2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
58 static void autostart_arrays(int part
);
61 /* pers_list is a list of registered personalities protected
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list
);
67 static DEFINE_SPINLOCK(pers_lock
);
69 static void md_print_devices(void);
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait
);
72 static struct workqueue_struct
*md_wq
;
73 static struct workqueue_struct
*md_misc_wq
;
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
96 static int sysctl_speed_limit_min
= 1000;
97 static int sysctl_speed_limit_max
= 200000;
98 static inline int speed_min(struct mddev
*mddev
)
100 return mddev
->sync_speed_min
?
101 mddev
->sync_speed_min
: sysctl_speed_limit_min
;
104 static inline int speed_max(struct mddev
*mddev
)
106 return mddev
->sync_speed_max
?
107 mddev
->sync_speed_max
: sysctl_speed_limit_max
;
110 static struct ctl_table_header
*raid_table_header
;
112 static ctl_table raid_table
[] = {
114 .procname
= "speed_limit_min",
115 .data
= &sysctl_speed_limit_min
,
116 .maxlen
= sizeof(int),
117 .mode
= S_IRUGO
|S_IWUSR
,
118 .proc_handler
= proc_dointvec
,
121 .procname
= "speed_limit_max",
122 .data
= &sysctl_speed_limit_max
,
123 .maxlen
= sizeof(int),
124 .mode
= S_IRUGO
|S_IWUSR
,
125 .proc_handler
= proc_dointvec
,
130 static ctl_table raid_dir_table
[] = {
134 .mode
= S_IRUGO
|S_IXUGO
,
140 static ctl_table raid_root_table
[] = {
145 .child
= raid_dir_table
,
150 static const struct block_device_operations md_fops
;
152 static int start_readonly
;
155 * like bio_clone, but with a local bio set
158 static void mddev_bio_destructor(struct bio
*bio
)
160 struct mddev
*mddev
, **mddevp
;
165 bio_free(bio
, mddev
->bio_set
);
168 struct bio
*bio_alloc_mddev(gfp_t gfp_mask
, int nr_iovecs
,
172 struct mddev
**mddevp
;
174 if (!mddev
|| !mddev
->bio_set
)
175 return bio_alloc(gfp_mask
, nr_iovecs
);
177 b
= bio_alloc_bioset(gfp_mask
, nr_iovecs
,
183 b
->bi_destructor
= mddev_bio_destructor
;
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev
);
188 struct bio
*bio_clone_mddev(struct bio
*bio
, gfp_t gfp_mask
,
192 struct mddev
**mddevp
;
194 if (!mddev
|| !mddev
->bio_set
)
195 return bio_clone(bio
, gfp_mask
);
197 b
= bio_alloc_bioset(gfp_mask
, bio
->bi_max_vecs
,
203 b
->bi_destructor
= mddev_bio_destructor
;
205 if (bio_integrity(bio
)) {
208 ret
= bio_integrity_clone(b
, bio
, gfp_mask
, mddev
->bio_set
);
218 EXPORT_SYMBOL_GPL(bio_clone_mddev
);
220 void md_trim_bio(struct bio
*bio
, int offset
, int size
)
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
227 struct bio_vec
*bvec
;
231 if (offset
== 0 && size
== bio
->bi_size
)
234 bio
->bi_sector
+= offset
;
237 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
239 while (bio
->bi_idx
< bio
->bi_vcnt
&&
240 bio
->bi_io_vec
[bio
->bi_idx
].bv_len
<= offset
) {
241 /* remove this whole bio_vec */
242 offset
-= bio
->bi_io_vec
[bio
->bi_idx
].bv_len
;
245 if (bio
->bi_idx
< bio
->bi_vcnt
) {
246 bio
->bi_io_vec
[bio
->bi_idx
].bv_offset
+= offset
;
247 bio
->bi_io_vec
[bio
->bi_idx
].bv_len
-= offset
;
249 /* avoid any complications with bi_idx being non-zero*/
251 memmove(bio
->bi_io_vec
, bio
->bi_io_vec
+bio
->bi_idx
,
252 (bio
->bi_vcnt
- bio
->bi_idx
) * sizeof(struct bio_vec
));
253 bio
->bi_vcnt
-= bio
->bi_idx
;
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec
, bio
, i
) {
258 if (sofar
+ bvec
->bv_len
> size
)
259 bvec
->bv_len
= size
- sofar
;
260 if (bvec
->bv_len
== 0) {
264 sofar
+= bvec
->bv_len
;
267 EXPORT_SYMBOL_GPL(md_trim_bio
);
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters
);
280 static atomic_t md_event_count
;
281 void md_new_event(struct mddev
*mddev
)
283 atomic_inc(&md_event_count
);
284 wake_up(&md_event_waiters
);
286 EXPORT_SYMBOL_GPL(md_new_event
);
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
291 static void md_new_event_inintr(struct mddev
*mddev
)
293 atomic_inc(&md_event_count
);
294 wake_up(&md_event_waiters
);
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
301 static LIST_HEAD(all_mddevs
);
302 static DEFINE_SPINLOCK(all_mddevs_lock
);
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
312 #define for_each_mddev(_mddev,_tmp) \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
335 static void md_make_request(struct request_queue
*q
, struct bio
*bio
)
337 const int rw
= bio_data_dir(bio
);
338 struct mddev
*mddev
= q
->queuedata
;
340 unsigned int sectors
;
342 if (mddev
== NULL
|| mddev
->pers
== NULL
347 smp_rmb(); /* Ensure implications of 'active' are visible */
349 if (mddev
->suspended
) {
352 prepare_to_wait(&mddev
->sb_wait
, &__wait
,
353 TASK_UNINTERRUPTIBLE
);
354 if (!mddev
->suspended
)
360 finish_wait(&mddev
->sb_wait
, &__wait
);
362 atomic_inc(&mddev
->active_io
);
366 * save the sectors now since our bio can
367 * go away inside make_request
369 sectors
= bio_sectors(bio
);
370 mddev
->pers
->make_request(mddev
, bio
);
372 cpu
= part_stat_lock();
373 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
374 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
], sectors
);
377 if (atomic_dec_and_test(&mddev
->active_io
) && mddev
->suspended
)
378 wake_up(&mddev
->sb_wait
);
381 /* mddev_suspend makes sure no new requests are submitted
382 * to the device, and that any requests that have been submitted
383 * are completely handled.
384 * Once ->stop is called and completes, the module will be completely
387 void mddev_suspend(struct mddev
*mddev
)
389 BUG_ON(mddev
->suspended
);
390 mddev
->suspended
= 1;
392 wait_event(mddev
->sb_wait
, atomic_read(&mddev
->active_io
) == 0);
393 mddev
->pers
->quiesce(mddev
, 1);
395 del_timer_sync(&mddev
->safemode_timer
);
397 EXPORT_SYMBOL_GPL(mddev_suspend
);
399 void mddev_resume(struct mddev
*mddev
)
401 mddev
->suspended
= 0;
402 wake_up(&mddev
->sb_wait
);
403 mddev
->pers
->quiesce(mddev
, 0);
405 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
406 md_wakeup_thread(mddev
->thread
);
407 md_wakeup_thread(mddev
->sync_thread
); /* possibly kick off a reshape */
409 EXPORT_SYMBOL_GPL(mddev_resume
);
411 int mddev_congested(struct mddev
*mddev
, int bits
)
413 return mddev
->suspended
;
415 EXPORT_SYMBOL(mddev_congested
);
418 * Generic flush handling for md
421 static void md_end_flush(struct bio
*bio
, int err
)
423 struct md_rdev
*rdev
= bio
->bi_private
;
424 struct mddev
*mddev
= rdev
->mddev
;
426 rdev_dec_pending(rdev
, mddev
);
428 if (atomic_dec_and_test(&mddev
->flush_pending
)) {
429 /* The pre-request flush has finished */
430 queue_work(md_wq
, &mddev
->flush_work
);
435 static void md_submit_flush_data(struct work_struct
*ws
);
437 static void submit_flushes(struct work_struct
*ws
)
439 struct mddev
*mddev
= container_of(ws
, struct mddev
, flush_work
);
440 struct md_rdev
*rdev
;
442 INIT_WORK(&mddev
->flush_work
, md_submit_flush_data
);
443 atomic_set(&mddev
->flush_pending
, 1);
445 rdev_for_each_rcu(rdev
, mddev
)
446 if (rdev
->raid_disk
>= 0 &&
447 !test_bit(Faulty
, &rdev
->flags
)) {
448 /* Take two references, one is dropped
449 * when request finishes, one after
450 * we reclaim rcu_read_lock
453 atomic_inc(&rdev
->nr_pending
);
454 atomic_inc(&rdev
->nr_pending
);
456 bi
= bio_alloc_mddev(GFP_NOIO
, 0, mddev
);
457 bi
->bi_end_io
= md_end_flush
;
458 bi
->bi_private
= rdev
;
459 bi
->bi_bdev
= rdev
->bdev
;
460 atomic_inc(&mddev
->flush_pending
);
461 submit_bio(WRITE_FLUSH
, bi
);
463 rdev_dec_pending(rdev
, mddev
);
466 if (atomic_dec_and_test(&mddev
->flush_pending
))
467 queue_work(md_wq
, &mddev
->flush_work
);
470 static void md_submit_flush_data(struct work_struct
*ws
)
472 struct mddev
*mddev
= container_of(ws
, struct mddev
, flush_work
);
473 struct bio
*bio
= mddev
->flush_bio
;
475 if (bio
->bi_size
== 0)
476 /* an empty barrier - all done */
479 bio
->bi_rw
&= ~REQ_FLUSH
;
480 mddev
->pers
->make_request(mddev
, bio
);
483 mddev
->flush_bio
= NULL
;
484 wake_up(&mddev
->sb_wait
);
487 void md_flush_request(struct mddev
*mddev
, struct bio
*bio
)
489 spin_lock_irq(&mddev
->write_lock
);
490 wait_event_lock_irq(mddev
->sb_wait
,
492 mddev
->write_lock
, /*nothing*/);
493 mddev
->flush_bio
= bio
;
494 spin_unlock_irq(&mddev
->write_lock
);
496 INIT_WORK(&mddev
->flush_work
, submit_flushes
);
497 queue_work(md_wq
, &mddev
->flush_work
);
499 EXPORT_SYMBOL(md_flush_request
);
501 /* Support for plugging.
502 * This mirrors the plugging support in request_queue, but does not
503 * require having a whole queue or request structures.
504 * We allocate an md_plug_cb for each md device and each thread it gets
505 * plugged on. This links tot the private plug_handle structure in the
506 * personality data where we keep a count of the number of outstanding
507 * plugs so other code can see if a plug is active.
510 struct blk_plug_cb cb
;
514 static void plugger_unplug(struct blk_plug_cb
*cb
)
516 struct md_plug_cb
*mdcb
= container_of(cb
, struct md_plug_cb
, cb
);
517 if (atomic_dec_and_test(&mdcb
->mddev
->plug_cnt
))
518 md_wakeup_thread(mdcb
->mddev
->thread
);
522 /* Check that an unplug wakeup will come shortly.
523 * If not, wakeup the md thread immediately
525 int mddev_check_plugged(struct mddev
*mddev
)
527 struct blk_plug
*plug
= current
->plug
;
528 struct md_plug_cb
*mdcb
;
533 list_for_each_entry(mdcb
, &plug
->cb_list
, cb
.list
) {
534 if (mdcb
->cb
.callback
== plugger_unplug
&&
535 mdcb
->mddev
== mddev
) {
536 /* Already on the list, move to top */
537 if (mdcb
!= list_first_entry(&plug
->cb_list
,
540 list_move(&mdcb
->cb
.list
, &plug
->cb_list
);
544 /* Not currently on the callback list */
545 mdcb
= kmalloc(sizeof(*mdcb
), GFP_ATOMIC
);
550 mdcb
->cb
.callback
= plugger_unplug
;
551 atomic_inc(&mddev
->plug_cnt
);
552 list_add(&mdcb
->cb
.list
, &plug
->cb_list
);
555 EXPORT_SYMBOL_GPL(mddev_check_plugged
);
557 static inline struct mddev
*mddev_get(struct mddev
*mddev
)
559 atomic_inc(&mddev
->active
);
563 static void mddev_delayed_delete(struct work_struct
*ws
);
565 static void mddev_put(struct mddev
*mddev
)
567 struct bio_set
*bs
= NULL
;
569 if (!atomic_dec_and_lock(&mddev
->active
, &all_mddevs_lock
))
571 if (!mddev
->raid_disks
&& list_empty(&mddev
->disks
) &&
572 mddev
->ctime
== 0 && !mddev
->hold_active
) {
573 /* Array is not configured at all, and not held active,
575 list_del_init(&mddev
->all_mddevs
);
577 mddev
->bio_set
= NULL
;
578 if (mddev
->gendisk
) {
579 /* We did a probe so need to clean up. Call
580 * queue_work inside the spinlock so that
581 * flush_workqueue() after mddev_find will
582 * succeed in waiting for the work to be done.
584 INIT_WORK(&mddev
->del_work
, mddev_delayed_delete
);
585 queue_work(md_misc_wq
, &mddev
->del_work
);
589 spin_unlock(&all_mddevs_lock
);
594 void mddev_init(struct mddev
*mddev
)
596 mutex_init(&mddev
->open_mutex
);
597 mutex_init(&mddev
->reconfig_mutex
);
598 mutex_init(&mddev
->bitmap_info
.mutex
);
599 INIT_LIST_HEAD(&mddev
->disks
);
600 INIT_LIST_HEAD(&mddev
->all_mddevs
);
601 init_timer(&mddev
->safemode_timer
);
602 atomic_set(&mddev
->active
, 1);
603 atomic_set(&mddev
->openers
, 0);
604 atomic_set(&mddev
->active_io
, 0);
605 atomic_set(&mddev
->plug_cnt
, 0);
606 spin_lock_init(&mddev
->write_lock
);
607 atomic_set(&mddev
->flush_pending
, 0);
608 init_waitqueue_head(&mddev
->sb_wait
);
609 init_waitqueue_head(&mddev
->recovery_wait
);
610 mddev
->reshape_position
= MaxSector
;
611 mddev
->reshape_backwards
= 0;
612 mddev
->resync_min
= 0;
613 mddev
->resync_max
= MaxSector
;
614 mddev
->level
= LEVEL_NONE
;
616 EXPORT_SYMBOL_GPL(mddev_init
);
618 static struct mddev
* mddev_find(dev_t unit
)
620 struct mddev
*mddev
, *new = NULL
;
622 if (unit
&& MAJOR(unit
) != MD_MAJOR
)
623 unit
&= ~((1<<MdpMinorShift
)-1);
626 spin_lock(&all_mddevs_lock
);
629 list_for_each_entry(mddev
, &all_mddevs
, all_mddevs
)
630 if (mddev
->unit
== unit
) {
632 spin_unlock(&all_mddevs_lock
);
638 list_add(&new->all_mddevs
, &all_mddevs
);
639 spin_unlock(&all_mddevs_lock
);
640 new->hold_active
= UNTIL_IOCTL
;
644 /* find an unused unit number */
645 static int next_minor
= 512;
646 int start
= next_minor
;
650 dev
= MKDEV(MD_MAJOR
, next_minor
);
652 if (next_minor
> MINORMASK
)
654 if (next_minor
== start
) {
655 /* Oh dear, all in use. */
656 spin_unlock(&all_mddevs_lock
);
662 list_for_each_entry(mddev
, &all_mddevs
, all_mddevs
)
663 if (mddev
->unit
== dev
) {
669 new->md_minor
= MINOR(dev
);
670 new->hold_active
= UNTIL_STOP
;
671 list_add(&new->all_mddevs
, &all_mddevs
);
672 spin_unlock(&all_mddevs_lock
);
675 spin_unlock(&all_mddevs_lock
);
677 new = kzalloc(sizeof(*new), GFP_KERNEL
);
682 if (MAJOR(unit
) == MD_MAJOR
)
683 new->md_minor
= MINOR(unit
);
685 new->md_minor
= MINOR(unit
) >> MdpMinorShift
;
692 static inline int mddev_lock(struct mddev
* mddev
)
694 return mutex_lock_interruptible(&mddev
->reconfig_mutex
);
697 static inline int mddev_is_locked(struct mddev
*mddev
)
699 return mutex_is_locked(&mddev
->reconfig_mutex
);
702 static inline int mddev_trylock(struct mddev
* mddev
)
704 return mutex_trylock(&mddev
->reconfig_mutex
);
707 static struct attribute_group md_redundancy_group
;
709 static void mddev_unlock(struct mddev
* mddev
)
711 if (mddev
->to_remove
) {
712 /* These cannot be removed under reconfig_mutex as
713 * an access to the files will try to take reconfig_mutex
714 * while holding the file unremovable, which leads to
716 * So hold set sysfs_active while the remove in happeing,
717 * and anything else which might set ->to_remove or my
718 * otherwise change the sysfs namespace will fail with
719 * -EBUSY if sysfs_active is still set.
720 * We set sysfs_active under reconfig_mutex and elsewhere
721 * test it under the same mutex to ensure its correct value
724 struct attribute_group
*to_remove
= mddev
->to_remove
;
725 mddev
->to_remove
= NULL
;
726 mddev
->sysfs_active
= 1;
727 mutex_unlock(&mddev
->reconfig_mutex
);
729 if (mddev
->kobj
.sd
) {
730 if (to_remove
!= &md_redundancy_group
)
731 sysfs_remove_group(&mddev
->kobj
, to_remove
);
732 if (mddev
->pers
== NULL
||
733 mddev
->pers
->sync_request
== NULL
) {
734 sysfs_remove_group(&mddev
->kobj
, &md_redundancy_group
);
735 if (mddev
->sysfs_action
)
736 sysfs_put(mddev
->sysfs_action
);
737 mddev
->sysfs_action
= NULL
;
740 mddev
->sysfs_active
= 0;
742 mutex_unlock(&mddev
->reconfig_mutex
);
744 /* As we've dropped the mutex we need a spinlock to
745 * make sure the thread doesn't disappear
747 spin_lock(&pers_lock
);
748 md_wakeup_thread(mddev
->thread
);
749 spin_unlock(&pers_lock
);
752 static struct md_rdev
* find_rdev_nr(struct mddev
*mddev
, int nr
)
754 struct md_rdev
*rdev
;
756 rdev_for_each(rdev
, mddev
)
757 if (rdev
->desc_nr
== nr
)
763 static struct md_rdev
* find_rdev(struct mddev
* mddev
, dev_t dev
)
765 struct md_rdev
*rdev
;
767 rdev_for_each(rdev
, mddev
)
768 if (rdev
->bdev
->bd_dev
== dev
)
774 static struct md_personality
*find_pers(int level
, char *clevel
)
776 struct md_personality
*pers
;
777 list_for_each_entry(pers
, &pers_list
, list
) {
778 if (level
!= LEVEL_NONE
&& pers
->level
== level
)
780 if (strcmp(pers
->name
, clevel
)==0)
786 /* return the offset of the super block in 512byte sectors */
787 static inline sector_t
calc_dev_sboffset(struct md_rdev
*rdev
)
789 sector_t num_sectors
= i_size_read(rdev
->bdev
->bd_inode
) / 512;
790 return MD_NEW_SIZE_SECTORS(num_sectors
);
793 static int alloc_disk_sb(struct md_rdev
* rdev
)
798 rdev
->sb_page
= alloc_page(GFP_KERNEL
);
799 if (!rdev
->sb_page
) {
800 printk(KERN_ALERT
"md: out of memory.\n");
807 void md_rdev_clear(struct md_rdev
*rdev
)
810 put_page(rdev
->sb_page
);
812 rdev
->sb_page
= NULL
;
817 put_page(rdev
->bb_page
);
818 rdev
->bb_page
= NULL
;
820 kfree(rdev
->badblocks
.page
);
821 rdev
->badblocks
.page
= NULL
;
823 EXPORT_SYMBOL_GPL(md_rdev_clear
);
825 static void super_written(struct bio
*bio
, int error
)
827 struct md_rdev
*rdev
= bio
->bi_private
;
828 struct mddev
*mddev
= rdev
->mddev
;
830 if (error
|| !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
831 printk("md: super_written gets error=%d, uptodate=%d\n",
832 error
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
833 WARN_ON(test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
834 md_error(mddev
, rdev
);
837 if (atomic_dec_and_test(&mddev
->pending_writes
))
838 wake_up(&mddev
->sb_wait
);
842 void md_super_write(struct mddev
*mddev
, struct md_rdev
*rdev
,
843 sector_t sector
, int size
, struct page
*page
)
845 /* write first size bytes of page to sector of rdev
846 * Increment mddev->pending_writes before returning
847 * and decrement it on completion, waking up sb_wait
848 * if zero is reached.
849 * If an error occurred, call md_error
851 struct bio
*bio
= bio_alloc_mddev(GFP_NOIO
, 1, mddev
);
853 bio
->bi_bdev
= rdev
->meta_bdev
? rdev
->meta_bdev
: rdev
->bdev
;
854 bio
->bi_sector
= sector
;
855 bio_add_page(bio
, page
, size
, 0);
856 bio
->bi_private
= rdev
;
857 bio
->bi_end_io
= super_written
;
859 atomic_inc(&mddev
->pending_writes
);
860 submit_bio(WRITE_FLUSH_FUA
, bio
);
863 void md_super_wait(struct mddev
*mddev
)
865 /* wait for all superblock writes that were scheduled to complete */
868 prepare_to_wait(&mddev
->sb_wait
, &wq
, TASK_UNINTERRUPTIBLE
);
869 if (atomic_read(&mddev
->pending_writes
)==0)
873 finish_wait(&mddev
->sb_wait
, &wq
);
876 static void bi_complete(struct bio
*bio
, int error
)
878 complete((struct completion
*)bio
->bi_private
);
881 int sync_page_io(struct md_rdev
*rdev
, sector_t sector
, int size
,
882 struct page
*page
, int rw
, bool metadata_op
)
884 struct bio
*bio
= bio_alloc_mddev(GFP_NOIO
, 1, rdev
->mddev
);
885 struct completion event
;
890 bio
->bi_bdev
= (metadata_op
&& rdev
->meta_bdev
) ?
891 rdev
->meta_bdev
: rdev
->bdev
;
893 bio
->bi_sector
= sector
+ rdev
->sb_start
;
894 else if (rdev
->mddev
->reshape_position
!= MaxSector
&&
895 (rdev
->mddev
->reshape_backwards
==
896 (sector
>= rdev
->mddev
->reshape_position
)))
897 bio
->bi_sector
= sector
+ rdev
->new_data_offset
;
899 bio
->bi_sector
= sector
+ rdev
->data_offset
;
900 bio_add_page(bio
, page
, size
, 0);
901 init_completion(&event
);
902 bio
->bi_private
= &event
;
903 bio
->bi_end_io
= bi_complete
;
905 wait_for_completion(&event
);
907 ret
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
911 EXPORT_SYMBOL_GPL(sync_page_io
);
913 static int read_disk_sb(struct md_rdev
* rdev
, int size
)
915 char b
[BDEVNAME_SIZE
];
916 if (!rdev
->sb_page
) {
924 if (!sync_page_io(rdev
, 0, size
, rdev
->sb_page
, READ
, true))
930 printk(KERN_WARNING
"md: disabled device %s, could not read superblock.\n",
931 bdevname(rdev
->bdev
,b
));
935 static int uuid_equal(mdp_super_t
*sb1
, mdp_super_t
*sb2
)
937 return sb1
->set_uuid0
== sb2
->set_uuid0
&&
938 sb1
->set_uuid1
== sb2
->set_uuid1
&&
939 sb1
->set_uuid2
== sb2
->set_uuid2
&&
940 sb1
->set_uuid3
== sb2
->set_uuid3
;
943 static int sb_equal(mdp_super_t
*sb1
, mdp_super_t
*sb2
)
946 mdp_super_t
*tmp1
, *tmp2
;
948 tmp1
= kmalloc(sizeof(*tmp1
),GFP_KERNEL
);
949 tmp2
= kmalloc(sizeof(*tmp2
),GFP_KERNEL
);
951 if (!tmp1
|| !tmp2
) {
953 printk(KERN_INFO
"md.c sb_equal(): failed to allocate memory!\n");
961 * nr_disks is not constant
966 ret
= (memcmp(tmp1
, tmp2
, MD_SB_GENERIC_CONSTANT_WORDS
* 4) == 0);
974 static u32
md_csum_fold(u32 csum
)
976 csum
= (csum
& 0xffff) + (csum
>> 16);
977 return (csum
& 0xffff) + (csum
>> 16);
980 static unsigned int calc_sb_csum(mdp_super_t
* sb
)
983 u32
*sb32
= (u32
*)sb
;
985 unsigned int disk_csum
, csum
;
987 disk_csum
= sb
->sb_csum
;
990 for (i
= 0; i
< MD_SB_BYTES
/4 ; i
++)
992 csum
= (newcsum
& 0xffffffff) + (newcsum
>>32);
996 /* This used to use csum_partial, which was wrong for several
997 * reasons including that different results are returned on
998 * different architectures. It isn't critical that we get exactly
999 * the same return value as before (we always csum_fold before
1000 * testing, and that removes any differences). However as we
1001 * know that csum_partial always returned a 16bit value on
1002 * alphas, do a fold to maximise conformity to previous behaviour.
1004 sb
->sb_csum
= md_csum_fold(disk_csum
);
1006 sb
->sb_csum
= disk_csum
;
1013 * Handle superblock details.
1014 * We want to be able to handle multiple superblock formats
1015 * so we have a common interface to them all, and an array of
1016 * different handlers.
1017 * We rely on user-space to write the initial superblock, and support
1018 * reading and updating of superblocks.
1019 * Interface methods are:
1020 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1021 * loads and validates a superblock on dev.
1022 * if refdev != NULL, compare superblocks on both devices
1024 * 0 - dev has a superblock that is compatible with refdev
1025 * 1 - dev has a superblock that is compatible and newer than refdev
1026 * so dev should be used as the refdev in future
1027 * -EINVAL superblock incompatible or invalid
1028 * -othererror e.g. -EIO
1030 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1031 * Verify that dev is acceptable into mddev.
1032 * The first time, mddev->raid_disks will be 0, and data from
1033 * dev should be merged in. Subsequent calls check that dev
1034 * is new enough. Return 0 or -EINVAL
1036 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1037 * Update the superblock for rdev with data in mddev
1038 * This does not write to disc.
1044 struct module
*owner
;
1045 int (*load_super
)(struct md_rdev
*rdev
,
1046 struct md_rdev
*refdev
,
1048 int (*validate_super
)(struct mddev
*mddev
,
1049 struct md_rdev
*rdev
);
1050 void (*sync_super
)(struct mddev
*mddev
,
1051 struct md_rdev
*rdev
);
1052 unsigned long long (*rdev_size_change
)(struct md_rdev
*rdev
,
1053 sector_t num_sectors
);
1054 int (*allow_new_offset
)(struct md_rdev
*rdev
,
1055 unsigned long long new_offset
);
1059 * Check that the given mddev has no bitmap.
1061 * This function is called from the run method of all personalities that do not
1062 * support bitmaps. It prints an error message and returns non-zero if mddev
1063 * has a bitmap. Otherwise, it returns 0.
1066 int md_check_no_bitmap(struct mddev
*mddev
)
1068 if (!mddev
->bitmap_info
.file
&& !mddev
->bitmap_info
.offset
)
1070 printk(KERN_ERR
"%s: bitmaps are not supported for %s\n",
1071 mdname(mddev
), mddev
->pers
->name
);
1074 EXPORT_SYMBOL(md_check_no_bitmap
);
1077 * load_super for 0.90.0
1079 static int super_90_load(struct md_rdev
*rdev
, struct md_rdev
*refdev
, int minor_version
)
1081 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
1086 * Calculate the position of the superblock (512byte sectors),
1087 * it's at the end of the disk.
1089 * It also happens to be a multiple of 4Kb.
1091 rdev
->sb_start
= calc_dev_sboffset(rdev
);
1093 ret
= read_disk_sb(rdev
, MD_SB_BYTES
);
1094 if (ret
) return ret
;
1098 bdevname(rdev
->bdev
, b
);
1099 sb
= page_address(rdev
->sb_page
);
1101 if (sb
->md_magic
!= MD_SB_MAGIC
) {
1102 printk(KERN_ERR
"md: invalid raid superblock magic on %s\n",
1107 if (sb
->major_version
!= 0 ||
1108 sb
->minor_version
< 90 ||
1109 sb
->minor_version
> 91) {
1110 printk(KERN_WARNING
"Bad version number %d.%d on %s\n",
1111 sb
->major_version
, sb
->minor_version
,
1116 if (sb
->raid_disks
<= 0)
1119 if (md_csum_fold(calc_sb_csum(sb
)) != md_csum_fold(sb
->sb_csum
)) {
1120 printk(KERN_WARNING
"md: invalid superblock checksum on %s\n",
1125 rdev
->preferred_minor
= sb
->md_minor
;
1126 rdev
->data_offset
= 0;
1127 rdev
->new_data_offset
= 0;
1128 rdev
->sb_size
= MD_SB_BYTES
;
1129 rdev
->badblocks
.shift
= -1;
1131 if (sb
->level
== LEVEL_MULTIPATH
)
1134 rdev
->desc_nr
= sb
->this_disk
.number
;
1140 mdp_super_t
*refsb
= page_address(refdev
->sb_page
);
1141 if (!uuid_equal(refsb
, sb
)) {
1142 printk(KERN_WARNING
"md: %s has different UUID to %s\n",
1143 b
, bdevname(refdev
->bdev
,b2
));
1146 if (!sb_equal(refsb
, sb
)) {
1147 printk(KERN_WARNING
"md: %s has same UUID"
1148 " but different superblock to %s\n",
1149 b
, bdevname(refdev
->bdev
, b2
));
1153 ev2
= md_event(refsb
);
1159 rdev
->sectors
= rdev
->sb_start
;
1160 /* Limit to 4TB as metadata cannot record more than that */
1161 if (rdev
->sectors
>= (2ULL << 32))
1162 rdev
->sectors
= (2ULL << 32) - 2;
1164 if (rdev
->sectors
< ((sector_t
)sb
->size
) * 2 && sb
->level
>= 1)
1165 /* "this cannot possibly happen" ... */
1173 * validate_super for 0.90.0
1175 static int super_90_validate(struct mddev
*mddev
, struct md_rdev
*rdev
)
1178 mdp_super_t
*sb
= page_address(rdev
->sb_page
);
1179 __u64 ev1
= md_event(sb
);
1181 rdev
->raid_disk
= -1;
1182 clear_bit(Faulty
, &rdev
->flags
);
1183 clear_bit(In_sync
, &rdev
->flags
);
1184 clear_bit(WriteMostly
, &rdev
->flags
);
1186 if (mddev
->raid_disks
== 0) {
1187 mddev
->major_version
= 0;
1188 mddev
->minor_version
= sb
->minor_version
;
1189 mddev
->patch_version
= sb
->patch_version
;
1190 mddev
->external
= 0;
1191 mddev
->chunk_sectors
= sb
->chunk_size
>> 9;
1192 mddev
->ctime
= sb
->ctime
;
1193 mddev
->utime
= sb
->utime
;
1194 mddev
->level
= sb
->level
;
1195 mddev
->clevel
[0] = 0;
1196 mddev
->layout
= sb
->layout
;
1197 mddev
->raid_disks
= sb
->raid_disks
;
1198 mddev
->dev_sectors
= ((sector_t
)sb
->size
) * 2;
1199 mddev
->events
= ev1
;
1200 mddev
->bitmap_info
.offset
= 0;
1201 mddev
->bitmap_info
.space
= 0;
1202 /* bitmap can use 60 K after the 4K superblocks */
1203 mddev
->bitmap_info
.default_offset
= MD_SB_BYTES
>> 9;
1204 mddev
->bitmap_info
.default_space
= 64*2 - (MD_SB_BYTES
>> 9);
1205 mddev
->reshape_backwards
= 0;
1207 if (mddev
->minor_version
>= 91) {
1208 mddev
->reshape_position
= sb
->reshape_position
;
1209 mddev
->delta_disks
= sb
->delta_disks
;
1210 mddev
->new_level
= sb
->new_level
;
1211 mddev
->new_layout
= sb
->new_layout
;
1212 mddev
->new_chunk_sectors
= sb
->new_chunk
>> 9;
1213 if (mddev
->delta_disks
< 0)
1214 mddev
->reshape_backwards
= 1;
1216 mddev
->reshape_position
= MaxSector
;
1217 mddev
->delta_disks
= 0;
1218 mddev
->new_level
= mddev
->level
;
1219 mddev
->new_layout
= mddev
->layout
;
1220 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
1223 if (sb
->state
& (1<<MD_SB_CLEAN
))
1224 mddev
->recovery_cp
= MaxSector
;
1226 if (sb
->events_hi
== sb
->cp_events_hi
&&
1227 sb
->events_lo
== sb
->cp_events_lo
) {
1228 mddev
->recovery_cp
= sb
->recovery_cp
;
1230 mddev
->recovery_cp
= 0;
1233 memcpy(mddev
->uuid
+0, &sb
->set_uuid0
, 4);
1234 memcpy(mddev
->uuid
+4, &sb
->set_uuid1
, 4);
1235 memcpy(mddev
->uuid
+8, &sb
->set_uuid2
, 4);
1236 memcpy(mddev
->uuid
+12,&sb
->set_uuid3
, 4);
1238 mddev
->max_disks
= MD_SB_DISKS
;
1240 if (sb
->state
& (1<<MD_SB_BITMAP_PRESENT
) &&
1241 mddev
->bitmap_info
.file
== NULL
) {
1242 mddev
->bitmap_info
.offset
=
1243 mddev
->bitmap_info
.default_offset
;
1244 mddev
->bitmap_info
.space
=
1245 mddev
->bitmap_info
.space
;
1248 } else if (mddev
->pers
== NULL
) {
1249 /* Insist on good event counter while assembling, except
1250 * for spares (which don't need an event count) */
1252 if (sb
->disks
[rdev
->desc_nr
].state
& (
1253 (1<<MD_DISK_SYNC
) | (1 << MD_DISK_ACTIVE
)))
1254 if (ev1
< mddev
->events
)
1256 } else if (mddev
->bitmap
) {
1257 /* if adding to array with a bitmap, then we can accept an
1258 * older device ... but not too old.
1260 if (ev1
< mddev
->bitmap
->events_cleared
)
1263 if (ev1
< mddev
->events
)
1264 /* just a hot-add of a new device, leave raid_disk at -1 */
1268 if (mddev
->level
!= LEVEL_MULTIPATH
) {
1269 desc
= sb
->disks
+ rdev
->desc_nr
;
1271 if (desc
->state
& (1<<MD_DISK_FAULTY
))
1272 set_bit(Faulty
, &rdev
->flags
);
1273 else if (desc
->state
& (1<<MD_DISK_SYNC
) /* &&
1274 desc->raid_disk < mddev->raid_disks */) {
1275 set_bit(In_sync
, &rdev
->flags
);
1276 rdev
->raid_disk
= desc
->raid_disk
;
1277 } else if (desc
->state
& (1<<MD_DISK_ACTIVE
)) {
1278 /* active but not in sync implies recovery up to
1279 * reshape position. We don't know exactly where
1280 * that is, so set to zero for now */
1281 if (mddev
->minor_version
>= 91) {
1282 rdev
->recovery_offset
= 0;
1283 rdev
->raid_disk
= desc
->raid_disk
;
1286 if (desc
->state
& (1<<MD_DISK_WRITEMOSTLY
))
1287 set_bit(WriteMostly
, &rdev
->flags
);
1288 } else /* MULTIPATH are always insync */
1289 set_bit(In_sync
, &rdev
->flags
);
1294 * sync_super for 0.90.0
1296 static void super_90_sync(struct mddev
*mddev
, struct md_rdev
*rdev
)
1299 struct md_rdev
*rdev2
;
1300 int next_spare
= mddev
->raid_disks
;
1303 /* make rdev->sb match mddev data..
1306 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1307 * 3/ any empty disks < next_spare become removed
1309 * disks[0] gets initialised to REMOVED because
1310 * we cannot be sure from other fields if it has
1311 * been initialised or not.
1314 int active
=0, working
=0,failed
=0,spare
=0,nr_disks
=0;
1316 rdev
->sb_size
= MD_SB_BYTES
;
1318 sb
= page_address(rdev
->sb_page
);
1320 memset(sb
, 0, sizeof(*sb
));
1322 sb
->md_magic
= MD_SB_MAGIC
;
1323 sb
->major_version
= mddev
->major_version
;
1324 sb
->patch_version
= mddev
->patch_version
;
1325 sb
->gvalid_words
= 0; /* ignored */
1326 memcpy(&sb
->set_uuid0
, mddev
->uuid
+0, 4);
1327 memcpy(&sb
->set_uuid1
, mddev
->uuid
+4, 4);
1328 memcpy(&sb
->set_uuid2
, mddev
->uuid
+8, 4);
1329 memcpy(&sb
->set_uuid3
, mddev
->uuid
+12,4);
1331 sb
->ctime
= mddev
->ctime
;
1332 sb
->level
= mddev
->level
;
1333 sb
->size
= mddev
->dev_sectors
/ 2;
1334 sb
->raid_disks
= mddev
->raid_disks
;
1335 sb
->md_minor
= mddev
->md_minor
;
1336 sb
->not_persistent
= 0;
1337 sb
->utime
= mddev
->utime
;
1339 sb
->events_hi
= (mddev
->events
>>32);
1340 sb
->events_lo
= (u32
)mddev
->events
;
1342 if (mddev
->reshape_position
== MaxSector
)
1343 sb
->minor_version
= 90;
1345 sb
->minor_version
= 91;
1346 sb
->reshape_position
= mddev
->reshape_position
;
1347 sb
->new_level
= mddev
->new_level
;
1348 sb
->delta_disks
= mddev
->delta_disks
;
1349 sb
->new_layout
= mddev
->new_layout
;
1350 sb
->new_chunk
= mddev
->new_chunk_sectors
<< 9;
1352 mddev
->minor_version
= sb
->minor_version
;
1355 sb
->recovery_cp
= mddev
->recovery_cp
;
1356 sb
->cp_events_hi
= (mddev
->events
>>32);
1357 sb
->cp_events_lo
= (u32
)mddev
->events
;
1358 if (mddev
->recovery_cp
== MaxSector
)
1359 sb
->state
= (1<< MD_SB_CLEAN
);
1361 sb
->recovery_cp
= 0;
1363 sb
->layout
= mddev
->layout
;
1364 sb
->chunk_size
= mddev
->chunk_sectors
<< 9;
1366 if (mddev
->bitmap
&& mddev
->bitmap_info
.file
== NULL
)
1367 sb
->state
|= (1<<MD_SB_BITMAP_PRESENT
);
1369 sb
->disks
[0].state
= (1<<MD_DISK_REMOVED
);
1370 rdev_for_each(rdev2
, mddev
) {
1373 int is_active
= test_bit(In_sync
, &rdev2
->flags
);
1375 if (rdev2
->raid_disk
>= 0 &&
1376 sb
->minor_version
>= 91)
1377 /* we have nowhere to store the recovery_offset,
1378 * but if it is not below the reshape_position,
1379 * we can piggy-back on that.
1382 if (rdev2
->raid_disk
< 0 ||
1383 test_bit(Faulty
, &rdev2
->flags
))
1386 desc_nr
= rdev2
->raid_disk
;
1388 desc_nr
= next_spare
++;
1389 rdev2
->desc_nr
= desc_nr
;
1390 d
= &sb
->disks
[rdev2
->desc_nr
];
1392 d
->number
= rdev2
->desc_nr
;
1393 d
->major
= MAJOR(rdev2
->bdev
->bd_dev
);
1394 d
->minor
= MINOR(rdev2
->bdev
->bd_dev
);
1396 d
->raid_disk
= rdev2
->raid_disk
;
1398 d
->raid_disk
= rdev2
->desc_nr
; /* compatibility */
1399 if (test_bit(Faulty
, &rdev2
->flags
))
1400 d
->state
= (1<<MD_DISK_FAULTY
);
1401 else if (is_active
) {
1402 d
->state
= (1<<MD_DISK_ACTIVE
);
1403 if (test_bit(In_sync
, &rdev2
->flags
))
1404 d
->state
|= (1<<MD_DISK_SYNC
);
1412 if (test_bit(WriteMostly
, &rdev2
->flags
))
1413 d
->state
|= (1<<MD_DISK_WRITEMOSTLY
);
1415 /* now set the "removed" and "faulty" bits on any missing devices */
1416 for (i
=0 ; i
< mddev
->raid_disks
; i
++) {
1417 mdp_disk_t
*d
= &sb
->disks
[i
];
1418 if (d
->state
== 0 && d
->number
== 0) {
1421 d
->state
= (1<<MD_DISK_REMOVED
);
1422 d
->state
|= (1<<MD_DISK_FAULTY
);
1426 sb
->nr_disks
= nr_disks
;
1427 sb
->active_disks
= active
;
1428 sb
->working_disks
= working
;
1429 sb
->failed_disks
= failed
;
1430 sb
->spare_disks
= spare
;
1432 sb
->this_disk
= sb
->disks
[rdev
->desc_nr
];
1433 sb
->sb_csum
= calc_sb_csum(sb
);
1437 * rdev_size_change for 0.90.0
1439 static unsigned long long
1440 super_90_rdev_size_change(struct md_rdev
*rdev
, sector_t num_sectors
)
1442 if (num_sectors
&& num_sectors
< rdev
->mddev
->dev_sectors
)
1443 return 0; /* component must fit device */
1444 if (rdev
->mddev
->bitmap_info
.offset
)
1445 return 0; /* can't move bitmap */
1446 rdev
->sb_start
= calc_dev_sboffset(rdev
);
1447 if (!num_sectors
|| num_sectors
> rdev
->sb_start
)
1448 num_sectors
= rdev
->sb_start
;
1449 /* Limit to 4TB as metadata cannot record more than that.
1450 * 4TB == 2^32 KB, or 2*2^32 sectors.
1452 if (num_sectors
>= (2ULL << 32))
1453 num_sectors
= (2ULL << 32) - 2;
1454 md_super_write(rdev
->mddev
, rdev
, rdev
->sb_start
, rdev
->sb_size
,
1456 md_super_wait(rdev
->mddev
);
1461 super_90_allow_new_offset(struct md_rdev
*rdev
, unsigned long long new_offset
)
1463 /* non-zero offset changes not possible with v0.90 */
1464 return new_offset
== 0;
1468 * version 1 superblock
1471 static __le32
calc_sb_1_csum(struct mdp_superblock_1
* sb
)
1475 unsigned long long newcsum
;
1476 int size
= 256 + le32_to_cpu(sb
->max_dev
)*2;
1477 __le32
*isuper
= (__le32
*)sb
;
1480 disk_csum
= sb
->sb_csum
;
1483 for (i
=0; size
>=4; size
-= 4 )
1484 newcsum
+= le32_to_cpu(*isuper
++);
1487 newcsum
+= le16_to_cpu(*(__le16
*) isuper
);
1489 csum
= (newcsum
& 0xffffffff) + (newcsum
>> 32);
1490 sb
->sb_csum
= disk_csum
;
1491 return cpu_to_le32(csum
);
1494 static int md_set_badblocks(struct badblocks
*bb
, sector_t s
, int sectors
,
1496 static int super_1_load(struct md_rdev
*rdev
, struct md_rdev
*refdev
, int minor_version
)
1498 struct mdp_superblock_1
*sb
;
1502 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
1506 * Calculate the position of the superblock in 512byte sectors.
1507 * It is always aligned to a 4K boundary and
1508 * depeding on minor_version, it can be:
1509 * 0: At least 8K, but less than 12K, from end of device
1510 * 1: At start of device
1511 * 2: 4K from start of device.
1513 switch(minor_version
) {
1515 sb_start
= i_size_read(rdev
->bdev
->bd_inode
) >> 9;
1517 sb_start
&= ~(sector_t
)(4*2-1);
1528 rdev
->sb_start
= sb_start
;
1530 /* superblock is rarely larger than 1K, but it can be larger,
1531 * and it is safe to read 4k, so we do that
1533 ret
= read_disk_sb(rdev
, 4096);
1534 if (ret
) return ret
;
1537 sb
= page_address(rdev
->sb_page
);
1539 if (sb
->magic
!= cpu_to_le32(MD_SB_MAGIC
) ||
1540 sb
->major_version
!= cpu_to_le32(1) ||
1541 le32_to_cpu(sb
->max_dev
) > (4096-256)/2 ||
1542 le64_to_cpu(sb
->super_offset
) != rdev
->sb_start
||
1543 (le32_to_cpu(sb
->feature_map
) & ~MD_FEATURE_ALL
) != 0)
1546 if (calc_sb_1_csum(sb
) != sb
->sb_csum
) {
1547 printk("md: invalid superblock checksum on %s\n",
1548 bdevname(rdev
->bdev
,b
));
1551 if (le64_to_cpu(sb
->data_size
) < 10) {
1552 printk("md: data_size too small on %s\n",
1553 bdevname(rdev
->bdev
,b
));
1558 memcmp(sb
->pad3
, sb
->pad3
+1, sizeof(sb
->pad3
) - sizeof(sb
->pad3
[1])))
1559 /* Some padding is non-zero, might be a new feature */
1562 rdev
->preferred_minor
= 0xffff;
1563 rdev
->data_offset
= le64_to_cpu(sb
->data_offset
);
1564 rdev
->new_data_offset
= rdev
->data_offset
;
1565 if ((le32_to_cpu(sb
->feature_map
) & MD_FEATURE_RESHAPE_ACTIVE
) &&
1566 (le32_to_cpu(sb
->feature_map
) & MD_FEATURE_NEW_OFFSET
))
1567 rdev
->new_data_offset
+= (s32
)le32_to_cpu(sb
->new_offset
);
1568 atomic_set(&rdev
->corrected_errors
, le32_to_cpu(sb
->cnt_corrected_read
));
1570 rdev
->sb_size
= le32_to_cpu(sb
->max_dev
) * 2 + 256;
1571 bmask
= queue_logical_block_size(rdev
->bdev
->bd_disk
->queue
)-1;
1572 if (rdev
->sb_size
& bmask
)
1573 rdev
->sb_size
= (rdev
->sb_size
| bmask
) + 1;
1576 && rdev
->data_offset
< sb_start
+ (rdev
->sb_size
/512))
1579 && rdev
->new_data_offset
< sb_start
+ (rdev
->sb_size
/512))
1582 if (sb
->level
== cpu_to_le32(LEVEL_MULTIPATH
))
1585 rdev
->desc_nr
= le32_to_cpu(sb
->dev_number
);
1587 if (!rdev
->bb_page
) {
1588 rdev
->bb_page
= alloc_page(GFP_KERNEL
);
1592 if ((le32_to_cpu(sb
->feature_map
) & MD_FEATURE_BAD_BLOCKS
) &&
1593 rdev
->badblocks
.count
== 0) {
1594 /* need to load the bad block list.
1595 * Currently we limit it to one page.
1601 int sectors
= le16_to_cpu(sb
->bblog_size
);
1602 if (sectors
> (PAGE_SIZE
/ 512))
1604 offset
= le32_to_cpu(sb
->bblog_offset
);
1607 bb_sector
= (long long)offset
;
1608 if (!sync_page_io(rdev
, bb_sector
, sectors
<< 9,
1609 rdev
->bb_page
, READ
, true))
1611 bbp
= (u64
*)page_address(rdev
->bb_page
);
1612 rdev
->badblocks
.shift
= sb
->bblog_shift
;
1613 for (i
= 0 ; i
< (sectors
<< (9-3)) ; i
++, bbp
++) {
1614 u64 bb
= le64_to_cpu(*bbp
);
1615 int count
= bb
& (0x3ff);
1616 u64 sector
= bb
>> 10;
1617 sector
<<= sb
->bblog_shift
;
1618 count
<<= sb
->bblog_shift
;
1621 if (md_set_badblocks(&rdev
->badblocks
,
1622 sector
, count
, 1) == 0)
1625 } else if (sb
->bblog_offset
== 0)
1626 rdev
->badblocks
.shift
= -1;
1632 struct mdp_superblock_1
*refsb
= page_address(refdev
->sb_page
);
1634 if (memcmp(sb
->set_uuid
, refsb
->set_uuid
, 16) != 0 ||
1635 sb
->level
!= refsb
->level
||
1636 sb
->layout
!= refsb
->layout
||
1637 sb
->chunksize
!= refsb
->chunksize
) {
1638 printk(KERN_WARNING
"md: %s has strangely different"
1639 " superblock to %s\n",
1640 bdevname(rdev
->bdev
,b
),
1641 bdevname(refdev
->bdev
,b2
));
1644 ev1
= le64_to_cpu(sb
->events
);
1645 ev2
= le64_to_cpu(refsb
->events
);
1652 if (minor_version
) {
1653 sectors
= (i_size_read(rdev
->bdev
->bd_inode
) >> 9);
1654 sectors
-= rdev
->data_offset
;
1656 sectors
= rdev
->sb_start
;
1657 if (sectors
< le64_to_cpu(sb
->data_size
))
1659 rdev
->sectors
= le64_to_cpu(sb
->data_size
);
1663 static int super_1_validate(struct mddev
*mddev
, struct md_rdev
*rdev
)
1665 struct mdp_superblock_1
*sb
= page_address(rdev
->sb_page
);
1666 __u64 ev1
= le64_to_cpu(sb
->events
);
1668 rdev
->raid_disk
= -1;
1669 clear_bit(Faulty
, &rdev
->flags
);
1670 clear_bit(In_sync
, &rdev
->flags
);
1671 clear_bit(WriteMostly
, &rdev
->flags
);
1673 if (mddev
->raid_disks
== 0) {
1674 mddev
->major_version
= 1;
1675 mddev
->patch_version
= 0;
1676 mddev
->external
= 0;
1677 mddev
->chunk_sectors
= le32_to_cpu(sb
->chunksize
);
1678 mddev
->ctime
= le64_to_cpu(sb
->ctime
) & ((1ULL << 32)-1);
1679 mddev
->utime
= le64_to_cpu(sb
->utime
) & ((1ULL << 32)-1);
1680 mddev
->level
= le32_to_cpu(sb
->level
);
1681 mddev
->clevel
[0] = 0;
1682 mddev
->layout
= le32_to_cpu(sb
->layout
);
1683 mddev
->raid_disks
= le32_to_cpu(sb
->raid_disks
);
1684 mddev
->dev_sectors
= le64_to_cpu(sb
->size
);
1685 mddev
->events
= ev1
;
1686 mddev
->bitmap_info
.offset
= 0;
1687 mddev
->bitmap_info
.space
= 0;
1688 /* Default location for bitmap is 1K after superblock
1689 * using 3K - total of 4K
1691 mddev
->bitmap_info
.default_offset
= 1024 >> 9;
1692 mddev
->bitmap_info
.default_space
= (4096-1024) >> 9;
1693 mddev
->reshape_backwards
= 0;
1695 mddev
->recovery_cp
= le64_to_cpu(sb
->resync_offset
);
1696 memcpy(mddev
->uuid
, sb
->set_uuid
, 16);
1698 mddev
->max_disks
= (4096-256)/2;
1700 if ((le32_to_cpu(sb
->feature_map
) & MD_FEATURE_BITMAP_OFFSET
) &&
1701 mddev
->bitmap_info
.file
== NULL
) {
1702 mddev
->bitmap_info
.offset
=
1703 (__s32
)le32_to_cpu(sb
->bitmap_offset
);
1704 /* Metadata doesn't record how much space is available.
1705 * For 1.0, we assume we can use up to the superblock
1706 * if before, else to 4K beyond superblock.
1707 * For others, assume no change is possible.
1709 if (mddev
->minor_version
> 0)
1710 mddev
->bitmap_info
.space
= 0;
1711 else if (mddev
->bitmap_info
.offset
> 0)
1712 mddev
->bitmap_info
.space
=
1713 8 - mddev
->bitmap_info
.offset
;
1715 mddev
->bitmap_info
.space
=
1716 -mddev
->bitmap_info
.offset
;
1719 if ((le32_to_cpu(sb
->feature_map
) & MD_FEATURE_RESHAPE_ACTIVE
)) {
1720 mddev
->reshape_position
= le64_to_cpu(sb
->reshape_position
);
1721 mddev
->delta_disks
= le32_to_cpu(sb
->delta_disks
);
1722 mddev
->new_level
= le32_to_cpu(sb
->new_level
);
1723 mddev
->new_layout
= le32_to_cpu(sb
->new_layout
);
1724 mddev
->new_chunk_sectors
= le32_to_cpu(sb
->new_chunk
);
1725 if (mddev
->delta_disks
< 0 ||
1726 (mddev
->delta_disks
== 0 &&
1727 (le32_to_cpu(sb
->feature_map
)
1728 & MD_FEATURE_RESHAPE_BACKWARDS
)))
1729 mddev
->reshape_backwards
= 1;
1731 mddev
->reshape_position
= MaxSector
;
1732 mddev
->delta_disks
= 0;
1733 mddev
->new_level
= mddev
->level
;
1734 mddev
->new_layout
= mddev
->layout
;
1735 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
1738 } else if (mddev
->pers
== NULL
) {
1739 /* Insist of good event counter while assembling, except for
1740 * spares (which don't need an event count) */
1742 if (rdev
->desc_nr
>= 0 &&
1743 rdev
->desc_nr
< le32_to_cpu(sb
->max_dev
) &&
1744 le16_to_cpu(sb
->dev_roles
[rdev
->desc_nr
]) < 0xfffe)
1745 if (ev1
< mddev
->events
)
1747 } else if (mddev
->bitmap
) {
1748 /* If adding to array with a bitmap, then we can accept an
1749 * older device, but not too old.
1751 if (ev1
< mddev
->bitmap
->events_cleared
)
1754 if (ev1
< mddev
->events
)
1755 /* just a hot-add of a new device, leave raid_disk at -1 */
1758 if (mddev
->level
!= LEVEL_MULTIPATH
) {
1760 if (rdev
->desc_nr
< 0 ||
1761 rdev
->desc_nr
>= le32_to_cpu(sb
->max_dev
)) {
1765 role
= le16_to_cpu(sb
->dev_roles
[rdev
->desc_nr
]);
1767 case 0xffff: /* spare */
1769 case 0xfffe: /* faulty */
1770 set_bit(Faulty
, &rdev
->flags
);
1773 if ((le32_to_cpu(sb
->feature_map
) &
1774 MD_FEATURE_RECOVERY_OFFSET
))
1775 rdev
->recovery_offset
= le64_to_cpu(sb
->recovery_offset
);
1777 set_bit(In_sync
, &rdev
->flags
);
1778 rdev
->raid_disk
= role
;
1781 if (sb
->devflags
& WriteMostly1
)
1782 set_bit(WriteMostly
, &rdev
->flags
);
1783 if (le32_to_cpu(sb
->feature_map
) & MD_FEATURE_REPLACEMENT
)
1784 set_bit(Replacement
, &rdev
->flags
);
1785 } else /* MULTIPATH are always insync */
1786 set_bit(In_sync
, &rdev
->flags
);
1791 static void super_1_sync(struct mddev
*mddev
, struct md_rdev
*rdev
)
1793 struct mdp_superblock_1
*sb
;
1794 struct md_rdev
*rdev2
;
1796 /* make rdev->sb match mddev and rdev data. */
1798 sb
= page_address(rdev
->sb_page
);
1800 sb
->feature_map
= 0;
1802 sb
->recovery_offset
= cpu_to_le64(0);
1803 memset(sb
->pad3
, 0, sizeof(sb
->pad3
));
1805 sb
->utime
= cpu_to_le64((__u64
)mddev
->utime
);
1806 sb
->events
= cpu_to_le64(mddev
->events
);
1808 sb
->resync_offset
= cpu_to_le64(mddev
->recovery_cp
);
1810 sb
->resync_offset
= cpu_to_le64(0);
1812 sb
->cnt_corrected_read
= cpu_to_le32(atomic_read(&rdev
->corrected_errors
));
1814 sb
->raid_disks
= cpu_to_le32(mddev
->raid_disks
);
1815 sb
->size
= cpu_to_le64(mddev
->dev_sectors
);
1816 sb
->chunksize
= cpu_to_le32(mddev
->chunk_sectors
);
1817 sb
->level
= cpu_to_le32(mddev
->level
);
1818 sb
->layout
= cpu_to_le32(mddev
->layout
);
1820 if (test_bit(WriteMostly
, &rdev
->flags
))
1821 sb
->devflags
|= WriteMostly1
;
1823 sb
->devflags
&= ~WriteMostly1
;
1824 sb
->data_offset
= cpu_to_le64(rdev
->data_offset
);
1825 sb
->data_size
= cpu_to_le64(rdev
->sectors
);
1827 if (mddev
->bitmap
&& mddev
->bitmap_info
.file
== NULL
) {
1828 sb
->bitmap_offset
= cpu_to_le32((__u32
)mddev
->bitmap_info
.offset
);
1829 sb
->feature_map
= cpu_to_le32(MD_FEATURE_BITMAP_OFFSET
);
1832 if (rdev
->raid_disk
>= 0 &&
1833 !test_bit(In_sync
, &rdev
->flags
)) {
1835 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET
);
1836 sb
->recovery_offset
=
1837 cpu_to_le64(rdev
->recovery_offset
);
1839 if (test_bit(Replacement
, &rdev
->flags
))
1841 cpu_to_le32(MD_FEATURE_REPLACEMENT
);
1843 if (mddev
->reshape_position
!= MaxSector
) {
1844 sb
->feature_map
|= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE
);
1845 sb
->reshape_position
= cpu_to_le64(mddev
->reshape_position
);
1846 sb
->new_layout
= cpu_to_le32(mddev
->new_layout
);
1847 sb
->delta_disks
= cpu_to_le32(mddev
->delta_disks
);
1848 sb
->new_level
= cpu_to_le32(mddev
->new_level
);
1849 sb
->new_chunk
= cpu_to_le32(mddev
->new_chunk_sectors
);
1850 if (mddev
->delta_disks
== 0 &&
1851 mddev
->reshape_backwards
)
1853 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS
);
1854 if (rdev
->new_data_offset
!= rdev
->data_offset
) {
1856 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET
);
1857 sb
->new_offset
= cpu_to_le32((__u32
)(rdev
->new_data_offset
1858 - rdev
->data_offset
));
1862 if (rdev
->badblocks
.count
== 0)
1863 /* Nothing to do for bad blocks*/ ;
1864 else if (sb
->bblog_offset
== 0)
1865 /* Cannot record bad blocks on this device */
1866 md_error(mddev
, rdev
);
1868 struct badblocks
*bb
= &rdev
->badblocks
;
1869 u64
*bbp
= (u64
*)page_address(rdev
->bb_page
);
1871 sb
->feature_map
|= cpu_to_le32(MD_FEATURE_BAD_BLOCKS
);
1876 seq
= read_seqbegin(&bb
->lock
);
1878 memset(bbp
, 0xff, PAGE_SIZE
);
1880 for (i
= 0 ; i
< bb
->count
; i
++) {
1881 u64 internal_bb
= *p
++;
1882 u64 store_bb
= ((BB_OFFSET(internal_bb
) << 10)
1883 | BB_LEN(internal_bb
));
1884 *bbp
++ = cpu_to_le64(store_bb
);
1887 if (read_seqretry(&bb
->lock
, seq
))
1890 bb
->sector
= (rdev
->sb_start
+
1891 (int)le32_to_cpu(sb
->bblog_offset
));
1892 bb
->size
= le16_to_cpu(sb
->bblog_size
);
1897 rdev_for_each(rdev2
, mddev
)
1898 if (rdev2
->desc_nr
+1 > max_dev
)
1899 max_dev
= rdev2
->desc_nr
+1;
1901 if (max_dev
> le32_to_cpu(sb
->max_dev
)) {
1903 sb
->max_dev
= cpu_to_le32(max_dev
);
1904 rdev
->sb_size
= max_dev
* 2 + 256;
1905 bmask
= queue_logical_block_size(rdev
->bdev
->bd_disk
->queue
)-1;
1906 if (rdev
->sb_size
& bmask
)
1907 rdev
->sb_size
= (rdev
->sb_size
| bmask
) + 1;
1909 max_dev
= le32_to_cpu(sb
->max_dev
);
1911 for (i
=0; i
<max_dev
;i
++)
1912 sb
->dev_roles
[i
] = cpu_to_le16(0xfffe);
1914 rdev_for_each(rdev2
, mddev
) {
1916 if (test_bit(Faulty
, &rdev2
->flags
))
1917 sb
->dev_roles
[i
] = cpu_to_le16(0xfffe);
1918 else if (test_bit(In_sync
, &rdev2
->flags
))
1919 sb
->dev_roles
[i
] = cpu_to_le16(rdev2
->raid_disk
);
1920 else if (rdev2
->raid_disk
>= 0)
1921 sb
->dev_roles
[i
] = cpu_to_le16(rdev2
->raid_disk
);
1923 sb
->dev_roles
[i
] = cpu_to_le16(0xffff);
1926 sb
->sb_csum
= calc_sb_1_csum(sb
);
1929 static unsigned long long
1930 super_1_rdev_size_change(struct md_rdev
*rdev
, sector_t num_sectors
)
1932 struct mdp_superblock_1
*sb
;
1933 sector_t max_sectors
;
1934 if (num_sectors
&& num_sectors
< rdev
->mddev
->dev_sectors
)
1935 return 0; /* component must fit device */
1936 if (rdev
->data_offset
!= rdev
->new_data_offset
)
1937 return 0; /* too confusing */
1938 if (rdev
->sb_start
< rdev
->data_offset
) {
1939 /* minor versions 1 and 2; superblock before data */
1940 max_sectors
= i_size_read(rdev
->bdev
->bd_inode
) >> 9;
1941 max_sectors
-= rdev
->data_offset
;
1942 if (!num_sectors
|| num_sectors
> max_sectors
)
1943 num_sectors
= max_sectors
;
1944 } else if (rdev
->mddev
->bitmap_info
.offset
) {
1945 /* minor version 0 with bitmap we can't move */
1948 /* minor version 0; superblock after data */
1950 sb_start
= (i_size_read(rdev
->bdev
->bd_inode
) >> 9) - 8*2;
1951 sb_start
&= ~(sector_t
)(4*2 - 1);
1952 max_sectors
= rdev
->sectors
+ sb_start
- rdev
->sb_start
;
1953 if (!num_sectors
|| num_sectors
> max_sectors
)
1954 num_sectors
= max_sectors
;
1955 rdev
->sb_start
= sb_start
;
1957 sb
= page_address(rdev
->sb_page
);
1958 sb
->data_size
= cpu_to_le64(num_sectors
);
1959 sb
->super_offset
= rdev
->sb_start
;
1960 sb
->sb_csum
= calc_sb_1_csum(sb
);
1961 md_super_write(rdev
->mddev
, rdev
, rdev
->sb_start
, rdev
->sb_size
,
1963 md_super_wait(rdev
->mddev
);
1969 super_1_allow_new_offset(struct md_rdev
*rdev
,
1970 unsigned long long new_offset
)
1972 /* All necessary checks on new >= old have been done */
1973 struct bitmap
*bitmap
;
1974 if (new_offset
>= rdev
->data_offset
)
1977 /* with 1.0 metadata, there is no metadata to tread on
1978 * so we can always move back */
1979 if (rdev
->mddev
->minor_version
== 0)
1982 /* otherwise we must be sure not to step on
1983 * any metadata, so stay:
1984 * 36K beyond start of superblock
1985 * beyond end of badblocks
1986 * beyond write-intent bitmap
1988 if (rdev
->sb_start
+ (32+4)*2 > new_offset
)
1990 bitmap
= rdev
->mddev
->bitmap
;
1991 if (bitmap
&& !rdev
->mddev
->bitmap_info
.file
&&
1992 rdev
->sb_start
+ rdev
->mddev
->bitmap_info
.offset
+
1993 bitmap
->storage
.file_pages
* (PAGE_SIZE
>>9) > new_offset
)
1995 if (rdev
->badblocks
.sector
+ rdev
->badblocks
.size
> new_offset
)
2001 static struct super_type super_types
[] = {
2004 .owner
= THIS_MODULE
,
2005 .load_super
= super_90_load
,
2006 .validate_super
= super_90_validate
,
2007 .sync_super
= super_90_sync
,
2008 .rdev_size_change
= super_90_rdev_size_change
,
2009 .allow_new_offset
= super_90_allow_new_offset
,
2013 .owner
= THIS_MODULE
,
2014 .load_super
= super_1_load
,
2015 .validate_super
= super_1_validate
,
2016 .sync_super
= super_1_sync
,
2017 .rdev_size_change
= super_1_rdev_size_change
,
2018 .allow_new_offset
= super_1_allow_new_offset
,
2022 static void sync_super(struct mddev
*mddev
, struct md_rdev
*rdev
)
2024 if (mddev
->sync_super
) {
2025 mddev
->sync_super(mddev
, rdev
);
2029 BUG_ON(mddev
->major_version
>= ARRAY_SIZE(super_types
));
2031 super_types
[mddev
->major_version
].sync_super(mddev
, rdev
);
2034 static int match_mddev_units(struct mddev
*mddev1
, struct mddev
*mddev2
)
2036 struct md_rdev
*rdev
, *rdev2
;
2039 rdev_for_each_rcu(rdev
, mddev1
)
2040 rdev_for_each_rcu(rdev2
, mddev2
)
2041 if (rdev
->bdev
->bd_contains
==
2042 rdev2
->bdev
->bd_contains
) {
2050 static LIST_HEAD(pending_raid_disks
);
2053 * Try to register data integrity profile for an mddev
2055 * This is called when an array is started and after a disk has been kicked
2056 * from the array. It only succeeds if all working and active component devices
2057 * are integrity capable with matching profiles.
2059 int md_integrity_register(struct mddev
*mddev
)
2061 struct md_rdev
*rdev
, *reference
= NULL
;
2063 if (list_empty(&mddev
->disks
))
2064 return 0; /* nothing to do */
2065 if (!mddev
->gendisk
|| blk_get_integrity(mddev
->gendisk
))
2066 return 0; /* shouldn't register, or already is */
2067 rdev_for_each(rdev
, mddev
) {
2068 /* skip spares and non-functional disks */
2069 if (test_bit(Faulty
, &rdev
->flags
))
2071 if (rdev
->raid_disk
< 0)
2074 /* Use the first rdev as the reference */
2078 /* does this rdev's profile match the reference profile? */
2079 if (blk_integrity_compare(reference
->bdev
->bd_disk
,
2080 rdev
->bdev
->bd_disk
) < 0)
2083 if (!reference
|| !bdev_get_integrity(reference
->bdev
))
2086 * All component devices are integrity capable and have matching
2087 * profiles, register the common profile for the md device.
2089 if (blk_integrity_register(mddev
->gendisk
,
2090 bdev_get_integrity(reference
->bdev
)) != 0) {
2091 printk(KERN_ERR
"md: failed to register integrity for %s\n",
2095 printk(KERN_NOTICE
"md: data integrity enabled on %s\n", mdname(mddev
));
2096 if (bioset_integrity_create(mddev
->bio_set
, BIO_POOL_SIZE
)) {
2097 printk(KERN_ERR
"md: failed to create integrity pool for %s\n",
2103 EXPORT_SYMBOL(md_integrity_register
);
2105 /* Disable data integrity if non-capable/non-matching disk is being added */
2106 void md_integrity_add_rdev(struct md_rdev
*rdev
, struct mddev
*mddev
)
2108 struct blk_integrity
*bi_rdev
= bdev_get_integrity(rdev
->bdev
);
2109 struct blk_integrity
*bi_mddev
= blk_get_integrity(mddev
->gendisk
);
2111 if (!bi_mddev
) /* nothing to do */
2113 if (rdev
->raid_disk
< 0) /* skip spares */
2115 if (bi_rdev
&& blk_integrity_compare(mddev
->gendisk
,
2116 rdev
->bdev
->bd_disk
) >= 0)
2118 printk(KERN_NOTICE
"disabling data integrity on %s\n", mdname(mddev
));
2119 blk_integrity_unregister(mddev
->gendisk
);
2121 EXPORT_SYMBOL(md_integrity_add_rdev
);
2123 static int bind_rdev_to_array(struct md_rdev
* rdev
, struct mddev
* mddev
)
2125 char b
[BDEVNAME_SIZE
];
2135 /* prevent duplicates */
2136 if (find_rdev(mddev
, rdev
->bdev
->bd_dev
))
2139 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2140 if (rdev
->sectors
&& (mddev
->dev_sectors
== 0 ||
2141 rdev
->sectors
< mddev
->dev_sectors
)) {
2143 /* Cannot change size, so fail
2144 * If mddev->level <= 0, then we don't care
2145 * about aligning sizes (e.g. linear)
2147 if (mddev
->level
> 0)
2150 mddev
->dev_sectors
= rdev
->sectors
;
2153 /* Verify rdev->desc_nr is unique.
2154 * If it is -1, assign a free number, else
2155 * check number is not in use
2157 if (rdev
->desc_nr
< 0) {
2159 if (mddev
->pers
) choice
= mddev
->raid_disks
;
2160 while (find_rdev_nr(mddev
, choice
))
2162 rdev
->desc_nr
= choice
;
2164 if (find_rdev_nr(mddev
, rdev
->desc_nr
))
2167 if (mddev
->max_disks
&& rdev
->desc_nr
>= mddev
->max_disks
) {
2168 printk(KERN_WARNING
"md: %s: array is limited to %d devices\n",
2169 mdname(mddev
), mddev
->max_disks
);
2172 bdevname(rdev
->bdev
,b
);
2173 while ( (s
=strchr(b
, '/')) != NULL
)
2176 rdev
->mddev
= mddev
;
2177 printk(KERN_INFO
"md: bind<%s>\n", b
);
2179 if ((err
= kobject_add(&rdev
->kobj
, &mddev
->kobj
, "dev-%s", b
)))
2182 ko
= &part_to_dev(rdev
->bdev
->bd_part
)->kobj
;
2183 if (sysfs_create_link(&rdev
->kobj
, ko
, "block"))
2184 /* failure here is OK */;
2185 rdev
->sysfs_state
= sysfs_get_dirent_safe(rdev
->kobj
.sd
, "state");
2187 list_add_rcu(&rdev
->same_set
, &mddev
->disks
);
2188 bd_link_disk_holder(rdev
->bdev
, mddev
->gendisk
);
2190 /* May as well allow recovery to be retried once */
2191 mddev
->recovery_disabled
++;
2196 printk(KERN_WARNING
"md: failed to register dev-%s for %s\n",
2201 static void md_delayed_delete(struct work_struct
*ws
)
2203 struct md_rdev
*rdev
= container_of(ws
, struct md_rdev
, del_work
);
2204 kobject_del(&rdev
->kobj
);
2205 kobject_put(&rdev
->kobj
);
2208 static void unbind_rdev_from_array(struct md_rdev
* rdev
)
2210 char b
[BDEVNAME_SIZE
];
2215 bd_unlink_disk_holder(rdev
->bdev
, rdev
->mddev
->gendisk
);
2216 list_del_rcu(&rdev
->same_set
);
2217 printk(KERN_INFO
"md: unbind<%s>\n", bdevname(rdev
->bdev
,b
));
2219 sysfs_remove_link(&rdev
->kobj
, "block");
2220 sysfs_put(rdev
->sysfs_state
);
2221 rdev
->sysfs_state
= NULL
;
2222 rdev
->badblocks
.count
= 0;
2223 /* We need to delay this, otherwise we can deadlock when
2224 * writing to 'remove' to "dev/state". We also need
2225 * to delay it due to rcu usage.
2228 INIT_WORK(&rdev
->del_work
, md_delayed_delete
);
2229 kobject_get(&rdev
->kobj
);
2230 queue_work(md_misc_wq
, &rdev
->del_work
);
2234 * prevent the device from being mounted, repartitioned or
2235 * otherwise reused by a RAID array (or any other kernel
2236 * subsystem), by bd_claiming the device.
2238 static int lock_rdev(struct md_rdev
*rdev
, dev_t dev
, int shared
)
2241 struct block_device
*bdev
;
2242 char b
[BDEVNAME_SIZE
];
2244 bdev
= blkdev_get_by_dev(dev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
,
2245 shared
? (struct md_rdev
*)lock_rdev
: rdev
);
2247 printk(KERN_ERR
"md: could not open %s.\n",
2248 __bdevname(dev
, b
));
2249 return PTR_ERR(bdev
);
2255 static void unlock_rdev(struct md_rdev
*rdev
)
2257 struct block_device
*bdev
= rdev
->bdev
;
2261 blkdev_put(bdev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
);
2264 void md_autodetect_dev(dev_t dev
);
2266 static void export_rdev(struct md_rdev
* rdev
)
2268 char b
[BDEVNAME_SIZE
];
2269 printk(KERN_INFO
"md: export_rdev(%s)\n",
2270 bdevname(rdev
->bdev
,b
));
2273 md_rdev_clear(rdev
);
2275 if (test_bit(AutoDetected
, &rdev
->flags
))
2276 md_autodetect_dev(rdev
->bdev
->bd_dev
);
2279 kobject_put(&rdev
->kobj
);
2282 static void kick_rdev_from_array(struct md_rdev
* rdev
)
2284 unbind_rdev_from_array(rdev
);
2288 static void export_array(struct mddev
*mddev
)
2290 struct md_rdev
*rdev
, *tmp
;
2292 rdev_for_each_safe(rdev
, tmp
, mddev
) {
2297 kick_rdev_from_array(rdev
);
2299 if (!list_empty(&mddev
->disks
))
2301 mddev
->raid_disks
= 0;
2302 mddev
->major_version
= 0;
2305 static void print_desc(mdp_disk_t
*desc
)
2307 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc
->number
,
2308 desc
->major
,desc
->minor
,desc
->raid_disk
,desc
->state
);
2311 static void print_sb_90(mdp_super_t
*sb
)
2316 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2317 sb
->major_version
, sb
->minor_version
, sb
->patch_version
,
2318 sb
->set_uuid0
, sb
->set_uuid1
, sb
->set_uuid2
, sb
->set_uuid3
,
2320 printk(KERN_INFO
"md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2321 sb
->level
, sb
->size
, sb
->nr_disks
, sb
->raid_disks
,
2322 sb
->md_minor
, sb
->layout
, sb
->chunk_size
);
2323 printk(KERN_INFO
"md: UT:%08x ST:%d AD:%d WD:%d"
2324 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2325 sb
->utime
, sb
->state
, sb
->active_disks
, sb
->working_disks
,
2326 sb
->failed_disks
, sb
->spare_disks
,
2327 sb
->sb_csum
, (unsigned long)sb
->events_lo
);
2330 for (i
= 0; i
< MD_SB_DISKS
; i
++) {
2333 desc
= sb
->disks
+ i
;
2334 if (desc
->number
|| desc
->major
|| desc
->minor
||
2335 desc
->raid_disk
|| (desc
->state
&& (desc
->state
!= 4))) {
2336 printk(" D %2d: ", i
);
2340 printk(KERN_INFO
"md: THIS: ");
2341 print_desc(&sb
->this_disk
);
2344 static void print_sb_1(struct mdp_superblock_1
*sb
)
2348 uuid
= sb
->set_uuid
;
2350 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2351 "md: Name: \"%s\" CT:%llu\n",
2352 le32_to_cpu(sb
->major_version
),
2353 le32_to_cpu(sb
->feature_map
),
2356 (unsigned long long)le64_to_cpu(sb
->ctime
)
2357 & MD_SUPERBLOCK_1_TIME_SEC_MASK
);
2359 uuid
= sb
->device_uuid
;
2361 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2363 "md: Dev:%08x UUID: %pU\n"
2364 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2365 "md: (MaxDev:%u) \n",
2366 le32_to_cpu(sb
->level
),
2367 (unsigned long long)le64_to_cpu(sb
->size
),
2368 le32_to_cpu(sb
->raid_disks
),
2369 le32_to_cpu(sb
->layout
),
2370 le32_to_cpu(sb
->chunksize
),
2371 (unsigned long long)le64_to_cpu(sb
->data_offset
),
2372 (unsigned long long)le64_to_cpu(sb
->data_size
),
2373 (unsigned long long)le64_to_cpu(sb
->super_offset
),
2374 (unsigned long long)le64_to_cpu(sb
->recovery_offset
),
2375 le32_to_cpu(sb
->dev_number
),
2378 (unsigned long long)le64_to_cpu(sb
->utime
) & MD_SUPERBLOCK_1_TIME_SEC_MASK
,
2379 (unsigned long long)le64_to_cpu(sb
->events
),
2380 (unsigned long long)le64_to_cpu(sb
->resync_offset
),
2381 le32_to_cpu(sb
->sb_csum
),
2382 le32_to_cpu(sb
->max_dev
)
2386 static void print_rdev(struct md_rdev
*rdev
, int major_version
)
2388 char b
[BDEVNAME_SIZE
];
2389 printk(KERN_INFO
"md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2390 bdevname(rdev
->bdev
, b
), (unsigned long long)rdev
->sectors
,
2391 test_bit(Faulty
, &rdev
->flags
), test_bit(In_sync
, &rdev
->flags
),
2393 if (rdev
->sb_loaded
) {
2394 printk(KERN_INFO
"md: rdev superblock (MJ:%d):\n", major_version
);
2395 switch (major_version
) {
2397 print_sb_90(page_address(rdev
->sb_page
));
2400 print_sb_1(page_address(rdev
->sb_page
));
2404 printk(KERN_INFO
"md: no rdev superblock!\n");
2407 static void md_print_devices(void)
2409 struct list_head
*tmp
;
2410 struct md_rdev
*rdev
;
2411 struct mddev
*mddev
;
2412 char b
[BDEVNAME_SIZE
];
2415 printk("md: **********************************\n");
2416 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2417 printk("md: **********************************\n");
2418 for_each_mddev(mddev
, tmp
) {
2421 bitmap_print_sb(mddev
->bitmap
);
2423 printk("%s: ", mdname(mddev
));
2424 rdev_for_each(rdev
, mddev
)
2425 printk("<%s>", bdevname(rdev
->bdev
,b
));
2428 rdev_for_each(rdev
, mddev
)
2429 print_rdev(rdev
, mddev
->major_version
);
2431 printk("md: **********************************\n");
2436 static void sync_sbs(struct mddev
* mddev
, int nospares
)
2438 /* Update each superblock (in-memory image), but
2439 * if we are allowed to, skip spares which already
2440 * have the right event counter, or have one earlier
2441 * (which would mean they aren't being marked as dirty
2442 * with the rest of the array)
2444 struct md_rdev
*rdev
;
2445 rdev_for_each(rdev
, mddev
) {
2446 if (rdev
->sb_events
== mddev
->events
||
2448 rdev
->raid_disk
< 0 &&
2449 rdev
->sb_events
+1 == mddev
->events
)) {
2450 /* Don't update this superblock */
2451 rdev
->sb_loaded
= 2;
2453 sync_super(mddev
, rdev
);
2454 rdev
->sb_loaded
= 1;
2459 static void md_update_sb(struct mddev
* mddev
, int force_change
)
2461 struct md_rdev
*rdev
;
2464 int any_badblocks_changed
= 0;
2467 /* First make sure individual recovery_offsets are correct */
2468 rdev_for_each(rdev
, mddev
) {
2469 if (rdev
->raid_disk
>= 0 &&
2470 mddev
->delta_disks
>= 0 &&
2471 !test_bit(In_sync
, &rdev
->flags
) &&
2472 mddev
->curr_resync_completed
> rdev
->recovery_offset
)
2473 rdev
->recovery_offset
= mddev
->curr_resync_completed
;
2476 if (!mddev
->persistent
) {
2477 clear_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
2478 clear_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2479 if (!mddev
->external
) {
2480 clear_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
2481 rdev_for_each(rdev
, mddev
) {
2482 if (rdev
->badblocks
.changed
) {
2483 rdev
->badblocks
.changed
= 0;
2484 md_ack_all_badblocks(&rdev
->badblocks
);
2485 md_error(mddev
, rdev
);
2487 clear_bit(Blocked
, &rdev
->flags
);
2488 clear_bit(BlockedBadBlocks
, &rdev
->flags
);
2489 wake_up(&rdev
->blocked_wait
);
2492 wake_up(&mddev
->sb_wait
);
2496 spin_lock_irq(&mddev
->write_lock
);
2498 mddev
->utime
= get_seconds();
2500 if (test_and_clear_bit(MD_CHANGE_DEVS
, &mddev
->flags
))
2502 if (test_and_clear_bit(MD_CHANGE_CLEAN
, &mddev
->flags
))
2503 /* just a clean<-> dirty transition, possibly leave spares alone,
2504 * though if events isn't the right even/odd, we will have to do
2510 if (mddev
->degraded
)
2511 /* If the array is degraded, then skipping spares is both
2512 * dangerous and fairly pointless.
2513 * Dangerous because a device that was removed from the array
2514 * might have a event_count that still looks up-to-date,
2515 * so it can be re-added without a resync.
2516 * Pointless because if there are any spares to skip,
2517 * then a recovery will happen and soon that array won't
2518 * be degraded any more and the spare can go back to sleep then.
2522 sync_req
= mddev
->in_sync
;
2524 /* If this is just a dirty<->clean transition, and the array is clean
2525 * and 'events' is odd, we can roll back to the previous clean state */
2527 && (mddev
->in_sync
&& mddev
->recovery_cp
== MaxSector
)
2528 && mddev
->can_decrease_events
2529 && mddev
->events
!= 1) {
2531 mddev
->can_decrease_events
= 0;
2533 /* otherwise we have to go forward and ... */
2535 mddev
->can_decrease_events
= nospares
;
2538 if (!mddev
->events
) {
2540 * oops, this 64-bit counter should never wrap.
2541 * Either we are in around ~1 trillion A.C., assuming
2542 * 1 reboot per second, or we have a bug:
2548 rdev_for_each(rdev
, mddev
) {
2549 if (rdev
->badblocks
.changed
)
2550 any_badblocks_changed
++;
2551 if (test_bit(Faulty
, &rdev
->flags
))
2552 set_bit(FaultRecorded
, &rdev
->flags
);
2555 sync_sbs(mddev
, nospares
);
2556 spin_unlock_irq(&mddev
->write_lock
);
2558 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2559 mdname(mddev
), mddev
->in_sync
);
2561 bitmap_update_sb(mddev
->bitmap
);
2562 rdev_for_each(rdev
, mddev
) {
2563 char b
[BDEVNAME_SIZE
];
2565 if (rdev
->sb_loaded
!= 1)
2566 continue; /* no noise on spare devices */
2568 if (!test_bit(Faulty
, &rdev
->flags
) &&
2569 rdev
->saved_raid_disk
== -1) {
2570 md_super_write(mddev
,rdev
,
2571 rdev
->sb_start
, rdev
->sb_size
,
2573 pr_debug("md: (write) %s's sb offset: %llu\n",
2574 bdevname(rdev
->bdev
, b
),
2575 (unsigned long long)rdev
->sb_start
);
2576 rdev
->sb_events
= mddev
->events
;
2577 if (rdev
->badblocks
.size
) {
2578 md_super_write(mddev
, rdev
,
2579 rdev
->badblocks
.sector
,
2580 rdev
->badblocks
.size
<< 9,
2582 rdev
->badblocks
.size
= 0;
2585 } else if (test_bit(Faulty
, &rdev
->flags
))
2586 pr_debug("md: %s (skipping faulty)\n",
2587 bdevname(rdev
->bdev
, b
));
2589 pr_debug("(skipping incremental s/r ");
2591 if (mddev
->level
== LEVEL_MULTIPATH
)
2592 /* only need to write one superblock... */
2595 md_super_wait(mddev
);
2596 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2598 spin_lock_irq(&mddev
->write_lock
);
2599 if (mddev
->in_sync
!= sync_req
||
2600 test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)) {
2601 /* have to write it out again */
2602 spin_unlock_irq(&mddev
->write_lock
);
2605 clear_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
2606 spin_unlock_irq(&mddev
->write_lock
);
2607 wake_up(&mddev
->sb_wait
);
2608 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
2609 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
2611 rdev_for_each(rdev
, mddev
) {
2612 if (test_and_clear_bit(FaultRecorded
, &rdev
->flags
))
2613 clear_bit(Blocked
, &rdev
->flags
);
2615 if (any_badblocks_changed
)
2616 md_ack_all_badblocks(&rdev
->badblocks
);
2617 clear_bit(BlockedBadBlocks
, &rdev
->flags
);
2618 wake_up(&rdev
->blocked_wait
);
2622 /* words written to sysfs files may, or may not, be \n terminated.
2623 * We want to accept with case. For this we use cmd_match.
2625 static int cmd_match(const char *cmd
, const char *str
)
2627 /* See if cmd, written into a sysfs file, matches
2628 * str. They must either be the same, or cmd can
2629 * have a trailing newline
2631 while (*cmd
&& *str
&& *cmd
== *str
) {
2642 struct rdev_sysfs_entry
{
2643 struct attribute attr
;
2644 ssize_t (*show
)(struct md_rdev
*, char *);
2645 ssize_t (*store
)(struct md_rdev
*, const char *, size_t);
2649 state_show(struct md_rdev
*rdev
, char *page
)
2654 if (test_bit(Faulty
, &rdev
->flags
) ||
2655 rdev
->badblocks
.unacked_exist
) {
2656 len
+= sprintf(page
+len
, "%sfaulty",sep
);
2659 if (test_bit(In_sync
, &rdev
->flags
)) {
2660 len
+= sprintf(page
+len
, "%sin_sync",sep
);
2663 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2664 len
+= sprintf(page
+len
, "%swrite_mostly",sep
);
2667 if (test_bit(Blocked
, &rdev
->flags
) ||
2668 (rdev
->badblocks
.unacked_exist
2669 && !test_bit(Faulty
, &rdev
->flags
))) {
2670 len
+= sprintf(page
+len
, "%sblocked", sep
);
2673 if (!test_bit(Faulty
, &rdev
->flags
) &&
2674 !test_bit(In_sync
, &rdev
->flags
)) {
2675 len
+= sprintf(page
+len
, "%sspare", sep
);
2678 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
2679 len
+= sprintf(page
+len
, "%swrite_error", sep
);
2682 if (test_bit(WantReplacement
, &rdev
->flags
)) {
2683 len
+= sprintf(page
+len
, "%swant_replacement", sep
);
2686 if (test_bit(Replacement
, &rdev
->flags
)) {
2687 len
+= sprintf(page
+len
, "%sreplacement", sep
);
2691 return len
+sprintf(page
+len
, "\n");
2695 state_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
2698 * faulty - simulates an error
2699 * remove - disconnects the device
2700 * writemostly - sets write_mostly
2701 * -writemostly - clears write_mostly
2702 * blocked - sets the Blocked flags
2703 * -blocked - clears the Blocked and possibly simulates an error
2704 * insync - sets Insync providing device isn't active
2705 * write_error - sets WriteErrorSeen
2706 * -write_error - clears WriteErrorSeen
2709 if (cmd_match(buf
, "faulty") && rdev
->mddev
->pers
) {
2710 md_error(rdev
->mddev
, rdev
);
2711 if (test_bit(Faulty
, &rdev
->flags
))
2715 } else if (cmd_match(buf
, "remove")) {
2716 if (rdev
->raid_disk
>= 0)
2719 struct mddev
*mddev
= rdev
->mddev
;
2720 kick_rdev_from_array(rdev
);
2722 md_update_sb(mddev
, 1);
2723 md_new_event(mddev
);
2726 } else if (cmd_match(buf
, "writemostly")) {
2727 set_bit(WriteMostly
, &rdev
->flags
);
2729 } else if (cmd_match(buf
, "-writemostly")) {
2730 clear_bit(WriteMostly
, &rdev
->flags
);
2732 } else if (cmd_match(buf
, "blocked")) {
2733 set_bit(Blocked
, &rdev
->flags
);
2735 } else if (cmd_match(buf
, "-blocked")) {
2736 if (!test_bit(Faulty
, &rdev
->flags
) &&
2737 rdev
->badblocks
.unacked_exist
) {
2738 /* metadata handler doesn't understand badblocks,
2739 * so we need to fail the device
2741 md_error(rdev
->mddev
, rdev
);
2743 clear_bit(Blocked
, &rdev
->flags
);
2744 clear_bit(BlockedBadBlocks
, &rdev
->flags
);
2745 wake_up(&rdev
->blocked_wait
);
2746 set_bit(MD_RECOVERY_NEEDED
, &rdev
->mddev
->recovery
);
2747 md_wakeup_thread(rdev
->mddev
->thread
);
2750 } else if (cmd_match(buf
, "insync") && rdev
->raid_disk
== -1) {
2751 set_bit(In_sync
, &rdev
->flags
);
2753 } else if (cmd_match(buf
, "write_error")) {
2754 set_bit(WriteErrorSeen
, &rdev
->flags
);
2756 } else if (cmd_match(buf
, "-write_error")) {
2757 clear_bit(WriteErrorSeen
, &rdev
->flags
);
2759 } else if (cmd_match(buf
, "want_replacement")) {
2760 /* Any non-spare device that is not a replacement can
2761 * become want_replacement at any time, but we then need to
2762 * check if recovery is needed.
2764 if (rdev
->raid_disk
>= 0 &&
2765 !test_bit(Replacement
, &rdev
->flags
))
2766 set_bit(WantReplacement
, &rdev
->flags
);
2767 set_bit(MD_RECOVERY_NEEDED
, &rdev
->mddev
->recovery
);
2768 md_wakeup_thread(rdev
->mddev
->thread
);
2770 } else if (cmd_match(buf
, "-want_replacement")) {
2771 /* Clearing 'want_replacement' is always allowed.
2772 * Once replacements starts it is too late though.
2775 clear_bit(WantReplacement
, &rdev
->flags
);
2776 } else if (cmd_match(buf
, "replacement")) {
2777 /* Can only set a device as a replacement when array has not
2778 * yet been started. Once running, replacement is automatic
2779 * from spares, or by assigning 'slot'.
2781 if (rdev
->mddev
->pers
)
2784 set_bit(Replacement
, &rdev
->flags
);
2787 } else if (cmd_match(buf
, "-replacement")) {
2788 /* Similarly, can only clear Replacement before start */
2789 if (rdev
->mddev
->pers
)
2792 clear_bit(Replacement
, &rdev
->flags
);
2797 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
2798 return err
? err
: len
;
2800 static struct rdev_sysfs_entry rdev_state
=
2801 __ATTR(state
, S_IRUGO
|S_IWUSR
, state_show
, state_store
);
2804 errors_show(struct md_rdev
*rdev
, char *page
)
2806 return sprintf(page
, "%d\n", atomic_read(&rdev
->corrected_errors
));
2810 errors_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
2813 unsigned long n
= simple_strtoul(buf
, &e
, 10);
2814 if (*buf
&& (*e
== 0 || *e
== '\n')) {
2815 atomic_set(&rdev
->corrected_errors
, n
);
2820 static struct rdev_sysfs_entry rdev_errors
=
2821 __ATTR(errors
, S_IRUGO
|S_IWUSR
, errors_show
, errors_store
);
2824 slot_show(struct md_rdev
*rdev
, char *page
)
2826 if (rdev
->raid_disk
< 0)
2827 return sprintf(page
, "none\n");
2829 return sprintf(page
, "%d\n", rdev
->raid_disk
);
2833 slot_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
2837 int slot
= simple_strtoul(buf
, &e
, 10);
2838 if (strncmp(buf
, "none", 4)==0)
2840 else if (e
==buf
|| (*e
&& *e
!= '\n'))
2842 if (rdev
->mddev
->pers
&& slot
== -1) {
2843 /* Setting 'slot' on an active array requires also
2844 * updating the 'rd%d' link, and communicating
2845 * with the personality with ->hot_*_disk.
2846 * For now we only support removing
2847 * failed/spare devices. This normally happens automatically,
2848 * but not when the metadata is externally managed.
2850 if (rdev
->raid_disk
== -1)
2852 /* personality does all needed checks */
2853 if (rdev
->mddev
->pers
->hot_remove_disk
== NULL
)
2855 err
= rdev
->mddev
->pers
->
2856 hot_remove_disk(rdev
->mddev
, rdev
);
2859 sysfs_unlink_rdev(rdev
->mddev
, rdev
);
2860 rdev
->raid_disk
= -1;
2861 set_bit(MD_RECOVERY_NEEDED
, &rdev
->mddev
->recovery
);
2862 md_wakeup_thread(rdev
->mddev
->thread
);
2863 } else if (rdev
->mddev
->pers
) {
2864 /* Activating a spare .. or possibly reactivating
2865 * if we ever get bitmaps working here.
2868 if (rdev
->raid_disk
!= -1)
2871 if (test_bit(MD_RECOVERY_RUNNING
, &rdev
->mddev
->recovery
))
2874 if (rdev
->mddev
->pers
->hot_add_disk
== NULL
)
2877 if (slot
>= rdev
->mddev
->raid_disks
&&
2878 slot
>= rdev
->mddev
->raid_disks
+ rdev
->mddev
->delta_disks
)
2881 rdev
->raid_disk
= slot
;
2882 if (test_bit(In_sync
, &rdev
->flags
))
2883 rdev
->saved_raid_disk
= slot
;
2885 rdev
->saved_raid_disk
= -1;
2886 clear_bit(In_sync
, &rdev
->flags
);
2887 err
= rdev
->mddev
->pers
->
2888 hot_add_disk(rdev
->mddev
, rdev
);
2890 rdev
->raid_disk
= -1;
2893 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
2894 if (sysfs_link_rdev(rdev
->mddev
, rdev
))
2895 /* failure here is OK */;
2896 /* don't wakeup anyone, leave that to userspace. */
2898 if (slot
>= rdev
->mddev
->raid_disks
&&
2899 slot
>= rdev
->mddev
->raid_disks
+ rdev
->mddev
->delta_disks
)
2901 rdev
->raid_disk
= slot
;
2902 /* assume it is working */
2903 clear_bit(Faulty
, &rdev
->flags
);
2904 clear_bit(WriteMostly
, &rdev
->flags
);
2905 set_bit(In_sync
, &rdev
->flags
);
2906 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
2912 static struct rdev_sysfs_entry rdev_slot
=
2913 __ATTR(slot
, S_IRUGO
|S_IWUSR
, slot_show
, slot_store
);
2916 offset_show(struct md_rdev
*rdev
, char *page
)
2918 return sprintf(page
, "%llu\n", (unsigned long long)rdev
->data_offset
);
2922 offset_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
2924 unsigned long long offset
;
2925 if (strict_strtoull(buf
, 10, &offset
) < 0)
2927 if (rdev
->mddev
->pers
&& rdev
->raid_disk
>= 0)
2929 if (rdev
->sectors
&& rdev
->mddev
->external
)
2930 /* Must set offset before size, so overlap checks
2933 rdev
->data_offset
= offset
;
2937 static struct rdev_sysfs_entry rdev_offset
=
2938 __ATTR(offset
, S_IRUGO
|S_IWUSR
, offset_show
, offset_store
);
2940 static ssize_t
new_offset_show(struct md_rdev
*rdev
, char *page
)
2942 return sprintf(page
, "%llu\n",
2943 (unsigned long long)rdev
->new_data_offset
);
2946 static ssize_t
new_offset_store(struct md_rdev
*rdev
,
2947 const char *buf
, size_t len
)
2949 unsigned long long new_offset
;
2950 struct mddev
*mddev
= rdev
->mddev
;
2952 if (strict_strtoull(buf
, 10, &new_offset
) < 0)
2955 if (mddev
->sync_thread
)
2957 if (new_offset
== rdev
->data_offset
)
2958 /* reset is always permitted */
2960 else if (new_offset
> rdev
->data_offset
) {
2961 /* must not push array size beyond rdev_sectors */
2962 if (new_offset
- rdev
->data_offset
2963 + mddev
->dev_sectors
> rdev
->sectors
)
2966 /* Metadata worries about other space details. */
2968 /* decreasing the offset is inconsistent with a backwards
2971 if (new_offset
< rdev
->data_offset
&&
2972 mddev
->reshape_backwards
)
2974 /* Increasing offset is inconsistent with forwards
2975 * reshape. reshape_direction should be set to
2976 * 'backwards' first.
2978 if (new_offset
> rdev
->data_offset
&&
2979 !mddev
->reshape_backwards
)
2982 if (mddev
->pers
&& mddev
->persistent
&&
2983 !super_types
[mddev
->major_version
]
2984 .allow_new_offset(rdev
, new_offset
))
2986 rdev
->new_data_offset
= new_offset
;
2987 if (new_offset
> rdev
->data_offset
)
2988 mddev
->reshape_backwards
= 1;
2989 else if (new_offset
< rdev
->data_offset
)
2990 mddev
->reshape_backwards
= 0;
2994 static struct rdev_sysfs_entry rdev_new_offset
=
2995 __ATTR(new_offset
, S_IRUGO
|S_IWUSR
, new_offset_show
, new_offset_store
);
2998 rdev_size_show(struct md_rdev
*rdev
, char *page
)
3000 return sprintf(page
, "%llu\n", (unsigned long long)rdev
->sectors
/ 2);
3003 static int overlaps(sector_t s1
, sector_t l1
, sector_t s2
, sector_t l2
)
3005 /* check if two start/length pairs overlap */
3013 static int strict_blocks_to_sectors(const char *buf
, sector_t
*sectors
)
3015 unsigned long long blocks
;
3018 if (strict_strtoull(buf
, 10, &blocks
) < 0)
3021 if (blocks
& 1ULL << (8 * sizeof(blocks
) - 1))
3022 return -EINVAL
; /* sector conversion overflow */
3025 if (new != blocks
* 2)
3026 return -EINVAL
; /* unsigned long long to sector_t overflow */
3033 rdev_size_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
3035 struct mddev
*my_mddev
= rdev
->mddev
;
3036 sector_t oldsectors
= rdev
->sectors
;
3039 if (strict_blocks_to_sectors(buf
, §ors
) < 0)
3041 if (rdev
->data_offset
!= rdev
->new_data_offset
)
3042 return -EINVAL
; /* too confusing */
3043 if (my_mddev
->pers
&& rdev
->raid_disk
>= 0) {
3044 if (my_mddev
->persistent
) {
3045 sectors
= super_types
[my_mddev
->major_version
].
3046 rdev_size_change(rdev
, sectors
);
3049 } else if (!sectors
)
3050 sectors
= (i_size_read(rdev
->bdev
->bd_inode
) >> 9) -
3053 if (sectors
< my_mddev
->dev_sectors
)
3054 return -EINVAL
; /* component must fit device */
3056 rdev
->sectors
= sectors
;
3057 if (sectors
> oldsectors
&& my_mddev
->external
) {
3058 /* need to check that all other rdevs with the same ->bdev
3059 * do not overlap. We need to unlock the mddev to avoid
3060 * a deadlock. We have already changed rdev->sectors, and if
3061 * we have to change it back, we will have the lock again.
3063 struct mddev
*mddev
;
3065 struct list_head
*tmp
;
3067 mddev_unlock(my_mddev
);
3068 for_each_mddev(mddev
, tmp
) {
3069 struct md_rdev
*rdev2
;
3072 rdev_for_each(rdev2
, mddev
)
3073 if (rdev
->bdev
== rdev2
->bdev
&&
3075 overlaps(rdev
->data_offset
, rdev
->sectors
,
3081 mddev_unlock(mddev
);
3087 mddev_lock(my_mddev
);
3089 /* Someone else could have slipped in a size
3090 * change here, but doing so is just silly.
3091 * We put oldsectors back because we *know* it is
3092 * safe, and trust userspace not to race with
3095 rdev
->sectors
= oldsectors
;
3102 static struct rdev_sysfs_entry rdev_size
=
3103 __ATTR(size
, S_IRUGO
|S_IWUSR
, rdev_size_show
, rdev_size_store
);
3106 static ssize_t
recovery_start_show(struct md_rdev
*rdev
, char *page
)
3108 unsigned long long recovery_start
= rdev
->recovery_offset
;
3110 if (test_bit(In_sync
, &rdev
->flags
) ||
3111 recovery_start
== MaxSector
)
3112 return sprintf(page
, "none\n");
3114 return sprintf(page
, "%llu\n", recovery_start
);
3117 static ssize_t
recovery_start_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
3119 unsigned long long recovery_start
;
3121 if (cmd_match(buf
, "none"))
3122 recovery_start
= MaxSector
;
3123 else if (strict_strtoull(buf
, 10, &recovery_start
))
3126 if (rdev
->mddev
->pers
&&
3127 rdev
->raid_disk
>= 0)
3130 rdev
->recovery_offset
= recovery_start
;
3131 if (recovery_start
== MaxSector
)
3132 set_bit(In_sync
, &rdev
->flags
);
3134 clear_bit(In_sync
, &rdev
->flags
);
3138 static struct rdev_sysfs_entry rdev_recovery_start
=
3139 __ATTR(recovery_start
, S_IRUGO
|S_IWUSR
, recovery_start_show
, recovery_start_store
);
3143 badblocks_show(struct badblocks
*bb
, char *page
, int unack
);
3145 badblocks_store(struct badblocks
*bb
, const char *page
, size_t len
, int unack
);
3147 static ssize_t
bb_show(struct md_rdev
*rdev
, char *page
)
3149 return badblocks_show(&rdev
->badblocks
, page
, 0);
3151 static ssize_t
bb_store(struct md_rdev
*rdev
, const char *page
, size_t len
)
3153 int rv
= badblocks_store(&rdev
->badblocks
, page
, len
, 0);
3154 /* Maybe that ack was all we needed */
3155 if (test_and_clear_bit(BlockedBadBlocks
, &rdev
->flags
))
3156 wake_up(&rdev
->blocked_wait
);
3159 static struct rdev_sysfs_entry rdev_bad_blocks
=
3160 __ATTR(bad_blocks
, S_IRUGO
|S_IWUSR
, bb_show
, bb_store
);
3163 static ssize_t
ubb_show(struct md_rdev
*rdev
, char *page
)
3165 return badblocks_show(&rdev
->badblocks
, page
, 1);
3167 static ssize_t
ubb_store(struct md_rdev
*rdev
, const char *page
, size_t len
)
3169 return badblocks_store(&rdev
->badblocks
, page
, len
, 1);
3171 static struct rdev_sysfs_entry rdev_unack_bad_blocks
=
3172 __ATTR(unacknowledged_bad_blocks
, S_IRUGO
|S_IWUSR
, ubb_show
, ubb_store
);
3174 static struct attribute
*rdev_default_attrs
[] = {
3179 &rdev_new_offset
.attr
,
3181 &rdev_recovery_start
.attr
,
3182 &rdev_bad_blocks
.attr
,
3183 &rdev_unack_bad_blocks
.attr
,
3187 rdev_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3189 struct rdev_sysfs_entry
*entry
= container_of(attr
, struct rdev_sysfs_entry
, attr
);
3190 struct md_rdev
*rdev
= container_of(kobj
, struct md_rdev
, kobj
);
3191 struct mddev
*mddev
= rdev
->mddev
;
3197 rv
= mddev
? mddev_lock(mddev
) : -EBUSY
;
3199 if (rdev
->mddev
== NULL
)
3202 rv
= entry
->show(rdev
, page
);
3203 mddev_unlock(mddev
);
3209 rdev_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3210 const char *page
, size_t length
)
3212 struct rdev_sysfs_entry
*entry
= container_of(attr
, struct rdev_sysfs_entry
, attr
);
3213 struct md_rdev
*rdev
= container_of(kobj
, struct md_rdev
, kobj
);
3215 struct mddev
*mddev
= rdev
->mddev
;
3219 if (!capable(CAP_SYS_ADMIN
))
3221 rv
= mddev
? mddev_lock(mddev
): -EBUSY
;
3223 if (rdev
->mddev
== NULL
)
3226 rv
= entry
->store(rdev
, page
, length
);
3227 mddev_unlock(mddev
);
3232 static void rdev_free(struct kobject
*ko
)
3234 struct md_rdev
*rdev
= container_of(ko
, struct md_rdev
, kobj
);
3237 static const struct sysfs_ops rdev_sysfs_ops
= {
3238 .show
= rdev_attr_show
,
3239 .store
= rdev_attr_store
,
3241 static struct kobj_type rdev_ktype
= {
3242 .release
= rdev_free
,
3243 .sysfs_ops
= &rdev_sysfs_ops
,
3244 .default_attrs
= rdev_default_attrs
,
3247 int md_rdev_init(struct md_rdev
*rdev
)
3250 rdev
->saved_raid_disk
= -1;
3251 rdev
->raid_disk
= -1;
3253 rdev
->data_offset
= 0;
3254 rdev
->new_data_offset
= 0;
3255 rdev
->sb_events
= 0;
3256 rdev
->last_read_error
.tv_sec
= 0;
3257 rdev
->last_read_error
.tv_nsec
= 0;
3258 rdev
->sb_loaded
= 0;
3259 rdev
->bb_page
= NULL
;
3260 atomic_set(&rdev
->nr_pending
, 0);
3261 atomic_set(&rdev
->read_errors
, 0);
3262 atomic_set(&rdev
->corrected_errors
, 0);
3264 INIT_LIST_HEAD(&rdev
->same_set
);
3265 init_waitqueue_head(&rdev
->blocked_wait
);
3267 /* Add space to store bad block list.
3268 * This reserves the space even on arrays where it cannot
3269 * be used - I wonder if that matters
3271 rdev
->badblocks
.count
= 0;
3272 rdev
->badblocks
.shift
= 0;
3273 rdev
->badblocks
.page
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3274 seqlock_init(&rdev
->badblocks
.lock
);
3275 if (rdev
->badblocks
.page
== NULL
)
3280 EXPORT_SYMBOL_GPL(md_rdev_init
);
3282 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3284 * mark the device faulty if:
3286 * - the device is nonexistent (zero size)
3287 * - the device has no valid superblock
3289 * a faulty rdev _never_ has rdev->sb set.
3291 static struct md_rdev
*md_import_device(dev_t newdev
, int super_format
, int super_minor
)
3293 char b
[BDEVNAME_SIZE
];
3295 struct md_rdev
*rdev
;
3298 rdev
= kzalloc(sizeof(*rdev
), GFP_KERNEL
);
3300 printk(KERN_ERR
"md: could not alloc mem for new device!\n");
3301 return ERR_PTR(-ENOMEM
);
3304 err
= md_rdev_init(rdev
);
3307 err
= alloc_disk_sb(rdev
);
3311 err
= lock_rdev(rdev
, newdev
, super_format
== -2);
3315 kobject_init(&rdev
->kobj
, &rdev_ktype
);
3317 size
= i_size_read(rdev
->bdev
->bd_inode
) >> BLOCK_SIZE_BITS
;
3320 "md: %s has zero or unknown size, marking faulty!\n",
3321 bdevname(rdev
->bdev
,b
));
3326 if (super_format
>= 0) {
3327 err
= super_types
[super_format
].
3328 load_super(rdev
, NULL
, super_minor
);
3329 if (err
== -EINVAL
) {
3331 "md: %s does not have a valid v%d.%d "
3332 "superblock, not importing!\n",
3333 bdevname(rdev
->bdev
,b
),
3334 super_format
, super_minor
);
3339 "md: could not read %s's sb, not importing!\n",
3340 bdevname(rdev
->bdev
,b
));
3344 if (super_format
== -1)
3345 /* hot-add for 0.90, or non-persistent: so no badblocks */
3346 rdev
->badblocks
.shift
= -1;
3353 md_rdev_clear(rdev
);
3355 return ERR_PTR(err
);
3359 * Check a full RAID array for plausibility
3363 static void analyze_sbs(struct mddev
* mddev
)
3366 struct md_rdev
*rdev
, *freshest
, *tmp
;
3367 char b
[BDEVNAME_SIZE
];
3370 rdev_for_each_safe(rdev
, tmp
, mddev
)
3371 switch (super_types
[mddev
->major_version
].
3372 load_super(rdev
, freshest
, mddev
->minor_version
)) {
3380 "md: fatal superblock inconsistency in %s"
3381 " -- removing from array\n",
3382 bdevname(rdev
->bdev
,b
));
3383 kick_rdev_from_array(rdev
);
3387 super_types
[mddev
->major_version
].
3388 validate_super(mddev
, freshest
);
3391 rdev_for_each_safe(rdev
, tmp
, mddev
) {
3392 if (mddev
->max_disks
&&
3393 (rdev
->desc_nr
>= mddev
->max_disks
||
3394 i
> mddev
->max_disks
)) {
3396 "md: %s: %s: only %d devices permitted\n",
3397 mdname(mddev
), bdevname(rdev
->bdev
, b
),
3399 kick_rdev_from_array(rdev
);
3402 if (rdev
!= freshest
)
3403 if (super_types
[mddev
->major_version
].
3404 validate_super(mddev
, rdev
)) {
3405 printk(KERN_WARNING
"md: kicking non-fresh %s"
3407 bdevname(rdev
->bdev
,b
));
3408 kick_rdev_from_array(rdev
);
3411 if (mddev
->level
== LEVEL_MULTIPATH
) {
3412 rdev
->desc_nr
= i
++;
3413 rdev
->raid_disk
= rdev
->desc_nr
;
3414 set_bit(In_sync
, &rdev
->flags
);
3415 } else if (rdev
->raid_disk
>= (mddev
->raid_disks
- min(0, mddev
->delta_disks
))) {
3416 rdev
->raid_disk
= -1;
3417 clear_bit(In_sync
, &rdev
->flags
);
3422 /* Read a fixed-point number.
3423 * Numbers in sysfs attributes should be in "standard" units where
3424 * possible, so time should be in seconds.
3425 * However we internally use a a much smaller unit such as
3426 * milliseconds or jiffies.
3427 * This function takes a decimal number with a possible fractional
3428 * component, and produces an integer which is the result of
3429 * multiplying that number by 10^'scale'.
3430 * all without any floating-point arithmetic.
3432 int strict_strtoul_scaled(const char *cp
, unsigned long *res
, int scale
)
3434 unsigned long result
= 0;
3436 while (isdigit(*cp
) || (*cp
== '.' && decimals
< 0)) {
3439 else if (decimals
< scale
) {
3442 result
= result
* 10 + value
;
3454 while (decimals
< scale
) {
3463 static void md_safemode_timeout(unsigned long data
);
3466 safe_delay_show(struct mddev
*mddev
, char *page
)
3468 int msec
= (mddev
->safemode_delay
*1000)/HZ
;
3469 return sprintf(page
, "%d.%03d\n", msec
/1000, msec
%1000);
3472 safe_delay_store(struct mddev
*mddev
, const char *cbuf
, size_t len
)
3476 if (strict_strtoul_scaled(cbuf
, &msec
, 3) < 0)
3479 mddev
->safemode_delay
= 0;
3481 unsigned long old_delay
= mddev
->safemode_delay
;
3482 mddev
->safemode_delay
= (msec
*HZ
)/1000;
3483 if (mddev
->safemode_delay
== 0)
3484 mddev
->safemode_delay
= 1;
3485 if (mddev
->safemode_delay
< old_delay
)
3486 md_safemode_timeout((unsigned long)mddev
);
3490 static struct md_sysfs_entry md_safe_delay
=
3491 __ATTR(safe_mode_delay
, S_IRUGO
|S_IWUSR
,safe_delay_show
, safe_delay_store
);
3494 level_show(struct mddev
*mddev
, char *page
)
3496 struct md_personality
*p
= mddev
->pers
;
3498 return sprintf(page
, "%s\n", p
->name
);
3499 else if (mddev
->clevel
[0])
3500 return sprintf(page
, "%s\n", mddev
->clevel
);
3501 else if (mddev
->level
!= LEVEL_NONE
)
3502 return sprintf(page
, "%d\n", mddev
->level
);
3508 level_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3512 struct md_personality
*pers
;
3515 struct md_rdev
*rdev
;
3517 if (mddev
->pers
== NULL
) {
3520 if (len
>= sizeof(mddev
->clevel
))
3522 strncpy(mddev
->clevel
, buf
, len
);
3523 if (mddev
->clevel
[len
-1] == '\n')
3525 mddev
->clevel
[len
] = 0;
3526 mddev
->level
= LEVEL_NONE
;
3530 /* request to change the personality. Need to ensure:
3531 * - array is not engaged in resync/recovery/reshape
3532 * - old personality can be suspended
3533 * - new personality will access other array.
3536 if (mddev
->sync_thread
||
3537 mddev
->reshape_position
!= MaxSector
||
3538 mddev
->sysfs_active
)
3541 if (!mddev
->pers
->quiesce
) {
3542 printk(KERN_WARNING
"md: %s: %s does not support online personality change\n",
3543 mdname(mddev
), mddev
->pers
->name
);
3547 /* Now find the new personality */
3548 if (len
== 0 || len
>= sizeof(clevel
))
3550 strncpy(clevel
, buf
, len
);
3551 if (clevel
[len
-1] == '\n')
3554 if (strict_strtol(clevel
, 10, &level
))
3557 if (request_module("md-%s", clevel
) != 0)
3558 request_module("md-level-%s", clevel
);
3559 spin_lock(&pers_lock
);
3560 pers
= find_pers(level
, clevel
);
3561 if (!pers
|| !try_module_get(pers
->owner
)) {
3562 spin_unlock(&pers_lock
);
3563 printk(KERN_WARNING
"md: personality %s not loaded\n", clevel
);
3566 spin_unlock(&pers_lock
);
3568 if (pers
== mddev
->pers
) {
3569 /* Nothing to do! */
3570 module_put(pers
->owner
);
3573 if (!pers
->takeover
) {
3574 module_put(pers
->owner
);
3575 printk(KERN_WARNING
"md: %s: %s does not support personality takeover\n",
3576 mdname(mddev
), clevel
);
3580 rdev_for_each(rdev
, mddev
)
3581 rdev
->new_raid_disk
= rdev
->raid_disk
;
3583 /* ->takeover must set new_* and/or delta_disks
3584 * if it succeeds, and may set them when it fails.
3586 priv
= pers
->takeover(mddev
);
3588 mddev
->new_level
= mddev
->level
;
3589 mddev
->new_layout
= mddev
->layout
;
3590 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3591 mddev
->raid_disks
-= mddev
->delta_disks
;
3592 mddev
->delta_disks
= 0;
3593 mddev
->reshape_backwards
= 0;
3594 module_put(pers
->owner
);
3595 printk(KERN_WARNING
"md: %s: %s would not accept array\n",
3596 mdname(mddev
), clevel
);
3597 return PTR_ERR(priv
);
3600 /* Looks like we have a winner */
3601 mddev_suspend(mddev
);
3602 mddev
->pers
->stop(mddev
);
3604 if (mddev
->pers
->sync_request
== NULL
&&
3605 pers
->sync_request
!= NULL
) {
3606 /* need to add the md_redundancy_group */
3607 if (sysfs_create_group(&mddev
->kobj
, &md_redundancy_group
))
3609 "md: cannot register extra attributes for %s\n",
3611 mddev
->sysfs_action
= sysfs_get_dirent(mddev
->kobj
.sd
, NULL
, "sync_action");
3613 if (mddev
->pers
->sync_request
!= NULL
&&
3614 pers
->sync_request
== NULL
) {
3615 /* need to remove the md_redundancy_group */
3616 if (mddev
->to_remove
== NULL
)
3617 mddev
->to_remove
= &md_redundancy_group
;
3620 if (mddev
->pers
->sync_request
== NULL
&&
3622 /* We are converting from a no-redundancy array
3623 * to a redundancy array and metadata is managed
3624 * externally so we need to be sure that writes
3625 * won't block due to a need to transition
3627 * until external management is started.
3630 mddev
->safemode_delay
= 0;
3631 mddev
->safemode
= 0;
3634 rdev_for_each(rdev
, mddev
) {
3635 if (rdev
->raid_disk
< 0)
3637 if (rdev
->new_raid_disk
>= mddev
->raid_disks
)
3638 rdev
->new_raid_disk
= -1;
3639 if (rdev
->new_raid_disk
== rdev
->raid_disk
)
3641 sysfs_unlink_rdev(mddev
, rdev
);
3643 rdev_for_each(rdev
, mddev
) {
3644 if (rdev
->raid_disk
< 0)
3646 if (rdev
->new_raid_disk
== rdev
->raid_disk
)
3648 rdev
->raid_disk
= rdev
->new_raid_disk
;
3649 if (rdev
->raid_disk
< 0)
3650 clear_bit(In_sync
, &rdev
->flags
);
3652 if (sysfs_link_rdev(mddev
, rdev
))
3653 printk(KERN_WARNING
"md: cannot register rd%d"
3654 " for %s after level change\n",
3655 rdev
->raid_disk
, mdname(mddev
));
3659 module_put(mddev
->pers
->owner
);
3661 mddev
->private = priv
;
3662 strlcpy(mddev
->clevel
, pers
->name
, sizeof(mddev
->clevel
));
3663 mddev
->level
= mddev
->new_level
;
3664 mddev
->layout
= mddev
->new_layout
;
3665 mddev
->chunk_sectors
= mddev
->new_chunk_sectors
;
3666 mddev
->delta_disks
= 0;
3667 mddev
->reshape_backwards
= 0;
3668 mddev
->degraded
= 0;
3669 if (mddev
->pers
->sync_request
== NULL
) {
3670 /* this is now an array without redundancy, so
3671 * it must always be in_sync
3674 del_timer_sync(&mddev
->safemode_timer
);
3677 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3678 mddev_resume(mddev
);
3679 sysfs_notify(&mddev
->kobj
, NULL
, "level");
3680 md_new_event(mddev
);
3684 static struct md_sysfs_entry md_level
=
3685 __ATTR(level
, S_IRUGO
|S_IWUSR
, level_show
, level_store
);
3689 layout_show(struct mddev
*mddev
, char *page
)
3691 /* just a number, not meaningful for all levels */
3692 if (mddev
->reshape_position
!= MaxSector
&&
3693 mddev
->layout
!= mddev
->new_layout
)
3694 return sprintf(page
, "%d (%d)\n",
3695 mddev
->new_layout
, mddev
->layout
);
3696 return sprintf(page
, "%d\n", mddev
->layout
);
3700 layout_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3703 unsigned long n
= simple_strtoul(buf
, &e
, 10);
3705 if (!*buf
|| (*e
&& *e
!= '\n'))
3710 if (mddev
->pers
->check_reshape
== NULL
)
3712 mddev
->new_layout
= n
;
3713 err
= mddev
->pers
->check_reshape(mddev
);
3715 mddev
->new_layout
= mddev
->layout
;
3719 mddev
->new_layout
= n
;
3720 if (mddev
->reshape_position
== MaxSector
)
3725 static struct md_sysfs_entry md_layout
=
3726 __ATTR(layout
, S_IRUGO
|S_IWUSR
, layout_show
, layout_store
);
3730 raid_disks_show(struct mddev
*mddev
, char *page
)
3732 if (mddev
->raid_disks
== 0)
3734 if (mddev
->reshape_position
!= MaxSector
&&
3735 mddev
->delta_disks
!= 0)
3736 return sprintf(page
, "%d (%d)\n", mddev
->raid_disks
,
3737 mddev
->raid_disks
- mddev
->delta_disks
);
3738 return sprintf(page
, "%d\n", mddev
->raid_disks
);
3741 static int update_raid_disks(struct mddev
*mddev
, int raid_disks
);
3744 raid_disks_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3748 unsigned long n
= simple_strtoul(buf
, &e
, 10);
3750 if (!*buf
|| (*e
&& *e
!= '\n'))
3754 rv
= update_raid_disks(mddev
, n
);
3755 else if (mddev
->reshape_position
!= MaxSector
) {
3756 struct md_rdev
*rdev
;
3757 int olddisks
= mddev
->raid_disks
- mddev
->delta_disks
;
3759 rdev_for_each(rdev
, mddev
) {
3761 rdev
->data_offset
< rdev
->new_data_offset
)
3764 rdev
->data_offset
> rdev
->new_data_offset
)
3767 mddev
->delta_disks
= n
- olddisks
;
3768 mddev
->raid_disks
= n
;
3769 mddev
->reshape_backwards
= (mddev
->delta_disks
< 0);
3771 mddev
->raid_disks
= n
;
3772 return rv
? rv
: len
;
3774 static struct md_sysfs_entry md_raid_disks
=
3775 __ATTR(raid_disks
, S_IRUGO
|S_IWUSR
, raid_disks_show
, raid_disks_store
);
3778 chunk_size_show(struct mddev
*mddev
, char *page
)
3780 if (mddev
->reshape_position
!= MaxSector
&&
3781 mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
)
3782 return sprintf(page
, "%d (%d)\n",
3783 mddev
->new_chunk_sectors
<< 9,
3784 mddev
->chunk_sectors
<< 9);
3785 return sprintf(page
, "%d\n", mddev
->chunk_sectors
<< 9);
3789 chunk_size_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3792 unsigned long n
= simple_strtoul(buf
, &e
, 10);
3794 if (!*buf
|| (*e
&& *e
!= '\n'))
3799 if (mddev
->pers
->check_reshape
== NULL
)
3801 mddev
->new_chunk_sectors
= n
>> 9;
3802 err
= mddev
->pers
->check_reshape(mddev
);
3804 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3808 mddev
->new_chunk_sectors
= n
>> 9;
3809 if (mddev
->reshape_position
== MaxSector
)
3810 mddev
->chunk_sectors
= n
>> 9;
3814 static struct md_sysfs_entry md_chunk_size
=
3815 __ATTR(chunk_size
, S_IRUGO
|S_IWUSR
, chunk_size_show
, chunk_size_store
);
3818 resync_start_show(struct mddev
*mddev
, char *page
)
3820 if (mddev
->recovery_cp
== MaxSector
)
3821 return sprintf(page
, "none\n");
3822 return sprintf(page
, "%llu\n", (unsigned long long)mddev
->recovery_cp
);
3826 resync_start_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3829 unsigned long long n
= simple_strtoull(buf
, &e
, 10);
3831 if (mddev
->pers
&& !test_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
))
3833 if (cmd_match(buf
, "none"))
3835 else if (!*buf
|| (*e
&& *e
!= '\n'))
3838 mddev
->recovery_cp
= n
;
3841 static struct md_sysfs_entry md_resync_start
=
3842 __ATTR(resync_start
, S_IRUGO
|S_IWUSR
, resync_start_show
, resync_start_store
);
3845 * The array state can be:
3848 * No devices, no size, no level
3849 * Equivalent to STOP_ARRAY ioctl
3851 * May have some settings, but array is not active
3852 * all IO results in error
3853 * When written, doesn't tear down array, but just stops it
3854 * suspended (not supported yet)
3855 * All IO requests will block. The array can be reconfigured.
3856 * Writing this, if accepted, will block until array is quiescent
3858 * no resync can happen. no superblocks get written.
3859 * write requests fail
3861 * like readonly, but behaves like 'clean' on a write request.
3863 * clean - no pending writes, but otherwise active.
3864 * When written to inactive array, starts without resync
3865 * If a write request arrives then
3866 * if metadata is known, mark 'dirty' and switch to 'active'.
3867 * if not known, block and switch to write-pending
3868 * If written to an active array that has pending writes, then fails.
3870 * fully active: IO and resync can be happening.
3871 * When written to inactive array, starts with resync
3874 * clean, but writes are blocked waiting for 'active' to be written.
3877 * like active, but no writes have been seen for a while (100msec).
3880 enum array_state
{ clear
, inactive
, suspended
, readonly
, read_auto
, clean
, active
,
3881 write_pending
, active_idle
, bad_word
};
3882 static char *array_states
[] = {
3883 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3884 "write-pending", "active-idle", NULL
};
3886 static int match_word(const char *word
, char **list
)
3889 for (n
=0; list
[n
]; n
++)
3890 if (cmd_match(word
, list
[n
]))
3896 array_state_show(struct mddev
*mddev
, char *page
)
3898 enum array_state st
= inactive
;
3911 else if (test_bit(MD_CHANGE_PENDING
, &mddev
->flags
))
3913 else if (mddev
->safemode
)
3919 if (list_empty(&mddev
->disks
) &&
3920 mddev
->raid_disks
== 0 &&
3921 mddev
->dev_sectors
== 0)
3926 return sprintf(page
, "%s\n", array_states
[st
]);
3929 static int do_md_stop(struct mddev
* mddev
, int ro
, int is_open
);
3930 static int md_set_readonly(struct mddev
* mddev
, int is_open
);
3931 static int do_md_run(struct mddev
* mddev
);
3932 static int restart_array(struct mddev
*mddev
);
3935 array_state_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3938 enum array_state st
= match_word(buf
, array_states
);
3943 /* stopping an active array */
3944 if (atomic_read(&mddev
->openers
) > 0)
3946 err
= do_md_stop(mddev
, 0, 0);
3949 /* stopping an active array */
3951 if (atomic_read(&mddev
->openers
) > 0)
3953 err
= do_md_stop(mddev
, 2, 0);
3955 err
= 0; /* already inactive */
3958 break; /* not supported yet */
3961 err
= md_set_readonly(mddev
, 0);
3964 set_disk_ro(mddev
->gendisk
, 1);
3965 err
= do_md_run(mddev
);
3971 err
= md_set_readonly(mddev
, 0);
3972 else if (mddev
->ro
== 1)
3973 err
= restart_array(mddev
);
3976 set_disk_ro(mddev
->gendisk
, 0);
3980 err
= do_md_run(mddev
);
3985 restart_array(mddev
);
3986 spin_lock_irq(&mddev
->write_lock
);
3987 if (atomic_read(&mddev
->writes_pending
) == 0) {
3988 if (mddev
->in_sync
== 0) {
3990 if (mddev
->safemode
== 1)
3991 mddev
->safemode
= 0;
3992 set_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
3997 spin_unlock_irq(&mddev
->write_lock
);
4003 restart_array(mddev
);
4004 clear_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
4005 wake_up(&mddev
->sb_wait
);
4009 set_disk_ro(mddev
->gendisk
, 0);
4010 err
= do_md_run(mddev
);
4015 /* these cannot be set */
4021 if (mddev
->hold_active
== UNTIL_IOCTL
)
4022 mddev
->hold_active
= 0;
4023 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
4027 static struct md_sysfs_entry md_array_state
=
4028 __ATTR(array_state
, S_IRUGO
|S_IWUSR
, array_state_show
, array_state_store
);
4031 max_corrected_read_errors_show(struct mddev
*mddev
, char *page
) {
4032 return sprintf(page
, "%d\n",
4033 atomic_read(&mddev
->max_corr_read_errors
));
4037 max_corrected_read_errors_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4040 unsigned long n
= simple_strtoul(buf
, &e
, 10);
4042 if (*buf
&& (*e
== 0 || *e
== '\n')) {
4043 atomic_set(&mddev
->max_corr_read_errors
, n
);
4049 static struct md_sysfs_entry max_corr_read_errors
=
4050 __ATTR(max_read_errors
, S_IRUGO
|S_IWUSR
, max_corrected_read_errors_show
,
4051 max_corrected_read_errors_store
);
4054 null_show(struct mddev
*mddev
, char *page
)
4060 new_dev_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4062 /* buf must be %d:%d\n? giving major and minor numbers */
4063 /* The new device is added to the array.
4064 * If the array has a persistent superblock, we read the
4065 * superblock to initialise info and check validity.
4066 * Otherwise, only checking done is that in bind_rdev_to_array,
4067 * which mainly checks size.
4070 int major
= simple_strtoul(buf
, &e
, 10);
4073 struct md_rdev
*rdev
;
4076 if (!*buf
|| *e
!= ':' || !e
[1] || e
[1] == '\n')
4078 minor
= simple_strtoul(e
+1, &e
, 10);
4079 if (*e
&& *e
!= '\n')
4081 dev
= MKDEV(major
, minor
);
4082 if (major
!= MAJOR(dev
) ||
4083 minor
!= MINOR(dev
))
4087 if (mddev
->persistent
) {
4088 rdev
= md_import_device(dev
, mddev
->major_version
,
4089 mddev
->minor_version
);
4090 if (!IS_ERR(rdev
) && !list_empty(&mddev
->disks
)) {
4091 struct md_rdev
*rdev0
4092 = list_entry(mddev
->disks
.next
,
4093 struct md_rdev
, same_set
);
4094 err
= super_types
[mddev
->major_version
]
4095 .load_super(rdev
, rdev0
, mddev
->minor_version
);
4099 } else if (mddev
->external
)
4100 rdev
= md_import_device(dev
, -2, -1);
4102 rdev
= md_import_device(dev
, -1, -1);
4105 return PTR_ERR(rdev
);
4106 err
= bind_rdev_to_array(rdev
, mddev
);
4110 return err
? err
: len
;
4113 static struct md_sysfs_entry md_new_device
=
4114 __ATTR(new_dev
, S_IWUSR
, null_show
, new_dev_store
);
4117 bitmap_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4120 unsigned long chunk
, end_chunk
;
4124 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4126 chunk
= end_chunk
= simple_strtoul(buf
, &end
, 0);
4127 if (buf
== end
) break;
4128 if (*end
== '-') { /* range */
4130 end_chunk
= simple_strtoul(buf
, &end
, 0);
4131 if (buf
== end
) break;
4133 if (*end
&& !isspace(*end
)) break;
4134 bitmap_dirty_bits(mddev
->bitmap
, chunk
, end_chunk
);
4135 buf
= skip_spaces(end
);
4137 bitmap_unplug(mddev
->bitmap
); /* flush the bits to disk */
4142 static struct md_sysfs_entry md_bitmap
=
4143 __ATTR(bitmap_set_bits
, S_IWUSR
, null_show
, bitmap_store
);
4146 size_show(struct mddev
*mddev
, char *page
)
4148 return sprintf(page
, "%llu\n",
4149 (unsigned long long)mddev
->dev_sectors
/ 2);
4152 static int update_size(struct mddev
*mddev
, sector_t num_sectors
);
4155 size_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4157 /* If array is inactive, we can reduce the component size, but
4158 * not increase it (except from 0).
4159 * If array is active, we can try an on-line resize
4162 int err
= strict_blocks_to_sectors(buf
, §ors
);
4167 err
= update_size(mddev
, sectors
);
4168 md_update_sb(mddev
, 1);
4170 if (mddev
->dev_sectors
== 0 ||
4171 mddev
->dev_sectors
> sectors
)
4172 mddev
->dev_sectors
= sectors
;
4176 return err
? err
: len
;
4179 static struct md_sysfs_entry md_size
=
4180 __ATTR(component_size
, S_IRUGO
|S_IWUSR
, size_show
, size_store
);
4185 * 'none' for arrays with no metadata (good luck...)
4186 * 'external' for arrays with externally managed metadata,
4187 * or N.M for internally known formats
4190 metadata_show(struct mddev
*mddev
, char *page
)
4192 if (mddev
->persistent
)
4193 return sprintf(page
, "%d.%d\n",
4194 mddev
->major_version
, mddev
->minor_version
);
4195 else if (mddev
->external
)
4196 return sprintf(page
, "external:%s\n", mddev
->metadata_type
);
4198 return sprintf(page
, "none\n");
4202 metadata_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4206 /* Changing the details of 'external' metadata is
4207 * always permitted. Otherwise there must be
4208 * no devices attached to the array.
4210 if (mddev
->external
&& strncmp(buf
, "external:", 9) == 0)
4212 else if (!list_empty(&mddev
->disks
))
4215 if (cmd_match(buf
, "none")) {
4216 mddev
->persistent
= 0;
4217 mddev
->external
= 0;
4218 mddev
->major_version
= 0;
4219 mddev
->minor_version
= 90;
4222 if (strncmp(buf
, "external:", 9) == 0) {
4223 size_t namelen
= len
-9;
4224 if (namelen
>= sizeof(mddev
->metadata_type
))
4225 namelen
= sizeof(mddev
->metadata_type
)-1;
4226 strncpy(mddev
->metadata_type
, buf
+9, namelen
);
4227 mddev
->metadata_type
[namelen
] = 0;
4228 if (namelen
&& mddev
->metadata_type
[namelen
-1] == '\n')
4229 mddev
->metadata_type
[--namelen
] = 0;
4230 mddev
->persistent
= 0;
4231 mddev
->external
= 1;
4232 mddev
->major_version
= 0;
4233 mddev
->minor_version
= 90;
4236 major
= simple_strtoul(buf
, &e
, 10);
4237 if (e
==buf
|| *e
!= '.')
4240 minor
= simple_strtoul(buf
, &e
, 10);
4241 if (e
==buf
|| (*e
&& *e
!= '\n') )
4243 if (major
>= ARRAY_SIZE(super_types
) || super_types
[major
].name
== NULL
)
4245 mddev
->major_version
= major
;
4246 mddev
->minor_version
= minor
;
4247 mddev
->persistent
= 1;
4248 mddev
->external
= 0;
4252 static struct md_sysfs_entry md_metadata
=
4253 __ATTR(metadata_version
, S_IRUGO
|S_IWUSR
, metadata_show
, metadata_store
);
4256 action_show(struct mddev
*mddev
, char *page
)
4258 char *type
= "idle";
4259 if (test_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
))
4261 else if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
) ||
4262 (!mddev
->ro
&& test_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
))) {
4263 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4265 else if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4266 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
4268 else if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
4272 } else if (test_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
))
4275 return sprintf(page
, "%s\n", type
);
4278 static void reap_sync_thread(struct mddev
*mddev
);
4281 action_store(struct mddev
*mddev
, const char *page
, size_t len
)
4283 if (!mddev
->pers
|| !mddev
->pers
->sync_request
)
4286 if (cmd_match(page
, "frozen"))
4287 set_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
);
4289 clear_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
);
4291 if (cmd_match(page
, "idle") || cmd_match(page
, "frozen")) {
4292 if (mddev
->sync_thread
) {
4293 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4294 reap_sync_thread(mddev
);
4296 } else if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
) ||
4297 test_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
))
4299 else if (cmd_match(page
, "resync"))
4300 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4301 else if (cmd_match(page
, "recover")) {
4302 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
4303 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4304 } else if (cmd_match(page
, "reshape")) {
4306 if (mddev
->pers
->start_reshape
== NULL
)
4308 err
= mddev
->pers
->start_reshape(mddev
);
4311 sysfs_notify(&mddev
->kobj
, NULL
, "degraded");
4313 if (cmd_match(page
, "check"))
4314 set_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4315 else if (!cmd_match(page
, "repair"))
4317 set_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
);
4318 set_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4320 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4321 md_wakeup_thread(mddev
->thread
);
4322 sysfs_notify_dirent_safe(mddev
->sysfs_action
);
4327 mismatch_cnt_show(struct mddev
*mddev
, char *page
)
4329 return sprintf(page
, "%llu\n",
4330 (unsigned long long) mddev
->resync_mismatches
);
4333 static struct md_sysfs_entry md_scan_mode
=
4334 __ATTR(sync_action
, S_IRUGO
|S_IWUSR
, action_show
, action_store
);
4337 static struct md_sysfs_entry md_mismatches
= __ATTR_RO(mismatch_cnt
);
4340 sync_min_show(struct mddev
*mddev
, char *page
)
4342 return sprintf(page
, "%d (%s)\n", speed_min(mddev
),
4343 mddev
->sync_speed_min
? "local": "system");
4347 sync_min_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4351 if (strncmp(buf
, "system", 6)==0) {
4352 mddev
->sync_speed_min
= 0;
4355 min
= simple_strtoul(buf
, &e
, 10);
4356 if (buf
== e
|| (*e
&& *e
!= '\n') || min
<= 0)
4358 mddev
->sync_speed_min
= min
;
4362 static struct md_sysfs_entry md_sync_min
=
4363 __ATTR(sync_speed_min
, S_IRUGO
|S_IWUSR
, sync_min_show
, sync_min_store
);
4366 sync_max_show(struct mddev
*mddev
, char *page
)
4368 return sprintf(page
, "%d (%s)\n", speed_max(mddev
),
4369 mddev
->sync_speed_max
? "local": "system");
4373 sync_max_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4377 if (strncmp(buf
, "system", 6)==0) {
4378 mddev
->sync_speed_max
= 0;
4381 max
= simple_strtoul(buf
, &e
, 10);
4382 if (buf
== e
|| (*e
&& *e
!= '\n') || max
<= 0)
4384 mddev
->sync_speed_max
= max
;
4388 static struct md_sysfs_entry md_sync_max
=
4389 __ATTR(sync_speed_max
, S_IRUGO
|S_IWUSR
, sync_max_show
, sync_max_store
);
4392 degraded_show(struct mddev
*mddev
, char *page
)
4394 return sprintf(page
, "%d\n", mddev
->degraded
);
4396 static struct md_sysfs_entry md_degraded
= __ATTR_RO(degraded
);
4399 sync_force_parallel_show(struct mddev
*mddev
, char *page
)
4401 return sprintf(page
, "%d\n", mddev
->parallel_resync
);
4405 sync_force_parallel_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4409 if (strict_strtol(buf
, 10, &n
))
4412 if (n
!= 0 && n
!= 1)
4415 mddev
->parallel_resync
= n
;
4417 if (mddev
->sync_thread
)
4418 wake_up(&resync_wait
);
4423 /* force parallel resync, even with shared block devices */
4424 static struct md_sysfs_entry md_sync_force_parallel
=
4425 __ATTR(sync_force_parallel
, S_IRUGO
|S_IWUSR
,
4426 sync_force_parallel_show
, sync_force_parallel_store
);
4429 sync_speed_show(struct mddev
*mddev
, char *page
)
4431 unsigned long resync
, dt
, db
;
4432 if (mddev
->curr_resync
== 0)
4433 return sprintf(page
, "none\n");
4434 resync
= mddev
->curr_mark_cnt
- atomic_read(&mddev
->recovery_active
);
4435 dt
= (jiffies
- mddev
->resync_mark
) / HZ
;
4437 db
= resync
- mddev
->resync_mark_cnt
;
4438 return sprintf(page
, "%lu\n", db
/dt
/2); /* K/sec */
4441 static struct md_sysfs_entry md_sync_speed
= __ATTR_RO(sync_speed
);
4444 sync_completed_show(struct mddev
*mddev
, char *page
)
4446 unsigned long long max_sectors
, resync
;
4448 if (!test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4449 return sprintf(page
, "none\n");
4451 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
4452 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4453 max_sectors
= mddev
->resync_max_sectors
;
4455 max_sectors
= mddev
->dev_sectors
;
4457 resync
= mddev
->curr_resync_completed
;
4458 return sprintf(page
, "%llu / %llu\n", resync
, max_sectors
);
4461 static struct md_sysfs_entry md_sync_completed
= __ATTR_RO(sync_completed
);
4464 min_sync_show(struct mddev
*mddev
, char *page
)
4466 return sprintf(page
, "%llu\n",
4467 (unsigned long long)mddev
->resync_min
);
4470 min_sync_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4472 unsigned long long min
;
4473 if (strict_strtoull(buf
, 10, &min
))
4475 if (min
> mddev
->resync_max
)
4477 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4480 /* Must be a multiple of chunk_size */
4481 if (mddev
->chunk_sectors
) {
4482 sector_t temp
= min
;
4483 if (sector_div(temp
, mddev
->chunk_sectors
))
4486 mddev
->resync_min
= min
;
4491 static struct md_sysfs_entry md_min_sync
=
4492 __ATTR(sync_min
, S_IRUGO
|S_IWUSR
, min_sync_show
, min_sync_store
);
4495 max_sync_show(struct mddev
*mddev
, char *page
)
4497 if (mddev
->resync_max
== MaxSector
)
4498 return sprintf(page
, "max\n");
4500 return sprintf(page
, "%llu\n",
4501 (unsigned long long)mddev
->resync_max
);
4504 max_sync_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4506 if (strncmp(buf
, "max", 3) == 0)
4507 mddev
->resync_max
= MaxSector
;
4509 unsigned long long max
;
4510 if (strict_strtoull(buf
, 10, &max
))
4512 if (max
< mddev
->resync_min
)
4514 if (max
< mddev
->resync_max
&&
4516 test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4519 /* Must be a multiple of chunk_size */
4520 if (mddev
->chunk_sectors
) {
4521 sector_t temp
= max
;
4522 if (sector_div(temp
, mddev
->chunk_sectors
))
4525 mddev
->resync_max
= max
;
4527 wake_up(&mddev
->recovery_wait
);
4531 static struct md_sysfs_entry md_max_sync
=
4532 __ATTR(sync_max
, S_IRUGO
|S_IWUSR
, max_sync_show
, max_sync_store
);
4535 suspend_lo_show(struct mddev
*mddev
, char *page
)
4537 return sprintf(page
, "%llu\n", (unsigned long long)mddev
->suspend_lo
);
4541 suspend_lo_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4544 unsigned long long new = simple_strtoull(buf
, &e
, 10);
4545 unsigned long long old
= mddev
->suspend_lo
;
4547 if (mddev
->pers
== NULL
||
4548 mddev
->pers
->quiesce
== NULL
)
4550 if (buf
== e
|| (*e
&& *e
!= '\n'))
4553 mddev
->suspend_lo
= new;
4555 /* Shrinking suspended region */
4556 mddev
->pers
->quiesce(mddev
, 2);
4558 /* Expanding suspended region - need to wait */
4559 mddev
->pers
->quiesce(mddev
, 1);
4560 mddev
->pers
->quiesce(mddev
, 0);
4564 static struct md_sysfs_entry md_suspend_lo
=
4565 __ATTR(suspend_lo
, S_IRUGO
|S_IWUSR
, suspend_lo_show
, suspend_lo_store
);
4569 suspend_hi_show(struct mddev
*mddev
, char *page
)
4571 return sprintf(page
, "%llu\n", (unsigned long long)mddev
->suspend_hi
);
4575 suspend_hi_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4578 unsigned long long new = simple_strtoull(buf
, &e
, 10);
4579 unsigned long long old
= mddev
->suspend_hi
;
4581 if (mddev
->pers
== NULL
||
4582 mddev
->pers
->quiesce
== NULL
)
4584 if (buf
== e
|| (*e
&& *e
!= '\n'))
4587 mddev
->suspend_hi
= new;
4589 /* Shrinking suspended region */
4590 mddev
->pers
->quiesce(mddev
, 2);
4592 /* Expanding suspended region - need to wait */
4593 mddev
->pers
->quiesce(mddev
, 1);
4594 mddev
->pers
->quiesce(mddev
, 0);
4598 static struct md_sysfs_entry md_suspend_hi
=
4599 __ATTR(suspend_hi
, S_IRUGO
|S_IWUSR
, suspend_hi_show
, suspend_hi_store
);
4602 reshape_position_show(struct mddev
*mddev
, char *page
)
4604 if (mddev
->reshape_position
!= MaxSector
)
4605 return sprintf(page
, "%llu\n",
4606 (unsigned long long)mddev
->reshape_position
);
4607 strcpy(page
, "none\n");
4612 reshape_position_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4614 struct md_rdev
*rdev
;
4616 unsigned long long new = simple_strtoull(buf
, &e
, 10);
4619 if (buf
== e
|| (*e
&& *e
!= '\n'))
4621 mddev
->reshape_position
= new;
4622 mddev
->delta_disks
= 0;
4623 mddev
->reshape_backwards
= 0;
4624 mddev
->new_level
= mddev
->level
;
4625 mddev
->new_layout
= mddev
->layout
;
4626 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
4627 rdev_for_each(rdev
, mddev
)
4628 rdev
->new_data_offset
= rdev
->data_offset
;
4632 static struct md_sysfs_entry md_reshape_position
=
4633 __ATTR(reshape_position
, S_IRUGO
|S_IWUSR
, reshape_position_show
,
4634 reshape_position_store
);
4637 reshape_direction_show(struct mddev
*mddev
, char *page
)
4639 return sprintf(page
, "%s\n",
4640 mddev
->reshape_backwards
? "backwards" : "forwards");
4644 reshape_direction_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4647 if (cmd_match(buf
, "forwards"))
4649 else if (cmd_match(buf
, "backwards"))
4653 if (mddev
->reshape_backwards
== backwards
)
4656 /* check if we are allowed to change */
4657 if (mddev
->delta_disks
)
4660 if (mddev
->persistent
&&
4661 mddev
->major_version
== 0)
4664 mddev
->reshape_backwards
= backwards
;
4668 static struct md_sysfs_entry md_reshape_direction
=
4669 __ATTR(reshape_direction
, S_IRUGO
|S_IWUSR
, reshape_direction_show
,
4670 reshape_direction_store
);
4673 array_size_show(struct mddev
*mddev
, char *page
)
4675 if (mddev
->external_size
)
4676 return sprintf(page
, "%llu\n",
4677 (unsigned long long)mddev
->array_sectors
/2);
4679 return sprintf(page
, "default\n");
4683 array_size_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4687 if (strncmp(buf
, "default", 7) == 0) {
4689 sectors
= mddev
->pers
->size(mddev
, 0, 0);
4691 sectors
= mddev
->array_sectors
;
4693 mddev
->external_size
= 0;
4695 if (strict_blocks_to_sectors(buf
, §ors
) < 0)
4697 if (mddev
->pers
&& mddev
->pers
->size(mddev
, 0, 0) < sectors
)
4700 mddev
->external_size
= 1;
4703 mddev
->array_sectors
= sectors
;
4705 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4706 revalidate_disk(mddev
->gendisk
);
4711 static struct md_sysfs_entry md_array_size
=
4712 __ATTR(array_size
, S_IRUGO
|S_IWUSR
, array_size_show
,
4715 static struct attribute
*md_default_attrs
[] = {
4718 &md_raid_disks
.attr
,
4719 &md_chunk_size
.attr
,
4721 &md_resync_start
.attr
,
4723 &md_new_device
.attr
,
4724 &md_safe_delay
.attr
,
4725 &md_array_state
.attr
,
4726 &md_reshape_position
.attr
,
4727 &md_reshape_direction
.attr
,
4728 &md_array_size
.attr
,
4729 &max_corr_read_errors
.attr
,
4733 static struct attribute
*md_redundancy_attrs
[] = {
4735 &md_mismatches
.attr
,
4738 &md_sync_speed
.attr
,
4739 &md_sync_force_parallel
.attr
,
4740 &md_sync_completed
.attr
,
4743 &md_suspend_lo
.attr
,
4744 &md_suspend_hi
.attr
,
4749 static struct attribute_group md_redundancy_group
= {
4751 .attrs
= md_redundancy_attrs
,
4756 md_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
4758 struct md_sysfs_entry
*entry
= container_of(attr
, struct md_sysfs_entry
, attr
);
4759 struct mddev
*mddev
= container_of(kobj
, struct mddev
, kobj
);
4764 spin_lock(&all_mddevs_lock
);
4765 if (list_empty(&mddev
->all_mddevs
)) {
4766 spin_unlock(&all_mddevs_lock
);
4770 spin_unlock(&all_mddevs_lock
);
4772 rv
= mddev_lock(mddev
);
4774 rv
= entry
->show(mddev
, page
);
4775 mddev_unlock(mddev
);
4782 md_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
4783 const char *page
, size_t length
)
4785 struct md_sysfs_entry
*entry
= container_of(attr
, struct md_sysfs_entry
, attr
);
4786 struct mddev
*mddev
= container_of(kobj
, struct mddev
, kobj
);
4791 if (!capable(CAP_SYS_ADMIN
))
4793 spin_lock(&all_mddevs_lock
);
4794 if (list_empty(&mddev
->all_mddevs
)) {
4795 spin_unlock(&all_mddevs_lock
);
4799 spin_unlock(&all_mddevs_lock
);
4800 rv
= mddev_lock(mddev
);
4802 rv
= entry
->store(mddev
, page
, length
);
4803 mddev_unlock(mddev
);
4809 static void md_free(struct kobject
*ko
)
4811 struct mddev
*mddev
= container_of(ko
, struct mddev
, kobj
);
4813 if (mddev
->sysfs_state
)
4814 sysfs_put(mddev
->sysfs_state
);
4816 if (mddev
->gendisk
) {
4817 del_gendisk(mddev
->gendisk
);
4818 put_disk(mddev
->gendisk
);
4821 blk_cleanup_queue(mddev
->queue
);
4826 static const struct sysfs_ops md_sysfs_ops
= {
4827 .show
= md_attr_show
,
4828 .store
= md_attr_store
,
4830 static struct kobj_type md_ktype
= {
4832 .sysfs_ops
= &md_sysfs_ops
,
4833 .default_attrs
= md_default_attrs
,
4838 static void mddev_delayed_delete(struct work_struct
*ws
)
4840 struct mddev
*mddev
= container_of(ws
, struct mddev
, del_work
);
4842 sysfs_remove_group(&mddev
->kobj
, &md_bitmap_group
);
4843 kobject_del(&mddev
->kobj
);
4844 kobject_put(&mddev
->kobj
);
4847 static int md_alloc(dev_t dev
, char *name
)
4849 static DEFINE_MUTEX(disks_mutex
);
4850 struct mddev
*mddev
= mddev_find(dev
);
4851 struct gendisk
*disk
;
4860 partitioned
= (MAJOR(mddev
->unit
) != MD_MAJOR
);
4861 shift
= partitioned
? MdpMinorShift
: 0;
4862 unit
= MINOR(mddev
->unit
) >> shift
;
4864 /* wait for any previous instance of this device to be
4865 * completely removed (mddev_delayed_delete).
4867 flush_workqueue(md_misc_wq
);
4869 mutex_lock(&disks_mutex
);
4875 /* Need to ensure that 'name' is not a duplicate.
4877 struct mddev
*mddev2
;
4878 spin_lock(&all_mddevs_lock
);
4880 list_for_each_entry(mddev2
, &all_mddevs
, all_mddevs
)
4881 if (mddev2
->gendisk
&&
4882 strcmp(mddev2
->gendisk
->disk_name
, name
) == 0) {
4883 spin_unlock(&all_mddevs_lock
);
4886 spin_unlock(&all_mddevs_lock
);
4890 mddev
->queue
= blk_alloc_queue(GFP_KERNEL
);
4893 mddev
->queue
->queuedata
= mddev
;
4895 blk_queue_make_request(mddev
->queue
, md_make_request
);
4896 blk_set_stacking_limits(&mddev
->queue
->limits
);
4898 disk
= alloc_disk(1 << shift
);
4900 blk_cleanup_queue(mddev
->queue
);
4901 mddev
->queue
= NULL
;
4904 disk
->major
= MAJOR(mddev
->unit
);
4905 disk
->first_minor
= unit
<< shift
;
4907 strcpy(disk
->disk_name
, name
);
4908 else if (partitioned
)
4909 sprintf(disk
->disk_name
, "md_d%d", unit
);
4911 sprintf(disk
->disk_name
, "md%d", unit
);
4912 disk
->fops
= &md_fops
;
4913 disk
->private_data
= mddev
;
4914 disk
->queue
= mddev
->queue
;
4915 blk_queue_flush(mddev
->queue
, REQ_FLUSH
| REQ_FUA
);
4916 /* Allow extended partitions. This makes the
4917 * 'mdp' device redundant, but we can't really
4920 disk
->flags
|= GENHD_FL_EXT_DEVT
;
4921 mddev
->gendisk
= disk
;
4922 /* As soon as we call add_disk(), another thread could get
4923 * through to md_open, so make sure it doesn't get too far
4925 mutex_lock(&mddev
->open_mutex
);
4928 error
= kobject_init_and_add(&mddev
->kobj
, &md_ktype
,
4929 &disk_to_dev(disk
)->kobj
, "%s", "md");
4931 /* This isn't possible, but as kobject_init_and_add is marked
4932 * __must_check, we must do something with the result
4934 printk(KERN_WARNING
"md: cannot register %s/md - name in use\n",
4938 if (mddev
->kobj
.sd
&&
4939 sysfs_create_group(&mddev
->kobj
, &md_bitmap_group
))
4940 printk(KERN_DEBUG
"pointless warning\n");
4941 mutex_unlock(&mddev
->open_mutex
);
4943 mutex_unlock(&disks_mutex
);
4944 if (!error
&& mddev
->kobj
.sd
) {
4945 kobject_uevent(&mddev
->kobj
, KOBJ_ADD
);
4946 mddev
->sysfs_state
= sysfs_get_dirent_safe(mddev
->kobj
.sd
, "array_state");
4952 static struct kobject
*md_probe(dev_t dev
, int *part
, void *data
)
4954 md_alloc(dev
, NULL
);
4958 static int add_named_array(const char *val
, struct kernel_param
*kp
)
4960 /* val must be "md_*" where * is not all digits.
4961 * We allocate an array with a large free minor number, and
4962 * set the name to val. val must not already be an active name.
4964 int len
= strlen(val
);
4965 char buf
[DISK_NAME_LEN
];
4967 while (len
&& val
[len
-1] == '\n')
4969 if (len
>= DISK_NAME_LEN
)
4971 strlcpy(buf
, val
, len
+1);
4972 if (strncmp(buf
, "md_", 3) != 0)
4974 return md_alloc(0, buf
);
4977 static void md_safemode_timeout(unsigned long data
)
4979 struct mddev
*mddev
= (struct mddev
*) data
;
4981 if (!atomic_read(&mddev
->writes_pending
)) {
4982 mddev
->safemode
= 1;
4983 if (mddev
->external
)
4984 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
4986 md_wakeup_thread(mddev
->thread
);
4989 static int start_dirty_degraded
;
4991 int md_run(struct mddev
*mddev
)
4994 struct md_rdev
*rdev
;
4995 struct md_personality
*pers
;
4997 if (list_empty(&mddev
->disks
))
4998 /* cannot run an array with no devices.. */
5003 /* Cannot run until previous stop completes properly */
5004 if (mddev
->sysfs_active
)
5008 * Analyze all RAID superblock(s)
5010 if (!mddev
->raid_disks
) {
5011 if (!mddev
->persistent
)
5016 if (mddev
->level
!= LEVEL_NONE
)
5017 request_module("md-level-%d", mddev
->level
);
5018 else if (mddev
->clevel
[0])
5019 request_module("md-%s", mddev
->clevel
);
5022 * Drop all container device buffers, from now on
5023 * the only valid external interface is through the md
5026 rdev_for_each(rdev
, mddev
) {
5027 if (test_bit(Faulty
, &rdev
->flags
))
5029 sync_blockdev(rdev
->bdev
);
5030 invalidate_bdev(rdev
->bdev
);
5032 /* perform some consistency tests on the device.
5033 * We don't want the data to overlap the metadata,
5034 * Internal Bitmap issues have been handled elsewhere.
5036 if (rdev
->meta_bdev
) {
5037 /* Nothing to check */;
5038 } else if (rdev
->data_offset
< rdev
->sb_start
) {
5039 if (mddev
->dev_sectors
&&
5040 rdev
->data_offset
+ mddev
->dev_sectors
5042 printk("md: %s: data overlaps metadata\n",
5047 if (rdev
->sb_start
+ rdev
->sb_size
/512
5048 > rdev
->data_offset
) {
5049 printk("md: %s: metadata overlaps data\n",
5054 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
5057 if (mddev
->bio_set
== NULL
)
5058 mddev
->bio_set
= bioset_create(BIO_POOL_SIZE
,
5059 sizeof(struct mddev
*));
5061 spin_lock(&pers_lock
);
5062 pers
= find_pers(mddev
->level
, mddev
->clevel
);
5063 if (!pers
|| !try_module_get(pers
->owner
)) {
5064 spin_unlock(&pers_lock
);
5065 if (mddev
->level
!= LEVEL_NONE
)
5066 printk(KERN_WARNING
"md: personality for level %d is not loaded!\n",
5069 printk(KERN_WARNING
"md: personality for level %s is not loaded!\n",
5074 spin_unlock(&pers_lock
);
5075 if (mddev
->level
!= pers
->level
) {
5076 mddev
->level
= pers
->level
;
5077 mddev
->new_level
= pers
->level
;
5079 strlcpy(mddev
->clevel
, pers
->name
, sizeof(mddev
->clevel
));
5081 if (mddev
->reshape_position
!= MaxSector
&&
5082 pers
->start_reshape
== NULL
) {
5083 /* This personality cannot handle reshaping... */
5085 module_put(pers
->owner
);
5089 if (pers
->sync_request
) {
5090 /* Warn if this is a potentially silly
5093 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
5094 struct md_rdev
*rdev2
;
5097 rdev_for_each(rdev
, mddev
)
5098 rdev_for_each(rdev2
, mddev
) {
5100 rdev
->bdev
->bd_contains
==
5101 rdev2
->bdev
->bd_contains
) {
5103 "%s: WARNING: %s appears to be"
5104 " on the same physical disk as"
5107 bdevname(rdev
->bdev
,b
),
5108 bdevname(rdev2
->bdev
,b2
));
5115 "True protection against single-disk"
5116 " failure might be compromised.\n");
5119 mddev
->recovery
= 0;
5120 /* may be over-ridden by personality */
5121 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
5123 mddev
->ok_start_degraded
= start_dirty_degraded
;
5125 if (start_readonly
&& mddev
->ro
== 0)
5126 mddev
->ro
= 2; /* read-only, but switch on first write */
5128 err
= mddev
->pers
->run(mddev
);
5130 printk(KERN_ERR
"md: pers->run() failed ...\n");
5131 else if (mddev
->pers
->size(mddev
, 0, 0) < mddev
->array_sectors
) {
5132 WARN_ONCE(!mddev
->external_size
, "%s: default size too small,"
5133 " but 'external_size' not in effect?\n", __func__
);
5135 "md: invalid array_size %llu > default size %llu\n",
5136 (unsigned long long)mddev
->array_sectors
/ 2,
5137 (unsigned long long)mddev
->pers
->size(mddev
, 0, 0) / 2);
5139 mddev
->pers
->stop(mddev
);
5141 if (err
== 0 && mddev
->pers
->sync_request
&&
5142 (mddev
->bitmap_info
.file
|| mddev
->bitmap_info
.offset
)) {
5143 err
= bitmap_create(mddev
);
5145 printk(KERN_ERR
"%s: failed to create bitmap (%d)\n",
5146 mdname(mddev
), err
);
5147 mddev
->pers
->stop(mddev
);
5151 module_put(mddev
->pers
->owner
);
5153 bitmap_destroy(mddev
);
5156 if (mddev
->pers
->sync_request
) {
5157 if (mddev
->kobj
.sd
&&
5158 sysfs_create_group(&mddev
->kobj
, &md_redundancy_group
))
5160 "md: cannot register extra attributes for %s\n",
5162 mddev
->sysfs_action
= sysfs_get_dirent_safe(mddev
->kobj
.sd
, "sync_action");
5163 } else if (mddev
->ro
== 2) /* auto-readonly not meaningful */
5166 atomic_set(&mddev
->writes_pending
,0);
5167 atomic_set(&mddev
->max_corr_read_errors
,
5168 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS
);
5169 mddev
->safemode
= 0;
5170 mddev
->safemode_timer
.function
= md_safemode_timeout
;
5171 mddev
->safemode_timer
.data
= (unsigned long) mddev
;
5172 mddev
->safemode_delay
= (200 * HZ
)/1000 +1; /* 200 msec delay */
5176 rdev_for_each(rdev
, mddev
)
5177 if (rdev
->raid_disk
>= 0)
5178 if (sysfs_link_rdev(mddev
, rdev
))
5179 /* failure here is OK */;
5181 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5184 md_update_sb(mddev
, 0);
5186 md_new_event(mddev
);
5187 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
5188 sysfs_notify_dirent_safe(mddev
->sysfs_action
);
5189 sysfs_notify(&mddev
->kobj
, NULL
, "degraded");
5192 EXPORT_SYMBOL_GPL(md_run
);
5194 static int do_md_run(struct mddev
*mddev
)
5198 err
= md_run(mddev
);
5201 err
= bitmap_load(mddev
);
5203 bitmap_destroy(mddev
);
5207 md_wakeup_thread(mddev
->thread
);
5208 md_wakeup_thread(mddev
->sync_thread
); /* possibly kick off a reshape */
5210 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5211 revalidate_disk(mddev
->gendisk
);
5213 kobject_uevent(&disk_to_dev(mddev
->gendisk
)->kobj
, KOBJ_CHANGE
);
5218 static int restart_array(struct mddev
*mddev
)
5220 struct gendisk
*disk
= mddev
->gendisk
;
5222 /* Complain if it has no devices */
5223 if (list_empty(&mddev
->disks
))
5229 mddev
->safemode
= 0;
5231 set_disk_ro(disk
, 0);
5232 printk(KERN_INFO
"md: %s switched to read-write mode.\n",
5234 /* Kick recovery or resync if necessary */
5235 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5236 md_wakeup_thread(mddev
->thread
);
5237 md_wakeup_thread(mddev
->sync_thread
);
5238 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
5242 /* similar to deny_write_access, but accounts for our holding a reference
5243 * to the file ourselves */
5244 static int deny_bitmap_write_access(struct file
* file
)
5246 struct inode
*inode
= file
->f_mapping
->host
;
5248 spin_lock(&inode
->i_lock
);
5249 if (atomic_read(&inode
->i_writecount
) > 1) {
5250 spin_unlock(&inode
->i_lock
);
5253 atomic_set(&inode
->i_writecount
, -1);
5254 spin_unlock(&inode
->i_lock
);
5259 void restore_bitmap_write_access(struct file
*file
)
5261 struct inode
*inode
= file
->f_mapping
->host
;
5263 spin_lock(&inode
->i_lock
);
5264 atomic_set(&inode
->i_writecount
, 1);
5265 spin_unlock(&inode
->i_lock
);
5268 static void md_clean(struct mddev
*mddev
)
5270 mddev
->array_sectors
= 0;
5271 mddev
->external_size
= 0;
5272 mddev
->dev_sectors
= 0;
5273 mddev
->raid_disks
= 0;
5274 mddev
->recovery_cp
= 0;
5275 mddev
->resync_min
= 0;
5276 mddev
->resync_max
= MaxSector
;
5277 mddev
->reshape_position
= MaxSector
;
5278 mddev
->external
= 0;
5279 mddev
->persistent
= 0;
5280 mddev
->level
= LEVEL_NONE
;
5281 mddev
->clevel
[0] = 0;
5284 mddev
->metadata_type
[0] = 0;
5285 mddev
->chunk_sectors
= 0;
5286 mddev
->ctime
= mddev
->utime
= 0;
5288 mddev
->max_disks
= 0;
5290 mddev
->can_decrease_events
= 0;
5291 mddev
->delta_disks
= 0;
5292 mddev
->reshape_backwards
= 0;
5293 mddev
->new_level
= LEVEL_NONE
;
5294 mddev
->new_layout
= 0;
5295 mddev
->new_chunk_sectors
= 0;
5296 mddev
->curr_resync
= 0;
5297 mddev
->resync_mismatches
= 0;
5298 mddev
->suspend_lo
= mddev
->suspend_hi
= 0;
5299 mddev
->sync_speed_min
= mddev
->sync_speed_max
= 0;
5300 mddev
->recovery
= 0;
5303 mddev
->degraded
= 0;
5304 mddev
->safemode
= 0;
5305 mddev
->merge_check_needed
= 0;
5306 mddev
->bitmap_info
.offset
= 0;
5307 mddev
->bitmap_info
.default_offset
= 0;
5308 mddev
->bitmap_info
.default_space
= 0;
5309 mddev
->bitmap_info
.chunksize
= 0;
5310 mddev
->bitmap_info
.daemon_sleep
= 0;
5311 mddev
->bitmap_info
.max_write_behind
= 0;
5314 static void __md_stop_writes(struct mddev
*mddev
)
5316 if (mddev
->sync_thread
) {
5317 set_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
);
5318 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
5319 reap_sync_thread(mddev
);
5322 del_timer_sync(&mddev
->safemode_timer
);
5324 bitmap_flush(mddev
);
5325 md_super_wait(mddev
);
5327 if (!mddev
->in_sync
|| mddev
->flags
) {
5328 /* mark array as shutdown cleanly */
5330 md_update_sb(mddev
, 1);
5334 void md_stop_writes(struct mddev
*mddev
)
5337 __md_stop_writes(mddev
);
5338 mddev_unlock(mddev
);
5340 EXPORT_SYMBOL_GPL(md_stop_writes
);
5342 void md_stop(struct mddev
*mddev
)
5345 mddev
->pers
->stop(mddev
);
5346 if (mddev
->pers
->sync_request
&& mddev
->to_remove
== NULL
)
5347 mddev
->to_remove
= &md_redundancy_group
;
5348 module_put(mddev
->pers
->owner
);
5350 clear_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
);
5352 EXPORT_SYMBOL_GPL(md_stop
);
5354 static int md_set_readonly(struct mddev
*mddev
, int is_open
)
5357 mutex_lock(&mddev
->open_mutex
);
5358 if (atomic_read(&mddev
->openers
) > is_open
) {
5359 printk("md: %s still in use.\n",mdname(mddev
));
5364 __md_stop_writes(mddev
);
5370 set_disk_ro(mddev
->gendisk
, 1);
5371 clear_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
);
5372 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
5376 mutex_unlock(&mddev
->open_mutex
);
5381 * 0 - completely stop and dis-assemble array
5382 * 2 - stop but do not disassemble array
5384 static int do_md_stop(struct mddev
* mddev
, int mode
, int is_open
)
5386 struct gendisk
*disk
= mddev
->gendisk
;
5387 struct md_rdev
*rdev
;
5389 mutex_lock(&mddev
->open_mutex
);
5390 if (atomic_read(&mddev
->openers
) > is_open
||
5391 mddev
->sysfs_active
) {
5392 printk("md: %s still in use.\n",mdname(mddev
));
5393 mutex_unlock(&mddev
->open_mutex
);
5399 set_disk_ro(disk
, 0);
5401 __md_stop_writes(mddev
);
5403 mddev
->queue
->merge_bvec_fn
= NULL
;
5404 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
5406 /* tell userspace to handle 'inactive' */
5407 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
5409 rdev_for_each(rdev
, mddev
)
5410 if (rdev
->raid_disk
>= 0)
5411 sysfs_unlink_rdev(mddev
, rdev
);
5413 set_capacity(disk
, 0);
5414 mutex_unlock(&mddev
->open_mutex
);
5416 revalidate_disk(disk
);
5421 mutex_unlock(&mddev
->open_mutex
);
5423 * Free resources if final stop
5426 printk(KERN_INFO
"md: %s stopped.\n", mdname(mddev
));
5428 bitmap_destroy(mddev
);
5429 if (mddev
->bitmap_info
.file
) {
5430 restore_bitmap_write_access(mddev
->bitmap_info
.file
);
5431 fput(mddev
->bitmap_info
.file
);
5432 mddev
->bitmap_info
.file
= NULL
;
5434 mddev
->bitmap_info
.offset
= 0;
5436 export_array(mddev
);
5439 kobject_uevent(&disk_to_dev(mddev
->gendisk
)->kobj
, KOBJ_CHANGE
);
5440 if (mddev
->hold_active
== UNTIL_STOP
)
5441 mddev
->hold_active
= 0;
5443 blk_integrity_unregister(disk
);
5444 md_new_event(mddev
);
5445 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
5450 static void autorun_array(struct mddev
*mddev
)
5452 struct md_rdev
*rdev
;
5455 if (list_empty(&mddev
->disks
))
5458 printk(KERN_INFO
"md: running: ");
5460 rdev_for_each(rdev
, mddev
) {
5461 char b
[BDEVNAME_SIZE
];
5462 printk("<%s>", bdevname(rdev
->bdev
,b
));
5466 err
= do_md_run(mddev
);
5468 printk(KERN_WARNING
"md: do_md_run() returned %d\n", err
);
5469 do_md_stop(mddev
, 0, 0);
5474 * lets try to run arrays based on all disks that have arrived
5475 * until now. (those are in pending_raid_disks)
5477 * the method: pick the first pending disk, collect all disks with
5478 * the same UUID, remove all from the pending list and put them into
5479 * the 'same_array' list. Then order this list based on superblock
5480 * update time (freshest comes first), kick out 'old' disks and
5481 * compare superblocks. If everything's fine then run it.
5483 * If "unit" is allocated, then bump its reference count
5485 static void autorun_devices(int part
)
5487 struct md_rdev
*rdev0
, *rdev
, *tmp
;
5488 struct mddev
*mddev
;
5489 char b
[BDEVNAME_SIZE
];
5491 printk(KERN_INFO
"md: autorun ...\n");
5492 while (!list_empty(&pending_raid_disks
)) {
5495 LIST_HEAD(candidates
);
5496 rdev0
= list_entry(pending_raid_disks
.next
,
5497 struct md_rdev
, same_set
);
5499 printk(KERN_INFO
"md: considering %s ...\n",
5500 bdevname(rdev0
->bdev
,b
));
5501 INIT_LIST_HEAD(&candidates
);
5502 rdev_for_each_list(rdev
, tmp
, &pending_raid_disks
)
5503 if (super_90_load(rdev
, rdev0
, 0) >= 0) {
5504 printk(KERN_INFO
"md: adding %s ...\n",
5505 bdevname(rdev
->bdev
,b
));
5506 list_move(&rdev
->same_set
, &candidates
);
5509 * now we have a set of devices, with all of them having
5510 * mostly sane superblocks. It's time to allocate the
5514 dev
= MKDEV(mdp_major
,
5515 rdev0
->preferred_minor
<< MdpMinorShift
);
5516 unit
= MINOR(dev
) >> MdpMinorShift
;
5518 dev
= MKDEV(MD_MAJOR
, rdev0
->preferred_minor
);
5521 if (rdev0
->preferred_minor
!= unit
) {
5522 printk(KERN_INFO
"md: unit number in %s is bad: %d\n",
5523 bdevname(rdev0
->bdev
, b
), rdev0
->preferred_minor
);
5527 md_probe(dev
, NULL
, NULL
);
5528 mddev
= mddev_find(dev
);
5529 if (!mddev
|| !mddev
->gendisk
) {
5533 "md: cannot allocate memory for md drive.\n");
5536 if (mddev_lock(mddev
))
5537 printk(KERN_WARNING
"md: %s locked, cannot run\n",
5539 else if (mddev
->raid_disks
|| mddev
->major_version
5540 || !list_empty(&mddev
->disks
)) {
5542 "md: %s already running, cannot run %s\n",
5543 mdname(mddev
), bdevname(rdev0
->bdev
,b
));
5544 mddev_unlock(mddev
);
5546 printk(KERN_INFO
"md: created %s\n", mdname(mddev
));
5547 mddev
->persistent
= 1;
5548 rdev_for_each_list(rdev
, tmp
, &candidates
) {
5549 list_del_init(&rdev
->same_set
);
5550 if (bind_rdev_to_array(rdev
, mddev
))
5553 autorun_array(mddev
);
5554 mddev_unlock(mddev
);
5556 /* on success, candidates will be empty, on error
5559 rdev_for_each_list(rdev
, tmp
, &candidates
) {
5560 list_del_init(&rdev
->same_set
);
5565 printk(KERN_INFO
"md: ... autorun DONE.\n");
5567 #endif /* !MODULE */
5569 static int get_version(void __user
* arg
)
5573 ver
.major
= MD_MAJOR_VERSION
;
5574 ver
.minor
= MD_MINOR_VERSION
;
5575 ver
.patchlevel
= MD_PATCHLEVEL_VERSION
;
5577 if (copy_to_user(arg
, &ver
, sizeof(ver
)))
5583 static int get_array_info(struct mddev
* mddev
, void __user
* arg
)
5585 mdu_array_info_t info
;
5586 int nr
,working
,insync
,failed
,spare
;
5587 struct md_rdev
*rdev
;
5589 nr
=working
=insync
=failed
=spare
=0;
5590 rdev_for_each(rdev
, mddev
) {
5592 if (test_bit(Faulty
, &rdev
->flags
))
5596 if (test_bit(In_sync
, &rdev
->flags
))
5603 info
.major_version
= mddev
->major_version
;
5604 info
.minor_version
= mddev
->minor_version
;
5605 info
.patch_version
= MD_PATCHLEVEL_VERSION
;
5606 info
.ctime
= mddev
->ctime
;
5607 info
.level
= mddev
->level
;
5608 info
.size
= mddev
->dev_sectors
/ 2;
5609 if (info
.size
!= mddev
->dev_sectors
/ 2) /* overflow */
5612 info
.raid_disks
= mddev
->raid_disks
;
5613 info
.md_minor
= mddev
->md_minor
;
5614 info
.not_persistent
= !mddev
->persistent
;
5616 info
.utime
= mddev
->utime
;
5619 info
.state
= (1<<MD_SB_CLEAN
);
5620 if (mddev
->bitmap
&& mddev
->bitmap_info
.offset
)
5621 info
.state
= (1<<MD_SB_BITMAP_PRESENT
);
5622 info
.active_disks
= insync
;
5623 info
.working_disks
= working
;
5624 info
.failed_disks
= failed
;
5625 info
.spare_disks
= spare
;
5627 info
.layout
= mddev
->layout
;
5628 info
.chunk_size
= mddev
->chunk_sectors
<< 9;
5630 if (copy_to_user(arg
, &info
, sizeof(info
)))
5636 static int get_bitmap_file(struct mddev
* mddev
, void __user
* arg
)
5638 mdu_bitmap_file_t
*file
= NULL
; /* too big for stack allocation */
5639 char *ptr
, *buf
= NULL
;
5642 if (md_allow_write(mddev
))
5643 file
= kmalloc(sizeof(*file
), GFP_NOIO
);
5645 file
= kmalloc(sizeof(*file
), GFP_KERNEL
);
5650 /* bitmap disabled, zero the first byte and copy out */
5651 if (!mddev
->bitmap
|| !mddev
->bitmap
->storage
.file
) {
5652 file
->pathname
[0] = '\0';
5656 buf
= kmalloc(sizeof(file
->pathname
), GFP_KERNEL
);
5660 ptr
= d_path(&mddev
->bitmap
->storage
.file
->f_path
,
5661 buf
, sizeof(file
->pathname
));
5665 strcpy(file
->pathname
, ptr
);
5669 if (copy_to_user(arg
, file
, sizeof(*file
)))
5677 static int get_disk_info(struct mddev
* mddev
, void __user
* arg
)
5679 mdu_disk_info_t info
;
5680 struct md_rdev
*rdev
;
5682 if (copy_from_user(&info
, arg
, sizeof(info
)))
5685 rdev
= find_rdev_nr(mddev
, info
.number
);
5687 info
.major
= MAJOR(rdev
->bdev
->bd_dev
);
5688 info
.minor
= MINOR(rdev
->bdev
->bd_dev
);
5689 info
.raid_disk
= rdev
->raid_disk
;
5691 if (test_bit(Faulty
, &rdev
->flags
))
5692 info
.state
|= (1<<MD_DISK_FAULTY
);
5693 else if (test_bit(In_sync
, &rdev
->flags
)) {
5694 info
.state
|= (1<<MD_DISK_ACTIVE
);
5695 info
.state
|= (1<<MD_DISK_SYNC
);
5697 if (test_bit(WriteMostly
, &rdev
->flags
))
5698 info
.state
|= (1<<MD_DISK_WRITEMOSTLY
);
5700 info
.major
= info
.minor
= 0;
5701 info
.raid_disk
= -1;
5702 info
.state
= (1<<MD_DISK_REMOVED
);
5705 if (copy_to_user(arg
, &info
, sizeof(info
)))
5711 static int add_new_disk(struct mddev
* mddev
, mdu_disk_info_t
*info
)
5713 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
5714 struct md_rdev
*rdev
;
5715 dev_t dev
= MKDEV(info
->major
,info
->minor
);
5717 if (info
->major
!= MAJOR(dev
) || info
->minor
!= MINOR(dev
))
5720 if (!mddev
->raid_disks
) {
5722 /* expecting a device which has a superblock */
5723 rdev
= md_import_device(dev
, mddev
->major_version
, mddev
->minor_version
);
5726 "md: md_import_device returned %ld\n",
5728 return PTR_ERR(rdev
);
5730 if (!list_empty(&mddev
->disks
)) {
5731 struct md_rdev
*rdev0
5732 = list_entry(mddev
->disks
.next
,
5733 struct md_rdev
, same_set
);
5734 err
= super_types
[mddev
->major_version
]
5735 .load_super(rdev
, rdev0
, mddev
->minor_version
);
5738 "md: %s has different UUID to %s\n",
5739 bdevname(rdev
->bdev
,b
),
5740 bdevname(rdev0
->bdev
,b2
));
5745 err
= bind_rdev_to_array(rdev
, mddev
);
5752 * add_new_disk can be used once the array is assembled
5753 * to add "hot spares". They must already have a superblock
5758 if (!mddev
->pers
->hot_add_disk
) {
5760 "%s: personality does not support diskops!\n",
5764 if (mddev
->persistent
)
5765 rdev
= md_import_device(dev
, mddev
->major_version
,
5766 mddev
->minor_version
);
5768 rdev
= md_import_device(dev
, -1, -1);
5771 "md: md_import_device returned %ld\n",
5773 return PTR_ERR(rdev
);
5775 /* set saved_raid_disk if appropriate */
5776 if (!mddev
->persistent
) {
5777 if (info
->state
& (1<<MD_DISK_SYNC
) &&
5778 info
->raid_disk
< mddev
->raid_disks
) {
5779 rdev
->raid_disk
= info
->raid_disk
;
5780 set_bit(In_sync
, &rdev
->flags
);
5782 rdev
->raid_disk
= -1;
5784 super_types
[mddev
->major_version
].
5785 validate_super(mddev
, rdev
);
5786 if ((info
->state
& (1<<MD_DISK_SYNC
)) &&
5787 rdev
->raid_disk
!= info
->raid_disk
) {
5788 /* This was a hot-add request, but events doesn't
5789 * match, so reject it.
5795 if (test_bit(In_sync
, &rdev
->flags
))
5796 rdev
->saved_raid_disk
= rdev
->raid_disk
;
5798 rdev
->saved_raid_disk
= -1;
5800 clear_bit(In_sync
, &rdev
->flags
); /* just to be sure */
5801 if (info
->state
& (1<<MD_DISK_WRITEMOSTLY
))
5802 set_bit(WriteMostly
, &rdev
->flags
);
5804 clear_bit(WriteMostly
, &rdev
->flags
);
5806 rdev
->raid_disk
= -1;
5807 err
= bind_rdev_to_array(rdev
, mddev
);
5808 if (!err
&& !mddev
->pers
->hot_remove_disk
) {
5809 /* If there is hot_add_disk but no hot_remove_disk
5810 * then added disks for geometry changes,
5811 * and should be added immediately.
5813 super_types
[mddev
->major_version
].
5814 validate_super(mddev
, rdev
);
5815 err
= mddev
->pers
->hot_add_disk(mddev
, rdev
);
5817 unbind_rdev_from_array(rdev
);
5822 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
5824 md_update_sb(mddev
, 1);
5825 if (mddev
->degraded
)
5826 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
5827 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5829 md_new_event(mddev
);
5830 md_wakeup_thread(mddev
->thread
);
5834 /* otherwise, add_new_disk is only allowed
5835 * for major_version==0 superblocks
5837 if (mddev
->major_version
!= 0) {
5838 printk(KERN_WARNING
"%s: ADD_NEW_DISK not supported\n",
5843 if (!(info
->state
& (1<<MD_DISK_FAULTY
))) {
5845 rdev
= md_import_device(dev
, -1, 0);
5848 "md: error, md_import_device() returned %ld\n",
5850 return PTR_ERR(rdev
);
5852 rdev
->desc_nr
= info
->number
;
5853 if (info
->raid_disk
< mddev
->raid_disks
)
5854 rdev
->raid_disk
= info
->raid_disk
;
5856 rdev
->raid_disk
= -1;
5858 if (rdev
->raid_disk
< mddev
->raid_disks
)
5859 if (info
->state
& (1<<MD_DISK_SYNC
))
5860 set_bit(In_sync
, &rdev
->flags
);
5862 if (info
->state
& (1<<MD_DISK_WRITEMOSTLY
))
5863 set_bit(WriteMostly
, &rdev
->flags
);
5865 if (!mddev
->persistent
) {
5866 printk(KERN_INFO
"md: nonpersistent superblock ...\n");
5867 rdev
->sb_start
= i_size_read(rdev
->bdev
->bd_inode
) / 512;
5869 rdev
->sb_start
= calc_dev_sboffset(rdev
);
5870 rdev
->sectors
= rdev
->sb_start
;
5872 err
= bind_rdev_to_array(rdev
, mddev
);
5882 static int hot_remove_disk(struct mddev
* mddev
, dev_t dev
)
5884 char b
[BDEVNAME_SIZE
];
5885 struct md_rdev
*rdev
;
5887 rdev
= find_rdev(mddev
, dev
);
5891 if (rdev
->raid_disk
>= 0)
5894 kick_rdev_from_array(rdev
);
5895 md_update_sb(mddev
, 1);
5896 md_new_event(mddev
);
5900 printk(KERN_WARNING
"md: cannot remove active disk %s from %s ...\n",
5901 bdevname(rdev
->bdev
,b
), mdname(mddev
));
5905 static int hot_add_disk(struct mddev
* mddev
, dev_t dev
)
5907 char b
[BDEVNAME_SIZE
];
5909 struct md_rdev
*rdev
;
5914 if (mddev
->major_version
!= 0) {
5915 printk(KERN_WARNING
"%s: HOT_ADD may only be used with"
5916 " version-0 superblocks.\n",
5920 if (!mddev
->pers
->hot_add_disk
) {
5922 "%s: personality does not support diskops!\n",
5927 rdev
= md_import_device(dev
, -1, 0);
5930 "md: error, md_import_device() returned %ld\n",
5935 if (mddev
->persistent
)
5936 rdev
->sb_start
= calc_dev_sboffset(rdev
);
5938 rdev
->sb_start
= i_size_read(rdev
->bdev
->bd_inode
) / 512;
5940 rdev
->sectors
= rdev
->sb_start
;
5942 if (test_bit(Faulty
, &rdev
->flags
)) {
5944 "md: can not hot-add faulty %s disk to %s!\n",
5945 bdevname(rdev
->bdev
,b
), mdname(mddev
));
5949 clear_bit(In_sync
, &rdev
->flags
);
5951 rdev
->saved_raid_disk
= -1;
5952 err
= bind_rdev_to_array(rdev
, mddev
);
5957 * The rest should better be atomic, we can have disk failures
5958 * noticed in interrupt contexts ...
5961 rdev
->raid_disk
= -1;
5963 md_update_sb(mddev
, 1);
5966 * Kick recovery, maybe this spare has to be added to the
5967 * array immediately.
5969 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5970 md_wakeup_thread(mddev
->thread
);
5971 md_new_event(mddev
);
5979 static int set_bitmap_file(struct mddev
*mddev
, int fd
)
5984 if (!mddev
->pers
->quiesce
)
5986 if (mddev
->recovery
|| mddev
->sync_thread
)
5988 /* we should be able to change the bitmap.. */
5994 return -EEXIST
; /* cannot add when bitmap is present */
5995 mddev
->bitmap_info
.file
= fget(fd
);
5997 if (mddev
->bitmap_info
.file
== NULL
) {
5998 printk(KERN_ERR
"%s: error: failed to get bitmap file\n",
6003 err
= deny_bitmap_write_access(mddev
->bitmap_info
.file
);
6005 printk(KERN_ERR
"%s: error: bitmap file is already in use\n",
6007 fput(mddev
->bitmap_info
.file
);
6008 mddev
->bitmap_info
.file
= NULL
;
6011 mddev
->bitmap_info
.offset
= 0; /* file overrides offset */
6012 } else if (mddev
->bitmap
== NULL
)
6013 return -ENOENT
; /* cannot remove what isn't there */
6016 mddev
->pers
->quiesce(mddev
, 1);
6018 err
= bitmap_create(mddev
);
6020 err
= bitmap_load(mddev
);
6022 if (fd
< 0 || err
) {
6023 bitmap_destroy(mddev
);
6024 fd
= -1; /* make sure to put the file */
6026 mddev
->pers
->quiesce(mddev
, 0);
6029 if (mddev
->bitmap_info
.file
) {
6030 restore_bitmap_write_access(mddev
->bitmap_info
.file
);
6031 fput(mddev
->bitmap_info
.file
);
6033 mddev
->bitmap_info
.file
= NULL
;
6040 * set_array_info is used two different ways
6041 * The original usage is when creating a new array.
6042 * In this usage, raid_disks is > 0 and it together with
6043 * level, size, not_persistent,layout,chunksize determine the
6044 * shape of the array.
6045 * This will always create an array with a type-0.90.0 superblock.
6046 * The newer usage is when assembling an array.
6047 * In this case raid_disks will be 0, and the major_version field is
6048 * use to determine which style super-blocks are to be found on the devices.
6049 * The minor and patch _version numbers are also kept incase the
6050 * super_block handler wishes to interpret them.
6052 static int set_array_info(struct mddev
* mddev
, mdu_array_info_t
*info
)
6055 if (info
->raid_disks
== 0) {
6056 /* just setting version number for superblock loading */
6057 if (info
->major_version
< 0 ||
6058 info
->major_version
>= ARRAY_SIZE(super_types
) ||
6059 super_types
[info
->major_version
].name
== NULL
) {
6060 /* maybe try to auto-load a module? */
6062 "md: superblock version %d not known\n",
6063 info
->major_version
);
6066 mddev
->major_version
= info
->major_version
;
6067 mddev
->minor_version
= info
->minor_version
;
6068 mddev
->patch_version
= info
->patch_version
;
6069 mddev
->persistent
= !info
->not_persistent
;
6070 /* ensure mddev_put doesn't delete this now that there
6071 * is some minimal configuration.
6073 mddev
->ctime
= get_seconds();
6076 mddev
->major_version
= MD_MAJOR_VERSION
;
6077 mddev
->minor_version
= MD_MINOR_VERSION
;
6078 mddev
->patch_version
= MD_PATCHLEVEL_VERSION
;
6079 mddev
->ctime
= get_seconds();
6081 mddev
->level
= info
->level
;
6082 mddev
->clevel
[0] = 0;
6083 mddev
->dev_sectors
= 2 * (sector_t
)info
->size
;
6084 mddev
->raid_disks
= info
->raid_disks
;
6085 /* don't set md_minor, it is determined by which /dev/md* was
6088 if (info
->state
& (1<<MD_SB_CLEAN
))
6089 mddev
->recovery_cp
= MaxSector
;
6091 mddev
->recovery_cp
= 0;
6092 mddev
->persistent
= ! info
->not_persistent
;
6093 mddev
->external
= 0;
6095 mddev
->layout
= info
->layout
;
6096 mddev
->chunk_sectors
= info
->chunk_size
>> 9;
6098 mddev
->max_disks
= MD_SB_DISKS
;
6100 if (mddev
->persistent
)
6102 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
6104 mddev
->bitmap_info
.default_offset
= MD_SB_BYTES
>> 9;
6105 mddev
->bitmap_info
.default_space
= 64*2 - (MD_SB_BYTES
>> 9);
6106 mddev
->bitmap_info
.offset
= 0;
6108 mddev
->reshape_position
= MaxSector
;
6111 * Generate a 128 bit UUID
6113 get_random_bytes(mddev
->uuid
, 16);
6115 mddev
->new_level
= mddev
->level
;
6116 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
6117 mddev
->new_layout
= mddev
->layout
;
6118 mddev
->delta_disks
= 0;
6119 mddev
->reshape_backwards
= 0;
6124 void md_set_array_sectors(struct mddev
*mddev
, sector_t array_sectors
)
6126 WARN(!mddev_is_locked(mddev
), "%s: unlocked mddev!\n", __func__
);
6128 if (mddev
->external_size
)
6131 mddev
->array_sectors
= array_sectors
;
6133 EXPORT_SYMBOL(md_set_array_sectors
);
6135 static int update_size(struct mddev
*mddev
, sector_t num_sectors
)
6137 struct md_rdev
*rdev
;
6139 int fit
= (num_sectors
== 0);
6141 if (mddev
->pers
->resize
== NULL
)
6143 /* The "num_sectors" is the number of sectors of each device that
6144 * is used. This can only make sense for arrays with redundancy.
6145 * linear and raid0 always use whatever space is available. We can only
6146 * consider changing this number if no resync or reconstruction is
6147 * happening, and if the new size is acceptable. It must fit before the
6148 * sb_start or, if that is <data_offset, it must fit before the size
6149 * of each device. If num_sectors is zero, we find the largest size
6152 if (mddev
->sync_thread
)
6155 rdev_for_each(rdev
, mddev
) {
6156 sector_t avail
= rdev
->sectors
;
6158 if (fit
&& (num_sectors
== 0 || num_sectors
> avail
))
6159 num_sectors
= avail
;
6160 if (avail
< num_sectors
)
6163 rv
= mddev
->pers
->resize(mddev
, num_sectors
);
6165 revalidate_disk(mddev
->gendisk
);
6169 static int update_raid_disks(struct mddev
*mddev
, int raid_disks
)
6172 struct md_rdev
*rdev
;
6173 /* change the number of raid disks */
6174 if (mddev
->pers
->check_reshape
== NULL
)
6176 if (raid_disks
<= 0 ||
6177 (mddev
->max_disks
&& raid_disks
>= mddev
->max_disks
))
6179 if (mddev
->sync_thread
|| mddev
->reshape_position
!= MaxSector
)
6182 rdev_for_each(rdev
, mddev
) {
6183 if (mddev
->raid_disks
< raid_disks
&&
6184 rdev
->data_offset
< rdev
->new_data_offset
)
6186 if (mddev
->raid_disks
> raid_disks
&&
6187 rdev
->data_offset
> rdev
->new_data_offset
)
6191 mddev
->delta_disks
= raid_disks
- mddev
->raid_disks
;
6192 if (mddev
->delta_disks
< 0)
6193 mddev
->reshape_backwards
= 1;
6194 else if (mddev
->delta_disks
> 0)
6195 mddev
->reshape_backwards
= 0;
6197 rv
= mddev
->pers
->check_reshape(mddev
);
6199 mddev
->delta_disks
= 0;
6200 mddev
->reshape_backwards
= 0;
6207 * update_array_info is used to change the configuration of an
6209 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6210 * fields in the info are checked against the array.
6211 * Any differences that cannot be handled will cause an error.
6212 * Normally, only one change can be managed at a time.
6214 static int update_array_info(struct mddev
*mddev
, mdu_array_info_t
*info
)
6220 /* calculate expected state,ignoring low bits */
6221 if (mddev
->bitmap
&& mddev
->bitmap_info
.offset
)
6222 state
|= (1 << MD_SB_BITMAP_PRESENT
);
6224 if (mddev
->major_version
!= info
->major_version
||
6225 mddev
->minor_version
!= info
->minor_version
||
6226 /* mddev->patch_version != info->patch_version || */
6227 mddev
->ctime
!= info
->ctime
||
6228 mddev
->level
!= info
->level
||
6229 /* mddev->layout != info->layout || */
6230 !mddev
->persistent
!= info
->not_persistent
||
6231 mddev
->chunk_sectors
!= info
->chunk_size
>> 9 ||
6232 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6233 ((state
^info
->state
) & 0xfffffe00)
6236 /* Check there is only one change */
6237 if (info
->size
>= 0 && mddev
->dev_sectors
/ 2 != info
->size
)
6239 if (mddev
->raid_disks
!= info
->raid_disks
)
6241 if (mddev
->layout
!= info
->layout
)
6243 if ((state
^ info
->state
) & (1<<MD_SB_BITMAP_PRESENT
))
6250 if (mddev
->layout
!= info
->layout
) {
6252 * we don't need to do anything at the md level, the
6253 * personality will take care of it all.
6255 if (mddev
->pers
->check_reshape
== NULL
)
6258 mddev
->new_layout
= info
->layout
;
6259 rv
= mddev
->pers
->check_reshape(mddev
);
6261 mddev
->new_layout
= mddev
->layout
;
6265 if (info
->size
>= 0 && mddev
->dev_sectors
/ 2 != info
->size
)
6266 rv
= update_size(mddev
, (sector_t
)info
->size
* 2);
6268 if (mddev
->raid_disks
!= info
->raid_disks
)
6269 rv
= update_raid_disks(mddev
, info
->raid_disks
);
6271 if ((state
^ info
->state
) & (1<<MD_SB_BITMAP_PRESENT
)) {
6272 if (mddev
->pers
->quiesce
== NULL
)
6274 if (mddev
->recovery
|| mddev
->sync_thread
)
6276 if (info
->state
& (1<<MD_SB_BITMAP_PRESENT
)) {
6277 /* add the bitmap */
6280 if (mddev
->bitmap_info
.default_offset
== 0)
6282 mddev
->bitmap_info
.offset
=
6283 mddev
->bitmap_info
.default_offset
;
6284 mddev
->bitmap_info
.space
=
6285 mddev
->bitmap_info
.default_space
;
6286 mddev
->pers
->quiesce(mddev
, 1);
6287 rv
= bitmap_create(mddev
);
6289 rv
= bitmap_load(mddev
);
6291 bitmap_destroy(mddev
);
6292 mddev
->pers
->quiesce(mddev
, 0);
6294 /* remove the bitmap */
6297 if (mddev
->bitmap
->storage
.file
)
6299 mddev
->pers
->quiesce(mddev
, 1);
6300 bitmap_destroy(mddev
);
6301 mddev
->pers
->quiesce(mddev
, 0);
6302 mddev
->bitmap_info
.offset
= 0;
6305 md_update_sb(mddev
, 1);
6309 static int set_disk_faulty(struct mddev
*mddev
, dev_t dev
)
6311 struct md_rdev
*rdev
;
6313 if (mddev
->pers
== NULL
)
6316 rdev
= find_rdev(mddev
, dev
);
6320 md_error(mddev
, rdev
);
6321 if (!test_bit(Faulty
, &rdev
->flags
))
6327 * We have a problem here : there is no easy way to give a CHS
6328 * virtual geometry. We currently pretend that we have a 2 heads
6329 * 4 sectors (with a BIG number of cylinders...). This drives
6330 * dosfs just mad... ;-)
6332 static int md_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
6334 struct mddev
*mddev
= bdev
->bd_disk
->private_data
;
6338 geo
->cylinders
= mddev
->array_sectors
/ 8;
6342 static int md_ioctl(struct block_device
*bdev
, fmode_t mode
,
6343 unsigned int cmd
, unsigned long arg
)
6346 void __user
*argp
= (void __user
*)arg
;
6347 struct mddev
*mddev
= NULL
;
6352 case GET_ARRAY_INFO
:
6356 if (!capable(CAP_SYS_ADMIN
))
6361 * Commands dealing with the RAID driver but not any
6367 err
= get_version(argp
);
6370 case PRINT_RAID_DEBUG
:
6378 autostart_arrays(arg
);
6385 * Commands creating/starting a new array:
6388 mddev
= bdev
->bd_disk
->private_data
;
6395 err
= mddev_lock(mddev
);
6398 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6405 case SET_ARRAY_INFO
:
6407 mdu_array_info_t info
;
6409 memset(&info
, 0, sizeof(info
));
6410 else if (copy_from_user(&info
, argp
, sizeof(info
))) {
6415 err
= update_array_info(mddev
, &info
);
6417 printk(KERN_WARNING
"md: couldn't update"
6418 " array info. %d\n", err
);
6423 if (!list_empty(&mddev
->disks
)) {
6425 "md: array %s already has disks!\n",
6430 if (mddev
->raid_disks
) {
6432 "md: array %s already initialised!\n",
6437 err
= set_array_info(mddev
, &info
);
6439 printk(KERN_WARNING
"md: couldn't set"
6440 " array info. %d\n", err
);
6450 * Commands querying/configuring an existing array:
6452 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6453 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6454 if ((!mddev
->raid_disks
&& !mddev
->external
)
6455 && cmd
!= ADD_NEW_DISK
&& cmd
!= STOP_ARRAY
6456 && cmd
!= RUN_ARRAY
&& cmd
!= SET_BITMAP_FILE
6457 && cmd
!= GET_BITMAP_FILE
) {
6463 * Commands even a read-only array can execute:
6467 case GET_ARRAY_INFO
:
6468 err
= get_array_info(mddev
, argp
);
6471 case GET_BITMAP_FILE
:
6472 err
= get_bitmap_file(mddev
, argp
);
6476 err
= get_disk_info(mddev
, argp
);
6479 case RESTART_ARRAY_RW
:
6480 err
= restart_array(mddev
);
6484 err
= do_md_stop(mddev
, 0, 1);
6488 err
= md_set_readonly(mddev
, 1);
6492 if (get_user(ro
, (int __user
*)(arg
))) {
6498 /* if the bdev is going readonly the value of mddev->ro
6499 * does not matter, no writes are coming
6504 /* are we are already prepared for writes? */
6508 /* transitioning to readauto need only happen for
6509 * arrays that call md_write_start
6512 err
= restart_array(mddev
);
6515 set_disk_ro(mddev
->gendisk
, 0);
6522 * The remaining ioctls are changing the state of the
6523 * superblock, so we do not allow them on read-only arrays.
6524 * However non-MD ioctls (e.g. get-size) will still come through
6525 * here and hit the 'default' below, so only disallow
6526 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6528 if (_IOC_TYPE(cmd
) == MD_MAJOR
&& mddev
->ro
&& mddev
->pers
) {
6529 if (mddev
->ro
== 2) {
6531 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
6532 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
6533 md_wakeup_thread(mddev
->thread
);
6544 mdu_disk_info_t info
;
6545 if (copy_from_user(&info
, argp
, sizeof(info
)))
6548 err
= add_new_disk(mddev
, &info
);
6552 case HOT_REMOVE_DISK
:
6553 err
= hot_remove_disk(mddev
, new_decode_dev(arg
));
6557 err
= hot_add_disk(mddev
, new_decode_dev(arg
));
6560 case SET_DISK_FAULTY
:
6561 err
= set_disk_faulty(mddev
, new_decode_dev(arg
));
6565 err
= do_md_run(mddev
);
6568 case SET_BITMAP_FILE
:
6569 err
= set_bitmap_file(mddev
, (int)arg
);
6579 if (mddev
->hold_active
== UNTIL_IOCTL
&&
6581 mddev
->hold_active
= 0;
6582 mddev_unlock(mddev
);
6591 #ifdef CONFIG_COMPAT
6592 static int md_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
6593 unsigned int cmd
, unsigned long arg
)
6596 case HOT_REMOVE_DISK
:
6598 case SET_DISK_FAULTY
:
6599 case SET_BITMAP_FILE
:
6600 /* These take in integer arg, do not convert */
6603 arg
= (unsigned long)compat_ptr(arg
);
6607 return md_ioctl(bdev
, mode
, cmd
, arg
);
6609 #endif /* CONFIG_COMPAT */
6611 static int md_open(struct block_device
*bdev
, fmode_t mode
)
6614 * Succeed if we can lock the mddev, which confirms that
6615 * it isn't being stopped right now.
6617 struct mddev
*mddev
= mddev_find(bdev
->bd_dev
);
6623 if (mddev
->gendisk
!= bdev
->bd_disk
) {
6624 /* we are racing with mddev_put which is discarding this
6628 /* Wait until bdev->bd_disk is definitely gone */
6629 flush_workqueue(md_misc_wq
);
6630 /* Then retry the open from the top */
6631 return -ERESTARTSYS
;
6633 BUG_ON(mddev
!= bdev
->bd_disk
->private_data
);
6635 if ((err
= mutex_lock_interruptible(&mddev
->open_mutex
)))
6639 atomic_inc(&mddev
->openers
);
6640 mutex_unlock(&mddev
->open_mutex
);
6642 check_disk_change(bdev
);
6647 static int md_release(struct gendisk
*disk
, fmode_t mode
)
6649 struct mddev
*mddev
= disk
->private_data
;
6652 atomic_dec(&mddev
->openers
);
6658 static int md_media_changed(struct gendisk
*disk
)
6660 struct mddev
*mddev
= disk
->private_data
;
6662 return mddev
->changed
;
6665 static int md_revalidate(struct gendisk
*disk
)
6667 struct mddev
*mddev
= disk
->private_data
;
6672 static const struct block_device_operations md_fops
=
6674 .owner
= THIS_MODULE
,
6676 .release
= md_release
,
6678 #ifdef CONFIG_COMPAT
6679 .compat_ioctl
= md_compat_ioctl
,
6681 .getgeo
= md_getgeo
,
6682 .media_changed
= md_media_changed
,
6683 .revalidate_disk
= md_revalidate
,
6686 static int md_thread(void * arg
)
6688 struct md_thread
*thread
= arg
;
6691 * md_thread is a 'system-thread', it's priority should be very
6692 * high. We avoid resource deadlocks individually in each
6693 * raid personality. (RAID5 does preallocation) We also use RR and
6694 * the very same RT priority as kswapd, thus we will never get
6695 * into a priority inversion deadlock.
6697 * we definitely have to have equal or higher priority than
6698 * bdflush, otherwise bdflush will deadlock if there are too
6699 * many dirty RAID5 blocks.
6702 allow_signal(SIGKILL
);
6703 while (!kthread_should_stop()) {
6705 /* We need to wait INTERRUPTIBLE so that
6706 * we don't add to the load-average.
6707 * That means we need to be sure no signals are
6710 if (signal_pending(current
))
6711 flush_signals(current
);
6713 wait_event_interruptible_timeout
6715 test_bit(THREAD_WAKEUP
, &thread
->flags
)
6716 || kthread_should_stop(),
6719 clear_bit(THREAD_WAKEUP
, &thread
->flags
);
6720 if (!kthread_should_stop())
6721 thread
->run(thread
->mddev
);
6727 void md_wakeup_thread(struct md_thread
*thread
)
6730 pr_debug("md: waking up MD thread %s.\n", thread
->tsk
->comm
);
6731 set_bit(THREAD_WAKEUP
, &thread
->flags
);
6732 wake_up(&thread
->wqueue
);
6736 struct md_thread
*md_register_thread(void (*run
) (struct mddev
*), struct mddev
*mddev
,
6739 struct md_thread
*thread
;
6741 thread
= kzalloc(sizeof(struct md_thread
), GFP_KERNEL
);
6745 init_waitqueue_head(&thread
->wqueue
);
6748 thread
->mddev
= mddev
;
6749 thread
->timeout
= MAX_SCHEDULE_TIMEOUT
;
6750 thread
->tsk
= kthread_run(md_thread
, thread
,
6752 mdname(thread
->mddev
),
6754 if (IS_ERR(thread
->tsk
)) {
6761 void md_unregister_thread(struct md_thread
**threadp
)
6763 struct md_thread
*thread
= *threadp
;
6766 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread
->tsk
));
6767 /* Locking ensures that mddev_unlock does not wake_up a
6768 * non-existent thread
6770 spin_lock(&pers_lock
);
6772 spin_unlock(&pers_lock
);
6774 kthread_stop(thread
->tsk
);
6778 void md_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
6785 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
6788 if (!mddev
->pers
|| !mddev
->pers
->error_handler
)
6790 mddev
->pers
->error_handler(mddev
,rdev
);
6791 if (mddev
->degraded
)
6792 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
6793 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
6794 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
6795 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
6796 md_wakeup_thread(mddev
->thread
);
6797 if (mddev
->event_work
.func
)
6798 queue_work(md_misc_wq
, &mddev
->event_work
);
6799 md_new_event_inintr(mddev
);
6802 /* seq_file implementation /proc/mdstat */
6804 static void status_unused(struct seq_file
*seq
)
6807 struct md_rdev
*rdev
;
6809 seq_printf(seq
, "unused devices: ");
6811 list_for_each_entry(rdev
, &pending_raid_disks
, same_set
) {
6812 char b
[BDEVNAME_SIZE
];
6814 seq_printf(seq
, "%s ",
6815 bdevname(rdev
->bdev
,b
));
6818 seq_printf(seq
, "<none>");
6820 seq_printf(seq
, "\n");
6824 static void status_resync(struct seq_file
*seq
, struct mddev
* mddev
)
6826 sector_t max_sectors
, resync
, res
;
6827 unsigned long dt
, db
;
6830 unsigned int per_milli
;
6832 resync
= mddev
->curr_resync
- atomic_read(&mddev
->recovery_active
);
6834 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
6835 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
6836 max_sectors
= mddev
->resync_max_sectors
;
6838 max_sectors
= mddev
->dev_sectors
;
6841 * Should not happen.
6847 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6848 * in a sector_t, and (max_sectors>>scale) will fit in a
6849 * u32, as those are the requirements for sector_div.
6850 * Thus 'scale' must be at least 10
6853 if (sizeof(sector_t
) > sizeof(unsigned long)) {
6854 while ( max_sectors
/2 > (1ULL<<(scale
+32)))
6857 res
= (resync
>>scale
)*1000;
6858 sector_div(res
, (u32
)((max_sectors
>>scale
)+1));
6862 int i
, x
= per_milli
/50, y
= 20-x
;
6863 seq_printf(seq
, "[");
6864 for (i
= 0; i
< x
; i
++)
6865 seq_printf(seq
, "=");
6866 seq_printf(seq
, ">");
6867 for (i
= 0; i
< y
; i
++)
6868 seq_printf(seq
, ".");
6869 seq_printf(seq
, "] ");
6871 seq_printf(seq
, " %s =%3u.%u%% (%llu/%llu)",
6872 (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)?
6874 (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)?
6876 (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ?
6877 "resync" : "recovery"))),
6878 per_milli
/10, per_milli
% 10,
6879 (unsigned long long) resync
/2,
6880 (unsigned long long) max_sectors
/2);
6883 * dt: time from mark until now
6884 * db: blocks written from mark until now
6885 * rt: remaining time
6887 * rt is a sector_t, so could be 32bit or 64bit.
6888 * So we divide before multiply in case it is 32bit and close
6890 * We scale the divisor (db) by 32 to avoid losing precision
6891 * near the end of resync when the number of remaining sectors
6893 * We then divide rt by 32 after multiplying by db to compensate.
6894 * The '+1' avoids division by zero if db is very small.
6896 dt
= ((jiffies
- mddev
->resync_mark
) / HZ
);
6898 db
= (mddev
->curr_mark_cnt
- atomic_read(&mddev
->recovery_active
))
6899 - mddev
->resync_mark_cnt
;
6901 rt
= max_sectors
- resync
; /* number of remaining sectors */
6902 sector_div(rt
, db
/32+1);
6906 seq_printf(seq
, " finish=%lu.%lumin", (unsigned long)rt
/ 60,
6907 ((unsigned long)rt
% 60)/6);
6909 seq_printf(seq
, " speed=%ldK/sec", db
/2/dt
);
6912 static void *md_seq_start(struct seq_file
*seq
, loff_t
*pos
)
6914 struct list_head
*tmp
;
6916 struct mddev
*mddev
;
6924 spin_lock(&all_mddevs_lock
);
6925 list_for_each(tmp
,&all_mddevs
)
6927 mddev
= list_entry(tmp
, struct mddev
, all_mddevs
);
6929 spin_unlock(&all_mddevs_lock
);
6932 spin_unlock(&all_mddevs_lock
);
6934 return (void*)2;/* tail */
6938 static void *md_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
6940 struct list_head
*tmp
;
6941 struct mddev
*next_mddev
, *mddev
= v
;
6947 spin_lock(&all_mddevs_lock
);
6949 tmp
= all_mddevs
.next
;
6951 tmp
= mddev
->all_mddevs
.next
;
6952 if (tmp
!= &all_mddevs
)
6953 next_mddev
= mddev_get(list_entry(tmp
,struct mddev
,all_mddevs
));
6955 next_mddev
= (void*)2;
6958 spin_unlock(&all_mddevs_lock
);
6966 static void md_seq_stop(struct seq_file
*seq
, void *v
)
6968 struct mddev
*mddev
= v
;
6970 if (mddev
&& v
!= (void*)1 && v
!= (void*)2)
6974 static int md_seq_show(struct seq_file
*seq
, void *v
)
6976 struct mddev
*mddev
= v
;
6978 struct md_rdev
*rdev
;
6980 if (v
== (void*)1) {
6981 struct md_personality
*pers
;
6982 seq_printf(seq
, "Personalities : ");
6983 spin_lock(&pers_lock
);
6984 list_for_each_entry(pers
, &pers_list
, list
)
6985 seq_printf(seq
, "[%s] ", pers
->name
);
6987 spin_unlock(&pers_lock
);
6988 seq_printf(seq
, "\n");
6989 seq
->poll_event
= atomic_read(&md_event_count
);
6992 if (v
== (void*)2) {
6997 if (mddev_lock(mddev
) < 0)
7000 if (mddev
->pers
|| mddev
->raid_disks
|| !list_empty(&mddev
->disks
)) {
7001 seq_printf(seq
, "%s : %sactive", mdname(mddev
),
7002 mddev
->pers
? "" : "in");
7005 seq_printf(seq
, " (read-only)");
7007 seq_printf(seq
, " (auto-read-only)");
7008 seq_printf(seq
, " %s", mddev
->pers
->name
);
7012 rdev_for_each(rdev
, mddev
) {
7013 char b
[BDEVNAME_SIZE
];
7014 seq_printf(seq
, " %s[%d]",
7015 bdevname(rdev
->bdev
,b
), rdev
->desc_nr
);
7016 if (test_bit(WriteMostly
, &rdev
->flags
))
7017 seq_printf(seq
, "(W)");
7018 if (test_bit(Faulty
, &rdev
->flags
)) {
7019 seq_printf(seq
, "(F)");
7022 if (rdev
->raid_disk
< 0)
7023 seq_printf(seq
, "(S)"); /* spare */
7024 if (test_bit(Replacement
, &rdev
->flags
))
7025 seq_printf(seq
, "(R)");
7026 sectors
+= rdev
->sectors
;
7029 if (!list_empty(&mddev
->disks
)) {
7031 seq_printf(seq
, "\n %llu blocks",
7032 (unsigned long long)
7033 mddev
->array_sectors
/ 2);
7035 seq_printf(seq
, "\n %llu blocks",
7036 (unsigned long long)sectors
/ 2);
7038 if (mddev
->persistent
) {
7039 if (mddev
->major_version
!= 0 ||
7040 mddev
->minor_version
!= 90) {
7041 seq_printf(seq
," super %d.%d",
7042 mddev
->major_version
,
7043 mddev
->minor_version
);
7045 } else if (mddev
->external
)
7046 seq_printf(seq
, " super external:%s",
7047 mddev
->metadata_type
);
7049 seq_printf(seq
, " super non-persistent");
7052 mddev
->pers
->status(seq
, mddev
);
7053 seq_printf(seq
, "\n ");
7054 if (mddev
->pers
->sync_request
) {
7055 if (mddev
->curr_resync
> 2) {
7056 status_resync(seq
, mddev
);
7057 seq_printf(seq
, "\n ");
7058 } else if (mddev
->curr_resync
== 1 || mddev
->curr_resync
== 2)
7059 seq_printf(seq
, "\tresync=DELAYED\n ");
7060 else if (mddev
->recovery_cp
< MaxSector
)
7061 seq_printf(seq
, "\tresync=PENDING\n ");
7064 seq_printf(seq
, "\n ");
7066 bitmap_status(seq
, mddev
->bitmap
);
7068 seq_printf(seq
, "\n");
7070 mddev_unlock(mddev
);
7075 static const struct seq_operations md_seq_ops
= {
7076 .start
= md_seq_start
,
7077 .next
= md_seq_next
,
7078 .stop
= md_seq_stop
,
7079 .show
= md_seq_show
,
7082 static int md_seq_open(struct inode
*inode
, struct file
*file
)
7084 struct seq_file
*seq
;
7087 error
= seq_open(file
, &md_seq_ops
);
7091 seq
= file
->private_data
;
7092 seq
->poll_event
= atomic_read(&md_event_count
);
7096 static unsigned int mdstat_poll(struct file
*filp
, poll_table
*wait
)
7098 struct seq_file
*seq
= filp
->private_data
;
7101 poll_wait(filp
, &md_event_waiters
, wait
);
7103 /* always allow read */
7104 mask
= POLLIN
| POLLRDNORM
;
7106 if (seq
->poll_event
!= atomic_read(&md_event_count
))
7107 mask
|= POLLERR
| POLLPRI
;
7111 static const struct file_operations md_seq_fops
= {
7112 .owner
= THIS_MODULE
,
7113 .open
= md_seq_open
,
7115 .llseek
= seq_lseek
,
7116 .release
= seq_release_private
,
7117 .poll
= mdstat_poll
,
7120 int register_md_personality(struct md_personality
*p
)
7122 spin_lock(&pers_lock
);
7123 list_add_tail(&p
->list
, &pers_list
);
7124 printk(KERN_INFO
"md: %s personality registered for level %d\n", p
->name
, p
->level
);
7125 spin_unlock(&pers_lock
);
7129 int unregister_md_personality(struct md_personality
*p
)
7131 printk(KERN_INFO
"md: %s personality unregistered\n", p
->name
);
7132 spin_lock(&pers_lock
);
7133 list_del_init(&p
->list
);
7134 spin_unlock(&pers_lock
);
7138 static int is_mddev_idle(struct mddev
*mddev
, int init
)
7140 struct md_rdev
* rdev
;
7146 rdev_for_each_rcu(rdev
, mddev
) {
7147 struct gendisk
*disk
= rdev
->bdev
->bd_contains
->bd_disk
;
7148 curr_events
= (int)part_stat_read(&disk
->part0
, sectors
[0]) +
7149 (int)part_stat_read(&disk
->part0
, sectors
[1]) -
7150 atomic_read(&disk
->sync_io
);
7151 /* sync IO will cause sync_io to increase before the disk_stats
7152 * as sync_io is counted when a request starts, and
7153 * disk_stats is counted when it completes.
7154 * So resync activity will cause curr_events to be smaller than
7155 * when there was no such activity.
7156 * non-sync IO will cause disk_stat to increase without
7157 * increasing sync_io so curr_events will (eventually)
7158 * be larger than it was before. Once it becomes
7159 * substantially larger, the test below will cause
7160 * the array to appear non-idle, and resync will slow
7162 * If there is a lot of outstanding resync activity when
7163 * we set last_event to curr_events, then all that activity
7164 * completing might cause the array to appear non-idle
7165 * and resync will be slowed down even though there might
7166 * not have been non-resync activity. This will only
7167 * happen once though. 'last_events' will soon reflect
7168 * the state where there is little or no outstanding
7169 * resync requests, and further resync activity will
7170 * always make curr_events less than last_events.
7173 if (init
|| curr_events
- rdev
->last_events
> 64) {
7174 rdev
->last_events
= curr_events
;
7182 void md_done_sync(struct mddev
*mddev
, int blocks
, int ok
)
7184 /* another "blocks" (512byte) blocks have been synced */
7185 atomic_sub(blocks
, &mddev
->recovery_active
);
7186 wake_up(&mddev
->recovery_wait
);
7188 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
7189 md_wakeup_thread(mddev
->thread
);
7190 // stop recovery, signal do_sync ....
7195 /* md_write_start(mddev, bi)
7196 * If we need to update some array metadata (e.g. 'active' flag
7197 * in superblock) before writing, schedule a superblock update
7198 * and wait for it to complete.
7200 void md_write_start(struct mddev
*mddev
, struct bio
*bi
)
7203 if (bio_data_dir(bi
) != WRITE
)
7206 BUG_ON(mddev
->ro
== 1);
7207 if (mddev
->ro
== 2) {
7208 /* need to switch to read/write */
7210 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7211 md_wakeup_thread(mddev
->thread
);
7212 md_wakeup_thread(mddev
->sync_thread
);
7215 atomic_inc(&mddev
->writes_pending
);
7216 if (mddev
->safemode
== 1)
7217 mddev
->safemode
= 0;
7218 if (mddev
->in_sync
) {
7219 spin_lock_irq(&mddev
->write_lock
);
7220 if (mddev
->in_sync
) {
7222 set_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
7223 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
7224 md_wakeup_thread(mddev
->thread
);
7227 spin_unlock_irq(&mddev
->write_lock
);
7230 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
7231 wait_event(mddev
->sb_wait
,
7232 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
));
7235 void md_write_end(struct mddev
*mddev
)
7237 if (atomic_dec_and_test(&mddev
->writes_pending
)) {
7238 if (mddev
->safemode
== 2)
7239 md_wakeup_thread(mddev
->thread
);
7240 else if (mddev
->safemode_delay
)
7241 mod_timer(&mddev
->safemode_timer
, jiffies
+ mddev
->safemode_delay
);
7245 /* md_allow_write(mddev)
7246 * Calling this ensures that the array is marked 'active' so that writes
7247 * may proceed without blocking. It is important to call this before
7248 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7249 * Must be called with mddev_lock held.
7251 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7252 * is dropped, so return -EAGAIN after notifying userspace.
7254 int md_allow_write(struct mddev
*mddev
)
7260 if (!mddev
->pers
->sync_request
)
7263 spin_lock_irq(&mddev
->write_lock
);
7264 if (mddev
->in_sync
) {
7266 set_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
7267 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
7268 if (mddev
->safemode_delay
&&
7269 mddev
->safemode
== 0)
7270 mddev
->safemode
= 1;
7271 spin_unlock_irq(&mddev
->write_lock
);
7272 md_update_sb(mddev
, 0);
7273 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
7275 spin_unlock_irq(&mddev
->write_lock
);
7277 if (test_bit(MD_CHANGE_PENDING
, &mddev
->flags
))
7282 EXPORT_SYMBOL_GPL(md_allow_write
);
7284 #define SYNC_MARKS 10
7285 #define SYNC_MARK_STEP (3*HZ)
7286 void md_do_sync(struct mddev
*mddev
)
7288 struct mddev
*mddev2
;
7289 unsigned int currspeed
= 0,
7291 sector_t max_sectors
,j
, io_sectors
;
7292 unsigned long mark
[SYNC_MARKS
];
7293 sector_t mark_cnt
[SYNC_MARKS
];
7295 struct list_head
*tmp
;
7296 sector_t last_check
;
7298 struct md_rdev
*rdev
;
7300 struct blk_plug plug
;
7302 /* just incase thread restarts... */
7303 if (test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
))
7305 if (mddev
->ro
) /* never try to sync a read-only array */
7308 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
7309 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
7310 desc
= "data-check";
7311 else if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
7312 desc
= "requested-resync";
7315 } else if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
7320 /* we overload curr_resync somewhat here.
7321 * 0 == not engaged in resync at all
7322 * 2 == checking that there is no conflict with another sync
7323 * 1 == like 2, but have yielded to allow conflicting resync to
7325 * other == active in resync - this many blocks
7327 * Before starting a resync we must have set curr_resync to
7328 * 2, and then checked that every "conflicting" array has curr_resync
7329 * less than ours. When we find one that is the same or higher
7330 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7331 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7332 * This will mean we have to start checking from the beginning again.
7337 mddev
->curr_resync
= 2;
7340 if (kthread_should_stop())
7341 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
7343 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
7345 for_each_mddev(mddev2
, tmp
) {
7346 if (mddev2
== mddev
)
7348 if (!mddev
->parallel_resync
7349 && mddev2
->curr_resync
7350 && match_mddev_units(mddev
, mddev2
)) {
7352 if (mddev
< mddev2
&& mddev
->curr_resync
== 2) {
7353 /* arbitrarily yield */
7354 mddev
->curr_resync
= 1;
7355 wake_up(&resync_wait
);
7357 if (mddev
> mddev2
&& mddev
->curr_resync
== 1)
7358 /* no need to wait here, we can wait the next
7359 * time 'round when curr_resync == 2
7362 /* We need to wait 'interruptible' so as not to
7363 * contribute to the load average, and not to
7364 * be caught by 'softlockup'
7366 prepare_to_wait(&resync_wait
, &wq
, TASK_INTERRUPTIBLE
);
7367 if (!kthread_should_stop() &&
7368 mddev2
->curr_resync
>= mddev
->curr_resync
) {
7369 printk(KERN_INFO
"md: delaying %s of %s"
7370 " until %s has finished (they"
7371 " share one or more physical units)\n",
7372 desc
, mdname(mddev
), mdname(mddev2
));
7374 if (signal_pending(current
))
7375 flush_signals(current
);
7377 finish_wait(&resync_wait
, &wq
);
7380 finish_wait(&resync_wait
, &wq
);
7383 } while (mddev
->curr_resync
< 2);
7386 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
7387 /* resync follows the size requested by the personality,
7388 * which defaults to physical size, but can be virtual size
7390 max_sectors
= mddev
->resync_max_sectors
;
7391 mddev
->resync_mismatches
= 0;
7392 /* we don't use the checkpoint if there's a bitmap */
7393 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
7394 j
= mddev
->resync_min
;
7395 else if (!mddev
->bitmap
)
7396 j
= mddev
->recovery_cp
;
7398 } else if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
7399 max_sectors
= mddev
->resync_max_sectors
;
7401 /* recovery follows the physical size of devices */
7402 max_sectors
= mddev
->dev_sectors
;
7405 rdev_for_each_rcu(rdev
, mddev
)
7406 if (rdev
->raid_disk
>= 0 &&
7407 !test_bit(Faulty
, &rdev
->flags
) &&
7408 !test_bit(In_sync
, &rdev
->flags
) &&
7409 rdev
->recovery_offset
< j
)
7410 j
= rdev
->recovery_offset
;
7414 printk(KERN_INFO
"md: %s of RAID array %s\n", desc
, mdname(mddev
));
7415 printk(KERN_INFO
"md: minimum _guaranteed_ speed:"
7416 " %d KB/sec/disk.\n", speed_min(mddev
));
7417 printk(KERN_INFO
"md: using maximum available idle IO bandwidth "
7418 "(but not more than %d KB/sec) for %s.\n",
7419 speed_max(mddev
), desc
);
7421 is_mddev_idle(mddev
, 1); /* this initializes IO event counters */
7424 for (m
= 0; m
< SYNC_MARKS
; m
++) {
7426 mark_cnt
[m
] = io_sectors
;
7429 mddev
->resync_mark
= mark
[last_mark
];
7430 mddev
->resync_mark_cnt
= mark_cnt
[last_mark
];
7433 * Tune reconstruction:
7435 window
= 32*(PAGE_SIZE
/512);
7436 printk(KERN_INFO
"md: using %dk window, over a total of %lluk.\n",
7437 window
/2, (unsigned long long)max_sectors
/2);
7439 atomic_set(&mddev
->recovery_active
, 0);
7444 "md: resuming %s of %s from checkpoint.\n",
7445 desc
, mdname(mddev
));
7446 mddev
->curr_resync
= j
;
7448 mddev
->curr_resync_completed
= j
;
7450 blk_start_plug(&plug
);
7451 while (j
< max_sectors
) {
7456 if (!test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
7457 ((mddev
->curr_resync
> mddev
->curr_resync_completed
&&
7458 (mddev
->curr_resync
- mddev
->curr_resync_completed
)
7459 > (max_sectors
>> 4)) ||
7460 (j
- mddev
->curr_resync_completed
)*2
7461 >= mddev
->resync_max
- mddev
->curr_resync_completed
7463 /* time to update curr_resync_completed */
7464 wait_event(mddev
->recovery_wait
,
7465 atomic_read(&mddev
->recovery_active
) == 0);
7466 mddev
->curr_resync_completed
= j
;
7467 set_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
7468 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
7471 while (j
>= mddev
->resync_max
&& !kthread_should_stop()) {
7472 /* As this condition is controlled by user-space,
7473 * we can block indefinitely, so use '_interruptible'
7474 * to avoid triggering warnings.
7476 flush_signals(current
); /* just in case */
7477 wait_event_interruptible(mddev
->recovery_wait
,
7478 mddev
->resync_max
> j
7479 || kthread_should_stop());
7482 if (kthread_should_stop())
7485 sectors
= mddev
->pers
->sync_request(mddev
, j
, &skipped
,
7486 currspeed
< speed_min(mddev
));
7488 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
7492 if (!skipped
) { /* actual IO requested */
7493 io_sectors
+= sectors
;
7494 atomic_add(sectors
, &mddev
->recovery_active
);
7497 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
7501 if (j
>1) mddev
->curr_resync
= j
;
7502 mddev
->curr_mark_cnt
= io_sectors
;
7503 if (last_check
== 0)
7504 /* this is the earliest that rebuild will be
7505 * visible in /proc/mdstat
7507 md_new_event(mddev
);
7509 if (last_check
+ window
> io_sectors
|| j
== max_sectors
)
7512 last_check
= io_sectors
;
7514 if (time_after_eq(jiffies
, mark
[last_mark
] + SYNC_MARK_STEP
)) {
7516 int next
= (last_mark
+1) % SYNC_MARKS
;
7518 mddev
->resync_mark
= mark
[next
];
7519 mddev
->resync_mark_cnt
= mark_cnt
[next
];
7520 mark
[next
] = jiffies
;
7521 mark_cnt
[next
] = io_sectors
- atomic_read(&mddev
->recovery_active
);
7526 if (kthread_should_stop())
7531 * this loop exits only if either when we are slower than
7532 * the 'hard' speed limit, or the system was IO-idle for
7534 * the system might be non-idle CPU-wise, but we only care
7535 * about not overloading the IO subsystem. (things like an
7536 * e2fsck being done on the RAID array should execute fast)
7540 currspeed
= ((unsigned long)(io_sectors
-mddev
->resync_mark_cnt
))/2
7541 /((jiffies
-mddev
->resync_mark
)/HZ
+1) +1;
7543 if (currspeed
> speed_min(mddev
)) {
7544 if ((currspeed
> speed_max(mddev
)) ||
7545 !is_mddev_idle(mddev
, 0)) {
7551 printk(KERN_INFO
"md: %s: %s done.\n",mdname(mddev
), desc
);
7553 * this also signals 'finished resyncing' to md_stop
7556 blk_finish_plug(&plug
);
7557 wait_event(mddev
->recovery_wait
, !atomic_read(&mddev
->recovery_active
));
7559 /* tell personality that we are finished */
7560 mddev
->pers
->sync_request(mddev
, max_sectors
, &skipped
, 1);
7562 if (!test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
) &&
7563 mddev
->curr_resync
> 2) {
7564 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
7565 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
7566 if (mddev
->curr_resync
>= mddev
->recovery_cp
) {
7568 "md: checkpointing %s of %s.\n",
7569 desc
, mdname(mddev
));
7570 mddev
->recovery_cp
=
7571 mddev
->curr_resync_completed
;
7574 mddev
->recovery_cp
= MaxSector
;
7576 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
7577 mddev
->curr_resync
= MaxSector
;
7579 rdev_for_each_rcu(rdev
, mddev
)
7580 if (rdev
->raid_disk
>= 0 &&
7581 mddev
->delta_disks
>= 0 &&
7582 !test_bit(Faulty
, &rdev
->flags
) &&
7583 !test_bit(In_sync
, &rdev
->flags
) &&
7584 rdev
->recovery_offset
< mddev
->curr_resync
)
7585 rdev
->recovery_offset
= mddev
->curr_resync
;
7590 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7592 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
7593 /* We completed so min/max setting can be forgotten if used. */
7594 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
7595 mddev
->resync_min
= 0;
7596 mddev
->resync_max
= MaxSector
;
7597 } else if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
7598 mddev
->resync_min
= mddev
->curr_resync_completed
;
7599 mddev
->curr_resync
= 0;
7600 wake_up(&resync_wait
);
7601 set_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7602 md_wakeup_thread(mddev
->thread
);
7607 * got a signal, exit.
7610 "md: md_do_sync() got signal ... exiting\n");
7611 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
7615 EXPORT_SYMBOL_GPL(md_do_sync
);
7617 static int remove_and_add_spares(struct mddev
*mddev
)
7619 struct md_rdev
*rdev
;
7623 mddev
->curr_resync_completed
= 0;
7625 rdev_for_each(rdev
, mddev
)
7626 if (rdev
->raid_disk
>= 0 &&
7627 !test_bit(Blocked
, &rdev
->flags
) &&
7628 (test_bit(Faulty
, &rdev
->flags
) ||
7629 ! test_bit(In_sync
, &rdev
->flags
)) &&
7630 atomic_read(&rdev
->nr_pending
)==0) {
7631 if (mddev
->pers
->hot_remove_disk(
7632 mddev
, rdev
) == 0) {
7633 sysfs_unlink_rdev(mddev
, rdev
);
7634 rdev
->raid_disk
= -1;
7639 sysfs_notify(&mddev
->kobj
, NULL
,
7643 rdev_for_each(rdev
, mddev
) {
7644 if (rdev
->raid_disk
>= 0 &&
7645 !test_bit(In_sync
, &rdev
->flags
) &&
7646 !test_bit(Faulty
, &rdev
->flags
))
7648 if (rdev
->raid_disk
< 0
7649 && !test_bit(Faulty
, &rdev
->flags
)) {
7650 rdev
->recovery_offset
= 0;
7652 hot_add_disk(mddev
, rdev
) == 0) {
7653 if (sysfs_link_rdev(mddev
, rdev
))
7654 /* failure here is OK */;
7656 md_new_event(mddev
);
7657 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7664 static void reap_sync_thread(struct mddev
*mddev
)
7666 struct md_rdev
*rdev
;
7668 /* resync has finished, collect result */
7669 md_unregister_thread(&mddev
->sync_thread
);
7670 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
) &&
7671 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
7673 /* activate any spares */
7674 if (mddev
->pers
->spare_active(mddev
))
7675 sysfs_notify(&mddev
->kobj
, NULL
,
7678 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
7679 mddev
->pers
->finish_reshape
)
7680 mddev
->pers
->finish_reshape(mddev
);
7682 /* If array is no-longer degraded, then any saved_raid_disk
7683 * information must be scrapped. Also if any device is now
7684 * In_sync we must scrape the saved_raid_disk for that device
7685 * do the superblock for an incrementally recovered device
7688 rdev_for_each(rdev
, mddev
)
7689 if (!mddev
->degraded
||
7690 test_bit(In_sync
, &rdev
->flags
))
7691 rdev
->saved_raid_disk
= -1;
7693 md_update_sb(mddev
, 1);
7694 clear_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7695 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7696 clear_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7697 clear_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
);
7698 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7699 /* flag recovery needed just to double check */
7700 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7701 sysfs_notify_dirent_safe(mddev
->sysfs_action
);
7702 md_new_event(mddev
);
7703 if (mddev
->event_work
.func
)
7704 queue_work(md_misc_wq
, &mddev
->event_work
);
7708 * This routine is regularly called by all per-raid-array threads to
7709 * deal with generic issues like resync and super-block update.
7710 * Raid personalities that don't have a thread (linear/raid0) do not
7711 * need this as they never do any recovery or update the superblock.
7713 * It does not do any resync itself, but rather "forks" off other threads
7714 * to do that as needed.
7715 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7716 * "->recovery" and create a thread at ->sync_thread.
7717 * When the thread finishes it sets MD_RECOVERY_DONE
7718 * and wakeups up this thread which will reap the thread and finish up.
7719 * This thread also removes any faulty devices (with nr_pending == 0).
7721 * The overall approach is:
7722 * 1/ if the superblock needs updating, update it.
7723 * 2/ If a recovery thread is running, don't do anything else.
7724 * 3/ If recovery has finished, clean up, possibly marking spares active.
7725 * 4/ If there are any faulty devices, remove them.
7726 * 5/ If array is degraded, try to add spares devices
7727 * 6/ If array has spares or is not in-sync, start a resync thread.
7729 void md_check_recovery(struct mddev
*mddev
)
7731 if (mddev
->suspended
)
7735 bitmap_daemon_work(mddev
);
7737 if (signal_pending(current
)) {
7738 if (mddev
->pers
->sync_request
&& !mddev
->external
) {
7739 printk(KERN_INFO
"md: %s in immediate safe mode\n",
7741 mddev
->safemode
= 2;
7743 flush_signals(current
);
7746 if (mddev
->ro
&& !test_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
))
7749 (mddev
->flags
& ~ (1<<MD_CHANGE_PENDING
)) ||
7750 test_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
) ||
7751 test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
) ||
7752 (mddev
->external
== 0 && mddev
->safemode
== 1) ||
7753 (mddev
->safemode
== 2 && ! atomic_read(&mddev
->writes_pending
)
7754 && !mddev
->in_sync
&& mddev
->recovery_cp
== MaxSector
)
7758 if (mddev_trylock(mddev
)) {
7762 /* Only thing we do on a ro array is remove
7765 struct md_rdev
*rdev
;
7766 rdev_for_each(rdev
, mddev
)
7767 if (rdev
->raid_disk
>= 0 &&
7768 !test_bit(Blocked
, &rdev
->flags
) &&
7769 test_bit(Faulty
, &rdev
->flags
) &&
7770 atomic_read(&rdev
->nr_pending
)==0) {
7771 if (mddev
->pers
->hot_remove_disk(
7772 mddev
, rdev
) == 0) {
7773 sysfs_unlink_rdev(mddev
, rdev
);
7774 rdev
->raid_disk
= -1;
7777 clear_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7781 if (!mddev
->external
) {
7783 spin_lock_irq(&mddev
->write_lock
);
7784 if (mddev
->safemode
&&
7785 !atomic_read(&mddev
->writes_pending
) &&
7787 mddev
->recovery_cp
== MaxSector
) {
7790 set_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
7792 if (mddev
->safemode
== 1)
7793 mddev
->safemode
= 0;
7794 spin_unlock_irq(&mddev
->write_lock
);
7796 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
7800 md_update_sb(mddev
, 0);
7802 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
) &&
7803 !test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
)) {
7804 /* resync/recovery still happening */
7805 clear_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7808 if (mddev
->sync_thread
) {
7809 reap_sync_thread(mddev
);
7812 /* Set RUNNING before clearing NEEDED to avoid
7813 * any transients in the value of "sync_action".
7815 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7816 /* Clear some bits that don't mean anything, but
7819 clear_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
7820 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7822 if (!test_and_clear_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
) ||
7823 test_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
))
7825 /* no recovery is running.
7826 * remove any failed drives, then
7827 * add spares if possible.
7828 * Spare are also removed and re-added, to allow
7829 * the personality to fail the re-add.
7832 if (mddev
->reshape_position
!= MaxSector
) {
7833 if (mddev
->pers
->check_reshape
== NULL
||
7834 mddev
->pers
->check_reshape(mddev
) != 0)
7835 /* Cannot proceed */
7837 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7838 clear_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
7839 } else if ((spares
= remove_and_add_spares(mddev
))) {
7840 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7841 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7842 clear_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
);
7843 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
7844 } else if (mddev
->recovery_cp
< MaxSector
) {
7845 set_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7846 clear_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
7847 } else if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
7848 /* nothing to be done ... */
7851 if (mddev
->pers
->sync_request
) {
7853 /* We are adding a device or devices to an array
7854 * which has the bitmap stored on all devices.
7855 * So make sure all bitmap pages get written
7857 bitmap_write_all(mddev
->bitmap
);
7859 mddev
->sync_thread
= md_register_thread(md_do_sync
,
7862 if (!mddev
->sync_thread
) {
7863 printk(KERN_ERR
"%s: could not start resync"
7866 /* leave the spares where they are, it shouldn't hurt */
7867 clear_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7868 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7869 clear_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7870 clear_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
);
7871 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7873 md_wakeup_thread(mddev
->sync_thread
);
7874 sysfs_notify_dirent_safe(mddev
->sysfs_action
);
7875 md_new_event(mddev
);
7878 if (!mddev
->sync_thread
) {
7879 clear_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7880 if (test_and_clear_bit(MD_RECOVERY_RECOVER
,
7882 if (mddev
->sysfs_action
)
7883 sysfs_notify_dirent_safe(mddev
->sysfs_action
);
7885 mddev_unlock(mddev
);
7889 void md_wait_for_blocked_rdev(struct md_rdev
*rdev
, struct mddev
*mddev
)
7891 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
7892 wait_event_timeout(rdev
->blocked_wait
,
7893 !test_bit(Blocked
, &rdev
->flags
) &&
7894 !test_bit(BlockedBadBlocks
, &rdev
->flags
),
7895 msecs_to_jiffies(5000));
7896 rdev_dec_pending(rdev
, mddev
);
7898 EXPORT_SYMBOL(md_wait_for_blocked_rdev
);
7900 void md_finish_reshape(struct mddev
*mddev
)
7902 /* called be personality module when reshape completes. */
7903 struct md_rdev
*rdev
;
7905 rdev_for_each(rdev
, mddev
) {
7906 if (rdev
->data_offset
> rdev
->new_data_offset
)
7907 rdev
->sectors
+= rdev
->data_offset
- rdev
->new_data_offset
;
7909 rdev
->sectors
-= rdev
->new_data_offset
- rdev
->data_offset
;
7910 rdev
->data_offset
= rdev
->new_data_offset
;
7913 EXPORT_SYMBOL(md_finish_reshape
);
7915 /* Bad block management.
7916 * We can record which blocks on each device are 'bad' and so just
7917 * fail those blocks, or that stripe, rather than the whole device.
7918 * Entries in the bad-block table are 64bits wide. This comprises:
7919 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7920 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7921 * A 'shift' can be set so that larger blocks are tracked and
7922 * consequently larger devices can be covered.
7923 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7925 * Locking of the bad-block table uses a seqlock so md_is_badblock
7926 * might need to retry if it is very unlucky.
7927 * We will sometimes want to check for bad blocks in a bi_end_io function,
7928 * so we use the write_seqlock_irq variant.
7930 * When looking for a bad block we specify a range and want to
7931 * know if any block in the range is bad. So we binary-search
7932 * to the last range that starts at-or-before the given endpoint,
7933 * (or "before the sector after the target range")
7934 * then see if it ends after the given start.
7936 * 0 if there are no known bad blocks in the range
7937 * 1 if there are known bad block which are all acknowledged
7938 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7939 * plus the start/length of the first bad section we overlap.
7941 int md_is_badblock(struct badblocks
*bb
, sector_t s
, int sectors
,
7942 sector_t
*first_bad
, int *bad_sectors
)
7948 sector_t target
= s
+ sectors
;
7951 if (bb
->shift
> 0) {
7952 /* round the start down, and the end up */
7954 target
+= (1<<bb
->shift
) - 1;
7955 target
>>= bb
->shift
;
7956 sectors
= target
- s
;
7958 /* 'target' is now the first block after the bad range */
7961 seq
= read_seqbegin(&bb
->lock
);
7965 /* Binary search between lo and hi for 'target'
7966 * i.e. for the last range that starts before 'target'
7968 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7969 * are known not to be the last range before target.
7970 * VARIANT: hi-lo is the number of possible
7971 * ranges, and decreases until it reaches 1
7973 while (hi
- lo
> 1) {
7974 int mid
= (lo
+ hi
) / 2;
7975 sector_t a
= BB_OFFSET(p
[mid
]);
7977 /* This could still be the one, earlier ranges
7981 /* This and later ranges are definitely out. */
7984 /* 'lo' might be the last that started before target, but 'hi' isn't */
7986 /* need to check all range that end after 's' to see if
7987 * any are unacknowledged.
7990 BB_OFFSET(p
[lo
]) + BB_LEN(p
[lo
]) > s
) {
7991 if (BB_OFFSET(p
[lo
]) < target
) {
7992 /* starts before the end, and finishes after
7993 * the start, so they must overlap
7995 if (rv
!= -1 && BB_ACK(p
[lo
]))
7999 *first_bad
= BB_OFFSET(p
[lo
]);
8000 *bad_sectors
= BB_LEN(p
[lo
]);
8006 if (read_seqretry(&bb
->lock
, seq
))
8011 EXPORT_SYMBOL_GPL(md_is_badblock
);
8014 * Add a range of bad blocks to the table.
8015 * This might extend the table, or might contract it
8016 * if two adjacent ranges can be merged.
8017 * We binary-search to find the 'insertion' point, then
8018 * decide how best to handle it.
8020 static int md_set_badblocks(struct badblocks
*bb
, sector_t s
, int sectors
,
8028 /* badblocks are disabled */
8032 /* round the start down, and the end up */
8033 sector_t next
= s
+ sectors
;
8035 next
+= (1<<bb
->shift
) - 1;
8040 write_seqlock_irq(&bb
->lock
);
8045 /* Find the last range that starts at-or-before 's' */
8046 while (hi
- lo
> 1) {
8047 int mid
= (lo
+ hi
) / 2;
8048 sector_t a
= BB_OFFSET(p
[mid
]);
8054 if (hi
> lo
&& BB_OFFSET(p
[lo
]) > s
)
8058 /* we found a range that might merge with the start
8061 sector_t a
= BB_OFFSET(p
[lo
]);
8062 sector_t e
= a
+ BB_LEN(p
[lo
]);
8063 int ack
= BB_ACK(p
[lo
]);
8065 /* Yes, we can merge with a previous range */
8066 if (s
== a
&& s
+ sectors
>= e
)
8067 /* new range covers old */
8070 ack
= ack
&& acknowledged
;
8072 if (e
< s
+ sectors
)
8074 if (e
- a
<= BB_MAX_LEN
) {
8075 p
[lo
] = BB_MAKE(a
, e
-a
, ack
);
8078 /* does not all fit in one range,
8079 * make p[lo] maximal
8081 if (BB_LEN(p
[lo
]) != BB_MAX_LEN
)
8082 p
[lo
] = BB_MAKE(a
, BB_MAX_LEN
, ack
);
8088 if (sectors
&& hi
< bb
->count
) {
8089 /* 'hi' points to the first range that starts after 's'.
8090 * Maybe we can merge with the start of that range */
8091 sector_t a
= BB_OFFSET(p
[hi
]);
8092 sector_t e
= a
+ BB_LEN(p
[hi
]);
8093 int ack
= BB_ACK(p
[hi
]);
8094 if (a
<= s
+ sectors
) {
8095 /* merging is possible */
8096 if (e
<= s
+ sectors
) {
8101 ack
= ack
&& acknowledged
;
8104 if (e
- a
<= BB_MAX_LEN
) {
8105 p
[hi
] = BB_MAKE(a
, e
-a
, ack
);
8108 p
[hi
] = BB_MAKE(a
, BB_MAX_LEN
, ack
);
8116 if (sectors
== 0 && hi
< bb
->count
) {
8117 /* we might be able to combine lo and hi */
8118 /* Note: 's' is at the end of 'lo' */
8119 sector_t a
= BB_OFFSET(p
[hi
]);
8120 int lolen
= BB_LEN(p
[lo
]);
8121 int hilen
= BB_LEN(p
[hi
]);
8122 int newlen
= lolen
+ hilen
- (s
- a
);
8123 if (s
>= a
&& newlen
< BB_MAX_LEN
) {
8124 /* yes, we can combine them */
8125 int ack
= BB_ACK(p
[lo
]) && BB_ACK(p
[hi
]);
8126 p
[lo
] = BB_MAKE(BB_OFFSET(p
[lo
]), newlen
, ack
);
8127 memmove(p
+ hi
, p
+ hi
+ 1,
8128 (bb
->count
- hi
- 1) * 8);
8133 /* didn't merge (it all).
8134 * Need to add a range just before 'hi' */
8135 if (bb
->count
>= MD_MAX_BADBLOCKS
) {
8136 /* No room for more */
8140 int this_sectors
= sectors
;
8141 memmove(p
+ hi
+ 1, p
+ hi
,
8142 (bb
->count
- hi
) * 8);
8145 if (this_sectors
> BB_MAX_LEN
)
8146 this_sectors
= BB_MAX_LEN
;
8147 p
[hi
] = BB_MAKE(s
, this_sectors
, acknowledged
);
8148 sectors
-= this_sectors
;
8155 bb
->unacked_exist
= 1;
8156 write_sequnlock_irq(&bb
->lock
);
8161 int rdev_set_badblocks(struct md_rdev
*rdev
, sector_t s
, int sectors
,
8166 s
+= rdev
->new_data_offset
;
8168 s
+= rdev
->data_offset
;
8169 rv
= md_set_badblocks(&rdev
->badblocks
,
8172 /* Make sure they get written out promptly */
8173 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
8174 set_bit(MD_CHANGE_CLEAN
, &rdev
->mddev
->flags
);
8175 md_wakeup_thread(rdev
->mddev
->thread
);
8179 EXPORT_SYMBOL_GPL(rdev_set_badblocks
);
8182 * Remove a range of bad blocks from the table.
8183 * This may involve extending the table if we spilt a region,
8184 * but it must not fail. So if the table becomes full, we just
8185 * drop the remove request.
8187 static int md_clear_badblocks(struct badblocks
*bb
, sector_t s
, int sectors
)
8191 sector_t target
= s
+ sectors
;
8194 if (bb
->shift
> 0) {
8195 /* When clearing we round the start up and the end down.
8196 * This should not matter as the shift should align with
8197 * the block size and no rounding should ever be needed.
8198 * However it is better the think a block is bad when it
8199 * isn't than to think a block is not bad when it is.
8201 s
+= (1<<bb
->shift
) - 1;
8203 target
>>= bb
->shift
;
8204 sectors
= target
- s
;
8207 write_seqlock_irq(&bb
->lock
);
8212 /* Find the last range that starts before 'target' */
8213 while (hi
- lo
> 1) {
8214 int mid
= (lo
+ hi
) / 2;
8215 sector_t a
= BB_OFFSET(p
[mid
]);
8222 /* p[lo] is the last range that could overlap the
8223 * current range. Earlier ranges could also overlap,
8224 * but only this one can overlap the end of the range.
8226 if (BB_OFFSET(p
[lo
]) + BB_LEN(p
[lo
]) > target
) {
8227 /* Partial overlap, leave the tail of this range */
8228 int ack
= BB_ACK(p
[lo
]);
8229 sector_t a
= BB_OFFSET(p
[lo
]);
8230 sector_t end
= a
+ BB_LEN(p
[lo
]);
8233 /* we need to split this range */
8234 if (bb
->count
>= MD_MAX_BADBLOCKS
) {
8238 memmove(p
+lo
+1, p
+lo
, (bb
->count
- lo
) * 8);
8240 p
[lo
] = BB_MAKE(a
, s
-a
, ack
);
8243 p
[lo
] = BB_MAKE(target
, end
- target
, ack
);
8244 /* there is no longer an overlap */
8249 BB_OFFSET(p
[lo
]) + BB_LEN(p
[lo
]) > s
) {
8250 /* This range does overlap */
8251 if (BB_OFFSET(p
[lo
]) < s
) {
8252 /* Keep the early parts of this range. */
8253 int ack
= BB_ACK(p
[lo
]);
8254 sector_t start
= BB_OFFSET(p
[lo
]);
8255 p
[lo
] = BB_MAKE(start
, s
- start
, ack
);
8256 /* now low doesn't overlap, so.. */
8261 /* 'lo' is strictly before, 'hi' is strictly after,
8262 * anything between needs to be discarded
8265 memmove(p
+lo
+1, p
+hi
, (bb
->count
- hi
) * 8);
8266 bb
->count
-= (hi
- lo
- 1);
8272 write_sequnlock_irq(&bb
->lock
);
8276 int rdev_clear_badblocks(struct md_rdev
*rdev
, sector_t s
, int sectors
,
8280 s
+= rdev
->new_data_offset
;
8282 s
+= rdev
->data_offset
;
8283 return md_clear_badblocks(&rdev
->badblocks
,
8286 EXPORT_SYMBOL_GPL(rdev_clear_badblocks
);
8289 * Acknowledge all bad blocks in a list.
8290 * This only succeeds if ->changed is clear. It is used by
8291 * in-kernel metadata updates
8293 void md_ack_all_badblocks(struct badblocks
*bb
)
8295 if (bb
->page
== NULL
|| bb
->changed
)
8296 /* no point even trying */
8298 write_seqlock_irq(&bb
->lock
);
8300 if (bb
->changed
== 0 && bb
->unacked_exist
) {
8303 for (i
= 0; i
< bb
->count
; i
++) {
8304 if (!BB_ACK(p
[i
])) {
8305 sector_t start
= BB_OFFSET(p
[i
]);
8306 int len
= BB_LEN(p
[i
]);
8307 p
[i
] = BB_MAKE(start
, len
, 1);
8310 bb
->unacked_exist
= 0;
8312 write_sequnlock_irq(&bb
->lock
);
8314 EXPORT_SYMBOL_GPL(md_ack_all_badblocks
);
8316 /* sysfs access to bad-blocks list.
8317 * We present two files.
8318 * 'bad-blocks' lists sector numbers and lengths of ranges that
8319 * are recorded as bad. The list is truncated to fit within
8320 * the one-page limit of sysfs.
8321 * Writing "sector length" to this file adds an acknowledged
8323 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8324 * been acknowledged. Writing to this file adds bad blocks
8325 * without acknowledging them. This is largely for testing.
8329 badblocks_show(struct badblocks
*bb
, char *page
, int unack
)
8340 seq
= read_seqbegin(&bb
->lock
);
8345 while (len
< PAGE_SIZE
&& i
< bb
->count
) {
8346 sector_t s
= BB_OFFSET(p
[i
]);
8347 unsigned int length
= BB_LEN(p
[i
]);
8348 int ack
= BB_ACK(p
[i
]);
8354 len
+= snprintf(page
+len
, PAGE_SIZE
-len
, "%llu %u\n",
8355 (unsigned long long)s
<< bb
->shift
,
8356 length
<< bb
->shift
);
8358 if (unack
&& len
== 0)
8359 bb
->unacked_exist
= 0;
8361 if (read_seqretry(&bb
->lock
, seq
))
8370 badblocks_store(struct badblocks
*bb
, const char *page
, size_t len
, int unack
)
8372 unsigned long long sector
;
8376 /* Allow clearing via sysfs *only* for testing/debugging.
8377 * Normally only a successful write may clear a badblock
8380 if (page
[0] == '-') {
8384 #endif /* DO_DEBUG */
8386 switch (sscanf(page
, "%llu %d%c", §or
, &length
, &newline
)) {
8388 if (newline
!= '\n')
8400 md_clear_badblocks(bb
, sector
, length
);
8403 #endif /* DO_DEBUG */
8404 if (md_set_badblocks(bb
, sector
, length
, !unack
))
8410 static int md_notify_reboot(struct notifier_block
*this,
8411 unsigned long code
, void *x
)
8413 struct list_head
*tmp
;
8414 struct mddev
*mddev
;
8417 for_each_mddev(mddev
, tmp
) {
8418 if (mddev_trylock(mddev
)) {
8420 __md_stop_writes(mddev
);
8421 mddev
->safemode
= 2;
8422 mddev_unlock(mddev
);
8427 * certain more exotic SCSI devices are known to be
8428 * volatile wrt too early system reboots. While the
8429 * right place to handle this issue is the given
8430 * driver, we do want to have a safe RAID driver ...
8438 static struct notifier_block md_notifier
= {
8439 .notifier_call
= md_notify_reboot
,
8441 .priority
= INT_MAX
, /* before any real devices */
8444 static void md_geninit(void)
8446 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t
));
8448 proc_create("mdstat", S_IRUGO
, NULL
, &md_seq_fops
);
8451 static int __init
md_init(void)
8455 md_wq
= alloc_workqueue("md", WQ_MEM_RECLAIM
, 0);
8459 md_misc_wq
= alloc_workqueue("md_misc", 0, 0);
8463 if ((ret
= register_blkdev(MD_MAJOR
, "md")) < 0)
8466 if ((ret
= register_blkdev(0, "mdp")) < 0)
8470 blk_register_region(MKDEV(MD_MAJOR
, 0), 1UL<<MINORBITS
, THIS_MODULE
,
8471 md_probe
, NULL
, NULL
);
8472 blk_register_region(MKDEV(mdp_major
, 0), 1UL<<MINORBITS
, THIS_MODULE
,
8473 md_probe
, NULL
, NULL
);
8475 register_reboot_notifier(&md_notifier
);
8476 raid_table_header
= register_sysctl_table(raid_root_table
);
8482 unregister_blkdev(MD_MAJOR
, "md");
8484 destroy_workqueue(md_misc_wq
);
8486 destroy_workqueue(md_wq
);
8494 * Searches all registered partitions for autorun RAID arrays
8498 static LIST_HEAD(all_detected_devices
);
8499 struct detected_devices_node
{
8500 struct list_head list
;
8504 void md_autodetect_dev(dev_t dev
)
8506 struct detected_devices_node
*node_detected_dev
;
8508 node_detected_dev
= kzalloc(sizeof(*node_detected_dev
), GFP_KERNEL
);
8509 if (node_detected_dev
) {
8510 node_detected_dev
->dev
= dev
;
8511 list_add_tail(&node_detected_dev
->list
, &all_detected_devices
);
8513 printk(KERN_CRIT
"md: md_autodetect_dev: kzalloc failed"
8514 ", skipping dev(%d,%d)\n", MAJOR(dev
), MINOR(dev
));
8519 static void autostart_arrays(int part
)
8521 struct md_rdev
*rdev
;
8522 struct detected_devices_node
*node_detected_dev
;
8524 int i_scanned
, i_passed
;
8529 printk(KERN_INFO
"md: Autodetecting RAID arrays.\n");
8531 while (!list_empty(&all_detected_devices
) && i_scanned
< INT_MAX
) {
8533 node_detected_dev
= list_entry(all_detected_devices
.next
,
8534 struct detected_devices_node
, list
);
8535 list_del(&node_detected_dev
->list
);
8536 dev
= node_detected_dev
->dev
;
8537 kfree(node_detected_dev
);
8538 rdev
= md_import_device(dev
,0, 90);
8542 if (test_bit(Faulty
, &rdev
->flags
)) {
8546 set_bit(AutoDetected
, &rdev
->flags
);
8547 list_add(&rdev
->same_set
, &pending_raid_disks
);
8551 printk(KERN_INFO
"md: Scanned %d and added %d devices.\n",
8552 i_scanned
, i_passed
);
8554 autorun_devices(part
);
8557 #endif /* !MODULE */
8559 static __exit
void md_exit(void)
8561 struct mddev
*mddev
;
8562 struct list_head
*tmp
;
8564 blk_unregister_region(MKDEV(MD_MAJOR
,0), 1U << MINORBITS
);
8565 blk_unregister_region(MKDEV(mdp_major
,0), 1U << MINORBITS
);
8567 unregister_blkdev(MD_MAJOR
,"md");
8568 unregister_blkdev(mdp_major
, "mdp");
8569 unregister_reboot_notifier(&md_notifier
);
8570 unregister_sysctl_table(raid_table_header
);
8571 remove_proc_entry("mdstat", NULL
);
8572 for_each_mddev(mddev
, tmp
) {
8573 export_array(mddev
);
8574 mddev
->hold_active
= 0;
8576 destroy_workqueue(md_misc_wq
);
8577 destroy_workqueue(md_wq
);
8580 subsys_initcall(md_init
);
8581 module_exit(md_exit
)
8583 static int get_ro(char *buffer
, struct kernel_param
*kp
)
8585 return sprintf(buffer
, "%d", start_readonly
);
8587 static int set_ro(const char *val
, struct kernel_param
*kp
)
8590 int num
= simple_strtoul(val
, &e
, 10);
8591 if (*val
&& (*e
== '\0' || *e
== '\n')) {
8592 start_readonly
= num
;
8598 module_param_call(start_ro
, set_ro
, get_ro
, NULL
, S_IRUSR
|S_IWUSR
);
8599 module_param(start_dirty_degraded
, int, S_IRUGO
|S_IWUSR
);
8601 module_param_call(new_array
, add_named_array
, NULL
, NULL
, S_IWUSR
);
8603 EXPORT_SYMBOL(register_md_personality
);
8604 EXPORT_SYMBOL(unregister_md_personality
);
8605 EXPORT_SYMBOL(md_error
);
8606 EXPORT_SYMBOL(md_done_sync
);
8607 EXPORT_SYMBOL(md_write_start
);
8608 EXPORT_SYMBOL(md_write_end
);
8609 EXPORT_SYMBOL(md_register_thread
);
8610 EXPORT_SYMBOL(md_unregister_thread
);
8611 EXPORT_SYMBOL(md_wakeup_thread
);
8612 EXPORT_SYMBOL(md_check_recovery
);
8613 MODULE_LICENSE("GPL");
8614 MODULE_DESCRIPTION("MD RAID framework");
8616 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR
);