hwmon: (pmbus) Add function to clear sensor cache
[linux-2.6.git] / drivers / hwmon / pmbus / pmbus_core.c
blob32f4530cd1e8b558abebe821017df74d253173a8
1 /*
2 * Hardware monitoring driver for PMBus devices
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 * Copyright (c) 2012 Guenter Roeck
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/err.h>
26 #include <linux/slab.h>
27 #include <linux/i2c.h>
28 #include <linux/hwmon.h>
29 #include <linux/hwmon-sysfs.h>
30 #include <linux/jiffies.h>
31 #include <linux/i2c/pmbus.h>
32 #include "pmbus.h"
35 * Number of additional attribute pointers to allocate
36 * with each call to krealloc
38 #define PMBUS_ATTR_ALLOC_SIZE 32
41 * Index into status register array, per status register group
43 #define PB_STATUS_BASE 0
44 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
45 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
46 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
47 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
48 #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
49 #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES)
50 #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1)
52 #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1)
54 #define PMBUS_NAME_SIZE 24
56 struct pmbus_sensor {
57 struct pmbus_sensor *next;
58 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
59 struct device_attribute attribute;
60 u8 page; /* page number */
61 u16 reg; /* register */
62 enum pmbus_sensor_classes class; /* sensor class */
63 bool update; /* runtime sensor update needed */
64 int data; /* Sensor data.
65 Negative if there was a read error */
67 #define to_pmbus_sensor(_attr) \
68 container_of(_attr, struct pmbus_sensor, attribute)
70 struct pmbus_boolean {
71 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
72 struct sensor_device_attribute attribute;
73 struct pmbus_sensor *s1;
74 struct pmbus_sensor *s2;
76 #define to_pmbus_boolean(_attr) \
77 container_of(_attr, struct pmbus_boolean, attribute)
79 struct pmbus_label {
80 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
81 struct device_attribute attribute;
82 char label[PMBUS_NAME_SIZE]; /* label */
84 #define to_pmbus_label(_attr) \
85 container_of(_attr, struct pmbus_label, attribute)
87 struct pmbus_data {
88 struct device *dev;
89 struct device *hwmon_dev;
91 u32 flags; /* from platform data */
93 int exponent; /* linear mode: exponent for output voltages */
95 const struct pmbus_driver_info *info;
97 int max_attributes;
98 int num_attributes;
99 struct attribute_group group;
101 struct pmbus_sensor *sensors;
103 struct mutex update_lock;
104 bool valid;
105 unsigned long last_updated; /* in jiffies */
108 * A single status register covers multiple attributes,
109 * so we keep them all together.
111 u8 status[PB_NUM_STATUS_REG];
113 u8 currpage;
116 void pmbus_clear_cache(struct i2c_client *client)
118 struct pmbus_data *data = i2c_get_clientdata(client);
120 data->valid = false;
122 EXPORT_SYMBOL_GPL(pmbus_clear_cache);
124 int pmbus_set_page(struct i2c_client *client, u8 page)
126 struct pmbus_data *data = i2c_get_clientdata(client);
127 int rv = 0;
128 int newpage;
130 if (page != data->currpage) {
131 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
132 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
133 if (newpage != page)
134 rv = -EIO;
135 else
136 data->currpage = page;
138 return rv;
140 EXPORT_SYMBOL_GPL(pmbus_set_page);
142 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
144 int rv;
146 if (page >= 0) {
147 rv = pmbus_set_page(client, page);
148 if (rv < 0)
149 return rv;
152 return i2c_smbus_write_byte(client, value);
154 EXPORT_SYMBOL_GPL(pmbus_write_byte);
157 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
158 * a device specific mapping funcion exists and calls it if necessary.
160 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
162 struct pmbus_data *data = i2c_get_clientdata(client);
163 const struct pmbus_driver_info *info = data->info;
164 int status;
166 if (info->write_byte) {
167 status = info->write_byte(client, page, value);
168 if (status != -ENODATA)
169 return status;
171 return pmbus_write_byte(client, page, value);
174 int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
176 int rv;
178 rv = pmbus_set_page(client, page);
179 if (rv < 0)
180 return rv;
182 return i2c_smbus_write_word_data(client, reg, word);
184 EXPORT_SYMBOL_GPL(pmbus_write_word_data);
187 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
188 * a device specific mapping function exists and calls it if necessary.
190 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
191 u16 word)
193 struct pmbus_data *data = i2c_get_clientdata(client);
194 const struct pmbus_driver_info *info = data->info;
195 int status;
197 if (info->write_word_data) {
198 status = info->write_word_data(client, page, reg, word);
199 if (status != -ENODATA)
200 return status;
202 if (reg >= PMBUS_VIRT_BASE)
203 return -ENXIO;
204 return pmbus_write_word_data(client, page, reg, word);
207 int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
209 int rv;
211 rv = pmbus_set_page(client, page);
212 if (rv < 0)
213 return rv;
215 return i2c_smbus_read_word_data(client, reg);
217 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
220 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
221 * a device specific mapping function exists and calls it if necessary.
223 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
225 struct pmbus_data *data = i2c_get_clientdata(client);
226 const struct pmbus_driver_info *info = data->info;
227 int status;
229 if (info->read_word_data) {
230 status = info->read_word_data(client, page, reg);
231 if (status != -ENODATA)
232 return status;
234 if (reg >= PMBUS_VIRT_BASE)
235 return -ENXIO;
236 return pmbus_read_word_data(client, page, reg);
239 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
241 int rv;
243 if (page >= 0) {
244 rv = pmbus_set_page(client, page);
245 if (rv < 0)
246 return rv;
249 return i2c_smbus_read_byte_data(client, reg);
251 EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
254 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
255 * a device specific mapping function exists and calls it if necessary.
257 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
259 struct pmbus_data *data = i2c_get_clientdata(client);
260 const struct pmbus_driver_info *info = data->info;
261 int status;
263 if (info->read_byte_data) {
264 status = info->read_byte_data(client, page, reg);
265 if (status != -ENODATA)
266 return status;
268 return pmbus_read_byte_data(client, page, reg);
271 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
273 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
276 void pmbus_clear_faults(struct i2c_client *client)
278 struct pmbus_data *data = i2c_get_clientdata(client);
279 int i;
281 for (i = 0; i < data->info->pages; i++)
282 pmbus_clear_fault_page(client, i);
284 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
286 static int pmbus_check_status_cml(struct i2c_client *client)
288 int status, status2;
290 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_BYTE);
291 if (status < 0 || (status & PB_STATUS_CML)) {
292 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
293 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
294 return -EIO;
296 return 0;
299 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
301 int rv;
302 struct pmbus_data *data = i2c_get_clientdata(client);
304 rv = _pmbus_read_byte_data(client, page, reg);
305 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
306 rv = pmbus_check_status_cml(client);
307 pmbus_clear_fault_page(client, -1);
308 return rv >= 0;
310 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
312 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
314 int rv;
315 struct pmbus_data *data = i2c_get_clientdata(client);
317 rv = _pmbus_read_word_data(client, page, reg);
318 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
319 rv = pmbus_check_status_cml(client);
320 pmbus_clear_fault_page(client, -1);
321 return rv >= 0;
323 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
325 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
327 struct pmbus_data *data = i2c_get_clientdata(client);
329 return data->info;
331 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
333 static struct pmbus_data *pmbus_update_device(struct device *dev)
335 struct i2c_client *client = to_i2c_client(dev);
336 struct pmbus_data *data = i2c_get_clientdata(client);
337 const struct pmbus_driver_info *info = data->info;
338 struct pmbus_sensor *sensor;
340 mutex_lock(&data->update_lock);
341 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
342 int i;
344 for (i = 0; i < info->pages; i++)
345 data->status[PB_STATUS_BASE + i]
346 = _pmbus_read_byte_data(client, i,
347 PMBUS_STATUS_BYTE);
348 for (i = 0; i < info->pages; i++) {
349 if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT))
350 continue;
351 data->status[PB_STATUS_VOUT_BASE + i]
352 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT);
354 for (i = 0; i < info->pages; i++) {
355 if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT))
356 continue;
357 data->status[PB_STATUS_IOUT_BASE + i]
358 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT);
360 for (i = 0; i < info->pages; i++) {
361 if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP))
362 continue;
363 data->status[PB_STATUS_TEMP_BASE + i]
364 = _pmbus_read_byte_data(client, i,
365 PMBUS_STATUS_TEMPERATURE);
367 for (i = 0; i < info->pages; i++) {
368 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12))
369 continue;
370 data->status[PB_STATUS_FAN_BASE + i]
371 = _pmbus_read_byte_data(client, i,
372 PMBUS_STATUS_FAN_12);
375 for (i = 0; i < info->pages; i++) {
376 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34))
377 continue;
378 data->status[PB_STATUS_FAN34_BASE + i]
379 = _pmbus_read_byte_data(client, i,
380 PMBUS_STATUS_FAN_34);
383 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
384 data->status[PB_STATUS_INPUT_BASE]
385 = _pmbus_read_byte_data(client, 0,
386 PMBUS_STATUS_INPUT);
388 if (info->func[0] & PMBUS_HAVE_STATUS_VMON)
389 data->status[PB_STATUS_VMON_BASE]
390 = _pmbus_read_byte_data(client, 0,
391 PMBUS_VIRT_STATUS_VMON);
393 for (sensor = data->sensors; sensor; sensor = sensor->next) {
394 if (!data->valid || sensor->update)
395 sensor->data
396 = _pmbus_read_word_data(client,
397 sensor->page,
398 sensor->reg);
400 pmbus_clear_faults(client);
401 data->last_updated = jiffies;
402 data->valid = 1;
404 mutex_unlock(&data->update_lock);
405 return data;
409 * Convert linear sensor values to milli- or micro-units
410 * depending on sensor type.
412 static long pmbus_reg2data_linear(struct pmbus_data *data,
413 struct pmbus_sensor *sensor)
415 s16 exponent;
416 s32 mantissa;
417 long val;
419 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
420 exponent = data->exponent;
421 mantissa = (u16) sensor->data;
422 } else { /* LINEAR11 */
423 exponent = ((s16)sensor->data) >> 11;
424 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
427 val = mantissa;
429 /* scale result to milli-units for all sensors except fans */
430 if (sensor->class != PSC_FAN)
431 val = val * 1000L;
433 /* scale result to micro-units for power sensors */
434 if (sensor->class == PSC_POWER)
435 val = val * 1000L;
437 if (exponent >= 0)
438 val <<= exponent;
439 else
440 val >>= -exponent;
442 return val;
446 * Convert direct sensor values to milli- or micro-units
447 * depending on sensor type.
449 static long pmbus_reg2data_direct(struct pmbus_data *data,
450 struct pmbus_sensor *sensor)
452 long val = (s16) sensor->data;
453 long m, b, R;
455 m = data->info->m[sensor->class];
456 b = data->info->b[sensor->class];
457 R = data->info->R[sensor->class];
459 if (m == 0)
460 return 0;
462 /* X = 1/m * (Y * 10^-R - b) */
463 R = -R;
464 /* scale result to milli-units for everything but fans */
465 if (sensor->class != PSC_FAN) {
466 R += 3;
467 b *= 1000;
470 /* scale result to micro-units for power sensors */
471 if (sensor->class == PSC_POWER) {
472 R += 3;
473 b *= 1000;
476 while (R > 0) {
477 val *= 10;
478 R--;
480 while (R < 0) {
481 val = DIV_ROUND_CLOSEST(val, 10);
482 R++;
485 return (val - b) / m;
489 * Convert VID sensor values to milli- or micro-units
490 * depending on sensor type.
491 * We currently only support VR11.
493 static long pmbus_reg2data_vid(struct pmbus_data *data,
494 struct pmbus_sensor *sensor)
496 long val = sensor->data;
498 if (val < 0x02 || val > 0xb2)
499 return 0;
500 return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
503 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
505 long val;
507 switch (data->info->format[sensor->class]) {
508 case direct:
509 val = pmbus_reg2data_direct(data, sensor);
510 break;
511 case vid:
512 val = pmbus_reg2data_vid(data, sensor);
513 break;
514 case linear:
515 default:
516 val = pmbus_reg2data_linear(data, sensor);
517 break;
519 return val;
522 #define MAX_MANTISSA (1023 * 1000)
523 #define MIN_MANTISSA (511 * 1000)
525 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
526 enum pmbus_sensor_classes class, long val)
528 s16 exponent = 0, mantissa;
529 bool negative = false;
531 /* simple case */
532 if (val == 0)
533 return 0;
535 if (class == PSC_VOLTAGE_OUT) {
536 /* LINEAR16 does not support negative voltages */
537 if (val < 0)
538 return 0;
541 * For a static exponents, we don't have a choice
542 * but to adjust the value to it.
544 if (data->exponent < 0)
545 val <<= -data->exponent;
546 else
547 val >>= data->exponent;
548 val = DIV_ROUND_CLOSEST(val, 1000);
549 return val & 0xffff;
552 if (val < 0) {
553 negative = true;
554 val = -val;
557 /* Power is in uW. Convert to mW before converting. */
558 if (class == PSC_POWER)
559 val = DIV_ROUND_CLOSEST(val, 1000L);
562 * For simplicity, convert fan data to milli-units
563 * before calculating the exponent.
565 if (class == PSC_FAN)
566 val = val * 1000;
568 /* Reduce large mantissa until it fits into 10 bit */
569 while (val >= MAX_MANTISSA && exponent < 15) {
570 exponent++;
571 val >>= 1;
573 /* Increase small mantissa to improve precision */
574 while (val < MIN_MANTISSA && exponent > -15) {
575 exponent--;
576 val <<= 1;
579 /* Convert mantissa from milli-units to units */
580 mantissa = DIV_ROUND_CLOSEST(val, 1000);
582 /* Ensure that resulting number is within range */
583 if (mantissa > 0x3ff)
584 mantissa = 0x3ff;
586 /* restore sign */
587 if (negative)
588 mantissa = -mantissa;
590 /* Convert to 5 bit exponent, 11 bit mantissa */
591 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
594 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
595 enum pmbus_sensor_classes class, long val)
597 long m, b, R;
599 m = data->info->m[class];
600 b = data->info->b[class];
601 R = data->info->R[class];
603 /* Power is in uW. Adjust R and b. */
604 if (class == PSC_POWER) {
605 R -= 3;
606 b *= 1000;
609 /* Calculate Y = (m * X + b) * 10^R */
610 if (class != PSC_FAN) {
611 R -= 3; /* Adjust R and b for data in milli-units */
612 b *= 1000;
614 val = val * m + b;
616 while (R > 0) {
617 val *= 10;
618 R--;
620 while (R < 0) {
621 val = DIV_ROUND_CLOSEST(val, 10);
622 R++;
625 return val;
628 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
629 enum pmbus_sensor_classes class, long val)
631 val = clamp_val(val, 500, 1600);
633 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
636 static u16 pmbus_data2reg(struct pmbus_data *data,
637 enum pmbus_sensor_classes class, long val)
639 u16 regval;
641 switch (data->info->format[class]) {
642 case direct:
643 regval = pmbus_data2reg_direct(data, class, val);
644 break;
645 case vid:
646 regval = pmbus_data2reg_vid(data, class, val);
647 break;
648 case linear:
649 default:
650 regval = pmbus_data2reg_linear(data, class, val);
651 break;
653 return regval;
657 * Return boolean calculated from converted data.
658 * <index> defines a status register index and mask.
659 * The mask is in the lower 8 bits, the register index is in bits 8..23.
661 * The associated pmbus_boolean structure contains optional pointers to two
662 * sensor attributes. If specified, those attributes are compared against each
663 * other to determine if a limit has been exceeded.
665 * If the sensor attribute pointers are NULL, the function returns true if
666 * (status[reg] & mask) is true.
668 * If sensor attribute pointers are provided, a comparison against a specified
669 * limit has to be performed to determine the boolean result.
670 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
671 * sensor values referenced by sensor attribute pointers s1 and s2).
673 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
674 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
676 * If a negative value is stored in any of the referenced registers, this value
677 * reflects an error code which will be returned.
679 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b,
680 int index)
682 struct pmbus_sensor *s1 = b->s1;
683 struct pmbus_sensor *s2 = b->s2;
684 u16 reg = (index >> 8) & 0xffff;
685 u8 mask = index & 0xff;
686 int ret, status;
687 u8 regval;
689 status = data->status[reg];
690 if (status < 0)
691 return status;
693 regval = status & mask;
694 if (!s1 && !s2) {
695 ret = !!regval;
696 } else if (!s1 || !s2) {
697 BUG();
698 return 0;
699 } else {
700 long v1, v2;
702 if (s1->data < 0)
703 return s1->data;
704 if (s2->data < 0)
705 return s2->data;
707 v1 = pmbus_reg2data(data, s1);
708 v2 = pmbus_reg2data(data, s2);
709 ret = !!(regval && v1 >= v2);
711 return ret;
714 static ssize_t pmbus_show_boolean(struct device *dev,
715 struct device_attribute *da, char *buf)
717 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
718 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
719 struct pmbus_data *data = pmbus_update_device(dev);
720 int val;
722 val = pmbus_get_boolean(data, boolean, attr->index);
723 if (val < 0)
724 return val;
725 return snprintf(buf, PAGE_SIZE, "%d\n", val);
728 static ssize_t pmbus_show_sensor(struct device *dev,
729 struct device_attribute *devattr, char *buf)
731 struct pmbus_data *data = pmbus_update_device(dev);
732 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
734 if (sensor->data < 0)
735 return sensor->data;
737 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
740 static ssize_t pmbus_set_sensor(struct device *dev,
741 struct device_attribute *devattr,
742 const char *buf, size_t count)
744 struct i2c_client *client = to_i2c_client(dev);
745 struct pmbus_data *data = i2c_get_clientdata(client);
746 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
747 ssize_t rv = count;
748 long val = 0;
749 int ret;
750 u16 regval;
752 if (kstrtol(buf, 10, &val) < 0)
753 return -EINVAL;
755 mutex_lock(&data->update_lock);
756 regval = pmbus_data2reg(data, sensor->class, val);
757 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
758 if (ret < 0)
759 rv = ret;
760 else
761 sensor->data = regval;
762 mutex_unlock(&data->update_lock);
763 return rv;
766 static ssize_t pmbus_show_label(struct device *dev,
767 struct device_attribute *da, char *buf)
769 struct pmbus_label *label = to_pmbus_label(da);
771 return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
774 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
776 if (data->num_attributes >= data->max_attributes - 1) {
777 data->max_attributes += PMBUS_ATTR_ALLOC_SIZE;
778 data->group.attrs = krealloc(data->group.attrs,
779 sizeof(struct attribute *) *
780 data->max_attributes, GFP_KERNEL);
781 if (data->group.attrs == NULL)
782 return -ENOMEM;
785 data->group.attrs[data->num_attributes++] = attr;
786 data->group.attrs[data->num_attributes] = NULL;
787 return 0;
790 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
791 const char *name,
792 umode_t mode,
793 ssize_t (*show)(struct device *dev,
794 struct device_attribute *attr,
795 char *buf),
796 ssize_t (*store)(struct device *dev,
797 struct device_attribute *attr,
798 const char *buf, size_t count))
800 sysfs_attr_init(&dev_attr->attr);
801 dev_attr->attr.name = name;
802 dev_attr->attr.mode = mode;
803 dev_attr->show = show;
804 dev_attr->store = store;
807 static void pmbus_attr_init(struct sensor_device_attribute *a,
808 const char *name,
809 umode_t mode,
810 ssize_t (*show)(struct device *dev,
811 struct device_attribute *attr,
812 char *buf),
813 ssize_t (*store)(struct device *dev,
814 struct device_attribute *attr,
815 const char *buf, size_t count),
816 int idx)
818 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
819 a->index = idx;
822 static int pmbus_add_boolean(struct pmbus_data *data,
823 const char *name, const char *type, int seq,
824 struct pmbus_sensor *s1,
825 struct pmbus_sensor *s2,
826 u16 reg, u8 mask)
828 struct pmbus_boolean *boolean;
829 struct sensor_device_attribute *a;
831 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
832 if (!boolean)
833 return -ENOMEM;
835 a = &boolean->attribute;
837 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
838 name, seq, type);
839 boolean->s1 = s1;
840 boolean->s2 = s2;
841 pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL,
842 (reg << 8) | mask);
844 return pmbus_add_attribute(data, &a->dev_attr.attr);
847 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
848 const char *name, const char *type,
849 int seq, int page, int reg,
850 enum pmbus_sensor_classes class,
851 bool update, bool readonly)
853 struct pmbus_sensor *sensor;
854 struct device_attribute *a;
856 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
857 if (!sensor)
858 return NULL;
859 a = &sensor->attribute;
861 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
862 name, seq, type);
863 sensor->page = page;
864 sensor->reg = reg;
865 sensor->class = class;
866 sensor->update = update;
867 pmbus_dev_attr_init(a, sensor->name,
868 readonly ? S_IRUGO : S_IRUGO | S_IWUSR,
869 pmbus_show_sensor, pmbus_set_sensor);
871 if (pmbus_add_attribute(data, &a->attr))
872 return NULL;
874 sensor->next = data->sensors;
875 data->sensors = sensor;
877 return sensor;
880 static int pmbus_add_label(struct pmbus_data *data,
881 const char *name, int seq,
882 const char *lstring, int index)
884 struct pmbus_label *label;
885 struct device_attribute *a;
887 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
888 if (!label)
889 return -ENOMEM;
891 a = &label->attribute;
893 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
894 if (!index)
895 strncpy(label->label, lstring, sizeof(label->label) - 1);
896 else
897 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
898 index);
900 pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL);
901 return pmbus_add_attribute(data, &a->attr);
905 * Search for attributes. Allocate sensors, booleans, and labels as needed.
909 * The pmbus_limit_attr structure describes a single limit attribute
910 * and its associated alarm attribute.
912 struct pmbus_limit_attr {
913 u16 reg; /* Limit register */
914 bool update; /* True if register needs updates */
915 bool low; /* True if low limit; for limits with compare
916 functions only */
917 const char *attr; /* Attribute name */
918 const char *alarm; /* Alarm attribute name */
919 u32 sbit; /* Alarm attribute status bit */
923 * The pmbus_sensor_attr structure describes one sensor attribute. This
924 * description includes a reference to the associated limit attributes.
926 struct pmbus_sensor_attr {
927 u16 reg; /* sensor register */
928 enum pmbus_sensor_classes class;/* sensor class */
929 const char *label; /* sensor label */
930 bool paged; /* true if paged sensor */
931 bool update; /* true if update needed */
932 bool compare; /* true if compare function needed */
933 u32 func; /* sensor mask */
934 u32 sfunc; /* sensor status mask */
935 int sbase; /* status base register */
936 u32 gbit; /* generic status bit */
937 const struct pmbus_limit_attr *limit;/* limit registers */
938 int nlimit; /* # of limit registers */
942 * Add a set of limit attributes and, if supported, the associated
943 * alarm attributes.
944 * returns 0 if no alarm register found, 1 if an alarm register was found,
945 * < 0 on errors.
947 static int pmbus_add_limit_attrs(struct i2c_client *client,
948 struct pmbus_data *data,
949 const struct pmbus_driver_info *info,
950 const char *name, int index, int page,
951 struct pmbus_sensor *base,
952 const struct pmbus_sensor_attr *attr)
954 const struct pmbus_limit_attr *l = attr->limit;
955 int nlimit = attr->nlimit;
956 int have_alarm = 0;
957 int i, ret;
958 struct pmbus_sensor *curr;
960 for (i = 0; i < nlimit; i++) {
961 if (pmbus_check_word_register(client, page, l->reg)) {
962 curr = pmbus_add_sensor(data, name, l->attr, index,
963 page, l->reg, attr->class,
964 attr->update || l->update,
965 false);
966 if (!curr)
967 return -ENOMEM;
968 if (l->sbit && (info->func[page] & attr->sfunc)) {
969 ret = pmbus_add_boolean(data, name,
970 l->alarm, index,
971 attr->compare ? l->low ? curr : base
972 : NULL,
973 attr->compare ? l->low ? base : curr
974 : NULL,
975 attr->sbase + page, l->sbit);
976 if (ret)
977 return ret;
978 have_alarm = 1;
981 l++;
983 return have_alarm;
986 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
987 struct pmbus_data *data,
988 const struct pmbus_driver_info *info,
989 const char *name,
990 int index, int page,
991 const struct pmbus_sensor_attr *attr)
993 struct pmbus_sensor *base;
994 int ret;
996 if (attr->label) {
997 ret = pmbus_add_label(data, name, index, attr->label,
998 attr->paged ? page + 1 : 0);
999 if (ret)
1000 return ret;
1002 base = pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1003 attr->class, true, true);
1004 if (!base)
1005 return -ENOMEM;
1006 if (attr->sfunc) {
1007 ret = pmbus_add_limit_attrs(client, data, info, name,
1008 index, page, base, attr);
1009 if (ret < 0)
1010 return ret;
1012 * Add generic alarm attribute only if there are no individual
1013 * alarm attributes, if there is a global alarm bit, and if
1014 * the generic status register for this page is accessible.
1016 if (!ret && attr->gbit &&
1017 pmbus_check_byte_register(client, page,
1018 PMBUS_STATUS_BYTE)) {
1019 ret = pmbus_add_boolean(data, name, "alarm", index,
1020 NULL, NULL,
1021 PB_STATUS_BASE + page,
1022 attr->gbit);
1023 if (ret)
1024 return ret;
1027 return 0;
1030 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1031 struct pmbus_data *data,
1032 const char *name,
1033 const struct pmbus_sensor_attr *attrs,
1034 int nattrs)
1036 const struct pmbus_driver_info *info = data->info;
1037 int index, i;
1038 int ret;
1040 index = 1;
1041 for (i = 0; i < nattrs; i++) {
1042 int page, pages;
1044 pages = attrs->paged ? info->pages : 1;
1045 for (page = 0; page < pages; page++) {
1046 if (!(info->func[page] & attrs->func))
1047 continue;
1048 ret = pmbus_add_sensor_attrs_one(client, data, info,
1049 name, index, page,
1050 attrs);
1051 if (ret)
1052 return ret;
1053 index++;
1055 attrs++;
1057 return 0;
1060 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1062 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1063 .attr = "min",
1064 .alarm = "min_alarm",
1065 .sbit = PB_VOLTAGE_UV_WARNING,
1066 }, {
1067 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1068 .attr = "lcrit",
1069 .alarm = "lcrit_alarm",
1070 .sbit = PB_VOLTAGE_UV_FAULT,
1071 }, {
1072 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1073 .attr = "max",
1074 .alarm = "max_alarm",
1075 .sbit = PB_VOLTAGE_OV_WARNING,
1076 }, {
1077 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1078 .attr = "crit",
1079 .alarm = "crit_alarm",
1080 .sbit = PB_VOLTAGE_OV_FAULT,
1081 }, {
1082 .reg = PMBUS_VIRT_READ_VIN_AVG,
1083 .update = true,
1084 .attr = "average",
1085 }, {
1086 .reg = PMBUS_VIRT_READ_VIN_MIN,
1087 .update = true,
1088 .attr = "lowest",
1089 }, {
1090 .reg = PMBUS_VIRT_READ_VIN_MAX,
1091 .update = true,
1092 .attr = "highest",
1093 }, {
1094 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1095 .attr = "reset_history",
1099 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1101 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1102 .attr = "min",
1103 .alarm = "min_alarm",
1104 .sbit = PB_VOLTAGE_UV_WARNING,
1105 }, {
1106 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1107 .attr = "lcrit",
1108 .alarm = "lcrit_alarm",
1109 .sbit = PB_VOLTAGE_UV_FAULT,
1110 }, {
1111 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1112 .attr = "max",
1113 .alarm = "max_alarm",
1114 .sbit = PB_VOLTAGE_OV_WARNING,
1115 }, {
1116 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1117 .attr = "crit",
1118 .alarm = "crit_alarm",
1119 .sbit = PB_VOLTAGE_OV_FAULT,
1123 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1125 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1126 .attr = "min",
1127 .alarm = "min_alarm",
1128 .sbit = PB_VOLTAGE_UV_WARNING,
1129 }, {
1130 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1131 .attr = "lcrit",
1132 .alarm = "lcrit_alarm",
1133 .sbit = PB_VOLTAGE_UV_FAULT,
1134 }, {
1135 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1136 .attr = "max",
1137 .alarm = "max_alarm",
1138 .sbit = PB_VOLTAGE_OV_WARNING,
1139 }, {
1140 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1141 .attr = "crit",
1142 .alarm = "crit_alarm",
1143 .sbit = PB_VOLTAGE_OV_FAULT,
1144 }, {
1145 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1146 .update = true,
1147 .attr = "average",
1148 }, {
1149 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1150 .update = true,
1151 .attr = "lowest",
1152 }, {
1153 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1154 .update = true,
1155 .attr = "highest",
1156 }, {
1157 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1158 .attr = "reset_history",
1162 static const struct pmbus_sensor_attr voltage_attributes[] = {
1164 .reg = PMBUS_READ_VIN,
1165 .class = PSC_VOLTAGE_IN,
1166 .label = "vin",
1167 .func = PMBUS_HAVE_VIN,
1168 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1169 .sbase = PB_STATUS_INPUT_BASE,
1170 .gbit = PB_STATUS_VIN_UV,
1171 .limit = vin_limit_attrs,
1172 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1173 }, {
1174 .reg = PMBUS_VIRT_READ_VMON,
1175 .class = PSC_VOLTAGE_IN,
1176 .label = "vmon",
1177 .func = PMBUS_HAVE_VMON,
1178 .sfunc = PMBUS_HAVE_STATUS_VMON,
1179 .sbase = PB_STATUS_VMON_BASE,
1180 .limit = vmon_limit_attrs,
1181 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1182 }, {
1183 .reg = PMBUS_READ_VCAP,
1184 .class = PSC_VOLTAGE_IN,
1185 .label = "vcap",
1186 .func = PMBUS_HAVE_VCAP,
1187 }, {
1188 .reg = PMBUS_READ_VOUT,
1189 .class = PSC_VOLTAGE_OUT,
1190 .label = "vout",
1191 .paged = true,
1192 .func = PMBUS_HAVE_VOUT,
1193 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1194 .sbase = PB_STATUS_VOUT_BASE,
1195 .gbit = PB_STATUS_VOUT_OV,
1196 .limit = vout_limit_attrs,
1197 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1201 /* Current attributes */
1203 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1205 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1206 .attr = "max",
1207 .alarm = "max_alarm",
1208 .sbit = PB_IIN_OC_WARNING,
1209 }, {
1210 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1211 .attr = "crit",
1212 .alarm = "crit_alarm",
1213 .sbit = PB_IIN_OC_FAULT,
1214 }, {
1215 .reg = PMBUS_VIRT_READ_IIN_AVG,
1216 .update = true,
1217 .attr = "average",
1218 }, {
1219 .reg = PMBUS_VIRT_READ_IIN_MIN,
1220 .update = true,
1221 .attr = "lowest",
1222 }, {
1223 .reg = PMBUS_VIRT_READ_IIN_MAX,
1224 .update = true,
1225 .attr = "highest",
1226 }, {
1227 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1228 .attr = "reset_history",
1232 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1234 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1235 .attr = "max",
1236 .alarm = "max_alarm",
1237 .sbit = PB_IOUT_OC_WARNING,
1238 }, {
1239 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1240 .attr = "lcrit",
1241 .alarm = "lcrit_alarm",
1242 .sbit = PB_IOUT_UC_FAULT,
1243 }, {
1244 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1245 .attr = "crit",
1246 .alarm = "crit_alarm",
1247 .sbit = PB_IOUT_OC_FAULT,
1248 }, {
1249 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1250 .update = true,
1251 .attr = "average",
1252 }, {
1253 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1254 .update = true,
1255 .attr = "lowest",
1256 }, {
1257 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1258 .update = true,
1259 .attr = "highest",
1260 }, {
1261 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1262 .attr = "reset_history",
1266 static const struct pmbus_sensor_attr current_attributes[] = {
1268 .reg = PMBUS_READ_IIN,
1269 .class = PSC_CURRENT_IN,
1270 .label = "iin",
1271 .func = PMBUS_HAVE_IIN,
1272 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1273 .sbase = PB_STATUS_INPUT_BASE,
1274 .limit = iin_limit_attrs,
1275 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1276 }, {
1277 .reg = PMBUS_READ_IOUT,
1278 .class = PSC_CURRENT_OUT,
1279 .label = "iout",
1280 .paged = true,
1281 .func = PMBUS_HAVE_IOUT,
1282 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1283 .sbase = PB_STATUS_IOUT_BASE,
1284 .gbit = PB_STATUS_IOUT_OC,
1285 .limit = iout_limit_attrs,
1286 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1290 /* Power attributes */
1292 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1294 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1295 .attr = "max",
1296 .alarm = "alarm",
1297 .sbit = PB_PIN_OP_WARNING,
1298 }, {
1299 .reg = PMBUS_VIRT_READ_PIN_AVG,
1300 .update = true,
1301 .attr = "average",
1302 }, {
1303 .reg = PMBUS_VIRT_READ_PIN_MAX,
1304 .update = true,
1305 .attr = "input_highest",
1306 }, {
1307 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1308 .attr = "reset_history",
1312 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1314 .reg = PMBUS_POUT_MAX,
1315 .attr = "cap",
1316 .alarm = "cap_alarm",
1317 .sbit = PB_POWER_LIMITING,
1318 }, {
1319 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1320 .attr = "max",
1321 .alarm = "max_alarm",
1322 .sbit = PB_POUT_OP_WARNING,
1323 }, {
1324 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1325 .attr = "crit",
1326 .alarm = "crit_alarm",
1327 .sbit = PB_POUT_OP_FAULT,
1328 }, {
1329 .reg = PMBUS_VIRT_READ_POUT_AVG,
1330 .update = true,
1331 .attr = "average",
1332 }, {
1333 .reg = PMBUS_VIRT_READ_POUT_MAX,
1334 .update = true,
1335 .attr = "input_highest",
1336 }, {
1337 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1338 .attr = "reset_history",
1342 static const struct pmbus_sensor_attr power_attributes[] = {
1344 .reg = PMBUS_READ_PIN,
1345 .class = PSC_POWER,
1346 .label = "pin",
1347 .func = PMBUS_HAVE_PIN,
1348 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1349 .sbase = PB_STATUS_INPUT_BASE,
1350 .limit = pin_limit_attrs,
1351 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1352 }, {
1353 .reg = PMBUS_READ_POUT,
1354 .class = PSC_POWER,
1355 .label = "pout",
1356 .paged = true,
1357 .func = PMBUS_HAVE_POUT,
1358 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1359 .sbase = PB_STATUS_IOUT_BASE,
1360 .limit = pout_limit_attrs,
1361 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1365 /* Temperature atributes */
1367 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1369 .reg = PMBUS_UT_WARN_LIMIT,
1370 .low = true,
1371 .attr = "min",
1372 .alarm = "min_alarm",
1373 .sbit = PB_TEMP_UT_WARNING,
1374 }, {
1375 .reg = PMBUS_UT_FAULT_LIMIT,
1376 .low = true,
1377 .attr = "lcrit",
1378 .alarm = "lcrit_alarm",
1379 .sbit = PB_TEMP_UT_FAULT,
1380 }, {
1381 .reg = PMBUS_OT_WARN_LIMIT,
1382 .attr = "max",
1383 .alarm = "max_alarm",
1384 .sbit = PB_TEMP_OT_WARNING,
1385 }, {
1386 .reg = PMBUS_OT_FAULT_LIMIT,
1387 .attr = "crit",
1388 .alarm = "crit_alarm",
1389 .sbit = PB_TEMP_OT_FAULT,
1390 }, {
1391 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1392 .attr = "lowest",
1393 }, {
1394 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1395 .attr = "average",
1396 }, {
1397 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1398 .attr = "highest",
1399 }, {
1400 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1401 .attr = "reset_history",
1405 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1407 .reg = PMBUS_UT_WARN_LIMIT,
1408 .low = true,
1409 .attr = "min",
1410 .alarm = "min_alarm",
1411 .sbit = PB_TEMP_UT_WARNING,
1412 }, {
1413 .reg = PMBUS_UT_FAULT_LIMIT,
1414 .low = true,
1415 .attr = "lcrit",
1416 .alarm = "lcrit_alarm",
1417 .sbit = PB_TEMP_UT_FAULT,
1418 }, {
1419 .reg = PMBUS_OT_WARN_LIMIT,
1420 .attr = "max",
1421 .alarm = "max_alarm",
1422 .sbit = PB_TEMP_OT_WARNING,
1423 }, {
1424 .reg = PMBUS_OT_FAULT_LIMIT,
1425 .attr = "crit",
1426 .alarm = "crit_alarm",
1427 .sbit = PB_TEMP_OT_FAULT,
1428 }, {
1429 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
1430 .attr = "lowest",
1431 }, {
1432 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
1433 .attr = "average",
1434 }, {
1435 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
1436 .attr = "highest",
1437 }, {
1438 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1439 .attr = "reset_history",
1443 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1445 .reg = PMBUS_UT_WARN_LIMIT,
1446 .low = true,
1447 .attr = "min",
1448 .alarm = "min_alarm",
1449 .sbit = PB_TEMP_UT_WARNING,
1450 }, {
1451 .reg = PMBUS_UT_FAULT_LIMIT,
1452 .low = true,
1453 .attr = "lcrit",
1454 .alarm = "lcrit_alarm",
1455 .sbit = PB_TEMP_UT_FAULT,
1456 }, {
1457 .reg = PMBUS_OT_WARN_LIMIT,
1458 .attr = "max",
1459 .alarm = "max_alarm",
1460 .sbit = PB_TEMP_OT_WARNING,
1461 }, {
1462 .reg = PMBUS_OT_FAULT_LIMIT,
1463 .attr = "crit",
1464 .alarm = "crit_alarm",
1465 .sbit = PB_TEMP_OT_FAULT,
1469 static const struct pmbus_sensor_attr temp_attributes[] = {
1471 .reg = PMBUS_READ_TEMPERATURE_1,
1472 .class = PSC_TEMPERATURE,
1473 .paged = true,
1474 .update = true,
1475 .compare = true,
1476 .func = PMBUS_HAVE_TEMP,
1477 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1478 .sbase = PB_STATUS_TEMP_BASE,
1479 .gbit = PB_STATUS_TEMPERATURE,
1480 .limit = temp_limit_attrs,
1481 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1482 }, {
1483 .reg = PMBUS_READ_TEMPERATURE_2,
1484 .class = PSC_TEMPERATURE,
1485 .paged = true,
1486 .update = true,
1487 .compare = true,
1488 .func = PMBUS_HAVE_TEMP2,
1489 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1490 .sbase = PB_STATUS_TEMP_BASE,
1491 .gbit = PB_STATUS_TEMPERATURE,
1492 .limit = temp_limit_attrs2,
1493 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
1494 }, {
1495 .reg = PMBUS_READ_TEMPERATURE_3,
1496 .class = PSC_TEMPERATURE,
1497 .paged = true,
1498 .update = true,
1499 .compare = true,
1500 .func = PMBUS_HAVE_TEMP3,
1501 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1502 .sbase = PB_STATUS_TEMP_BASE,
1503 .gbit = PB_STATUS_TEMPERATURE,
1504 .limit = temp_limit_attrs3,
1505 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
1509 static const int pmbus_fan_registers[] = {
1510 PMBUS_READ_FAN_SPEED_1,
1511 PMBUS_READ_FAN_SPEED_2,
1512 PMBUS_READ_FAN_SPEED_3,
1513 PMBUS_READ_FAN_SPEED_4
1516 static const int pmbus_fan_config_registers[] = {
1517 PMBUS_FAN_CONFIG_12,
1518 PMBUS_FAN_CONFIG_12,
1519 PMBUS_FAN_CONFIG_34,
1520 PMBUS_FAN_CONFIG_34
1523 static const int pmbus_fan_status_registers[] = {
1524 PMBUS_STATUS_FAN_12,
1525 PMBUS_STATUS_FAN_12,
1526 PMBUS_STATUS_FAN_34,
1527 PMBUS_STATUS_FAN_34
1530 static const u32 pmbus_fan_flags[] = {
1531 PMBUS_HAVE_FAN12,
1532 PMBUS_HAVE_FAN12,
1533 PMBUS_HAVE_FAN34,
1534 PMBUS_HAVE_FAN34
1537 static const u32 pmbus_fan_status_flags[] = {
1538 PMBUS_HAVE_STATUS_FAN12,
1539 PMBUS_HAVE_STATUS_FAN12,
1540 PMBUS_HAVE_STATUS_FAN34,
1541 PMBUS_HAVE_STATUS_FAN34
1544 /* Fans */
1545 static int pmbus_add_fan_attributes(struct i2c_client *client,
1546 struct pmbus_data *data)
1548 const struct pmbus_driver_info *info = data->info;
1549 int index = 1;
1550 int page;
1551 int ret;
1553 for (page = 0; page < info->pages; page++) {
1554 int f;
1556 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1557 int regval;
1559 if (!(info->func[page] & pmbus_fan_flags[f]))
1560 break;
1562 if (!pmbus_check_word_register(client, page,
1563 pmbus_fan_registers[f]))
1564 break;
1567 * Skip fan if not installed.
1568 * Each fan configuration register covers multiple fans,
1569 * so we have to do some magic.
1571 regval = _pmbus_read_byte_data(client, page,
1572 pmbus_fan_config_registers[f]);
1573 if (regval < 0 ||
1574 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1575 continue;
1577 if (pmbus_add_sensor(data, "fan", "input", index,
1578 page, pmbus_fan_registers[f],
1579 PSC_FAN, true, true) == NULL)
1580 return -ENOMEM;
1583 * Each fan status register covers multiple fans,
1584 * so we have to do some magic.
1586 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1587 pmbus_check_byte_register(client,
1588 page, pmbus_fan_status_registers[f])) {
1589 int base;
1591 if (f > 1) /* fan 3, 4 */
1592 base = PB_STATUS_FAN34_BASE + page;
1593 else
1594 base = PB_STATUS_FAN_BASE + page;
1595 ret = pmbus_add_boolean(data, "fan",
1596 "alarm", index, NULL, NULL, base,
1597 PB_FAN_FAN1_WARNING >> (f & 1));
1598 if (ret)
1599 return ret;
1600 ret = pmbus_add_boolean(data, "fan",
1601 "fault", index, NULL, NULL, base,
1602 PB_FAN_FAN1_FAULT >> (f & 1));
1603 if (ret)
1604 return ret;
1606 index++;
1609 return 0;
1612 static int pmbus_find_attributes(struct i2c_client *client,
1613 struct pmbus_data *data)
1615 int ret;
1617 /* Voltage sensors */
1618 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1619 ARRAY_SIZE(voltage_attributes));
1620 if (ret)
1621 return ret;
1623 /* Current sensors */
1624 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1625 ARRAY_SIZE(current_attributes));
1626 if (ret)
1627 return ret;
1629 /* Power sensors */
1630 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1631 ARRAY_SIZE(power_attributes));
1632 if (ret)
1633 return ret;
1635 /* Temperature sensors */
1636 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1637 ARRAY_SIZE(temp_attributes));
1638 if (ret)
1639 return ret;
1641 /* Fans */
1642 ret = pmbus_add_fan_attributes(client, data);
1643 return ret;
1647 * Identify chip parameters.
1648 * This function is called for all chips.
1650 static int pmbus_identify_common(struct i2c_client *client,
1651 struct pmbus_data *data)
1653 int vout_mode = -1;
1655 if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
1656 vout_mode = _pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
1657 if (vout_mode >= 0 && vout_mode != 0xff) {
1659 * Not all chips support the VOUT_MODE command,
1660 * so a failure to read it is not an error.
1662 switch (vout_mode >> 5) {
1663 case 0: /* linear mode */
1664 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1665 return -ENODEV;
1667 data->exponent = ((s8)(vout_mode << 3)) >> 3;
1668 break;
1669 case 1: /* VID mode */
1670 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1671 return -ENODEV;
1672 break;
1673 case 2: /* direct mode */
1674 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1675 return -ENODEV;
1676 break;
1677 default:
1678 return -ENODEV;
1682 pmbus_clear_fault_page(client, 0);
1683 return 0;
1686 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1687 struct pmbus_driver_info *info)
1689 struct device *dev = &client->dev;
1690 const struct pmbus_platform_data *pdata = dev->platform_data;
1691 struct pmbus_data *data;
1692 int ret;
1694 if (!info)
1695 return -ENODEV;
1697 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1698 | I2C_FUNC_SMBUS_BYTE_DATA
1699 | I2C_FUNC_SMBUS_WORD_DATA))
1700 return -ENODEV;
1702 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1703 if (!data)
1704 return -ENOMEM;
1706 i2c_set_clientdata(client, data);
1707 mutex_init(&data->update_lock);
1708 data->dev = dev;
1710 /* Bail out if PMBus status register does not exist. */
1711 if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) {
1712 dev_err(dev, "PMBus status register not found\n");
1713 return -ENODEV;
1716 if (pdata)
1717 data->flags = pdata->flags;
1718 data->info = info;
1720 pmbus_clear_faults(client);
1722 if (info->identify) {
1723 ret = (*info->identify)(client, info);
1724 if (ret < 0) {
1725 dev_err(dev, "Chip identification failed\n");
1726 return ret;
1730 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1731 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
1732 return -ENODEV;
1735 ret = pmbus_identify_common(client, data);
1736 if (ret < 0) {
1737 dev_err(dev, "Failed to identify chip capabilities\n");
1738 return ret;
1741 ret = pmbus_find_attributes(client, data);
1742 if (ret)
1743 goto out_kfree;
1746 * If there are no attributes, something is wrong.
1747 * Bail out instead of trying to register nothing.
1749 if (!data->num_attributes) {
1750 dev_err(dev, "No attributes found\n");
1751 ret = -ENODEV;
1752 goto out_kfree;
1755 /* Register sysfs hooks */
1756 ret = sysfs_create_group(&dev->kobj, &data->group);
1757 if (ret) {
1758 dev_err(dev, "Failed to create sysfs entries\n");
1759 goto out_kfree;
1761 data->hwmon_dev = hwmon_device_register(dev);
1762 if (IS_ERR(data->hwmon_dev)) {
1763 ret = PTR_ERR(data->hwmon_dev);
1764 dev_err(dev, "Failed to register hwmon device\n");
1765 goto out_hwmon_device_register;
1767 return 0;
1769 out_hwmon_device_register:
1770 sysfs_remove_group(&dev->kobj, &data->group);
1771 out_kfree:
1772 kfree(data->group.attrs);
1773 return ret;
1775 EXPORT_SYMBOL_GPL(pmbus_do_probe);
1777 int pmbus_do_remove(struct i2c_client *client)
1779 struct pmbus_data *data = i2c_get_clientdata(client);
1780 hwmon_device_unregister(data->hwmon_dev);
1781 sysfs_remove_group(&client->dev.kobj, &data->group);
1782 kfree(data->group.attrs);
1783 return 0;
1785 EXPORT_SYMBOL_GPL(pmbus_do_remove);
1787 MODULE_AUTHOR("Guenter Roeck");
1788 MODULE_DESCRIPTION("PMBus core driver");
1789 MODULE_LICENSE("GPL");