USB: DWC3: Correct DWC3_DSTS_SOFFN_MASK definition
[linux-2.6.git] / arch / powerpc / kernel / time.c
blob99a995c2a3f2496da4e2e48e807b7354488ff2c7
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time.
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/param.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/timex.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/time.h>
45 #include <linux/init.h>
46 #include <linux/profile.h>
47 #include <linux/cpu.h>
48 #include <linux/security.h>
49 #include <linux/percpu.h>
50 #include <linux/rtc.h>
51 #include <linux/jiffies.h>
52 #include <linux/posix-timers.h>
53 #include <linux/irq.h>
54 #include <linux/delay.h>
55 #include <linux/irq_work.h>
56 #include <asm/trace.h>
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
73 /* powerpc clocksource/clockevent code */
75 #include <linux/clockchips.h>
76 #include <linux/clocksource.h>
78 static cycle_t rtc_read(struct clocksource *);
79 static struct clocksource clocksource_rtc = {
80 .name = "rtc",
81 .rating = 400,
82 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
83 .mask = CLOCKSOURCE_MASK(64),
84 .read = rtc_read,
87 static cycle_t timebase_read(struct clocksource *);
88 static struct clocksource clocksource_timebase = {
89 .name = "timebase",
90 .rating = 400,
91 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
92 .mask = CLOCKSOURCE_MASK(64),
93 .read = timebase_read,
96 #define DECREMENTER_MAX 0x7fffffff
98 static int decrementer_set_next_event(unsigned long evt,
99 struct clock_event_device *dev);
100 static void decrementer_set_mode(enum clock_event_mode mode,
101 struct clock_event_device *dev);
103 struct clock_event_device decrementer_clockevent = {
104 .name = "decrementer",
105 .rating = 200,
106 .irq = 0,
107 .set_next_event = decrementer_set_next_event,
108 .set_mode = decrementer_set_mode,
109 .features = CLOCK_EVT_FEAT_ONESHOT,
111 EXPORT_SYMBOL(decrementer_clockevent);
113 DEFINE_PER_CPU(u64, decrementers_next_tb);
114 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
116 #define XSEC_PER_SEC (1024*1024)
118 #ifdef CONFIG_PPC64
119 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
120 #else
121 /* compute ((xsec << 12) * max) >> 32 */
122 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
123 #endif
125 unsigned long tb_ticks_per_jiffy;
126 unsigned long tb_ticks_per_usec = 100; /* sane default */
127 EXPORT_SYMBOL(tb_ticks_per_usec);
128 unsigned long tb_ticks_per_sec;
129 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
131 DEFINE_SPINLOCK(rtc_lock);
132 EXPORT_SYMBOL_GPL(rtc_lock);
134 static u64 tb_to_ns_scale __read_mostly;
135 static unsigned tb_to_ns_shift __read_mostly;
136 static u64 boot_tb __read_mostly;
138 extern struct timezone sys_tz;
139 static long timezone_offset;
141 unsigned long ppc_proc_freq;
142 EXPORT_SYMBOL_GPL(ppc_proc_freq);
143 unsigned long ppc_tb_freq;
144 EXPORT_SYMBOL_GPL(ppc_tb_freq);
146 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
148 * Factors for converting from cputime_t (timebase ticks) to
149 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
150 * These are all stored as 0.64 fixed-point binary fractions.
152 u64 __cputime_jiffies_factor;
153 EXPORT_SYMBOL(__cputime_jiffies_factor);
154 u64 __cputime_usec_factor;
155 EXPORT_SYMBOL(__cputime_usec_factor);
156 u64 __cputime_sec_factor;
157 EXPORT_SYMBOL(__cputime_sec_factor);
158 u64 __cputime_clockt_factor;
159 EXPORT_SYMBOL(__cputime_clockt_factor);
160 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
161 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
163 cputime_t cputime_one_jiffy;
165 void (*dtl_consumer)(struct dtl_entry *, u64);
167 static void calc_cputime_factors(void)
169 struct div_result res;
171 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
172 __cputime_jiffies_factor = res.result_low;
173 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
174 __cputime_usec_factor = res.result_low;
175 div128_by_32(1, 0, tb_ticks_per_sec, &res);
176 __cputime_sec_factor = res.result_low;
177 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
178 __cputime_clockt_factor = res.result_low;
182 * Read the SPURR on systems that have it, otherwise the PURR,
183 * or if that doesn't exist return the timebase value passed in.
185 static u64 read_spurr(u64 tb)
187 if (cpu_has_feature(CPU_FTR_SPURR))
188 return mfspr(SPRN_SPURR);
189 if (cpu_has_feature(CPU_FTR_PURR))
190 return mfspr(SPRN_PURR);
191 return tb;
194 #ifdef CONFIG_PPC_SPLPAR
197 * Scan the dispatch trace log and count up the stolen time.
198 * Should be called with interrupts disabled.
200 static u64 scan_dispatch_log(u64 stop_tb)
202 u64 i = local_paca->dtl_ridx;
203 struct dtl_entry *dtl = local_paca->dtl_curr;
204 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
205 struct lppaca *vpa = local_paca->lppaca_ptr;
206 u64 tb_delta;
207 u64 stolen = 0;
208 u64 dtb;
210 if (!dtl)
211 return 0;
213 if (i == vpa->dtl_idx)
214 return 0;
215 while (i < vpa->dtl_idx) {
216 if (dtl_consumer)
217 dtl_consumer(dtl, i);
218 dtb = dtl->timebase;
219 tb_delta = dtl->enqueue_to_dispatch_time +
220 dtl->ready_to_enqueue_time;
221 barrier();
222 if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
223 /* buffer has overflowed */
224 i = vpa->dtl_idx - N_DISPATCH_LOG;
225 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
226 continue;
228 if (dtb > stop_tb)
229 break;
230 stolen += tb_delta;
231 ++i;
232 ++dtl;
233 if (dtl == dtl_end)
234 dtl = local_paca->dispatch_log;
236 local_paca->dtl_ridx = i;
237 local_paca->dtl_curr = dtl;
238 return stolen;
242 * Accumulate stolen time by scanning the dispatch trace log.
243 * Called on entry from user mode.
245 void accumulate_stolen_time(void)
247 u64 sst, ust;
249 u8 save_soft_enabled = local_paca->soft_enabled;
251 /* We are called early in the exception entry, before
252 * soft/hard_enabled are sync'ed to the expected state
253 * for the exception. We are hard disabled but the PACA
254 * needs to reflect that so various debug stuff doesn't
255 * complain
257 local_paca->soft_enabled = 0;
259 sst = scan_dispatch_log(local_paca->starttime_user);
260 ust = scan_dispatch_log(local_paca->starttime);
261 local_paca->system_time -= sst;
262 local_paca->user_time -= ust;
263 local_paca->stolen_time += ust + sst;
265 local_paca->soft_enabled = save_soft_enabled;
268 static inline u64 calculate_stolen_time(u64 stop_tb)
270 u64 stolen = 0;
272 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
273 stolen = scan_dispatch_log(stop_tb);
274 get_paca()->system_time -= stolen;
277 stolen += get_paca()->stolen_time;
278 get_paca()->stolen_time = 0;
279 return stolen;
282 #else /* CONFIG_PPC_SPLPAR */
283 static inline u64 calculate_stolen_time(u64 stop_tb)
285 return 0;
288 #endif /* CONFIG_PPC_SPLPAR */
291 * Account time for a transition between system, hard irq
292 * or soft irq state.
294 void account_system_vtime(struct task_struct *tsk)
296 u64 now, nowscaled, delta, deltascaled;
297 unsigned long flags;
298 u64 stolen, udelta, sys_scaled, user_scaled;
300 local_irq_save(flags);
301 now = mftb();
302 nowscaled = read_spurr(now);
303 get_paca()->system_time += now - get_paca()->starttime;
304 get_paca()->starttime = now;
305 deltascaled = nowscaled - get_paca()->startspurr;
306 get_paca()->startspurr = nowscaled;
308 stolen = calculate_stolen_time(now);
310 delta = get_paca()->system_time;
311 get_paca()->system_time = 0;
312 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
313 get_paca()->utime_sspurr = get_paca()->user_time;
316 * Because we don't read the SPURR on every kernel entry/exit,
317 * deltascaled includes both user and system SPURR ticks.
318 * Apportion these ticks to system SPURR ticks and user
319 * SPURR ticks in the same ratio as the system time (delta)
320 * and user time (udelta) values obtained from the timebase
321 * over the same interval. The system ticks get accounted here;
322 * the user ticks get saved up in paca->user_time_scaled to be
323 * used by account_process_tick.
325 sys_scaled = delta;
326 user_scaled = udelta;
327 if (deltascaled != delta + udelta) {
328 if (udelta) {
329 sys_scaled = deltascaled * delta / (delta + udelta);
330 user_scaled = deltascaled - sys_scaled;
331 } else {
332 sys_scaled = deltascaled;
335 get_paca()->user_time_scaled += user_scaled;
337 if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
338 account_system_time(tsk, 0, delta, sys_scaled);
339 if (stolen)
340 account_steal_time(stolen);
341 } else {
342 account_idle_time(delta + stolen);
344 local_irq_restore(flags);
346 EXPORT_SYMBOL_GPL(account_system_vtime);
349 * Transfer the user and system times accumulated in the paca
350 * by the exception entry and exit code to the generic process
351 * user and system time records.
352 * Must be called with interrupts disabled.
353 * Assumes that account_system_vtime() has been called recently
354 * (i.e. since the last entry from usermode) so that
355 * get_paca()->user_time_scaled is up to date.
357 void account_process_tick(struct task_struct *tsk, int user_tick)
359 cputime_t utime, utimescaled;
361 utime = get_paca()->user_time;
362 utimescaled = get_paca()->user_time_scaled;
363 get_paca()->user_time = 0;
364 get_paca()->user_time_scaled = 0;
365 get_paca()->utime_sspurr = 0;
366 account_user_time(tsk, utime, utimescaled);
369 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
370 #define calc_cputime_factors()
371 #endif
373 void __delay(unsigned long loops)
375 unsigned long start;
376 int diff;
378 if (__USE_RTC()) {
379 start = get_rtcl();
380 do {
381 /* the RTCL register wraps at 1000000000 */
382 diff = get_rtcl() - start;
383 if (diff < 0)
384 diff += 1000000000;
385 } while (diff < loops);
386 } else {
387 start = get_tbl();
388 while (get_tbl() - start < loops)
389 HMT_low();
390 HMT_medium();
393 EXPORT_SYMBOL(__delay);
395 void udelay(unsigned long usecs)
397 __delay(tb_ticks_per_usec * usecs);
399 EXPORT_SYMBOL(udelay);
401 #ifdef CONFIG_SMP
402 unsigned long profile_pc(struct pt_regs *regs)
404 unsigned long pc = instruction_pointer(regs);
406 if (in_lock_functions(pc))
407 return regs->link;
409 return pc;
411 EXPORT_SYMBOL(profile_pc);
412 #endif
414 #ifdef CONFIG_IRQ_WORK
417 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
419 #ifdef CONFIG_PPC64
420 static inline unsigned long test_irq_work_pending(void)
422 unsigned long x;
424 asm volatile("lbz %0,%1(13)"
425 : "=r" (x)
426 : "i" (offsetof(struct paca_struct, irq_work_pending)));
427 return x;
430 static inline void set_irq_work_pending_flag(void)
432 asm volatile("stb %0,%1(13)" : :
433 "r" (1),
434 "i" (offsetof(struct paca_struct, irq_work_pending)));
437 static inline void clear_irq_work_pending(void)
439 asm volatile("stb %0,%1(13)" : :
440 "r" (0),
441 "i" (offsetof(struct paca_struct, irq_work_pending)));
444 #else /* 32-bit */
446 DEFINE_PER_CPU(u8, irq_work_pending);
448 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
449 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
450 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
452 #endif /* 32 vs 64 bit */
454 void arch_irq_work_raise(void)
456 preempt_disable();
457 set_irq_work_pending_flag();
458 set_dec(1);
459 preempt_enable();
462 #else /* CONFIG_IRQ_WORK */
464 #define test_irq_work_pending() 0
465 #define clear_irq_work_pending()
467 #endif /* CONFIG_IRQ_WORK */
470 * timer_interrupt - gets called when the decrementer overflows,
471 * with interrupts disabled.
473 void timer_interrupt(struct pt_regs * regs)
475 struct pt_regs *old_regs;
476 u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
477 struct clock_event_device *evt = &__get_cpu_var(decrementers);
479 /* Ensure a positive value is written to the decrementer, or else
480 * some CPUs will continue to take decrementer exceptions.
482 set_dec(DECREMENTER_MAX);
484 /* Some implementations of hotplug will get timer interrupts while
485 * offline, just ignore these
487 if (!cpu_online(smp_processor_id()))
488 return;
490 /* Conditionally hard-enable interrupts now that the DEC has been
491 * bumped to its maximum value
493 may_hard_irq_enable();
495 trace_timer_interrupt_entry(regs);
497 __get_cpu_var(irq_stat).timer_irqs++;
499 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
500 if (atomic_read(&ppc_n_lost_interrupts) != 0)
501 do_IRQ(regs);
502 #endif
504 old_regs = set_irq_regs(regs);
505 irq_enter();
507 if (test_irq_work_pending()) {
508 clear_irq_work_pending();
509 irq_work_run();
512 *next_tb = ~(u64)0;
513 if (evt->event_handler)
514 evt->event_handler(evt);
516 #ifdef CONFIG_PPC64
517 /* collect purr register values often, for accurate calculations */
518 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
519 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
520 cu->current_tb = mfspr(SPRN_PURR);
522 #endif
524 irq_exit();
525 set_irq_regs(old_regs);
527 trace_timer_interrupt_exit(regs);
530 #ifdef CONFIG_SUSPEND
531 static void generic_suspend_disable_irqs(void)
533 /* Disable the decrementer, so that it doesn't interfere
534 * with suspending.
537 set_dec(DECREMENTER_MAX);
538 local_irq_disable();
539 set_dec(DECREMENTER_MAX);
542 static void generic_suspend_enable_irqs(void)
544 local_irq_enable();
547 /* Overrides the weak version in kernel/power/main.c */
548 void arch_suspend_disable_irqs(void)
550 if (ppc_md.suspend_disable_irqs)
551 ppc_md.suspend_disable_irqs();
552 generic_suspend_disable_irqs();
555 /* Overrides the weak version in kernel/power/main.c */
556 void arch_suspend_enable_irqs(void)
558 generic_suspend_enable_irqs();
559 if (ppc_md.suspend_enable_irqs)
560 ppc_md.suspend_enable_irqs();
562 #endif
565 * Scheduler clock - returns current time in nanosec units.
567 * Note: mulhdu(a, b) (multiply high double unsigned) returns
568 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
569 * are 64-bit unsigned numbers.
571 unsigned long long sched_clock(void)
573 if (__USE_RTC())
574 return get_rtc();
575 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
578 static int __init get_freq(char *name, int cells, unsigned long *val)
580 struct device_node *cpu;
581 const unsigned int *fp;
582 int found = 0;
584 /* The cpu node should have timebase and clock frequency properties */
585 cpu = of_find_node_by_type(NULL, "cpu");
587 if (cpu) {
588 fp = of_get_property(cpu, name, NULL);
589 if (fp) {
590 found = 1;
591 *val = of_read_ulong(fp, cells);
594 of_node_put(cpu);
597 return found;
600 /* should become __cpuinit when secondary_cpu_time_init also is */
601 void start_cpu_decrementer(void)
603 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
604 /* Clear any pending timer interrupts */
605 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
607 /* Enable decrementer interrupt */
608 mtspr(SPRN_TCR, TCR_DIE);
609 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
612 void __init generic_calibrate_decr(void)
614 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
616 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
617 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
619 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
620 "(not found)\n");
623 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
625 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
626 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
628 printk(KERN_ERR "WARNING: Estimating processor frequency "
629 "(not found)\n");
633 int update_persistent_clock(struct timespec now)
635 struct rtc_time tm;
637 if (!ppc_md.set_rtc_time)
638 return 0;
640 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
641 tm.tm_year -= 1900;
642 tm.tm_mon -= 1;
644 return ppc_md.set_rtc_time(&tm);
647 static void __read_persistent_clock(struct timespec *ts)
649 struct rtc_time tm;
650 static int first = 1;
652 ts->tv_nsec = 0;
653 /* XXX this is a litle fragile but will work okay in the short term */
654 if (first) {
655 first = 0;
656 if (ppc_md.time_init)
657 timezone_offset = ppc_md.time_init();
659 /* get_boot_time() isn't guaranteed to be safe to call late */
660 if (ppc_md.get_boot_time) {
661 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
662 return;
665 if (!ppc_md.get_rtc_time) {
666 ts->tv_sec = 0;
667 return;
669 ppc_md.get_rtc_time(&tm);
671 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
672 tm.tm_hour, tm.tm_min, tm.tm_sec);
675 void read_persistent_clock(struct timespec *ts)
677 __read_persistent_clock(ts);
679 /* Sanitize it in case real time clock is set below EPOCH */
680 if (ts->tv_sec < 0) {
681 ts->tv_sec = 0;
682 ts->tv_nsec = 0;
687 /* clocksource code */
688 static cycle_t rtc_read(struct clocksource *cs)
690 return (cycle_t)get_rtc();
693 static cycle_t timebase_read(struct clocksource *cs)
695 return (cycle_t)get_tb();
698 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
699 struct clocksource *clock, u32 mult)
701 u64 new_tb_to_xs, new_stamp_xsec;
702 u32 frac_sec;
704 if (clock != &clocksource_timebase)
705 return;
707 /* Make userspace gettimeofday spin until we're done. */
708 ++vdso_data->tb_update_count;
709 smp_mb();
711 /* 19342813113834067 ~= 2^(20+64) / 1e9 */
712 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
713 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
714 do_div(new_stamp_xsec, 1000000000);
715 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
717 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
718 /* this is tv_nsec / 1e9 as a 0.32 fraction */
719 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
722 * tb_update_count is used to allow the userspace gettimeofday code
723 * to assure itself that it sees a consistent view of the tb_to_xs and
724 * stamp_xsec variables. It reads the tb_update_count, then reads
725 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
726 * the two values of tb_update_count match and are even then the
727 * tb_to_xs and stamp_xsec values are consistent. If not, then it
728 * loops back and reads them again until this criteria is met.
729 * We expect the caller to have done the first increment of
730 * vdso_data->tb_update_count already.
732 vdso_data->tb_orig_stamp = clock->cycle_last;
733 vdso_data->stamp_xsec = new_stamp_xsec;
734 vdso_data->tb_to_xs = new_tb_to_xs;
735 vdso_data->wtom_clock_sec = wtm->tv_sec;
736 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
737 vdso_data->stamp_xtime = *wall_time;
738 vdso_data->stamp_sec_fraction = frac_sec;
739 smp_wmb();
740 ++(vdso_data->tb_update_count);
743 void update_vsyscall_tz(void)
745 /* Make userspace gettimeofday spin until we're done. */
746 ++vdso_data->tb_update_count;
747 smp_mb();
748 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
749 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
750 smp_mb();
751 ++vdso_data->tb_update_count;
754 static void __init clocksource_init(void)
756 struct clocksource *clock;
758 if (__USE_RTC())
759 clock = &clocksource_rtc;
760 else
761 clock = &clocksource_timebase;
763 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
764 printk(KERN_ERR "clocksource: %s is already registered\n",
765 clock->name);
766 return;
769 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
770 clock->name, clock->mult, clock->shift);
773 static int decrementer_set_next_event(unsigned long evt,
774 struct clock_event_device *dev)
776 __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
777 set_dec(evt);
778 return 0;
781 static void decrementer_set_mode(enum clock_event_mode mode,
782 struct clock_event_device *dev)
784 if (mode != CLOCK_EVT_MODE_ONESHOT)
785 decrementer_set_next_event(DECREMENTER_MAX, dev);
788 static void register_decrementer_clockevent(int cpu)
790 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
792 *dec = decrementer_clockevent;
793 dec->cpumask = cpumask_of(cpu);
795 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
796 dec->name, dec->mult, dec->shift, cpu);
798 clockevents_register_device(dec);
801 static void __init init_decrementer_clockevent(void)
803 int cpu = smp_processor_id();
805 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
807 decrementer_clockevent.max_delta_ns =
808 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
809 decrementer_clockevent.min_delta_ns =
810 clockevent_delta2ns(2, &decrementer_clockevent);
812 register_decrementer_clockevent(cpu);
815 void secondary_cpu_time_init(void)
817 /* Start the decrementer on CPUs that have manual control
818 * such as BookE
820 start_cpu_decrementer();
822 /* FIME: Should make unrelatred change to move snapshot_timebase
823 * call here ! */
824 register_decrementer_clockevent(smp_processor_id());
827 /* This function is only called on the boot processor */
828 void __init time_init(void)
830 struct div_result res;
831 u64 scale;
832 unsigned shift;
834 if (__USE_RTC()) {
835 /* 601 processor: dec counts down by 128 every 128ns */
836 ppc_tb_freq = 1000000000;
837 } else {
838 /* Normal PowerPC with timebase register */
839 ppc_md.calibrate_decr();
840 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
841 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
842 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
843 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
846 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
847 tb_ticks_per_sec = ppc_tb_freq;
848 tb_ticks_per_usec = ppc_tb_freq / 1000000;
849 calc_cputime_factors();
850 setup_cputime_one_jiffy();
853 * Compute scale factor for sched_clock.
854 * The calibrate_decr() function has set tb_ticks_per_sec,
855 * which is the timebase frequency.
856 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
857 * the 128-bit result as a 64.64 fixed-point number.
858 * We then shift that number right until it is less than 1.0,
859 * giving us the scale factor and shift count to use in
860 * sched_clock().
862 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
863 scale = res.result_low;
864 for (shift = 0; res.result_high != 0; ++shift) {
865 scale = (scale >> 1) | (res.result_high << 63);
866 res.result_high >>= 1;
868 tb_to_ns_scale = scale;
869 tb_to_ns_shift = shift;
870 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
871 boot_tb = get_tb_or_rtc();
873 /* If platform provided a timezone (pmac), we correct the time */
874 if (timezone_offset) {
875 sys_tz.tz_minuteswest = -timezone_offset / 60;
876 sys_tz.tz_dsttime = 0;
879 vdso_data->tb_update_count = 0;
880 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
882 /* Start the decrementer on CPUs that have manual control
883 * such as BookE
885 start_cpu_decrementer();
887 /* Register the clocksource */
888 clocksource_init();
890 init_decrementer_clockevent();
894 #define FEBRUARY 2
895 #define STARTOFTIME 1970
896 #define SECDAY 86400L
897 #define SECYR (SECDAY * 365)
898 #define leapyear(year) ((year) % 4 == 0 && \
899 ((year) % 100 != 0 || (year) % 400 == 0))
900 #define days_in_year(a) (leapyear(a) ? 366 : 365)
901 #define days_in_month(a) (month_days[(a) - 1])
903 static int month_days[12] = {
904 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
908 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
910 void GregorianDay(struct rtc_time * tm)
912 int leapsToDate;
913 int lastYear;
914 int day;
915 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
917 lastYear = tm->tm_year - 1;
920 * Number of leap corrections to apply up to end of last year
922 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
925 * This year is a leap year if it is divisible by 4 except when it is
926 * divisible by 100 unless it is divisible by 400
928 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
930 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
932 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
933 tm->tm_mday;
935 tm->tm_wday = day % 7;
938 void to_tm(int tim, struct rtc_time * tm)
940 register int i;
941 register long hms, day;
943 day = tim / SECDAY;
944 hms = tim % SECDAY;
946 /* Hours, minutes, seconds are easy */
947 tm->tm_hour = hms / 3600;
948 tm->tm_min = (hms % 3600) / 60;
949 tm->tm_sec = (hms % 3600) % 60;
951 /* Number of years in days */
952 for (i = STARTOFTIME; day >= days_in_year(i); i++)
953 day -= days_in_year(i);
954 tm->tm_year = i;
956 /* Number of months in days left */
957 if (leapyear(tm->tm_year))
958 days_in_month(FEBRUARY) = 29;
959 for (i = 1; day >= days_in_month(i); i++)
960 day -= days_in_month(i);
961 days_in_month(FEBRUARY) = 28;
962 tm->tm_mon = i;
964 /* Days are what is left over (+1) from all that. */
965 tm->tm_mday = day + 1;
968 * Determine the day of week
970 GregorianDay(tm);
974 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
975 * result.
977 void div128_by_32(u64 dividend_high, u64 dividend_low,
978 unsigned divisor, struct div_result *dr)
980 unsigned long a, b, c, d;
981 unsigned long w, x, y, z;
982 u64 ra, rb, rc;
984 a = dividend_high >> 32;
985 b = dividend_high & 0xffffffff;
986 c = dividend_low >> 32;
987 d = dividend_low & 0xffffffff;
989 w = a / divisor;
990 ra = ((u64)(a - (w * divisor)) << 32) + b;
992 rb = ((u64) do_div(ra, divisor) << 32) + c;
993 x = ra;
995 rc = ((u64) do_div(rb, divisor) << 32) + d;
996 y = rb;
998 do_div(rc, divisor);
999 z = rc;
1001 dr->result_high = ((u64)w << 32) + x;
1002 dr->result_low = ((u64)y << 32) + z;
1006 /* We don't need to calibrate delay, we use the CPU timebase for that */
1007 void calibrate_delay(void)
1009 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1010 * as the number of __delay(1) in a jiffy, so make it so
1012 loops_per_jiffy = tb_ticks_per_jiffy;
1015 static int __init rtc_init(void)
1017 struct platform_device *pdev;
1019 if (!ppc_md.get_rtc_time)
1020 return -ENODEV;
1022 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1023 if (IS_ERR(pdev))
1024 return PTR_ERR(pdev);
1026 return 0;
1029 module_init(rtc_init);