2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #define UBIFS_DBG_PRESERVE_UBI
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 #include <linux/slab.h>
39 #ifdef CONFIG_UBIFS_FS_DEBUG
41 DEFINE_SPINLOCK(dbg_lock
);
43 static char dbg_key_buf0
[128];
44 static char dbg_key_buf1
[128];
46 unsigned int ubifs_msg_flags
= UBIFS_MSG_FLAGS_DEFAULT
;
47 unsigned int ubifs_chk_flags
= UBIFS_CHK_FLAGS_DEFAULT
;
48 unsigned int ubifs_tst_flags
;
50 module_param_named(debug_msgs
, ubifs_msg_flags
, uint
, S_IRUGO
| S_IWUSR
);
51 module_param_named(debug_chks
, ubifs_chk_flags
, uint
, S_IRUGO
| S_IWUSR
);
52 module_param_named(debug_tsts
, ubifs_tst_flags
, uint
, S_IRUGO
| S_IWUSR
);
54 MODULE_PARM_DESC(debug_msgs
, "Debug message type flags");
55 MODULE_PARM_DESC(debug_chks
, "Debug check flags");
56 MODULE_PARM_DESC(debug_tsts
, "Debug special test flags");
58 static const char *get_key_fmt(int fmt
)
61 case UBIFS_SIMPLE_KEY_FMT
:
64 return "unknown/invalid format";
68 static const char *get_key_hash(int hash
)
71 case UBIFS_KEY_HASH_R5
:
73 case UBIFS_KEY_HASH_TEST
:
76 return "unknown/invalid name hash";
80 static const char *get_key_type(int type
)
94 return "unknown/invalid key";
98 static void sprintf_key(const struct ubifs_info
*c
, const union ubifs_key
*key
,
102 int type
= key_type(c
, key
);
104 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
107 sprintf(p
, "(%lu, %s)", (unsigned long)key_inum(c
, key
),
112 sprintf(p
, "(%lu, %s, %#08x)",
113 (unsigned long)key_inum(c
, key
),
114 get_key_type(type
), key_hash(c
, key
));
117 sprintf(p
, "(%lu, %s, %u)",
118 (unsigned long)key_inum(c
, key
),
119 get_key_type(type
), key_block(c
, key
));
122 sprintf(p
, "(%lu, %s)",
123 (unsigned long)key_inum(c
, key
),
127 sprintf(p
, "(bad key type: %#08x, %#08x)",
128 key
->u32
[0], key
->u32
[1]);
131 sprintf(p
, "bad key format %d", c
->key_fmt
);
134 const char *dbg_key_str0(const struct ubifs_info
*c
, const union ubifs_key
*key
)
136 /* dbg_lock must be held */
137 sprintf_key(c
, key
, dbg_key_buf0
);
141 const char *dbg_key_str1(const struct ubifs_info
*c
, const union ubifs_key
*key
)
143 /* dbg_lock must be held */
144 sprintf_key(c
, key
, dbg_key_buf1
);
148 const char *dbg_ntype(int type
)
152 return "padding node";
154 return "superblock node";
156 return "master node";
158 return "reference node";
161 case UBIFS_DENT_NODE
:
162 return "direntry node";
163 case UBIFS_XENT_NODE
:
164 return "xentry node";
165 case UBIFS_DATA_NODE
:
167 case UBIFS_TRUN_NODE
:
168 return "truncate node";
170 return "indexing node";
172 return "commit start node";
173 case UBIFS_ORPH_NODE
:
174 return "orphan node";
176 return "unknown node";
180 static const char *dbg_gtype(int type
)
183 case UBIFS_NO_NODE_GROUP
:
184 return "no node group";
185 case UBIFS_IN_NODE_GROUP
:
186 return "in node group";
187 case UBIFS_LAST_OF_NODE_GROUP
:
188 return "last of node group";
194 const char *dbg_cstate(int cmt_state
)
198 return "commit resting";
199 case COMMIT_BACKGROUND
:
200 return "background commit requested";
201 case COMMIT_REQUIRED
:
202 return "commit required";
203 case COMMIT_RUNNING_BACKGROUND
:
204 return "BACKGROUND commit running";
205 case COMMIT_RUNNING_REQUIRED
:
206 return "commit running and required";
208 return "broken commit";
210 return "unknown commit state";
214 const char *dbg_jhead(int jhead
)
224 return "unknown journal head";
228 static void dump_ch(const struct ubifs_ch
*ch
)
230 printk(KERN_DEBUG
"\tmagic %#x\n", le32_to_cpu(ch
->magic
));
231 printk(KERN_DEBUG
"\tcrc %#x\n", le32_to_cpu(ch
->crc
));
232 printk(KERN_DEBUG
"\tnode_type %d (%s)\n", ch
->node_type
,
233 dbg_ntype(ch
->node_type
));
234 printk(KERN_DEBUG
"\tgroup_type %d (%s)\n", ch
->group_type
,
235 dbg_gtype(ch
->group_type
));
236 printk(KERN_DEBUG
"\tsqnum %llu\n",
237 (unsigned long long)le64_to_cpu(ch
->sqnum
));
238 printk(KERN_DEBUG
"\tlen %u\n", le32_to_cpu(ch
->len
));
241 void dbg_dump_inode(const struct ubifs_info
*c
, const struct inode
*inode
)
243 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
245 printk(KERN_DEBUG
"Dump in-memory inode:");
246 printk(KERN_DEBUG
"\tinode %lu\n", inode
->i_ino
);
247 printk(KERN_DEBUG
"\tsize %llu\n",
248 (unsigned long long)i_size_read(inode
));
249 printk(KERN_DEBUG
"\tnlink %u\n", inode
->i_nlink
);
250 printk(KERN_DEBUG
"\tuid %u\n", (unsigned int)inode
->i_uid
);
251 printk(KERN_DEBUG
"\tgid %u\n", (unsigned int)inode
->i_gid
);
252 printk(KERN_DEBUG
"\tatime %u.%u\n",
253 (unsigned int)inode
->i_atime
.tv_sec
,
254 (unsigned int)inode
->i_atime
.tv_nsec
);
255 printk(KERN_DEBUG
"\tmtime %u.%u\n",
256 (unsigned int)inode
->i_mtime
.tv_sec
,
257 (unsigned int)inode
->i_mtime
.tv_nsec
);
258 printk(KERN_DEBUG
"\tctime %u.%u\n",
259 (unsigned int)inode
->i_ctime
.tv_sec
,
260 (unsigned int)inode
->i_ctime
.tv_nsec
);
261 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
262 printk(KERN_DEBUG
"\txattr_size %u\n", ui
->xattr_size
);
263 printk(KERN_DEBUG
"\txattr_cnt %u\n", ui
->xattr_cnt
);
264 printk(KERN_DEBUG
"\txattr_names %u\n", ui
->xattr_names
);
265 printk(KERN_DEBUG
"\tdirty %u\n", ui
->dirty
);
266 printk(KERN_DEBUG
"\txattr %u\n", ui
->xattr
);
267 printk(KERN_DEBUG
"\tbulk_read %u\n", ui
->xattr
);
268 printk(KERN_DEBUG
"\tsynced_i_size %llu\n",
269 (unsigned long long)ui
->synced_i_size
);
270 printk(KERN_DEBUG
"\tui_size %llu\n",
271 (unsigned long long)ui
->ui_size
);
272 printk(KERN_DEBUG
"\tflags %d\n", ui
->flags
);
273 printk(KERN_DEBUG
"\tcompr_type %d\n", ui
->compr_type
);
274 printk(KERN_DEBUG
"\tlast_page_read %lu\n", ui
->last_page_read
);
275 printk(KERN_DEBUG
"\tread_in_a_row %lu\n", ui
->read_in_a_row
);
276 printk(KERN_DEBUG
"\tdata_len %d\n", ui
->data_len
);
279 void dbg_dump_node(const struct ubifs_info
*c
, const void *node
)
283 const struct ubifs_ch
*ch
= node
;
285 if (dbg_failure_mode
)
288 /* If the magic is incorrect, just hexdump the first bytes */
289 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
290 printk(KERN_DEBUG
"Not a node, first %zu bytes:", UBIFS_CH_SZ
);
291 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
292 (void *)node
, UBIFS_CH_SZ
, 1);
296 spin_lock(&dbg_lock
);
299 switch (ch
->node_type
) {
302 const struct ubifs_pad_node
*pad
= node
;
304 printk(KERN_DEBUG
"\tpad_len %u\n",
305 le32_to_cpu(pad
->pad_len
));
310 const struct ubifs_sb_node
*sup
= node
;
311 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
313 printk(KERN_DEBUG
"\tkey_hash %d (%s)\n",
314 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
315 printk(KERN_DEBUG
"\tkey_fmt %d (%s)\n",
316 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
317 printk(KERN_DEBUG
"\tflags %#x\n", sup_flags
);
318 printk(KERN_DEBUG
"\t big_lpt %u\n",
319 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
320 printk(KERN_DEBUG
"\tmin_io_size %u\n",
321 le32_to_cpu(sup
->min_io_size
));
322 printk(KERN_DEBUG
"\tleb_size %u\n",
323 le32_to_cpu(sup
->leb_size
));
324 printk(KERN_DEBUG
"\tleb_cnt %u\n",
325 le32_to_cpu(sup
->leb_cnt
));
326 printk(KERN_DEBUG
"\tmax_leb_cnt %u\n",
327 le32_to_cpu(sup
->max_leb_cnt
));
328 printk(KERN_DEBUG
"\tmax_bud_bytes %llu\n",
329 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
330 printk(KERN_DEBUG
"\tlog_lebs %u\n",
331 le32_to_cpu(sup
->log_lebs
));
332 printk(KERN_DEBUG
"\tlpt_lebs %u\n",
333 le32_to_cpu(sup
->lpt_lebs
));
334 printk(KERN_DEBUG
"\torph_lebs %u\n",
335 le32_to_cpu(sup
->orph_lebs
));
336 printk(KERN_DEBUG
"\tjhead_cnt %u\n",
337 le32_to_cpu(sup
->jhead_cnt
));
338 printk(KERN_DEBUG
"\tfanout %u\n",
339 le32_to_cpu(sup
->fanout
));
340 printk(KERN_DEBUG
"\tlsave_cnt %u\n",
341 le32_to_cpu(sup
->lsave_cnt
));
342 printk(KERN_DEBUG
"\tdefault_compr %u\n",
343 (int)le16_to_cpu(sup
->default_compr
));
344 printk(KERN_DEBUG
"\trp_size %llu\n",
345 (unsigned long long)le64_to_cpu(sup
->rp_size
));
346 printk(KERN_DEBUG
"\trp_uid %u\n",
347 le32_to_cpu(sup
->rp_uid
));
348 printk(KERN_DEBUG
"\trp_gid %u\n",
349 le32_to_cpu(sup
->rp_gid
));
350 printk(KERN_DEBUG
"\tfmt_version %u\n",
351 le32_to_cpu(sup
->fmt_version
));
352 printk(KERN_DEBUG
"\ttime_gran %u\n",
353 le32_to_cpu(sup
->time_gran
));
354 printk(KERN_DEBUG
"\tUUID %pUB\n",
360 const struct ubifs_mst_node
*mst
= node
;
362 printk(KERN_DEBUG
"\thighest_inum %llu\n",
363 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
364 printk(KERN_DEBUG
"\tcommit number %llu\n",
365 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
366 printk(KERN_DEBUG
"\tflags %#x\n",
367 le32_to_cpu(mst
->flags
));
368 printk(KERN_DEBUG
"\tlog_lnum %u\n",
369 le32_to_cpu(mst
->log_lnum
));
370 printk(KERN_DEBUG
"\troot_lnum %u\n",
371 le32_to_cpu(mst
->root_lnum
));
372 printk(KERN_DEBUG
"\troot_offs %u\n",
373 le32_to_cpu(mst
->root_offs
));
374 printk(KERN_DEBUG
"\troot_len %u\n",
375 le32_to_cpu(mst
->root_len
));
376 printk(KERN_DEBUG
"\tgc_lnum %u\n",
377 le32_to_cpu(mst
->gc_lnum
));
378 printk(KERN_DEBUG
"\tihead_lnum %u\n",
379 le32_to_cpu(mst
->ihead_lnum
));
380 printk(KERN_DEBUG
"\tihead_offs %u\n",
381 le32_to_cpu(mst
->ihead_offs
));
382 printk(KERN_DEBUG
"\tindex_size %llu\n",
383 (unsigned long long)le64_to_cpu(mst
->index_size
));
384 printk(KERN_DEBUG
"\tlpt_lnum %u\n",
385 le32_to_cpu(mst
->lpt_lnum
));
386 printk(KERN_DEBUG
"\tlpt_offs %u\n",
387 le32_to_cpu(mst
->lpt_offs
));
388 printk(KERN_DEBUG
"\tnhead_lnum %u\n",
389 le32_to_cpu(mst
->nhead_lnum
));
390 printk(KERN_DEBUG
"\tnhead_offs %u\n",
391 le32_to_cpu(mst
->nhead_offs
));
392 printk(KERN_DEBUG
"\tltab_lnum %u\n",
393 le32_to_cpu(mst
->ltab_lnum
));
394 printk(KERN_DEBUG
"\tltab_offs %u\n",
395 le32_to_cpu(mst
->ltab_offs
));
396 printk(KERN_DEBUG
"\tlsave_lnum %u\n",
397 le32_to_cpu(mst
->lsave_lnum
));
398 printk(KERN_DEBUG
"\tlsave_offs %u\n",
399 le32_to_cpu(mst
->lsave_offs
));
400 printk(KERN_DEBUG
"\tlscan_lnum %u\n",
401 le32_to_cpu(mst
->lscan_lnum
));
402 printk(KERN_DEBUG
"\tleb_cnt %u\n",
403 le32_to_cpu(mst
->leb_cnt
));
404 printk(KERN_DEBUG
"\tempty_lebs %u\n",
405 le32_to_cpu(mst
->empty_lebs
));
406 printk(KERN_DEBUG
"\tidx_lebs %u\n",
407 le32_to_cpu(mst
->idx_lebs
));
408 printk(KERN_DEBUG
"\ttotal_free %llu\n",
409 (unsigned long long)le64_to_cpu(mst
->total_free
));
410 printk(KERN_DEBUG
"\ttotal_dirty %llu\n",
411 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
412 printk(KERN_DEBUG
"\ttotal_used %llu\n",
413 (unsigned long long)le64_to_cpu(mst
->total_used
));
414 printk(KERN_DEBUG
"\ttotal_dead %llu\n",
415 (unsigned long long)le64_to_cpu(mst
->total_dead
));
416 printk(KERN_DEBUG
"\ttotal_dark %llu\n",
417 (unsigned long long)le64_to_cpu(mst
->total_dark
));
422 const struct ubifs_ref_node
*ref
= node
;
424 printk(KERN_DEBUG
"\tlnum %u\n",
425 le32_to_cpu(ref
->lnum
));
426 printk(KERN_DEBUG
"\toffs %u\n",
427 le32_to_cpu(ref
->offs
));
428 printk(KERN_DEBUG
"\tjhead %u\n",
429 le32_to_cpu(ref
->jhead
));
434 const struct ubifs_ino_node
*ino
= node
;
436 key_read(c
, &ino
->key
, &key
);
437 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
438 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n",
439 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
440 printk(KERN_DEBUG
"\tsize %llu\n",
441 (unsigned long long)le64_to_cpu(ino
->size
));
442 printk(KERN_DEBUG
"\tnlink %u\n",
443 le32_to_cpu(ino
->nlink
));
444 printk(KERN_DEBUG
"\tatime %lld.%u\n",
445 (long long)le64_to_cpu(ino
->atime_sec
),
446 le32_to_cpu(ino
->atime_nsec
));
447 printk(KERN_DEBUG
"\tmtime %lld.%u\n",
448 (long long)le64_to_cpu(ino
->mtime_sec
),
449 le32_to_cpu(ino
->mtime_nsec
));
450 printk(KERN_DEBUG
"\tctime %lld.%u\n",
451 (long long)le64_to_cpu(ino
->ctime_sec
),
452 le32_to_cpu(ino
->ctime_nsec
));
453 printk(KERN_DEBUG
"\tuid %u\n",
454 le32_to_cpu(ino
->uid
));
455 printk(KERN_DEBUG
"\tgid %u\n",
456 le32_to_cpu(ino
->gid
));
457 printk(KERN_DEBUG
"\tmode %u\n",
458 le32_to_cpu(ino
->mode
));
459 printk(KERN_DEBUG
"\tflags %#x\n",
460 le32_to_cpu(ino
->flags
));
461 printk(KERN_DEBUG
"\txattr_cnt %u\n",
462 le32_to_cpu(ino
->xattr_cnt
));
463 printk(KERN_DEBUG
"\txattr_size %u\n",
464 le32_to_cpu(ino
->xattr_size
));
465 printk(KERN_DEBUG
"\txattr_names %u\n",
466 le32_to_cpu(ino
->xattr_names
));
467 printk(KERN_DEBUG
"\tcompr_type %#x\n",
468 (int)le16_to_cpu(ino
->compr_type
));
469 printk(KERN_DEBUG
"\tdata len %u\n",
470 le32_to_cpu(ino
->data_len
));
473 case UBIFS_DENT_NODE
:
474 case UBIFS_XENT_NODE
:
476 const struct ubifs_dent_node
*dent
= node
;
477 int nlen
= le16_to_cpu(dent
->nlen
);
479 key_read(c
, &dent
->key
, &key
);
480 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
481 printk(KERN_DEBUG
"\tinum %llu\n",
482 (unsigned long long)le64_to_cpu(dent
->inum
));
483 printk(KERN_DEBUG
"\ttype %d\n", (int)dent
->type
);
484 printk(KERN_DEBUG
"\tnlen %d\n", nlen
);
485 printk(KERN_DEBUG
"\tname ");
487 if (nlen
> UBIFS_MAX_NLEN
)
488 printk(KERN_DEBUG
"(bad name length, not printing, "
489 "bad or corrupted node)");
491 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
492 printk(KERN_CONT
"%c", dent
->name
[i
]);
494 printk(KERN_CONT
"\n");
498 case UBIFS_DATA_NODE
:
500 const struct ubifs_data_node
*dn
= node
;
501 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
503 key_read(c
, &dn
->key
, &key
);
504 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
505 printk(KERN_DEBUG
"\tsize %u\n",
506 le32_to_cpu(dn
->size
));
507 printk(KERN_DEBUG
"\tcompr_typ %d\n",
508 (int)le16_to_cpu(dn
->compr_type
));
509 printk(KERN_DEBUG
"\tdata size %d\n",
511 printk(KERN_DEBUG
"\tdata:\n");
512 print_hex_dump(KERN_DEBUG
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
513 (void *)&dn
->data
, dlen
, 0);
516 case UBIFS_TRUN_NODE
:
518 const struct ubifs_trun_node
*trun
= node
;
520 printk(KERN_DEBUG
"\tinum %u\n",
521 le32_to_cpu(trun
->inum
));
522 printk(KERN_DEBUG
"\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun
->old_size
));
524 printk(KERN_DEBUG
"\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun
->new_size
));
530 const struct ubifs_idx_node
*idx
= node
;
532 n
= le16_to_cpu(idx
->child_cnt
);
533 printk(KERN_DEBUG
"\tchild_cnt %d\n", n
);
534 printk(KERN_DEBUG
"\tlevel %d\n",
535 (int)le16_to_cpu(idx
->level
));
536 printk(KERN_DEBUG
"\tBranches:\n");
538 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
539 const struct ubifs_branch
*br
;
541 br
= ubifs_idx_branch(c
, idx
, i
);
542 key_read(c
, &br
->key
, &key
);
543 printk(KERN_DEBUG
"\t%d: LEB %d:%d len %d key %s\n",
544 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
545 le32_to_cpu(br
->len
), DBGKEY(&key
));
551 case UBIFS_ORPH_NODE
:
553 const struct ubifs_orph_node
*orph
= node
;
555 printk(KERN_DEBUG
"\tcommit number %llu\n",
557 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
558 printk(KERN_DEBUG
"\tlast node flag %llu\n",
559 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
560 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
561 printk(KERN_DEBUG
"\t%d orphan inode numbers:\n", n
);
562 for (i
= 0; i
< n
; i
++)
563 printk(KERN_DEBUG
"\t ino %llu\n",
564 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
568 printk(KERN_DEBUG
"node type %d was not recognized\n",
571 spin_unlock(&dbg_lock
);
574 void dbg_dump_budget_req(const struct ubifs_budget_req
*req
)
576 spin_lock(&dbg_lock
);
577 printk(KERN_DEBUG
"Budgeting request: new_ino %d, dirtied_ino %d\n",
578 req
->new_ino
, req
->dirtied_ino
);
579 printk(KERN_DEBUG
"\tnew_ino_d %d, dirtied_ino_d %d\n",
580 req
->new_ino_d
, req
->dirtied_ino_d
);
581 printk(KERN_DEBUG
"\tnew_page %d, dirtied_page %d\n",
582 req
->new_page
, req
->dirtied_page
);
583 printk(KERN_DEBUG
"\tnew_dent %d, mod_dent %d\n",
584 req
->new_dent
, req
->mod_dent
);
585 printk(KERN_DEBUG
"\tidx_growth %d\n", req
->idx_growth
);
586 printk(KERN_DEBUG
"\tdata_growth %d dd_growth %d\n",
587 req
->data_growth
, req
->dd_growth
);
588 spin_unlock(&dbg_lock
);
591 void dbg_dump_lstats(const struct ubifs_lp_stats
*lst
)
593 spin_lock(&dbg_lock
);
594 printk(KERN_DEBUG
"(pid %d) Lprops statistics: empty_lebs %d, "
595 "idx_lebs %d\n", current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
596 printk(KERN_DEBUG
"\ttaken_empty_lebs %d, total_free %lld, "
597 "total_dirty %lld\n", lst
->taken_empty_lebs
, lst
->total_free
,
599 printk(KERN_DEBUG
"\ttotal_used %lld, total_dark %lld, "
600 "total_dead %lld\n", lst
->total_used
, lst
->total_dark
,
602 spin_unlock(&dbg_lock
);
605 void dbg_dump_budg(struct ubifs_info
*c
)
609 struct ubifs_bud
*bud
;
610 struct ubifs_gced_idx_leb
*idx_gc
;
611 long long available
, outstanding
, free
;
613 ubifs_assert(spin_is_locked(&c
->space_lock
));
614 spin_lock(&dbg_lock
);
615 printk(KERN_DEBUG
"(pid %d) Budgeting info: budg_data_growth %lld, "
616 "budg_dd_growth %lld, budg_idx_growth %lld\n", current
->pid
,
617 c
->budg_data_growth
, c
->budg_dd_growth
, c
->budg_idx_growth
);
618 printk(KERN_DEBUG
"\tdata budget sum %lld, total budget sum %lld, "
619 "freeable_cnt %d\n", c
->budg_data_growth
+ c
->budg_dd_growth
,
620 c
->budg_data_growth
+ c
->budg_dd_growth
+ c
->budg_idx_growth
,
622 printk(KERN_DEBUG
"\tmin_idx_lebs %d, old_idx_sz %lld, "
623 "calc_idx_sz %lld, idx_gc_cnt %d\n", c
->min_idx_lebs
,
624 c
->old_idx_sz
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
625 printk(KERN_DEBUG
"\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
626 "clean_zn_cnt %ld\n", atomic_long_read(&c
->dirty_pg_cnt
),
627 atomic_long_read(&c
->dirty_zn_cnt
),
628 atomic_long_read(&c
->clean_zn_cnt
));
629 printk(KERN_DEBUG
"\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
630 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
631 printk(KERN_DEBUG
"\tgc_lnum %d, ihead_lnum %d\n",
632 c
->gc_lnum
, c
->ihead_lnum
);
633 /* If we are in R/O mode, journal heads do not exist */
635 for (i
= 0; i
< c
->jhead_cnt
; i
++)
636 printk(KERN_DEBUG
"\tjhead %s\t LEB %d\n",
637 dbg_jhead(c
->jheads
[i
].wbuf
.jhead
),
638 c
->jheads
[i
].wbuf
.lnum
);
639 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
640 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
641 printk(KERN_DEBUG
"\tbud LEB %d\n", bud
->lnum
);
643 list_for_each_entry(bud
, &c
->old_buds
, list
)
644 printk(KERN_DEBUG
"\told bud LEB %d\n", bud
->lnum
);
645 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
646 printk(KERN_DEBUG
"\tGC'ed idx LEB %d unmap %d\n",
647 idx_gc
->lnum
, idx_gc
->unmap
);
648 printk(KERN_DEBUG
"\tcommit state %d\n", c
->cmt_state
);
650 /* Print budgeting predictions */
651 available
= ubifs_calc_available(c
, c
->min_idx_lebs
);
652 outstanding
= c
->budg_data_growth
+ c
->budg_dd_growth
;
653 free
= ubifs_get_free_space_nolock(c
);
654 printk(KERN_DEBUG
"Budgeting predictions:\n");
655 printk(KERN_DEBUG
"\tavailable: %lld, outstanding %lld, free %lld\n",
656 available
, outstanding
, free
);
657 spin_unlock(&dbg_lock
);
660 void dbg_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
662 int i
, spc
, dark
= 0, dead
= 0;
664 struct ubifs_bud
*bud
;
666 spc
= lp
->free
+ lp
->dirty
;
667 if (spc
< c
->dead_wm
)
670 dark
= ubifs_calc_dark(c
, spc
);
672 if (lp
->flags
& LPROPS_INDEX
)
673 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
674 "free + dirty %-8d flags %#x (", lp
->lnum
, lp
->free
,
675 lp
->dirty
, c
->leb_size
- spc
, spc
, lp
->flags
);
677 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
678 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
679 "flags %#-4x (", lp
->lnum
, lp
->free
, lp
->dirty
,
680 c
->leb_size
- spc
, spc
, dark
, dead
,
681 (int)(spc
/ UBIFS_MAX_NODE_SZ
), lp
->flags
);
683 if (lp
->flags
& LPROPS_TAKEN
) {
684 if (lp
->flags
& LPROPS_INDEX
)
685 printk(KERN_CONT
"index, taken");
687 printk(KERN_CONT
"taken");
691 if (lp
->flags
& LPROPS_INDEX
) {
692 switch (lp
->flags
& LPROPS_CAT_MASK
) {
693 case LPROPS_DIRTY_IDX
:
696 case LPROPS_FRDI_IDX
:
697 s
= "freeable index";
703 switch (lp
->flags
& LPROPS_CAT_MASK
) {
705 s
= "not categorized";
716 case LPROPS_FREEABLE
:
724 printk(KERN_CONT
"%s", s
);
727 for (rb
= rb_first((struct rb_root
*)&c
->buds
); rb
; rb
= rb_next(rb
)) {
728 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
729 if (bud
->lnum
== lp
->lnum
) {
731 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
732 if (lp
->lnum
== c
->jheads
[i
].wbuf
.lnum
) {
733 printk(KERN_CONT
", jhead %s",
739 printk(KERN_CONT
", bud of jhead %s",
740 dbg_jhead(bud
->jhead
));
743 if (lp
->lnum
== c
->gc_lnum
)
744 printk(KERN_CONT
", GC LEB");
745 printk(KERN_CONT
")\n");
748 void dbg_dump_lprops(struct ubifs_info
*c
)
751 struct ubifs_lprops lp
;
752 struct ubifs_lp_stats lst
;
754 printk(KERN_DEBUG
"(pid %d) start dumping LEB properties\n",
756 ubifs_get_lp_stats(c
, &lst
);
757 dbg_dump_lstats(&lst
);
759 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
760 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
762 ubifs_err("cannot read lprops for LEB %d", lnum
);
764 dbg_dump_lprop(c
, &lp
);
766 printk(KERN_DEBUG
"(pid %d) finish dumping LEB properties\n",
770 void dbg_dump_lpt_info(struct ubifs_info
*c
)
774 spin_lock(&dbg_lock
);
775 printk(KERN_DEBUG
"(pid %d) dumping LPT information\n", current
->pid
);
776 printk(KERN_DEBUG
"\tlpt_sz: %lld\n", c
->lpt_sz
);
777 printk(KERN_DEBUG
"\tpnode_sz: %d\n", c
->pnode_sz
);
778 printk(KERN_DEBUG
"\tnnode_sz: %d\n", c
->nnode_sz
);
779 printk(KERN_DEBUG
"\tltab_sz: %d\n", c
->ltab_sz
);
780 printk(KERN_DEBUG
"\tlsave_sz: %d\n", c
->lsave_sz
);
781 printk(KERN_DEBUG
"\tbig_lpt: %d\n", c
->big_lpt
);
782 printk(KERN_DEBUG
"\tlpt_hght: %d\n", c
->lpt_hght
);
783 printk(KERN_DEBUG
"\tpnode_cnt: %d\n", c
->pnode_cnt
);
784 printk(KERN_DEBUG
"\tnnode_cnt: %d\n", c
->nnode_cnt
);
785 printk(KERN_DEBUG
"\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
786 printk(KERN_DEBUG
"\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
787 printk(KERN_DEBUG
"\tlsave_cnt: %d\n", c
->lsave_cnt
);
788 printk(KERN_DEBUG
"\tspace_bits: %d\n", c
->space_bits
);
789 printk(KERN_DEBUG
"\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
790 printk(KERN_DEBUG
"\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
791 printk(KERN_DEBUG
"\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
792 printk(KERN_DEBUG
"\tpcnt_bits: %d\n", c
->pcnt_bits
);
793 printk(KERN_DEBUG
"\tlnum_bits: %d\n", c
->lnum_bits
);
794 printk(KERN_DEBUG
"\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
795 printk(KERN_DEBUG
"\tLPT head is at %d:%d\n",
796 c
->nhead_lnum
, c
->nhead_offs
);
797 printk(KERN_DEBUG
"\tLPT ltab is at %d:%d\n",
798 c
->ltab_lnum
, c
->ltab_offs
);
800 printk(KERN_DEBUG
"\tLPT lsave is at %d:%d\n",
801 c
->lsave_lnum
, c
->lsave_offs
);
802 for (i
= 0; i
< c
->lpt_lebs
; i
++)
803 printk(KERN_DEBUG
"\tLPT LEB %d free %d dirty %d tgc %d "
804 "cmt %d\n", i
+ c
->lpt_first
, c
->ltab
[i
].free
,
805 c
->ltab
[i
].dirty
, c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
806 spin_unlock(&dbg_lock
);
809 void dbg_dump_leb(const struct ubifs_info
*c
, int lnum
)
811 struct ubifs_scan_leb
*sleb
;
812 struct ubifs_scan_node
*snod
;
814 if (dbg_failure_mode
)
817 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
819 sleb
= ubifs_scan(c
, lnum
, 0, c
->dbg
->buf
, 0);
821 ubifs_err("scan error %d", (int)PTR_ERR(sleb
));
825 printk(KERN_DEBUG
"LEB %d has %d nodes ending at %d\n", lnum
,
826 sleb
->nodes_cnt
, sleb
->endpt
);
828 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
830 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", lnum
,
831 snod
->offs
, snod
->len
);
832 dbg_dump_node(c
, snod
->node
);
835 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
837 ubifs_scan_destroy(sleb
);
841 void dbg_dump_znode(const struct ubifs_info
*c
,
842 const struct ubifs_znode
*znode
)
845 const struct ubifs_zbranch
*zbr
;
847 spin_lock(&dbg_lock
);
849 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
853 printk(KERN_DEBUG
"znode %p, LEB %d:%d len %d parent %p iip %d level %d"
854 " child_cnt %d flags %lx\n", znode
, zbr
->lnum
, zbr
->offs
,
855 zbr
->len
, znode
->parent
, znode
->iip
, znode
->level
,
856 znode
->child_cnt
, znode
->flags
);
858 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
859 spin_unlock(&dbg_lock
);
863 printk(KERN_DEBUG
"zbranches:\n");
864 for (n
= 0; n
< znode
->child_cnt
; n
++) {
865 zbr
= &znode
->zbranch
[n
];
866 if (znode
->level
> 0)
867 printk(KERN_DEBUG
"\t%d: znode %p LEB %d:%d len %d key "
868 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
872 printk(KERN_DEBUG
"\t%d: LNC %p LEB %d:%d len %d key "
873 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
877 spin_unlock(&dbg_lock
);
880 void dbg_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
884 printk(KERN_DEBUG
"(pid %d) start dumping heap cat %d (%d elements)\n",
885 current
->pid
, cat
, heap
->cnt
);
886 for (i
= 0; i
< heap
->cnt
; i
++) {
887 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
889 printk(KERN_DEBUG
"\t%d. LEB %d hpos %d free %d dirty %d "
890 "flags %d\n", i
, lprops
->lnum
, lprops
->hpos
,
891 lprops
->free
, lprops
->dirty
, lprops
->flags
);
893 printk(KERN_DEBUG
"(pid %d) finish dumping heap\n", current
->pid
);
896 void dbg_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
897 struct ubifs_nnode
*parent
, int iip
)
901 printk(KERN_DEBUG
"(pid %d) dumping pnode:\n", current
->pid
);
902 printk(KERN_DEBUG
"\taddress %zx parent %zx cnext %zx\n",
903 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
904 printk(KERN_DEBUG
"\tflags %lu iip %d level %d num %d\n",
905 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
906 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
907 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
909 printk(KERN_DEBUG
"\t%d: free %d dirty %d flags %d lnum %d\n",
910 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
914 void dbg_dump_tnc(struct ubifs_info
*c
)
916 struct ubifs_znode
*znode
;
919 printk(KERN_DEBUG
"\n");
920 printk(KERN_DEBUG
"(pid %d) start dumping TNC tree\n", current
->pid
);
921 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, NULL
);
922 level
= znode
->level
;
923 printk(KERN_DEBUG
"== Level %d ==\n", level
);
925 if (level
!= znode
->level
) {
926 level
= znode
->level
;
927 printk(KERN_DEBUG
"== Level %d ==\n", level
);
929 dbg_dump_znode(c
, znode
);
930 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, znode
);
932 printk(KERN_DEBUG
"(pid %d) finish dumping TNC tree\n", current
->pid
);
935 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
938 dbg_dump_znode(c
, znode
);
943 * dbg_dump_index - dump the on-flash index.
944 * @c: UBIFS file-system description object
946 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
947 * which dumps only in-memory znodes and does not read znodes which from flash.
949 void dbg_dump_index(struct ubifs_info
*c
)
951 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
955 * dbg_save_space_info - save information about flash space.
956 * @c: UBIFS file-system description object
958 * This function saves information about UBIFS free space, dirty space, etc, in
959 * order to check it later.
961 void dbg_save_space_info(struct ubifs_info
*c
)
963 struct ubifs_debug_info
*d
= c
->dbg
;
965 ubifs_get_lp_stats(c
, &d
->saved_lst
);
967 spin_lock(&c
->space_lock
);
968 d
->saved_free
= ubifs_get_free_space_nolock(c
);
969 spin_unlock(&c
->space_lock
);
973 * dbg_check_space_info - check flash space information.
974 * @c: UBIFS file-system description object
976 * This function compares current flash space information with the information
977 * which was saved when the 'dbg_save_space_info()' function was called.
978 * Returns zero if the information has not changed, and %-EINVAL it it has
981 int dbg_check_space_info(struct ubifs_info
*c
)
983 struct ubifs_debug_info
*d
= c
->dbg
;
984 struct ubifs_lp_stats lst
;
985 long long avail
, free
;
987 spin_lock(&c
->space_lock
);
988 avail
= ubifs_calc_available(c
, c
->min_idx_lebs
);
989 spin_unlock(&c
->space_lock
);
990 free
= ubifs_get_free_space(c
);
992 if (free
!= d
->saved_free
) {
993 ubifs_err("free space changed from %lld to %lld",
994 d
->saved_free
, free
);
1001 ubifs_msg("saved lprops statistics dump");
1002 dbg_dump_lstats(&d
->saved_lst
);
1003 ubifs_get_lp_stats(c
, &lst
);
1005 ubifs_msg("current lprops statistics dump");
1006 dbg_dump_lstats(&lst
);
1008 spin_lock(&c
->space_lock
);
1010 spin_unlock(&c
->space_lock
);
1016 * dbg_check_synced_i_size - check synchronized inode size.
1017 * @inode: inode to check
1019 * If inode is clean, synchronized inode size has to be equivalent to current
1020 * inode size. This function has to be called only for locked inodes (@i_mutex
1021 * has to be locked). Returns %0 if synchronized inode size if correct, and
1024 int dbg_check_synced_i_size(struct inode
*inode
)
1027 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1029 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
1031 if (!S_ISREG(inode
->i_mode
))
1034 mutex_lock(&ui
->ui_mutex
);
1035 spin_lock(&ui
->ui_lock
);
1036 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
1037 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1038 "is clean", ui
->ui_size
, ui
->synced_i_size
);
1039 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
1040 inode
->i_mode
, i_size_read(inode
));
1044 spin_unlock(&ui
->ui_lock
);
1045 mutex_unlock(&ui
->ui_mutex
);
1050 * dbg_check_dir - check directory inode size and link count.
1051 * @c: UBIFS file-system description object
1052 * @dir: the directory to calculate size for
1053 * @size: the result is returned here
1055 * This function makes sure that directory size and link count are correct.
1056 * Returns zero in case of success and a negative error code in case of
1059 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1060 * calling this function.
1062 int dbg_check_dir_size(struct ubifs_info
*c
, const struct inode
*dir
)
1064 unsigned int nlink
= 2;
1065 union ubifs_key key
;
1066 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
1067 struct qstr nm
= { .name
= NULL
};
1068 loff_t size
= UBIFS_INO_NODE_SZ
;
1070 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
1073 if (!S_ISDIR(dir
->i_mode
))
1076 lowest_dent_key(c
, &key
, dir
->i_ino
);
1080 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
1082 err
= PTR_ERR(dent
);
1088 nm
.name
= dent
->name
;
1089 nm
.len
= le16_to_cpu(dent
->nlen
);
1090 size
+= CALC_DENT_SIZE(nm
.len
);
1091 if (dent
->type
== UBIFS_ITYPE_DIR
)
1095 key_read(c
, &dent
->key
, &key
);
1099 if (i_size_read(dir
) != size
) {
1100 ubifs_err("directory inode %lu has size %llu, "
1101 "but calculated size is %llu", dir
->i_ino
,
1102 (unsigned long long)i_size_read(dir
),
1103 (unsigned long long)size
);
1107 if (dir
->i_nlink
!= nlink
) {
1108 ubifs_err("directory inode %lu has nlink %u, but calculated "
1109 "nlink is %u", dir
->i_ino
, dir
->i_nlink
, nlink
);
1118 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1119 * @c: UBIFS file-system description object
1120 * @zbr1: first zbranch
1121 * @zbr2: following zbranch
1123 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1124 * names of the direntries/xentries which are referred by the keys. This
1125 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1126 * sure the name of direntry/xentry referred by @zbr1 is less than
1127 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1128 * and a negative error code in case of failure.
1130 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1131 struct ubifs_zbranch
*zbr2
)
1133 int err
, nlen1
, nlen2
, cmp
;
1134 struct ubifs_dent_node
*dent1
, *dent2
;
1135 union ubifs_key key
;
1137 ubifs_assert(!keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1138 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1141 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1147 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1150 err
= ubifs_validate_entry(c
, dent1
);
1154 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1157 err
= ubifs_validate_entry(c
, dent2
);
1161 /* Make sure node keys are the same as in zbranch */
1163 key_read(c
, &dent1
->key
, &key
);
1164 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1165 dbg_err("1st entry at %d:%d has key %s", zbr1
->lnum
,
1166 zbr1
->offs
, DBGKEY(&key
));
1167 dbg_err("but it should have key %s according to tnc",
1168 DBGKEY(&zbr1
->key
));
1169 dbg_dump_node(c
, dent1
);
1173 key_read(c
, &dent2
->key
, &key
);
1174 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1175 dbg_err("2nd entry at %d:%d has key %s", zbr1
->lnum
,
1176 zbr1
->offs
, DBGKEY(&key
));
1177 dbg_err("but it should have key %s according to tnc",
1178 DBGKEY(&zbr2
->key
));
1179 dbg_dump_node(c
, dent2
);
1183 nlen1
= le16_to_cpu(dent1
->nlen
);
1184 nlen2
= le16_to_cpu(dent2
->nlen
);
1186 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1187 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1191 if (cmp
== 0 && nlen1
== nlen2
)
1192 dbg_err("2 xent/dent nodes with the same name");
1194 dbg_err("bad order of colliding key %s",
1197 ubifs_msg("first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1198 dbg_dump_node(c
, dent1
);
1199 ubifs_msg("second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1200 dbg_dump_node(c
, dent2
);
1209 * dbg_check_znode - check if znode is all right.
1210 * @c: UBIFS file-system description object
1211 * @zbr: zbranch which points to this znode
1213 * This function makes sure that znode referred to by @zbr is all right.
1214 * Returns zero if it is, and %-EINVAL if it is not.
1216 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1218 struct ubifs_znode
*znode
= zbr
->znode
;
1219 struct ubifs_znode
*zp
= znode
->parent
;
1222 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1226 if (znode
->level
< 0) {
1230 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1236 /* Only dirty zbranch may have no on-flash nodes */
1237 if (!ubifs_zn_dirty(znode
)) {
1242 if (ubifs_zn_dirty(znode
)) {
1244 * If znode is dirty, its parent has to be dirty as well. The
1245 * order of the operation is important, so we have to have
1249 if (zp
&& !ubifs_zn_dirty(zp
)) {
1251 * The dirty flag is atomic and is cleared outside the
1252 * TNC mutex, so znode's dirty flag may now have
1253 * been cleared. The child is always cleared before the
1254 * parent, so we just need to check again.
1257 if (ubifs_zn_dirty(znode
)) {
1265 const union ubifs_key
*min
, *max
;
1267 if (znode
->level
!= zp
->level
- 1) {
1272 /* Make sure the 'parent' pointer in our znode is correct */
1273 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1275 /* This zbranch does not exist in the parent */
1280 if (znode
->iip
>= zp
->child_cnt
) {
1285 if (znode
->iip
!= n
) {
1286 /* This may happen only in case of collisions */
1287 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1288 &zp
->zbranch
[znode
->iip
].key
)) {
1296 * Make sure that the first key in our znode is greater than or
1297 * equal to the key in the pointing zbranch.
1300 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1306 if (n
+ 1 < zp
->child_cnt
) {
1307 max
= &zp
->zbranch
[n
+ 1].key
;
1310 * Make sure the last key in our znode is less or
1311 * equivalent than the key in the zbranch which goes
1312 * after our pointing zbranch.
1314 cmp
= keys_cmp(c
, max
,
1315 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1322 /* This may only be root znode */
1323 if (zbr
!= &c
->zroot
) {
1330 * Make sure that next key is greater or equivalent then the previous
1333 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1334 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1335 &znode
->zbranch
[n
].key
);
1341 /* This can only be keys with colliding hash */
1342 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1347 if (znode
->level
!= 0 || c
->replaying
)
1351 * Colliding keys should follow binary order of
1352 * corresponding xentry/dentry names.
1354 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1355 &znode
->zbranch
[n
]);
1365 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1366 if (!znode
->zbranch
[n
].znode
&&
1367 (znode
->zbranch
[n
].lnum
== 0 ||
1368 znode
->zbranch
[n
].len
== 0)) {
1373 if (znode
->zbranch
[n
].lnum
!= 0 &&
1374 znode
->zbranch
[n
].len
== 0) {
1379 if (znode
->zbranch
[n
].lnum
== 0 &&
1380 znode
->zbranch
[n
].len
!= 0) {
1385 if (znode
->zbranch
[n
].lnum
== 0 &&
1386 znode
->zbranch
[n
].offs
!= 0) {
1391 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1392 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1401 ubifs_err("failed, error %d", err
);
1402 ubifs_msg("dump of the znode");
1403 dbg_dump_znode(c
, znode
);
1405 ubifs_msg("dump of the parent znode");
1406 dbg_dump_znode(c
, zp
);
1413 * dbg_check_tnc - check TNC tree.
1414 * @c: UBIFS file-system description object
1415 * @extra: do extra checks that are possible at start commit
1417 * This function traverses whole TNC tree and checks every znode. Returns zero
1418 * if everything is all right and %-EINVAL if something is wrong with TNC.
1420 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1422 struct ubifs_znode
*znode
;
1423 long clean_cnt
= 0, dirty_cnt
= 0;
1426 if (!(ubifs_chk_flags
& UBIFS_CHK_TNC
))
1429 ubifs_assert(mutex_is_locked(&c
->tnc_mutex
));
1430 if (!c
->zroot
.znode
)
1433 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1435 struct ubifs_znode
*prev
;
1436 struct ubifs_zbranch
*zbr
;
1441 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1443 err
= dbg_check_znode(c
, zbr
);
1448 if (ubifs_zn_dirty(znode
))
1455 znode
= ubifs_tnc_postorder_next(znode
);
1460 * If the last key of this znode is equivalent to the first key
1461 * of the next znode (collision), then check order of the keys.
1463 last
= prev
->child_cnt
- 1;
1464 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1465 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1466 &znode
->zbranch
[0].key
)) {
1467 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1468 &znode
->zbranch
[0]);
1472 ubifs_msg("first znode");
1473 dbg_dump_znode(c
, prev
);
1474 ubifs_msg("second znode");
1475 dbg_dump_znode(c
, znode
);
1482 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1483 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1484 atomic_long_read(&c
->clean_zn_cnt
),
1488 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1489 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1490 atomic_long_read(&c
->dirty_zn_cnt
),
1500 * dbg_walk_index - walk the on-flash index.
1501 * @c: UBIFS file-system description object
1502 * @leaf_cb: called for each leaf node
1503 * @znode_cb: called for each indexing node
1504 * @priv: private data which is passed to callbacks
1506 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1507 * node and @znode_cb for each indexing node. Returns zero in case of success
1508 * and a negative error code in case of failure.
1510 * It would be better if this function removed every znode it pulled to into
1511 * the TNC, so that the behavior more closely matched the non-debugging
1514 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1515 dbg_znode_callback znode_cb
, void *priv
)
1518 struct ubifs_zbranch
*zbr
;
1519 struct ubifs_znode
*znode
, *child
;
1521 mutex_lock(&c
->tnc_mutex
);
1522 /* If the root indexing node is not in TNC - pull it */
1523 if (!c
->zroot
.znode
) {
1524 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1525 if (IS_ERR(c
->zroot
.znode
)) {
1526 err
= PTR_ERR(c
->zroot
.znode
);
1527 c
->zroot
.znode
= NULL
;
1533 * We are going to traverse the indexing tree in the postorder manner.
1534 * Go down and find the leftmost indexing node where we are going to
1537 znode
= c
->zroot
.znode
;
1538 while (znode
->level
> 0) {
1539 zbr
= &znode
->zbranch
[0];
1542 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1543 if (IS_ERR(child
)) {
1544 err
= PTR_ERR(child
);
1553 /* Iterate over all indexing nodes */
1560 err
= znode_cb(c
, znode
, priv
);
1562 ubifs_err("znode checking function returned "
1564 dbg_dump_znode(c
, znode
);
1568 if (leaf_cb
&& znode
->level
== 0) {
1569 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1570 zbr
= &znode
->zbranch
[idx
];
1571 err
= leaf_cb(c
, zbr
, priv
);
1573 ubifs_err("leaf checking function "
1574 "returned error %d, for leaf "
1576 err
, zbr
->lnum
, zbr
->offs
);
1585 idx
= znode
->iip
+ 1;
1586 znode
= znode
->parent
;
1587 if (idx
< znode
->child_cnt
) {
1588 /* Switch to the next index in the parent */
1589 zbr
= &znode
->zbranch
[idx
];
1592 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1593 if (IS_ERR(child
)) {
1594 err
= PTR_ERR(child
);
1602 * This is the last child, switch to the parent and
1607 /* Go to the lowest leftmost znode in the new sub-tree */
1608 while (znode
->level
> 0) {
1609 zbr
= &znode
->zbranch
[0];
1612 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1613 if (IS_ERR(child
)) {
1614 err
= PTR_ERR(child
);
1623 mutex_unlock(&c
->tnc_mutex
);
1628 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1631 ubifs_msg("dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1632 dbg_dump_znode(c
, znode
);
1634 mutex_unlock(&c
->tnc_mutex
);
1639 * add_size - add znode size to partially calculated index size.
1640 * @c: UBIFS file-system description object
1641 * @znode: znode to add size for
1642 * @priv: partially calculated index size
1644 * This is a helper function for 'dbg_check_idx_size()' which is called for
1645 * every indexing node and adds its size to the 'long long' variable pointed to
1648 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1650 long long *idx_size
= priv
;
1653 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1654 add
= ALIGN(add
, 8);
1660 * dbg_check_idx_size - check index size.
1661 * @c: UBIFS file-system description object
1662 * @idx_size: size to check
1664 * This function walks the UBIFS index, calculates its size and checks that the
1665 * size is equivalent to @idx_size. Returns zero in case of success and a
1666 * negative error code in case of failure.
1668 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1673 if (!(ubifs_chk_flags
& UBIFS_CHK_IDX_SZ
))
1676 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1678 ubifs_err("error %d while walking the index", err
);
1682 if (calc
!= idx_size
) {
1683 ubifs_err("index size check failed: calculated size is %lld, "
1684 "should be %lld", calc
, idx_size
);
1693 * struct fsck_inode - information about an inode used when checking the file-system.
1694 * @rb: link in the RB-tree of inodes
1695 * @inum: inode number
1696 * @mode: inode type, permissions, etc
1697 * @nlink: inode link count
1698 * @xattr_cnt: count of extended attributes
1699 * @references: how many directory/xattr entries refer this inode (calculated
1700 * while walking the index)
1701 * @calc_cnt: for directory inode count of child directories
1702 * @size: inode size (read from on-flash inode)
1703 * @xattr_sz: summary size of all extended attributes (read from on-flash
1705 * @calc_sz: for directories calculated directory size
1706 * @calc_xcnt: count of extended attributes
1707 * @calc_xsz: calculated summary size of all extended attributes
1708 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1709 * inode (read from on-flash inode)
1710 * @calc_xnms: calculated sum of lengths of all extended attribute names
1717 unsigned int xattr_cnt
;
1721 unsigned int xattr_sz
;
1723 long long calc_xcnt
;
1725 unsigned int xattr_nms
;
1726 long long calc_xnms
;
1730 * struct fsck_data - private FS checking information.
1731 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1734 struct rb_root inodes
;
1738 * add_inode - add inode information to RB-tree of inodes.
1739 * @c: UBIFS file-system description object
1740 * @fsckd: FS checking information
1741 * @ino: raw UBIFS inode to add
1743 * This is a helper function for 'check_leaf()' which adds information about
1744 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1745 * case of success and a negative error code in case of failure.
1747 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1748 struct fsck_data
*fsckd
,
1749 struct ubifs_ino_node
*ino
)
1751 struct rb_node
**p
, *parent
= NULL
;
1752 struct fsck_inode
*fscki
;
1753 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1755 p
= &fsckd
->inodes
.rb_node
;
1758 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1759 if (inum
< fscki
->inum
)
1761 else if (inum
> fscki
->inum
)
1762 p
= &(*p
)->rb_right
;
1767 if (inum
> c
->highest_inum
) {
1768 ubifs_err("too high inode number, max. is %lu",
1769 (unsigned long)c
->highest_inum
);
1770 return ERR_PTR(-EINVAL
);
1773 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1775 return ERR_PTR(-ENOMEM
);
1778 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1779 fscki
->size
= le64_to_cpu(ino
->size
);
1780 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1781 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1782 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1783 fscki
->mode
= le32_to_cpu(ino
->mode
);
1784 if (S_ISDIR(fscki
->mode
)) {
1785 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1786 fscki
->calc_cnt
= 2;
1788 rb_link_node(&fscki
->rb
, parent
, p
);
1789 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1794 * search_inode - search inode in the RB-tree of inodes.
1795 * @fsckd: FS checking information
1796 * @inum: inode number to search
1798 * This is a helper function for 'check_leaf()' which searches inode @inum in
1799 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1800 * the inode was not found.
1802 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1805 struct fsck_inode
*fscki
;
1807 p
= fsckd
->inodes
.rb_node
;
1809 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1810 if (inum
< fscki
->inum
)
1812 else if (inum
> fscki
->inum
)
1821 * read_add_inode - read inode node and add it to RB-tree of inodes.
1822 * @c: UBIFS file-system description object
1823 * @fsckd: FS checking information
1824 * @inum: inode number to read
1826 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1827 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1828 * information pointer in case of success and a negative error code in case of
1831 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1832 struct fsck_data
*fsckd
, ino_t inum
)
1835 union ubifs_key key
;
1836 struct ubifs_znode
*znode
;
1837 struct ubifs_zbranch
*zbr
;
1838 struct ubifs_ino_node
*ino
;
1839 struct fsck_inode
*fscki
;
1841 fscki
= search_inode(fsckd
, inum
);
1845 ino_key_init(c
, &key
, inum
);
1846 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
1848 ubifs_err("inode %lu not found in index", (unsigned long)inum
);
1849 return ERR_PTR(-ENOENT
);
1850 } else if (err
< 0) {
1851 ubifs_err("error %d while looking up inode %lu",
1852 err
, (unsigned long)inum
);
1853 return ERR_PTR(err
);
1856 zbr
= &znode
->zbranch
[n
];
1857 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
1858 ubifs_err("bad node %lu node length %d",
1859 (unsigned long)inum
, zbr
->len
);
1860 return ERR_PTR(-EINVAL
);
1863 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
1865 return ERR_PTR(-ENOMEM
);
1867 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
1869 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1870 zbr
->lnum
, zbr
->offs
, err
);
1872 return ERR_PTR(err
);
1875 fscki
= add_inode(c
, fsckd
, ino
);
1877 if (IS_ERR(fscki
)) {
1878 ubifs_err("error %ld while adding inode %lu node",
1879 PTR_ERR(fscki
), (unsigned long)inum
);
1887 * check_leaf - check leaf node.
1888 * @c: UBIFS file-system description object
1889 * @zbr: zbranch of the leaf node to check
1890 * @priv: FS checking information
1892 * This is a helper function for 'dbg_check_filesystem()' which is called for
1893 * every single leaf node while walking the indexing tree. It checks that the
1894 * leaf node referred from the indexing tree exists, has correct CRC, and does
1895 * some other basic validation. This function is also responsible for building
1896 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1897 * calculates reference count, size, etc for each inode in order to later
1898 * compare them to the information stored inside the inodes and detect possible
1899 * inconsistencies. Returns zero in case of success and a negative error code
1900 * in case of failure.
1902 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
1907 struct ubifs_ch
*ch
;
1908 int err
, type
= key_type(c
, &zbr
->key
);
1909 struct fsck_inode
*fscki
;
1911 if (zbr
->len
< UBIFS_CH_SZ
) {
1912 ubifs_err("bad leaf length %d (LEB %d:%d)",
1913 zbr
->len
, zbr
->lnum
, zbr
->offs
);
1917 node
= kmalloc(zbr
->len
, GFP_NOFS
);
1921 err
= ubifs_tnc_read_node(c
, zbr
, node
);
1923 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1924 zbr
->lnum
, zbr
->offs
, err
);
1928 /* If this is an inode node, add it to RB-tree of inodes */
1929 if (type
== UBIFS_INO_KEY
) {
1930 fscki
= add_inode(c
, priv
, node
);
1931 if (IS_ERR(fscki
)) {
1932 err
= PTR_ERR(fscki
);
1933 ubifs_err("error %d while adding inode node", err
);
1939 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
1940 type
!= UBIFS_DATA_KEY
) {
1941 ubifs_err("unexpected node type %d at LEB %d:%d",
1942 type
, zbr
->lnum
, zbr
->offs
);
1948 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
1949 ubifs_err("too high sequence number, max. is %llu",
1955 if (type
== UBIFS_DATA_KEY
) {
1957 struct ubifs_data_node
*dn
= node
;
1960 * Search the inode node this data node belongs to and insert
1961 * it to the RB-tree of inodes.
1963 inum
= key_inum_flash(c
, &dn
->key
);
1964 fscki
= read_add_inode(c
, priv
, inum
);
1965 if (IS_ERR(fscki
)) {
1966 err
= PTR_ERR(fscki
);
1967 ubifs_err("error %d while processing data node and "
1968 "trying to find inode node %lu",
1969 err
, (unsigned long)inum
);
1973 /* Make sure the data node is within inode size */
1974 blk_offs
= key_block_flash(c
, &dn
->key
);
1975 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
1976 blk_offs
+= le32_to_cpu(dn
->size
);
1977 if (blk_offs
> fscki
->size
) {
1978 ubifs_err("data node at LEB %d:%d is not within inode "
1979 "size %lld", zbr
->lnum
, zbr
->offs
,
1986 struct ubifs_dent_node
*dent
= node
;
1987 struct fsck_inode
*fscki1
;
1989 err
= ubifs_validate_entry(c
, dent
);
1994 * Search the inode node this entry refers to and the parent
1995 * inode node and insert them to the RB-tree of inodes.
1997 inum
= le64_to_cpu(dent
->inum
);
1998 fscki
= read_add_inode(c
, priv
, inum
);
1999 if (IS_ERR(fscki
)) {
2000 err
= PTR_ERR(fscki
);
2001 ubifs_err("error %d while processing entry node and "
2002 "trying to find inode node %lu",
2003 err
, (unsigned long)inum
);
2007 /* Count how many direntries or xentries refers this inode */
2008 fscki
->references
+= 1;
2010 inum
= key_inum_flash(c
, &dent
->key
);
2011 fscki1
= read_add_inode(c
, priv
, inum
);
2012 if (IS_ERR(fscki1
)) {
2013 err
= PTR_ERR(fscki1
);
2014 ubifs_err("error %d while processing entry node and "
2015 "trying to find parent inode node %lu",
2016 err
, (unsigned long)inum
);
2020 nlen
= le16_to_cpu(dent
->nlen
);
2021 if (type
== UBIFS_XENT_KEY
) {
2022 fscki1
->calc_xcnt
+= 1;
2023 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
2024 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
2025 fscki1
->calc_xnms
+= nlen
;
2027 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
2028 if (dent
->type
== UBIFS_ITYPE_DIR
)
2029 fscki1
->calc_cnt
+= 1;
2038 ubifs_msg("dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
2039 dbg_dump_node(c
, node
);
2046 * free_inodes - free RB-tree of inodes.
2047 * @fsckd: FS checking information
2049 static void free_inodes(struct fsck_data
*fsckd
)
2051 struct rb_node
*this = fsckd
->inodes
.rb_node
;
2052 struct fsck_inode
*fscki
;
2056 this = this->rb_left
;
2057 else if (this->rb_right
)
2058 this = this->rb_right
;
2060 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2061 this = rb_parent(this);
2063 if (this->rb_left
== &fscki
->rb
)
2064 this->rb_left
= NULL
;
2066 this->rb_right
= NULL
;
2074 * check_inodes - checks all inodes.
2075 * @c: UBIFS file-system description object
2076 * @fsckd: FS checking information
2078 * This is a helper function for 'dbg_check_filesystem()' which walks the
2079 * RB-tree of inodes after the index scan has been finished, and checks that
2080 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2081 * %-EINVAL if not, and a negative error code in case of failure.
2083 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
2086 union ubifs_key key
;
2087 struct ubifs_znode
*znode
;
2088 struct ubifs_zbranch
*zbr
;
2089 struct ubifs_ino_node
*ino
;
2090 struct fsck_inode
*fscki
;
2091 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2094 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2095 this = rb_next(this);
2097 if (S_ISDIR(fscki
->mode
)) {
2099 * Directories have to have exactly one reference (they
2100 * cannot have hardlinks), although root inode is an
2103 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2104 fscki
->references
!= 1) {
2105 ubifs_err("directory inode %lu has %d "
2106 "direntries which refer it, but "
2108 (unsigned long)fscki
->inum
,
2112 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2113 fscki
->references
!= 0) {
2114 ubifs_err("root inode %lu has non-zero (%d) "
2115 "direntries which refer it",
2116 (unsigned long)fscki
->inum
,
2120 if (fscki
->calc_sz
!= fscki
->size
) {
2121 ubifs_err("directory inode %lu size is %lld, "
2122 "but calculated size is %lld",
2123 (unsigned long)fscki
->inum
,
2124 fscki
->size
, fscki
->calc_sz
);
2127 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2128 ubifs_err("directory inode %lu nlink is %d, "
2129 "but calculated nlink is %d",
2130 (unsigned long)fscki
->inum
,
2131 fscki
->nlink
, fscki
->calc_cnt
);
2135 if (fscki
->references
!= fscki
->nlink
) {
2136 ubifs_err("inode %lu nlink is %d, but "
2137 "calculated nlink is %d",
2138 (unsigned long)fscki
->inum
,
2139 fscki
->nlink
, fscki
->references
);
2143 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2144 ubifs_err("inode %lu has xattr size %u, but "
2145 "calculated size is %lld",
2146 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2150 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2151 ubifs_err("inode %lu has %u xattrs, but "
2152 "calculated count is %lld",
2153 (unsigned long)fscki
->inum
,
2154 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2157 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2158 ubifs_err("inode %lu has xattr names' size %u, but "
2159 "calculated names' size is %lld",
2160 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2169 /* Read the bad inode and dump it */
2170 ino_key_init(c
, &key
, fscki
->inum
);
2171 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2173 ubifs_err("inode %lu not found in index",
2174 (unsigned long)fscki
->inum
);
2176 } else if (err
< 0) {
2177 ubifs_err("error %d while looking up inode %lu",
2178 err
, (unsigned long)fscki
->inum
);
2182 zbr
= &znode
->zbranch
[n
];
2183 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2187 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2189 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2190 zbr
->lnum
, zbr
->offs
, err
);
2195 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2196 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2197 dbg_dump_node(c
, ino
);
2203 * dbg_check_filesystem - check the file-system.
2204 * @c: UBIFS file-system description object
2206 * This function checks the file system, namely:
2207 * o makes sure that all leaf nodes exist and their CRCs are correct;
2208 * o makes sure inode nlink, size, xattr size/count are correct (for all
2211 * The function reads whole indexing tree and all nodes, so it is pretty
2212 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2213 * not, and a negative error code in case of failure.
2215 int dbg_check_filesystem(struct ubifs_info
*c
)
2218 struct fsck_data fsckd
;
2220 if (!(ubifs_chk_flags
& UBIFS_CHK_FS
))
2223 fsckd
.inodes
= RB_ROOT
;
2224 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2228 err
= check_inodes(c
, &fsckd
);
2232 free_inodes(&fsckd
);
2236 ubifs_err("file-system check failed with error %d", err
);
2238 free_inodes(&fsckd
);
2242 static int invocation_cnt
;
2244 int dbg_force_in_the_gaps(void)
2246 if (!dbg_force_in_the_gaps_enabled
)
2248 /* Force in-the-gaps every 8th commit */
2249 return !((invocation_cnt
++) & 0x7);
2252 /* Failure mode for recovery testing */
2254 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2256 struct failure_mode_info
{
2257 struct list_head list
;
2258 struct ubifs_info
*c
;
2261 static LIST_HEAD(fmi_list
);
2262 static DEFINE_SPINLOCK(fmi_lock
);
2264 static unsigned int next
;
2266 static int simple_rand(void)
2269 next
= current
->pid
;
2270 next
= next
* 1103515245 + 12345;
2271 return (next
>> 16) & 32767;
2274 static void failure_mode_init(struct ubifs_info
*c
)
2276 struct failure_mode_info
*fmi
;
2278 fmi
= kmalloc(sizeof(struct failure_mode_info
), GFP_NOFS
);
2280 ubifs_err("Failed to register failure mode - no memory");
2284 spin_lock(&fmi_lock
);
2285 list_add_tail(&fmi
->list
, &fmi_list
);
2286 spin_unlock(&fmi_lock
);
2289 static void failure_mode_exit(struct ubifs_info
*c
)
2291 struct failure_mode_info
*fmi
, *tmp
;
2293 spin_lock(&fmi_lock
);
2294 list_for_each_entry_safe(fmi
, tmp
, &fmi_list
, list
)
2296 list_del(&fmi
->list
);
2299 spin_unlock(&fmi_lock
);
2302 static struct ubifs_info
*dbg_find_info(struct ubi_volume_desc
*desc
)
2304 struct failure_mode_info
*fmi
;
2306 spin_lock(&fmi_lock
);
2307 list_for_each_entry(fmi
, &fmi_list
, list
)
2308 if (fmi
->c
->ubi
== desc
) {
2309 struct ubifs_info
*c
= fmi
->c
;
2311 spin_unlock(&fmi_lock
);
2314 spin_unlock(&fmi_lock
);
2318 static int in_failure_mode(struct ubi_volume_desc
*desc
)
2320 struct ubifs_info
*c
= dbg_find_info(desc
);
2322 if (c
&& dbg_failure_mode
)
2323 return c
->dbg
->failure_mode
;
2327 static int do_fail(struct ubi_volume_desc
*desc
, int lnum
, int write
)
2329 struct ubifs_info
*c
= dbg_find_info(desc
);
2330 struct ubifs_debug_info
*d
;
2332 if (!c
|| !dbg_failure_mode
)
2335 if (d
->failure_mode
)
2338 /* First call - decide delay to failure */
2340 unsigned int delay
= 1 << (simple_rand() >> 11);
2344 d
->fail_timeout
= jiffies
+
2345 msecs_to_jiffies(delay
);
2346 dbg_rcvry("failing after %ums", delay
);
2349 d
->fail_cnt_max
= delay
;
2350 dbg_rcvry("failing after %u calls", delay
);
2355 /* Determine if failure delay has expired */
2356 if (d
->fail_delay
== 1) {
2357 if (time_before(jiffies
, d
->fail_timeout
))
2359 } else if (d
->fail_delay
== 2)
2360 if (d
->fail_cnt
++ < d
->fail_cnt_max
)
2362 if (lnum
== UBIFS_SB_LNUM
) {
2366 } else if (chance(19, 20))
2368 dbg_rcvry("failing in super block LEB %d", lnum
);
2369 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2372 dbg_rcvry("failing in master LEB %d", lnum
);
2373 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2375 if (chance(99, 100))
2377 } else if (chance(399, 400))
2379 dbg_rcvry("failing in log LEB %d", lnum
);
2380 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2384 } else if (chance(19, 20))
2386 dbg_rcvry("failing in LPT LEB %d", lnum
);
2387 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2391 } else if (chance(9, 10))
2393 dbg_rcvry("failing in orphan LEB %d", lnum
);
2394 } else if (lnum
== c
->ihead_lnum
) {
2395 if (chance(99, 100))
2397 dbg_rcvry("failing in index head LEB %d", lnum
);
2398 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2401 dbg_rcvry("failing in GC head LEB %d", lnum
);
2402 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2403 !ubifs_search_bud(c
, lnum
)) {
2406 dbg_rcvry("failing in non-bud LEB %d", lnum
);
2407 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2408 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2409 if (chance(999, 1000))
2411 dbg_rcvry("failing in bud LEB %d commit running", lnum
);
2413 if (chance(9999, 10000))
2415 dbg_rcvry("failing in bud LEB %d commit not running", lnum
);
2417 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum
);
2418 d
->failure_mode
= 1;
2423 static void cut_data(const void *buf
, int len
)
2426 unsigned char *p
= (void *)buf
;
2428 flen
= (len
* (long long)simple_rand()) >> 15;
2429 for (i
= flen
; i
< len
; i
++)
2433 int dbg_leb_read(struct ubi_volume_desc
*desc
, int lnum
, char *buf
, int offset
,
2436 if (in_failure_mode(desc
))
2438 return ubi_leb_read(desc
, lnum
, buf
, offset
, len
, check
);
2441 int dbg_leb_write(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2442 int offset
, int len
, int dtype
)
2446 if (in_failure_mode(desc
))
2448 failing
= do_fail(desc
, lnum
, 1);
2451 err
= ubi_leb_write(desc
, lnum
, buf
, offset
, len
, dtype
);
2459 int dbg_leb_change(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2464 if (do_fail(desc
, lnum
, 1))
2466 err
= ubi_leb_change(desc
, lnum
, buf
, len
, dtype
);
2469 if (do_fail(desc
, lnum
, 1))
2474 int dbg_leb_erase(struct ubi_volume_desc
*desc
, int lnum
)
2478 if (do_fail(desc
, lnum
, 0))
2480 err
= ubi_leb_erase(desc
, lnum
);
2483 if (do_fail(desc
, lnum
, 0))
2488 int dbg_leb_unmap(struct ubi_volume_desc
*desc
, int lnum
)
2492 if (do_fail(desc
, lnum
, 0))
2494 err
= ubi_leb_unmap(desc
, lnum
);
2497 if (do_fail(desc
, lnum
, 0))
2502 int dbg_is_mapped(struct ubi_volume_desc
*desc
, int lnum
)
2504 if (in_failure_mode(desc
))
2506 return ubi_is_mapped(desc
, lnum
);
2509 int dbg_leb_map(struct ubi_volume_desc
*desc
, int lnum
, int dtype
)
2513 if (do_fail(desc
, lnum
, 0))
2515 err
= ubi_leb_map(desc
, lnum
, dtype
);
2518 if (do_fail(desc
, lnum
, 0))
2524 * ubifs_debugging_init - initialize UBIFS debugging.
2525 * @c: UBIFS file-system description object
2527 * This function initializes debugging-related data for the file system.
2528 * Returns zero in case of success and a negative error code in case of
2531 int ubifs_debugging_init(struct ubifs_info
*c
)
2533 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
2537 c
->dbg
->buf
= vmalloc(c
->leb_size
);
2541 failure_mode_init(c
);
2550 * ubifs_debugging_exit - free debugging data.
2551 * @c: UBIFS file-system description object
2553 void ubifs_debugging_exit(struct ubifs_info
*c
)
2555 failure_mode_exit(c
);
2561 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2562 * contain the stuff specific to particular file-system mounts.
2564 static struct dentry
*dfs_rootdir
;
2567 * dbg_debugfs_init - initialize debugfs file-system.
2569 * UBIFS uses debugfs file-system to expose various debugging knobs to
2570 * user-space. This function creates "ubifs" directory in the debugfs
2571 * file-system. Returns zero in case of success and a negative error code in
2574 int dbg_debugfs_init(void)
2576 dfs_rootdir
= debugfs_create_dir("ubifs", NULL
);
2577 if (IS_ERR(dfs_rootdir
)) {
2578 int err
= PTR_ERR(dfs_rootdir
);
2579 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2588 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2590 void dbg_debugfs_exit(void)
2592 debugfs_remove(dfs_rootdir
);
2595 static int open_debugfs_file(struct inode
*inode
, struct file
*file
)
2597 file
->private_data
= inode
->i_private
;
2601 static ssize_t
write_debugfs_file(struct file
*file
, const char __user
*buf
,
2602 size_t count
, loff_t
*ppos
)
2604 struct ubifs_info
*c
= file
->private_data
;
2605 struct ubifs_debug_info
*d
= c
->dbg
;
2607 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
)
2609 else if (file
->f_path
.dentry
== d
->dfs_dump_budg
) {
2610 spin_lock(&c
->space_lock
);
2612 spin_unlock(&c
->space_lock
);
2613 } else if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2614 mutex_lock(&c
->tnc_mutex
);
2616 mutex_unlock(&c
->tnc_mutex
);
2624 static const struct file_operations dfs_fops
= {
2625 .open
= open_debugfs_file
,
2626 .write
= write_debugfs_file
,
2627 .owner
= THIS_MODULE
,
2631 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2632 * @c: UBIFS file-system description object
2634 * This function creates all debugfs files for this instance of UBIFS. Returns
2635 * zero in case of success and a negative error code in case of failure.
2637 * Note, the only reason we have not merged this function with the
2638 * 'ubifs_debugging_init()' function is because it is better to initialize
2639 * debugfs interfaces at the very end of the mount process, and remove them at
2640 * the very beginning of the mount process.
2642 int dbg_debugfs_init_fs(struct ubifs_info
*c
)
2646 struct dentry
*dent
;
2647 struct ubifs_debug_info
*d
= c
->dbg
;
2649 sprintf(d
->dfs_dir_name
, "ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2650 d
->dfs_dir
= debugfs_create_dir(d
->dfs_dir_name
, dfs_rootdir
);
2651 if (IS_ERR(d
->dfs_dir
)) {
2652 err
= PTR_ERR(d
->dfs_dir
);
2653 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2654 d
->dfs_dir_name
, err
);
2658 fname
= "dump_lprops";
2659 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->dfs_dir
, c
, &dfs_fops
);
2662 d
->dfs_dump_lprops
= dent
;
2664 fname
= "dump_budg";
2665 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->dfs_dir
, c
, &dfs_fops
);
2668 d
->dfs_dump_budg
= dent
;
2671 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->dfs_dir
, c
, &dfs_fops
);
2674 d
->dfs_dump_tnc
= dent
;
2679 err
= PTR_ERR(dent
);
2680 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2682 debugfs_remove_recursive(d
->dfs_dir
);
2688 * dbg_debugfs_exit_fs - remove all debugfs files.
2689 * @c: UBIFS file-system description object
2691 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
2693 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
2696 #endif /* CONFIG_UBIFS_FS_DEBUG */