifs_info
*c
)
350 unsigned long long sqnum
;
352 spin_lock(&c
->cnt_lock
);
353 sqnum
= ++c
->max_sqnum
;
354 spin_unlock(&c
->cnt_lock
);
356 if (unlikely(sqnum
>= SQNUM_WARN_WATERMARK
)) {
357 if (sqnum
>= SQNUM_WATERMARK
) {
358 ubifs_err("sequence number overflow %llu, end of life",
360 ubifs_ro_mode(c
, -EINVAL
);
362 ubifs_warn("running out of sequence numbers, end of life soon");
369 * ubifs_prepare_node - prepare node to be written to flash.
370 * @c: UBIFS file-system description object
371 * @node: the node to pad
373 * @pad: if the buffer has to be padded
375 * This function prepares node at @node to be written to the media - it
376 * calculates node CRC, fills the common header, and adds proper padding up to
377 * the next minimum I/O unit if @pad is not zero.
379 void ubifs_prepare_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
382 struct ubifs_ch
*ch
= node
;
383 unsigned long long sqnum
= next_sqnum(c
);
385 ubifs_assert(len
>= UBIFS_CH_SZ
);
387 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
388 ch
->len
= cpu_to_le32(len
);
389 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
390 ch
->sqnum
= cpu_to_le64(sqnum
);
391 ch
->padding
[0] = ch
->padding
[1] = 0;
392 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
393 ch
->crc
= cpu_to_le32(crc
);
397 pad
= ALIGN(len
, c
->min_io_size
) - len
;
398 ubifs_pad(c
, node
+ len
, pad
);
403 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
404 * @c: UBIFS file-system description object
405 * @node: the node to pad
407 * @last: indicates the last node of the group
409 * This function prepares node at @node to be written to the media - it
410 * calculates node CRC and fills the common header.
412 void ubifs_prep_grp_node(struct ubifs_info
*c
, void *node
, int len
, int last
)
415 struct ubifs_ch
*ch
= node
;
416 unsigned long long sqnum
= next_sqnum(c
);
418 ubifs_assert(len
>= UBIFS_CH_SZ
);
420 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
421 ch
->len
= cpu_to_le32(len
);
423 ch
->group_type
= UBIFS_LAST_OF_NODE_GROUP
;
425 ch
->group_type
= UBIFS_IN_NODE_GROUP
;
426 ch
->sqnum
= cpu_to_le64(sqnum
);
427 ch
->padding
[0] = ch
->padding
[1] = 0;
428 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
429 ch
->crc
= cpu_to_le32(crc
);
433 * wbuf_timer_callback - write-buffer timer callback function.
434 * @data: timer data (write-buffer descriptor)
436 * This function is called when the write-buffer timer expires.
438 static enum hrtimer_restart
wbuf_timer_callback_nolock(struct hrtimer
*timer
)
440 struct ubifs_wbuf
*wbuf
= container_of(timer
, struct ubifs_wbuf
, timer
);
442 dbg_io("jhead %s", dbg_jhead(wbuf
->jhead
));
444 wbuf
->c
->need_wbuf_sync
= 1;
445 ubifs_wake_up_bgt(wbuf
->c
);
446 return HRTIMER_NORESTART
;
450 * new_wbuf_timer - start new write-buffer timer.
451 * @wbuf: write-buffer descriptor
453 static void new_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
455 ubifs_assert(!hrtimer_active(&wbuf
->timer
));
459 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
460 dbg_jhead(wbuf
->jhead
),
461 div_u64(ktime_to_ns(wbuf
->softlimit
), USEC_PER_SEC
),
462 div_u64(ktime_to_ns(wbuf
->softlimit
) + wbuf
->delta
,
464 hrtimer_start_range_ns(&wbuf
->timer
, wbuf
->softlimit
, wbuf
->delta
,
469 * cancel_wbuf_timer - cancel write-buffer timer.
470 * @wbuf: write-buffer descriptor
472 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
477 hrtimer_cancel(&wbuf
->timer
);
481 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
482 * @wbuf: write-buffer to synchronize
484 * This function synchronizes write-buffer @buf and returns zero in case of
485 * success or a negative error code in case of failure.
487 * Note, although write-buffers are of @c->max_write_size, this function does
488 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
489 * if the write-buffer is only partially filled with data, only the used part
490 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
491 * This way we waste less space.
493 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf
*wbuf
)
495 struct ubifs_info
*c
= wbuf
->c
;
496 int err
, dirt
, sync_len
;
498 cancel_wbuf_timer_nolock(wbuf
);
499 if (!wbuf
->used
|| wbuf
->lnum
== -1)
500 /* Write-buffer is empty or not seeked */
503 dbg_io("LEB %d:%d, %d bytes, jhead %s",
504 wbuf
->lnum
, wbuf
->offs
, wbuf
->used
, dbg_jhead(wbuf
->jhead
));
505 ubifs_assert(!(wbuf
->avail
& 7));
506 ubifs_assert(wbuf
->offs
+ wbuf
->size
<= c
->leb_size
);
507 ubifs_assert(wbuf
->size
>= c
->min_io_size
);
508 ubifs_assert(wbuf
->size
<= c
->max_write_size
);
509 ubifs_assert(wbuf
->size
% c
->min_io_size
== 0);
510 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
511 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
512 ubifs_assert(!((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
518 * Do not write whole write buffer but write only the minimum necessary
519 * amount of min. I/O units.
521 sync_len
= ALIGN(wbuf
->used
, c
->min_io_size
);
522 dirt
= sync_len
- wbuf
->used
;
524 ubifs_pad(c
, wbuf
->buf
+ wbuf
->used
, dirt
);
525 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
, sync_len
);
529 spin_lock(&wbuf
->lock
);
530 wbuf
->offs
+= sync_len
;
532 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
533 * But our goal is to optimize writes and make sure we write in
534 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
535 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
536 * sure that @wbuf->offs + @wbuf->size is aligned to
537 * @c->max_write_size. This way we make sure that after next
538 * write-buffer flush we are again at the optimal offset (aligned to
539 * @c->max_write_size).
541 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
542 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
543 else if (wbuf
->offs
& (c
->max_write_size
- 1))
544 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
546 wbuf
->size
= c
->max_write_size
;
547 wbuf
->avail
= wbuf
->size
;
550 spin_unlock(&wbuf
->lock
);
552 if (wbuf
->sync_callback
)
553 err
= wbuf
->sync_callback(c
, wbuf
->lnum
,
554 c
->leb_size
- wbuf
->offs
, dirt
);
559 * ubifs_wbuf_seek_nolock - seek write-buffer.
560 * @wbuf: write-buffer
561 * @lnum: logical eraseblock number to seek to
562 * @offs: logical eraseblock offset to seek to
564 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
565 * The write-buffer has to be empty. Returns zero in case of success and a
566 * negative error code in case of failure.
568 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf
*wbuf
, int lnum
, int offs
)
570 const struct ubifs_info
*c
= wbuf
->c
;
572 dbg_io("LEB %d:%d, jhead %s", lnum
, offs
, dbg_jhead(wbuf
->jhead
));
573 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
);
574 ubifs_assert(offs
>= 0 && offs
<= c
->leb_size
);
575 ubifs_assert(offs
% c
->min_io_size
== 0 && !(offs
& 7));
576 ubifs_assert(lnum
!= wbuf
->lnum
);
577 ubifs_assert(wbuf
->used
== 0);
579 spin_lock(&wbuf
->lock
);
582 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
583 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
584 else if (wbuf
->offs
& (c
->max_write_size
- 1))
585 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
587 wbuf
->size
= c
->max_write_size
;
588 wbuf
->avail
= wbuf
->size
;
590 spin_unlock(&wbuf
->lock
);
596 * ubifs_bg_wbufs_sync - synchronize write-buffers.
597 * @c: UBIFS file-system description object
599 * This function is called by background thread to synchronize write-buffers.
600 * Returns zero in case of success and a negative error code in case of
603 int ubifs_bg_wbufs_sync(struct ubifs_info
*c
)
607 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
608 if (!c
->need_wbuf_sync
)
610 c
->need_wbuf_sync
= 0;
617 dbg_io("synchronize");
618 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
619 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
624 * If the mutex is locked then wbuf is being changed, so
625 * synchronization is not necessary.
627 if (mutex_is_locked(&wbuf
->io_mutex
))
630 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
631 if (!wbuf
->need_sync
) {
632 mutex_unlock(&wbuf
->io_mutex
);
636 err
= ubifs_wbuf_sync_nolock(wbuf
);
637 mutex_unlock(&wbuf
->io_mutex
);
639 ubifs_err("cannot sync write-buffer, error %d", err
);
640 ubifs_ro_mode(c
, err
);
648 /* Cancel all timers to prevent repeated errors */
649 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
650 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
652 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
653 cancel_wbuf_timer_nolock(wbuf
);
654 mutex_unlock(&wbuf
->io_mutex
);
660 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
661 * @wbuf: write-buffer
662 * @buf: node to write
665 * This function writes data to flash via write-buffer @wbuf. This means that
666 * the last piece of the node won't reach the flash media immediately if it
667 * does not take whole max. write unit (@c->max_write_size). Instead, the node
668 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
669 * because more data are appended to the write-buffer).
671 * This function returns zero in case of success and a negative error code in
672 * case of failure. If the node cannot be written because there is no more
673 * space in this logical eraseblock, %-ENOSPC is returned.
675 int ubifs_wbuf_write_nolock(struct ubifs_wbuf
*wbuf
, void *buf
, int len
)
677 struct ubifs_info
*c
= wbuf
->c
;
678 int err
, written
, n
, aligned_len
= ALIGN(len
, 8);
680 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len
,
681 dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
),
682 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
);
683 ubifs_assert(len
> 0 && wbuf
->lnum
>= 0 && wbuf
->lnum
< c
->leb_cnt
);
684 ubifs_assert(wbuf
->offs
>= 0 && wbuf
->offs
% c
->min_io_size
== 0);
685 ubifs_assert(!(wbuf
->offs
& 7) && wbuf
->offs
<= c
->leb_size
);
686 ubifs_assert(wbuf
->avail
> 0 && wbuf
->avail
<= wbuf
->size
);
687 ubifs_assert(wbuf
->size
>= c
->min_io_size
);
688 ubifs_assert(wbuf
->size
<= c
->max_write_size
);
689 ubifs_assert(wbuf
->size
% c
->min_io_size
== 0);
690 ubifs_assert(mutex_is_locked(&wbuf
->io_mutex
));
691 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
692 ubifs_assert(!c
->space_fixup
);
693 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
694 ubifs_assert(!((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
696 if (c
->leb_size
- wbuf
->offs
- wbuf
->used
< aligned_len
) {
701 cancel_wbuf_timer_nolock(wbuf
);
706 if (aligned_len
<= wbuf
->avail
) {
708 * The node is not very large and fits entirely within
711 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, len
);
713 if (aligned_len
== wbuf
->avail
) {
714 dbg_io("flush jhead %s wbuf to LEB %d:%d",
715 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
716 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
,
717 wbuf
->offs
, wbuf
->size
);
721 spin_lock(&wbuf
->lock
);
722 wbuf
->offs
+= wbuf
->size
;
723 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
724 wbuf
->size
= c
->max_write_size
;
726 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
727 wbuf
->avail
= wbuf
->size
;
730 spin_unlock(&wbuf
->lock
);
732 spin_lock(&wbuf
->lock
);
733 wbuf
->avail
-= aligned_len
;
734 wbuf
->used
+= aligned_len
;
735 spin_unlock(&wbuf
->lock
);
745 * The node is large enough and does not fit entirely within
746 * current available space. We have to fill and flush
747 * write-buffer and switch to the next max. write unit.
749 dbg_io("flush jhead %s wbuf to LEB %d:%d",
750 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
751 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, wbuf
->avail
);
752 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
757 wbuf
->offs
+= wbuf
->size
;
759 aligned_len
-= wbuf
->avail
;
760 written
+= wbuf
->avail
;
761 } else if (wbuf
->offs
& (c
->max_write_size
- 1)) {
763 * The write-buffer offset is not aligned to
764 * @c->max_write_size and @wbuf->size is less than
765 * @c->max_write_size. Write @wbuf->size bytes to make sure the
766 * following writes are done in optimal @c->max_write_size
769 dbg_io("write %d bytes to LEB %d:%d",
770 wbuf
->size
, wbuf
->lnum
, wbuf
->offs
);
771 err
= ubifs_leb_write(c
, wbuf
->lnum
, buf
, wbuf
->offs
,
776 wbuf
->offs
+= wbuf
->size
;
778 aligned_len
-= wbuf
->size
;
779 written
+= wbuf
->size
;
783 * The remaining data may take more whole max. write units, so write the
784 * remains multiple to max. write unit size directly to the flash media.
785 * We align node length to 8-byte boundary because we anyway flash wbuf
786 * if the remaining space is less than 8 bytes.
788 n
= aligned_len
>> c
->max_write_shift
;
790 n
<<= c
->max_write_shift
;
791 dbg_io("write %d bytes to LEB %d:%d", n
, wbuf
->lnum
,
793 err
= ubifs_leb_write(c
, wbuf
->lnum
, buf
+ written
,
803 spin_lock(&wbuf
->lock
);
806 * And now we have what's left and what does not take whole
807 * max. write unit, so write it to the write-buffer and we are
810 memcpy(wbuf
->buf
, buf
+ written
, len
);
812 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
813 wbuf
->size
= c
->max_write_size
;
815 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
816 wbuf
->avail
= wbuf
->size
- aligned_len
;
817 wbuf
->used
= aligned_len
;
819 spin_unlock(&wbuf
->lock
);
822 if (wbuf
->sync_callback
) {
823 int free
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
825 err
= wbuf
->sync_callback(c
, wbuf
->lnum
, free
, 0);
831 new_wbuf_timer_nolock(wbuf
);
836 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
837 len
, wbuf
->lnum
, wbuf
->offs
, err
);
838 ubifs_dump_node(c
, buf
);
840 ubifs_dump_leb(c
, wbuf
->lnum
);
845 * ubifs_write_node - write node to the media.
846 * @c: UBIFS file-system description object
847 * @buf: the node to write
849 * @lnum: logical eraseblock number
850 * @offs: offset within the logical eraseblock
852 * This function automatically fills node magic number, assigns sequence
853 * number, and calculates node CRC checksum. The length of the @buf buffer has
854 * to be aligned to the minimal I/O unit size. This function automatically
855 * appends padding node and padding bytes if needed. Returns zero in case of
856 * success and a negative error code in case of failure.
858 int ubifs_write_node(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
861 int err
, buf_len
= ALIGN(len
, c
->min_io_size
);
863 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
864 lnum
, offs
, dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), len
,
866 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
867 ubifs_assert(offs
% c
->min_io_size
== 0 && offs
< c
->leb_size
);
868 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
869 ubifs_assert(!c
->space_fixup
);
874 ubifs_prepare_node(c
, buf
, len
, 1);
875 err
= ubifs_leb_write(c
, lnum
, buf
, offs
, buf_len
);
877 ubifs_dump_node(c
, buf
);
883 * ubifs_read_node_wbuf - read node from the media or write-buffer.
884 * @wbuf: wbuf to check for un-written data
885 * @buf: buffer to read to
888 * @lnum: logical eraseblock number
889 * @offs: offset within the logical eraseblock
891 * This function reads a node of known type and length, checks it and stores
892 * in @buf. If the node partially or fully sits in the write-buffer, this
893 * function takes data from the buffer, otherwise it reads the flash media.
894 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
895 * error code in case of failure.
897 int ubifs_read_node_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int type
, int len
,
900 const struct ubifs_info
*c
= wbuf
->c
;
901 int err
, rlen
, overlap
;
902 struct ubifs_ch
*ch
= buf
;
904 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum
, offs
,
905 dbg_ntype(type
), len
, dbg_jhead(wbuf
->jhead
));
906 ubifs_assert(wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
907 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
908 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
910 spin_lock(&wbuf
->lock
);
911 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
913 /* We may safely unlock the write-buffer and read the data */
914 spin_unlock(&wbuf
->lock
);
915 return ubifs_read_node(c
, buf
, type
, len
, lnum
, offs
);
918 /* Don't read under wbuf */
919 rlen
= wbuf
->offs
- offs
;
923 /* Copy the rest from the write-buffer */
924 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
925 spin_unlock(&wbuf
->lock
);
928 /* Read everything that goes before write-buffer */
929 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, rlen
, 0);
930 if (err
&& err
!= -EBADMSG
)
934 if (type
!= ch
->node_type
) {
935 ubifs_err("bad node type (%d but expected %d)",
936 ch
->node_type
, type
);
940 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
942 ubifs_err("expected node type %d", type
);
946 rlen
= le32_to_cpu(ch
->len
);
948 ubifs_err("bad node length %d, expected %d", rlen
, len
);
955 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
956 ubifs_dump_node(c
, buf
);
962 * ubifs_read_node - read node.
963 * @c: UBIFS file-system description object
964 * @buf: buffer to read to
966 * @len: node length (not aligned)
967 * @lnum: logical eraseblock number
968 * @offs: offset within the logical eraseblock
970 * This function reads a node of known type and and length, checks it and
971 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
972 * and a negative error code in case of failure.
974 int ubifs_read_node(const struct ubifs_info
*c
, void *buf
, int type
, int len
,
978 struct ubifs_ch
*ch
= buf
;
980 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
981 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
982 ubifs_assert(len
>= UBIFS_CH_SZ
&& offs
+ len
<= c
->leb_size
);
983 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
984 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
986 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, len
, 0);
987 if (err
&& err
!= -EBADMSG
)
990 if (type
!= ch
->node_type
) {
991 ubifs_err("bad node type (%d but expected %d)",
992 ch
->node_type
, type
);
996 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
998 ubifs_err("expected node type %d", type
);
1002 l
= le32_to_cpu(ch
->len
);
1004 ubifs_err("bad node length %d, expected %d", l
, len
);
1011 ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum
, offs
,
1012 ubi_is_mapped(c
->ubi
, lnum
));
1013 ubifs_dump_node(c
, buf
);
1019 * ubifs_wbuf_init - initialize write-buffer.
1020 * @c: UBIFS file-system description object
1021 * @wbuf: write-buffer to initialize
1023 * This function initializes write-buffer. Returns zero in case of success
1024 * %-ENOMEM in case of failure.
1026 int ubifs_wbuf_init(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
1030 wbuf
->buf
= kmalloc(c
->max_write_size
, GFP_KERNEL
);
1034 size
= (c
->max_write_size
/ UBIFS_CH_SZ
+ 1) * sizeof(ino_t
);
1035 wbuf
->inodes
= kmalloc(size
, GFP_KERNEL
);
1036 if (!wbuf
->inodes
) {
1043 wbuf
->lnum
= wbuf
->offs
= -1;
1045 * If the LEB starts at the max. write size aligned address, then
1046 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1047 * set it to something smaller so that it ends at the closest max.
1048 * write size boundary.
1050 size
= c
->max_write_size
- (c
->leb_start
% c
->max_write_size
);
1051 wbuf
->avail
= wbuf
->size
= size
;
1052 wbuf
->sync_callback
= NULL
;
1053 mutex_init(&wbuf
->io_mutex
);
1054 spin_lock_init(&wbuf
->lock
);
1058 hrtimer_init(&wbuf
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1059 wbuf
->timer
.function
= wbuf_timer_callback_nolock
;
1060 wbuf
->softlimit
= ktime_set(WBUF_TIMEOUT_SOFTLIMIT
, 0);
1061 wbuf
->delta
= WBUF_TIMEOUT_HARDLIMIT
- WBUF_TIMEOUT_SOFTLIMIT
;
1062 wbuf
->delta
*= 1000000000ULL;
1063 ubifs_assert(wbuf
->delta
<= ULONG_MAX
);
1068 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1069 * @wbuf: the write-buffer where to add
1070 * @inum: the inode number
1072 * This function adds an inode number to the inode array of the write-buffer.
1074 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf
*wbuf
, ino_t inum
)
1077 /* NOR flash or something similar */
1080 spin_lock(&wbuf
->lock
);
1082 wbuf
->inodes
[wbuf
->next_ino
++] = inum
;
1083 spin_unlock(&wbuf
->lock
);
1087 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1088 * @wbuf: the write-buffer
1089 * @inum: the inode number
1091 * This function returns with %1 if the write-buffer contains some data from the
1092 * given inode otherwise it returns with %0.
1094 static int wbuf_has_ino(struct ubifs_wbuf
*wbuf
, ino_t inum
)
1098 spin_lock(&wbuf
->lock
);
1099 for (i
= 0; i
< wbuf
->next_ino
; i
++)
1100 if (inum
== wbuf
->inodes
[i
]) {
1104 spin_unlock(&wbuf
->lock
);
1110 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1111 * @c: UBIFS file-system description object
1112 * @inode: inode to synchronize
1114 * This function synchronizes write-buffers which contain nodes belonging to
1115 * @inode. Returns zero in case of success and a negative error code in case of
1118 int ubifs_sync_wbufs_by_inode(struct ubifs_info
*c
, struct inode
*inode
)
1122 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1123 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
1127 * GC head is special, do not look at it. Even if the
1128 * head contains something related to this inode, it is
1129 * a _copy_ of corresponding on-flash node which sits
1134 if (!wbuf_has_ino(wbuf
, inode
->i_ino
))
1137 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1138 if (wbuf_has_ino(wbuf
, inode
->i_ino
))
1139 err
= ubifs_wbuf_sync_nolock(wbuf
);
1140 mutex_unlock(&wbuf
->io_mutex
);
1143 ubifs_ro_mode(c
, err
);