MIPS: Octeon: Remove highmem code.
[linux-2.6.git] / kernel / futex.c
blob20ef219bbe9b76b3d54e6b501366f15cd97c464a
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
64 #include <asm/futex.h>
66 #include "rtmutex_common.h"
68 int __read_mostly futex_cmpxchg_enabled;
70 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
73 * Futex flags used to encode options to functions and preserve them across
74 * restarts.
76 #define FLAGS_SHARED 0x01
77 #define FLAGS_CLOCKRT 0x02
78 #define FLAGS_HAS_TIMEOUT 0x04
81 * Priority Inheritance state:
83 struct futex_pi_state {
85 * list of 'owned' pi_state instances - these have to be
86 * cleaned up in do_exit() if the task exits prematurely:
88 struct list_head list;
91 * The PI object:
93 struct rt_mutex pi_mutex;
95 struct task_struct *owner;
96 atomic_t refcount;
98 union futex_key key;
102 * struct futex_q - The hashed futex queue entry, one per waiting task
103 * @list: priority-sorted list of tasks waiting on this futex
104 * @task: the task waiting on the futex
105 * @lock_ptr: the hash bucket lock
106 * @key: the key the futex is hashed on
107 * @pi_state: optional priority inheritance state
108 * @rt_waiter: rt_waiter storage for use with requeue_pi
109 * @requeue_pi_key: the requeue_pi target futex key
110 * @bitset: bitset for the optional bitmasked wakeup
112 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
113 * we can wake only the relevant ones (hashed queues may be shared).
115 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
116 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
117 * The order of wakeup is always to make the first condition true, then
118 * the second.
120 * PI futexes are typically woken before they are removed from the hash list via
121 * the rt_mutex code. See unqueue_me_pi().
123 struct futex_q {
124 struct plist_node list;
126 struct task_struct *task;
127 spinlock_t *lock_ptr;
128 union futex_key key;
129 struct futex_pi_state *pi_state;
130 struct rt_mutex_waiter *rt_waiter;
131 union futex_key *requeue_pi_key;
132 u32 bitset;
135 static const struct futex_q futex_q_init = {
136 /* list gets initialized in queue_me()*/
137 .key = FUTEX_KEY_INIT,
138 .bitset = FUTEX_BITSET_MATCH_ANY
142 * Hash buckets are shared by all the futex_keys that hash to the same
143 * location. Each key may have multiple futex_q structures, one for each task
144 * waiting on a futex.
146 struct futex_hash_bucket {
147 spinlock_t lock;
148 struct plist_head chain;
151 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
154 * We hash on the keys returned from get_futex_key (see below).
156 static struct futex_hash_bucket *hash_futex(union futex_key *key)
158 u32 hash = jhash2((u32*)&key->both.word,
159 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
160 key->both.offset);
161 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
165 * Return 1 if two futex_keys are equal, 0 otherwise.
167 static inline int match_futex(union futex_key *key1, union futex_key *key2)
169 return (key1 && key2
170 && key1->both.word == key2->both.word
171 && key1->both.ptr == key2->both.ptr
172 && key1->both.offset == key2->both.offset);
176 * Take a reference to the resource addressed by a key.
177 * Can be called while holding spinlocks.
180 static void get_futex_key_refs(union futex_key *key)
182 if (!key->both.ptr)
183 return;
185 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
186 case FUT_OFF_INODE:
187 ihold(key->shared.inode);
188 break;
189 case FUT_OFF_MMSHARED:
190 atomic_inc(&key->private.mm->mm_count);
191 break;
196 * Drop a reference to the resource addressed by a key.
197 * The hash bucket spinlock must not be held.
199 static void drop_futex_key_refs(union futex_key *key)
201 if (!key->both.ptr) {
202 /* If we're here then we tried to put a key we failed to get */
203 WARN_ON_ONCE(1);
204 return;
207 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
208 case FUT_OFF_INODE:
209 iput(key->shared.inode);
210 break;
211 case FUT_OFF_MMSHARED:
212 mmdrop(key->private.mm);
213 break;
218 * get_futex_key() - Get parameters which are the keys for a futex
219 * @uaddr: virtual address of the futex
220 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
221 * @key: address where result is stored.
222 * @rw: mapping needs to be read/write (values: VERIFY_READ,
223 * VERIFY_WRITE)
225 * Returns a negative error code or 0
226 * The key words are stored in *key on success.
228 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
229 * offset_within_page). For private mappings, it's (uaddr, current->mm).
230 * We can usually work out the index without swapping in the page.
232 * lock_page() might sleep, the caller should not hold a spinlock.
234 static int
235 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
237 unsigned long address = (unsigned long)uaddr;
238 struct mm_struct *mm = current->mm;
239 struct page *page, *page_head;
240 int err, ro = 0;
243 * The futex address must be "naturally" aligned.
245 key->both.offset = address % PAGE_SIZE;
246 if (unlikely((address % sizeof(u32)) != 0))
247 return -EINVAL;
248 address -= key->both.offset;
251 * PROCESS_PRIVATE futexes are fast.
252 * As the mm cannot disappear under us and the 'key' only needs
253 * virtual address, we dont even have to find the underlying vma.
254 * Note : We do have to check 'uaddr' is a valid user address,
255 * but access_ok() should be faster than find_vma()
257 if (!fshared) {
258 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
259 return -EFAULT;
260 key->private.mm = mm;
261 key->private.address = address;
262 get_futex_key_refs(key);
263 return 0;
266 again:
267 err = get_user_pages_fast(address, 1, 1, &page);
269 * If write access is not required (eg. FUTEX_WAIT), try
270 * and get read-only access.
272 if (err == -EFAULT && rw == VERIFY_READ) {
273 err = get_user_pages_fast(address, 1, 0, &page);
274 ro = 1;
276 if (err < 0)
277 return err;
278 else
279 err = 0;
281 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
282 page_head = page;
283 if (unlikely(PageTail(page))) {
284 put_page(page);
285 /* serialize against __split_huge_page_splitting() */
286 local_irq_disable();
287 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
288 page_head = compound_head(page);
290 * page_head is valid pointer but we must pin
291 * it before taking the PG_lock and/or
292 * PG_compound_lock. The moment we re-enable
293 * irqs __split_huge_page_splitting() can
294 * return and the head page can be freed from
295 * under us. We can't take the PG_lock and/or
296 * PG_compound_lock on a page that could be
297 * freed from under us.
299 if (page != page_head) {
300 get_page(page_head);
301 put_page(page);
303 local_irq_enable();
304 } else {
305 local_irq_enable();
306 goto again;
309 #else
310 page_head = compound_head(page);
311 if (page != page_head) {
312 get_page(page_head);
313 put_page(page);
315 #endif
317 lock_page(page_head);
320 * If page_head->mapping is NULL, then it cannot be a PageAnon
321 * page; but it might be the ZERO_PAGE or in the gate area or
322 * in a special mapping (all cases which we are happy to fail);
323 * or it may have been a good file page when get_user_pages_fast
324 * found it, but truncated or holepunched or subjected to
325 * invalidate_complete_page2 before we got the page lock (also
326 * cases which we are happy to fail). And we hold a reference,
327 * so refcount care in invalidate_complete_page's remove_mapping
328 * prevents drop_caches from setting mapping to NULL beneath us.
330 * The case we do have to guard against is when memory pressure made
331 * shmem_writepage move it from filecache to swapcache beneath us:
332 * an unlikely race, but we do need to retry for page_head->mapping.
334 if (!page_head->mapping) {
335 int shmem_swizzled = PageSwapCache(page_head);
336 unlock_page(page_head);
337 put_page(page_head);
338 if (shmem_swizzled)
339 goto again;
340 return -EFAULT;
344 * Private mappings are handled in a simple way.
346 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
347 * it's a read-only handle, it's expected that futexes attach to
348 * the object not the particular process.
350 if (PageAnon(page_head)) {
352 * A RO anonymous page will never change and thus doesn't make
353 * sense for futex operations.
355 if (ro) {
356 err = -EFAULT;
357 goto out;
360 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
361 key->private.mm = mm;
362 key->private.address = address;
363 } else {
364 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
365 key->shared.inode = page_head->mapping->host;
366 key->shared.pgoff = page_head->index;
369 get_futex_key_refs(key);
371 out:
372 unlock_page(page_head);
373 put_page(page_head);
374 return err;
377 static inline void put_futex_key(union futex_key *key)
379 drop_futex_key_refs(key);
383 * fault_in_user_writeable() - Fault in user address and verify RW access
384 * @uaddr: pointer to faulting user space address
386 * Slow path to fixup the fault we just took in the atomic write
387 * access to @uaddr.
389 * We have no generic implementation of a non-destructive write to the
390 * user address. We know that we faulted in the atomic pagefault
391 * disabled section so we can as well avoid the #PF overhead by
392 * calling get_user_pages() right away.
394 static int fault_in_user_writeable(u32 __user *uaddr)
396 struct mm_struct *mm = current->mm;
397 int ret;
399 down_read(&mm->mmap_sem);
400 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
401 FAULT_FLAG_WRITE);
402 up_read(&mm->mmap_sem);
404 return ret < 0 ? ret : 0;
408 * futex_top_waiter() - Return the highest priority waiter on a futex
409 * @hb: the hash bucket the futex_q's reside in
410 * @key: the futex key (to distinguish it from other futex futex_q's)
412 * Must be called with the hb lock held.
414 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
415 union futex_key *key)
417 struct futex_q *this;
419 plist_for_each_entry(this, &hb->chain, list) {
420 if (match_futex(&this->key, key))
421 return this;
423 return NULL;
426 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
427 u32 uval, u32 newval)
429 int ret;
431 pagefault_disable();
432 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
433 pagefault_enable();
435 return ret;
438 static int get_futex_value_locked(u32 *dest, u32 __user *from)
440 int ret;
442 pagefault_disable();
443 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
444 pagefault_enable();
446 return ret ? -EFAULT : 0;
451 * PI code:
453 static int refill_pi_state_cache(void)
455 struct futex_pi_state *pi_state;
457 if (likely(current->pi_state_cache))
458 return 0;
460 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
462 if (!pi_state)
463 return -ENOMEM;
465 INIT_LIST_HEAD(&pi_state->list);
466 /* pi_mutex gets initialized later */
467 pi_state->owner = NULL;
468 atomic_set(&pi_state->refcount, 1);
469 pi_state->key = FUTEX_KEY_INIT;
471 current->pi_state_cache = pi_state;
473 return 0;
476 static struct futex_pi_state * alloc_pi_state(void)
478 struct futex_pi_state *pi_state = current->pi_state_cache;
480 WARN_ON(!pi_state);
481 current->pi_state_cache = NULL;
483 return pi_state;
486 static void free_pi_state(struct futex_pi_state *pi_state)
488 if (!atomic_dec_and_test(&pi_state->refcount))
489 return;
492 * If pi_state->owner is NULL, the owner is most probably dying
493 * and has cleaned up the pi_state already
495 if (pi_state->owner) {
496 raw_spin_lock_irq(&pi_state->owner->pi_lock);
497 list_del_init(&pi_state->list);
498 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
500 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
503 if (current->pi_state_cache)
504 kfree(pi_state);
505 else {
507 * pi_state->list is already empty.
508 * clear pi_state->owner.
509 * refcount is at 0 - put it back to 1.
511 pi_state->owner = NULL;
512 atomic_set(&pi_state->refcount, 1);
513 current->pi_state_cache = pi_state;
518 * Look up the task based on what TID userspace gave us.
519 * We dont trust it.
521 static struct task_struct * futex_find_get_task(pid_t pid)
523 struct task_struct *p;
525 rcu_read_lock();
526 p = find_task_by_vpid(pid);
527 if (p)
528 get_task_struct(p);
530 rcu_read_unlock();
532 return p;
536 * This task is holding PI mutexes at exit time => bad.
537 * Kernel cleans up PI-state, but userspace is likely hosed.
538 * (Robust-futex cleanup is separate and might save the day for userspace.)
540 void exit_pi_state_list(struct task_struct *curr)
542 struct list_head *next, *head = &curr->pi_state_list;
543 struct futex_pi_state *pi_state;
544 struct futex_hash_bucket *hb;
545 union futex_key key = FUTEX_KEY_INIT;
547 if (!futex_cmpxchg_enabled)
548 return;
550 * We are a ZOMBIE and nobody can enqueue itself on
551 * pi_state_list anymore, but we have to be careful
552 * versus waiters unqueueing themselves:
554 raw_spin_lock_irq(&curr->pi_lock);
555 while (!list_empty(head)) {
557 next = head->next;
558 pi_state = list_entry(next, struct futex_pi_state, list);
559 key = pi_state->key;
560 hb = hash_futex(&key);
561 raw_spin_unlock_irq(&curr->pi_lock);
563 spin_lock(&hb->lock);
565 raw_spin_lock_irq(&curr->pi_lock);
567 * We dropped the pi-lock, so re-check whether this
568 * task still owns the PI-state:
570 if (head->next != next) {
571 spin_unlock(&hb->lock);
572 continue;
575 WARN_ON(pi_state->owner != curr);
576 WARN_ON(list_empty(&pi_state->list));
577 list_del_init(&pi_state->list);
578 pi_state->owner = NULL;
579 raw_spin_unlock_irq(&curr->pi_lock);
581 rt_mutex_unlock(&pi_state->pi_mutex);
583 spin_unlock(&hb->lock);
585 raw_spin_lock_irq(&curr->pi_lock);
587 raw_spin_unlock_irq(&curr->pi_lock);
590 static int
591 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
592 union futex_key *key, struct futex_pi_state **ps)
594 struct futex_pi_state *pi_state = NULL;
595 struct futex_q *this, *next;
596 struct plist_head *head;
597 struct task_struct *p;
598 pid_t pid = uval & FUTEX_TID_MASK;
600 head = &hb->chain;
602 plist_for_each_entry_safe(this, next, head, list) {
603 if (match_futex(&this->key, key)) {
605 * Another waiter already exists - bump up
606 * the refcount and return its pi_state:
608 pi_state = this->pi_state;
610 * Userspace might have messed up non-PI and PI futexes
612 if (unlikely(!pi_state))
613 return -EINVAL;
615 WARN_ON(!atomic_read(&pi_state->refcount));
618 * When pi_state->owner is NULL then the owner died
619 * and another waiter is on the fly. pi_state->owner
620 * is fixed up by the task which acquires
621 * pi_state->rt_mutex.
623 * We do not check for pid == 0 which can happen when
624 * the owner died and robust_list_exit() cleared the
625 * TID.
627 if (pid && pi_state->owner) {
629 * Bail out if user space manipulated the
630 * futex value.
632 if (pid != task_pid_vnr(pi_state->owner))
633 return -EINVAL;
636 atomic_inc(&pi_state->refcount);
637 *ps = pi_state;
639 return 0;
644 * We are the first waiter - try to look up the real owner and attach
645 * the new pi_state to it, but bail out when TID = 0
647 if (!pid)
648 return -ESRCH;
649 p = futex_find_get_task(pid);
650 if (!p)
651 return -ESRCH;
654 * We need to look at the task state flags to figure out,
655 * whether the task is exiting. To protect against the do_exit
656 * change of the task flags, we do this protected by
657 * p->pi_lock:
659 raw_spin_lock_irq(&p->pi_lock);
660 if (unlikely(p->flags & PF_EXITING)) {
662 * The task is on the way out. When PF_EXITPIDONE is
663 * set, we know that the task has finished the
664 * cleanup:
666 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
668 raw_spin_unlock_irq(&p->pi_lock);
669 put_task_struct(p);
670 return ret;
673 pi_state = alloc_pi_state();
676 * Initialize the pi_mutex in locked state and make 'p'
677 * the owner of it:
679 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
681 /* Store the key for possible exit cleanups: */
682 pi_state->key = *key;
684 WARN_ON(!list_empty(&pi_state->list));
685 list_add(&pi_state->list, &p->pi_state_list);
686 pi_state->owner = p;
687 raw_spin_unlock_irq(&p->pi_lock);
689 put_task_struct(p);
691 *ps = pi_state;
693 return 0;
697 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
698 * @uaddr: the pi futex user address
699 * @hb: the pi futex hash bucket
700 * @key: the futex key associated with uaddr and hb
701 * @ps: the pi_state pointer where we store the result of the
702 * lookup
703 * @task: the task to perform the atomic lock work for. This will
704 * be "current" except in the case of requeue pi.
705 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
707 * Returns:
708 * 0 - ready to wait
709 * 1 - acquired the lock
710 * <0 - error
712 * The hb->lock and futex_key refs shall be held by the caller.
714 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
715 union futex_key *key,
716 struct futex_pi_state **ps,
717 struct task_struct *task, int set_waiters)
719 int lock_taken, ret, force_take = 0;
720 u32 uval, newval, curval, vpid = task_pid_vnr(task);
722 retry:
723 ret = lock_taken = 0;
726 * To avoid races, we attempt to take the lock here again
727 * (by doing a 0 -> TID atomic cmpxchg), while holding all
728 * the locks. It will most likely not succeed.
730 newval = vpid;
731 if (set_waiters)
732 newval |= FUTEX_WAITERS;
734 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
735 return -EFAULT;
738 * Detect deadlocks.
740 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
741 return -EDEADLK;
744 * Surprise - we got the lock. Just return to userspace:
746 if (unlikely(!curval))
747 return 1;
749 uval = curval;
752 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
753 * to wake at the next unlock.
755 newval = curval | FUTEX_WAITERS;
758 * Should we force take the futex? See below.
760 if (unlikely(force_take)) {
762 * Keep the OWNER_DIED and the WAITERS bit and set the
763 * new TID value.
765 newval = (curval & ~FUTEX_TID_MASK) | vpid;
766 force_take = 0;
767 lock_taken = 1;
770 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
771 return -EFAULT;
772 if (unlikely(curval != uval))
773 goto retry;
776 * We took the lock due to forced take over.
778 if (unlikely(lock_taken))
779 return 1;
782 * We dont have the lock. Look up the PI state (or create it if
783 * we are the first waiter):
785 ret = lookup_pi_state(uval, hb, key, ps);
787 if (unlikely(ret)) {
788 switch (ret) {
789 case -ESRCH:
791 * We failed to find an owner for this
792 * futex. So we have no pi_state to block
793 * on. This can happen in two cases:
795 * 1) The owner died
796 * 2) A stale FUTEX_WAITERS bit
798 * Re-read the futex value.
800 if (get_futex_value_locked(&curval, uaddr))
801 return -EFAULT;
804 * If the owner died or we have a stale
805 * WAITERS bit the owner TID in the user space
806 * futex is 0.
808 if (!(curval & FUTEX_TID_MASK)) {
809 force_take = 1;
810 goto retry;
812 default:
813 break;
817 return ret;
821 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
822 * @q: The futex_q to unqueue
824 * The q->lock_ptr must not be NULL and must be held by the caller.
826 static void __unqueue_futex(struct futex_q *q)
828 struct futex_hash_bucket *hb;
830 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
831 || WARN_ON(plist_node_empty(&q->list)))
832 return;
834 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
835 plist_del(&q->list, &hb->chain);
839 * The hash bucket lock must be held when this is called.
840 * Afterwards, the futex_q must not be accessed.
842 static void wake_futex(struct futex_q *q)
844 struct task_struct *p = q->task;
847 * We set q->lock_ptr = NULL _before_ we wake up the task. If
848 * a non-futex wake up happens on another CPU then the task
849 * might exit and p would dereference a non-existing task
850 * struct. Prevent this by holding a reference on p across the
851 * wake up.
853 get_task_struct(p);
855 __unqueue_futex(q);
857 * The waiting task can free the futex_q as soon as
858 * q->lock_ptr = NULL is written, without taking any locks. A
859 * memory barrier is required here to prevent the following
860 * store to lock_ptr from getting ahead of the plist_del.
862 smp_wmb();
863 q->lock_ptr = NULL;
865 wake_up_state(p, TASK_NORMAL);
866 put_task_struct(p);
869 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
871 struct task_struct *new_owner;
872 struct futex_pi_state *pi_state = this->pi_state;
873 u32 uninitialized_var(curval), newval;
875 if (!pi_state)
876 return -EINVAL;
879 * If current does not own the pi_state then the futex is
880 * inconsistent and user space fiddled with the futex value.
882 if (pi_state->owner != current)
883 return -EINVAL;
885 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
886 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
889 * It is possible that the next waiter (the one that brought
890 * this owner to the kernel) timed out and is no longer
891 * waiting on the lock.
893 if (!new_owner)
894 new_owner = this->task;
897 * We pass it to the next owner. (The WAITERS bit is always
898 * kept enabled while there is PI state around. We must also
899 * preserve the owner died bit.)
901 if (!(uval & FUTEX_OWNER_DIED)) {
902 int ret = 0;
904 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
906 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
907 ret = -EFAULT;
908 else if (curval != uval)
909 ret = -EINVAL;
910 if (ret) {
911 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
912 return ret;
916 raw_spin_lock_irq(&pi_state->owner->pi_lock);
917 WARN_ON(list_empty(&pi_state->list));
918 list_del_init(&pi_state->list);
919 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
921 raw_spin_lock_irq(&new_owner->pi_lock);
922 WARN_ON(!list_empty(&pi_state->list));
923 list_add(&pi_state->list, &new_owner->pi_state_list);
924 pi_state->owner = new_owner;
925 raw_spin_unlock_irq(&new_owner->pi_lock);
927 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
928 rt_mutex_unlock(&pi_state->pi_mutex);
930 return 0;
933 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
935 u32 uninitialized_var(oldval);
938 * There is no waiter, so we unlock the futex. The owner died
939 * bit has not to be preserved here. We are the owner:
941 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
942 return -EFAULT;
943 if (oldval != uval)
944 return -EAGAIN;
946 return 0;
950 * Express the locking dependencies for lockdep:
952 static inline void
953 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
955 if (hb1 <= hb2) {
956 spin_lock(&hb1->lock);
957 if (hb1 < hb2)
958 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
959 } else { /* hb1 > hb2 */
960 spin_lock(&hb2->lock);
961 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
965 static inline void
966 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
968 spin_unlock(&hb1->lock);
969 if (hb1 != hb2)
970 spin_unlock(&hb2->lock);
974 * Wake up waiters matching bitset queued on this futex (uaddr).
976 static int
977 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
979 struct futex_hash_bucket *hb;
980 struct futex_q *this, *next;
981 struct plist_head *head;
982 union futex_key key = FUTEX_KEY_INIT;
983 int ret;
985 if (!bitset)
986 return -EINVAL;
988 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
989 if (unlikely(ret != 0))
990 goto out;
992 hb = hash_futex(&key);
993 spin_lock(&hb->lock);
994 head = &hb->chain;
996 plist_for_each_entry_safe(this, next, head, list) {
997 if (match_futex (&this->key, &key)) {
998 if (this->pi_state || this->rt_waiter) {
999 ret = -EINVAL;
1000 break;
1003 /* Check if one of the bits is set in both bitsets */
1004 if (!(this->bitset & bitset))
1005 continue;
1007 wake_futex(this);
1008 if (++ret >= nr_wake)
1009 break;
1013 spin_unlock(&hb->lock);
1014 put_futex_key(&key);
1015 out:
1016 return ret;
1020 * Wake up all waiters hashed on the physical page that is mapped
1021 * to this virtual address:
1023 static int
1024 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1025 int nr_wake, int nr_wake2, int op)
1027 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1028 struct futex_hash_bucket *hb1, *hb2;
1029 struct plist_head *head;
1030 struct futex_q *this, *next;
1031 int ret, op_ret;
1033 retry:
1034 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1035 if (unlikely(ret != 0))
1036 goto out;
1037 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1038 if (unlikely(ret != 0))
1039 goto out_put_key1;
1041 hb1 = hash_futex(&key1);
1042 hb2 = hash_futex(&key2);
1044 retry_private:
1045 double_lock_hb(hb1, hb2);
1046 op_ret = futex_atomic_op_inuser(op, uaddr2);
1047 if (unlikely(op_ret < 0)) {
1049 double_unlock_hb(hb1, hb2);
1051 #ifndef CONFIG_MMU
1053 * we don't get EFAULT from MMU faults if we don't have an MMU,
1054 * but we might get them from range checking
1056 ret = op_ret;
1057 goto out_put_keys;
1058 #endif
1060 if (unlikely(op_ret != -EFAULT)) {
1061 ret = op_ret;
1062 goto out_put_keys;
1065 ret = fault_in_user_writeable(uaddr2);
1066 if (ret)
1067 goto out_put_keys;
1069 if (!(flags & FLAGS_SHARED))
1070 goto retry_private;
1072 put_futex_key(&key2);
1073 put_futex_key(&key1);
1074 goto retry;
1077 head = &hb1->chain;
1079 plist_for_each_entry_safe(this, next, head, list) {
1080 if (match_futex (&this->key, &key1)) {
1081 wake_futex(this);
1082 if (++ret >= nr_wake)
1083 break;
1087 if (op_ret > 0) {
1088 head = &hb2->chain;
1090 op_ret = 0;
1091 plist_for_each_entry_safe(this, next, head, list) {
1092 if (match_futex (&this->key, &key2)) {
1093 wake_futex(this);
1094 if (++op_ret >= nr_wake2)
1095 break;
1098 ret += op_ret;
1101 double_unlock_hb(hb1, hb2);
1102 out_put_keys:
1103 put_futex_key(&key2);
1104 out_put_key1:
1105 put_futex_key(&key1);
1106 out:
1107 return ret;
1111 * requeue_futex() - Requeue a futex_q from one hb to another
1112 * @q: the futex_q to requeue
1113 * @hb1: the source hash_bucket
1114 * @hb2: the target hash_bucket
1115 * @key2: the new key for the requeued futex_q
1117 static inline
1118 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1119 struct futex_hash_bucket *hb2, union futex_key *key2)
1123 * If key1 and key2 hash to the same bucket, no need to
1124 * requeue.
1126 if (likely(&hb1->chain != &hb2->chain)) {
1127 plist_del(&q->list, &hb1->chain);
1128 plist_add(&q->list, &hb2->chain);
1129 q->lock_ptr = &hb2->lock;
1131 get_futex_key_refs(key2);
1132 q->key = *key2;
1136 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1137 * @q: the futex_q
1138 * @key: the key of the requeue target futex
1139 * @hb: the hash_bucket of the requeue target futex
1141 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1142 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1143 * to the requeue target futex so the waiter can detect the wakeup on the right
1144 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1145 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1146 * to protect access to the pi_state to fixup the owner later. Must be called
1147 * with both q->lock_ptr and hb->lock held.
1149 static inline
1150 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1151 struct futex_hash_bucket *hb)
1153 get_futex_key_refs(key);
1154 q->key = *key;
1156 __unqueue_futex(q);
1158 WARN_ON(!q->rt_waiter);
1159 q->rt_waiter = NULL;
1161 q->lock_ptr = &hb->lock;
1163 wake_up_state(q->task, TASK_NORMAL);
1167 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1168 * @pifutex: the user address of the to futex
1169 * @hb1: the from futex hash bucket, must be locked by the caller
1170 * @hb2: the to futex hash bucket, must be locked by the caller
1171 * @key1: the from futex key
1172 * @key2: the to futex key
1173 * @ps: address to store the pi_state pointer
1174 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1176 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1177 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1178 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1179 * hb1 and hb2 must be held by the caller.
1181 * Returns:
1182 * 0 - failed to acquire the lock atomicly
1183 * 1 - acquired the lock
1184 * <0 - error
1186 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1187 struct futex_hash_bucket *hb1,
1188 struct futex_hash_bucket *hb2,
1189 union futex_key *key1, union futex_key *key2,
1190 struct futex_pi_state **ps, int set_waiters)
1192 struct futex_q *top_waiter = NULL;
1193 u32 curval;
1194 int ret;
1196 if (get_futex_value_locked(&curval, pifutex))
1197 return -EFAULT;
1200 * Find the top_waiter and determine if there are additional waiters.
1201 * If the caller intends to requeue more than 1 waiter to pifutex,
1202 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1203 * as we have means to handle the possible fault. If not, don't set
1204 * the bit unecessarily as it will force the subsequent unlock to enter
1205 * the kernel.
1207 top_waiter = futex_top_waiter(hb1, key1);
1209 /* There are no waiters, nothing for us to do. */
1210 if (!top_waiter)
1211 return 0;
1213 /* Ensure we requeue to the expected futex. */
1214 if (!match_futex(top_waiter->requeue_pi_key, key2))
1215 return -EINVAL;
1218 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1219 * the contended case or if set_waiters is 1. The pi_state is returned
1220 * in ps in contended cases.
1222 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1223 set_waiters);
1224 if (ret == 1)
1225 requeue_pi_wake_futex(top_waiter, key2, hb2);
1227 return ret;
1231 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1232 * @uaddr1: source futex user address
1233 * @flags: futex flags (FLAGS_SHARED, etc.)
1234 * @uaddr2: target futex user address
1235 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1236 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1237 * @cmpval: @uaddr1 expected value (or %NULL)
1238 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1239 * pi futex (pi to pi requeue is not supported)
1241 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1242 * uaddr2 atomically on behalf of the top waiter.
1244 * Returns:
1245 * >=0 - on success, the number of tasks requeued or woken
1246 * <0 - on error
1248 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1249 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1250 u32 *cmpval, int requeue_pi)
1252 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1253 int drop_count = 0, task_count = 0, ret;
1254 struct futex_pi_state *pi_state = NULL;
1255 struct futex_hash_bucket *hb1, *hb2;
1256 struct plist_head *head1;
1257 struct futex_q *this, *next;
1258 u32 curval2;
1260 if (requeue_pi) {
1262 * requeue_pi requires a pi_state, try to allocate it now
1263 * without any locks in case it fails.
1265 if (refill_pi_state_cache())
1266 return -ENOMEM;
1268 * requeue_pi must wake as many tasks as it can, up to nr_wake
1269 * + nr_requeue, since it acquires the rt_mutex prior to
1270 * returning to userspace, so as to not leave the rt_mutex with
1271 * waiters and no owner. However, second and third wake-ups
1272 * cannot be predicted as they involve race conditions with the
1273 * first wake and a fault while looking up the pi_state. Both
1274 * pthread_cond_signal() and pthread_cond_broadcast() should
1275 * use nr_wake=1.
1277 if (nr_wake != 1)
1278 return -EINVAL;
1281 retry:
1282 if (pi_state != NULL) {
1284 * We will have to lookup the pi_state again, so free this one
1285 * to keep the accounting correct.
1287 free_pi_state(pi_state);
1288 pi_state = NULL;
1291 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1292 if (unlikely(ret != 0))
1293 goto out;
1294 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1295 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1296 if (unlikely(ret != 0))
1297 goto out_put_key1;
1299 hb1 = hash_futex(&key1);
1300 hb2 = hash_futex(&key2);
1302 retry_private:
1303 double_lock_hb(hb1, hb2);
1305 if (likely(cmpval != NULL)) {
1306 u32 curval;
1308 ret = get_futex_value_locked(&curval, uaddr1);
1310 if (unlikely(ret)) {
1311 double_unlock_hb(hb1, hb2);
1313 ret = get_user(curval, uaddr1);
1314 if (ret)
1315 goto out_put_keys;
1317 if (!(flags & FLAGS_SHARED))
1318 goto retry_private;
1320 put_futex_key(&key2);
1321 put_futex_key(&key1);
1322 goto retry;
1324 if (curval != *cmpval) {
1325 ret = -EAGAIN;
1326 goto out_unlock;
1330 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1332 * Attempt to acquire uaddr2 and wake the top waiter. If we
1333 * intend to requeue waiters, force setting the FUTEX_WAITERS
1334 * bit. We force this here where we are able to easily handle
1335 * faults rather in the requeue loop below.
1337 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1338 &key2, &pi_state, nr_requeue);
1341 * At this point the top_waiter has either taken uaddr2 or is
1342 * waiting on it. If the former, then the pi_state will not
1343 * exist yet, look it up one more time to ensure we have a
1344 * reference to it.
1346 if (ret == 1) {
1347 WARN_ON(pi_state);
1348 drop_count++;
1349 task_count++;
1350 ret = get_futex_value_locked(&curval2, uaddr2);
1351 if (!ret)
1352 ret = lookup_pi_state(curval2, hb2, &key2,
1353 &pi_state);
1356 switch (ret) {
1357 case 0:
1358 break;
1359 case -EFAULT:
1360 double_unlock_hb(hb1, hb2);
1361 put_futex_key(&key2);
1362 put_futex_key(&key1);
1363 ret = fault_in_user_writeable(uaddr2);
1364 if (!ret)
1365 goto retry;
1366 goto out;
1367 case -EAGAIN:
1368 /* The owner was exiting, try again. */
1369 double_unlock_hb(hb1, hb2);
1370 put_futex_key(&key2);
1371 put_futex_key(&key1);
1372 cond_resched();
1373 goto retry;
1374 default:
1375 goto out_unlock;
1379 head1 = &hb1->chain;
1380 plist_for_each_entry_safe(this, next, head1, list) {
1381 if (task_count - nr_wake >= nr_requeue)
1382 break;
1384 if (!match_futex(&this->key, &key1))
1385 continue;
1388 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1389 * be paired with each other and no other futex ops.
1391 if ((requeue_pi && !this->rt_waiter) ||
1392 (!requeue_pi && this->rt_waiter)) {
1393 ret = -EINVAL;
1394 break;
1398 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1399 * lock, we already woke the top_waiter. If not, it will be
1400 * woken by futex_unlock_pi().
1402 if (++task_count <= nr_wake && !requeue_pi) {
1403 wake_futex(this);
1404 continue;
1407 /* Ensure we requeue to the expected futex for requeue_pi. */
1408 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1409 ret = -EINVAL;
1410 break;
1414 * Requeue nr_requeue waiters and possibly one more in the case
1415 * of requeue_pi if we couldn't acquire the lock atomically.
1417 if (requeue_pi) {
1418 /* Prepare the waiter to take the rt_mutex. */
1419 atomic_inc(&pi_state->refcount);
1420 this->pi_state = pi_state;
1421 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1422 this->rt_waiter,
1423 this->task, 1);
1424 if (ret == 1) {
1425 /* We got the lock. */
1426 requeue_pi_wake_futex(this, &key2, hb2);
1427 drop_count++;
1428 continue;
1429 } else if (ret) {
1430 /* -EDEADLK */
1431 this->pi_state = NULL;
1432 free_pi_state(pi_state);
1433 goto out_unlock;
1436 requeue_futex(this, hb1, hb2, &key2);
1437 drop_count++;
1440 out_unlock:
1441 double_unlock_hb(hb1, hb2);
1444 * drop_futex_key_refs() must be called outside the spinlocks. During
1445 * the requeue we moved futex_q's from the hash bucket at key1 to the
1446 * one at key2 and updated their key pointer. We no longer need to
1447 * hold the references to key1.
1449 while (--drop_count >= 0)
1450 drop_futex_key_refs(&key1);
1452 out_put_keys:
1453 put_futex_key(&key2);
1454 out_put_key1:
1455 put_futex_key(&key1);
1456 out:
1457 if (pi_state != NULL)
1458 free_pi_state(pi_state);
1459 return ret ? ret : task_count;
1462 /* The key must be already stored in q->key. */
1463 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1464 __acquires(&hb->lock)
1466 struct futex_hash_bucket *hb;
1468 hb = hash_futex(&q->key);
1469 q->lock_ptr = &hb->lock;
1471 spin_lock(&hb->lock);
1472 return hb;
1475 static inline void
1476 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1477 __releases(&hb->lock)
1479 spin_unlock(&hb->lock);
1483 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1484 * @q: The futex_q to enqueue
1485 * @hb: The destination hash bucket
1487 * The hb->lock must be held by the caller, and is released here. A call to
1488 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1489 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1490 * or nothing if the unqueue is done as part of the wake process and the unqueue
1491 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1492 * an example).
1494 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1495 __releases(&hb->lock)
1497 int prio;
1500 * The priority used to register this element is
1501 * - either the real thread-priority for the real-time threads
1502 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1503 * - or MAX_RT_PRIO for non-RT threads.
1504 * Thus, all RT-threads are woken first in priority order, and
1505 * the others are woken last, in FIFO order.
1507 prio = min(current->normal_prio, MAX_RT_PRIO);
1509 plist_node_init(&q->list, prio);
1510 plist_add(&q->list, &hb->chain);
1511 q->task = current;
1512 spin_unlock(&hb->lock);
1516 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1517 * @q: The futex_q to unqueue
1519 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1520 * be paired with exactly one earlier call to queue_me().
1522 * Returns:
1523 * 1 - if the futex_q was still queued (and we removed unqueued it)
1524 * 0 - if the futex_q was already removed by the waking thread
1526 static int unqueue_me(struct futex_q *q)
1528 spinlock_t *lock_ptr;
1529 int ret = 0;
1531 /* In the common case we don't take the spinlock, which is nice. */
1532 retry:
1533 lock_ptr = q->lock_ptr;
1534 barrier();
1535 if (lock_ptr != NULL) {
1536 spin_lock(lock_ptr);
1538 * q->lock_ptr can change between reading it and
1539 * spin_lock(), causing us to take the wrong lock. This
1540 * corrects the race condition.
1542 * Reasoning goes like this: if we have the wrong lock,
1543 * q->lock_ptr must have changed (maybe several times)
1544 * between reading it and the spin_lock(). It can
1545 * change again after the spin_lock() but only if it was
1546 * already changed before the spin_lock(). It cannot,
1547 * however, change back to the original value. Therefore
1548 * we can detect whether we acquired the correct lock.
1550 if (unlikely(lock_ptr != q->lock_ptr)) {
1551 spin_unlock(lock_ptr);
1552 goto retry;
1554 __unqueue_futex(q);
1556 BUG_ON(q->pi_state);
1558 spin_unlock(lock_ptr);
1559 ret = 1;
1562 drop_futex_key_refs(&q->key);
1563 return ret;
1567 * PI futexes can not be requeued and must remove themself from the
1568 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1569 * and dropped here.
1571 static void unqueue_me_pi(struct futex_q *q)
1572 __releases(q->lock_ptr)
1574 __unqueue_futex(q);
1576 BUG_ON(!q->pi_state);
1577 free_pi_state(q->pi_state);
1578 q->pi_state = NULL;
1580 spin_unlock(q->lock_ptr);
1584 * Fixup the pi_state owner with the new owner.
1586 * Must be called with hash bucket lock held and mm->sem held for non
1587 * private futexes.
1589 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1590 struct task_struct *newowner)
1592 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1593 struct futex_pi_state *pi_state = q->pi_state;
1594 struct task_struct *oldowner = pi_state->owner;
1595 u32 uval, uninitialized_var(curval), newval;
1596 int ret;
1598 /* Owner died? */
1599 if (!pi_state->owner)
1600 newtid |= FUTEX_OWNER_DIED;
1603 * We are here either because we stole the rtmutex from the
1604 * previous highest priority waiter or we are the highest priority
1605 * waiter but failed to get the rtmutex the first time.
1606 * We have to replace the newowner TID in the user space variable.
1607 * This must be atomic as we have to preserve the owner died bit here.
1609 * Note: We write the user space value _before_ changing the pi_state
1610 * because we can fault here. Imagine swapped out pages or a fork
1611 * that marked all the anonymous memory readonly for cow.
1613 * Modifying pi_state _before_ the user space value would
1614 * leave the pi_state in an inconsistent state when we fault
1615 * here, because we need to drop the hash bucket lock to
1616 * handle the fault. This might be observed in the PID check
1617 * in lookup_pi_state.
1619 retry:
1620 if (get_futex_value_locked(&uval, uaddr))
1621 goto handle_fault;
1623 while (1) {
1624 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1626 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1627 goto handle_fault;
1628 if (curval == uval)
1629 break;
1630 uval = curval;
1634 * We fixed up user space. Now we need to fix the pi_state
1635 * itself.
1637 if (pi_state->owner != NULL) {
1638 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1639 WARN_ON(list_empty(&pi_state->list));
1640 list_del_init(&pi_state->list);
1641 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1644 pi_state->owner = newowner;
1646 raw_spin_lock_irq(&newowner->pi_lock);
1647 WARN_ON(!list_empty(&pi_state->list));
1648 list_add(&pi_state->list, &newowner->pi_state_list);
1649 raw_spin_unlock_irq(&newowner->pi_lock);
1650 return 0;
1653 * To handle the page fault we need to drop the hash bucket
1654 * lock here. That gives the other task (either the highest priority
1655 * waiter itself or the task which stole the rtmutex) the
1656 * chance to try the fixup of the pi_state. So once we are
1657 * back from handling the fault we need to check the pi_state
1658 * after reacquiring the hash bucket lock and before trying to
1659 * do another fixup. When the fixup has been done already we
1660 * simply return.
1662 handle_fault:
1663 spin_unlock(q->lock_ptr);
1665 ret = fault_in_user_writeable(uaddr);
1667 spin_lock(q->lock_ptr);
1670 * Check if someone else fixed it for us:
1672 if (pi_state->owner != oldowner)
1673 return 0;
1675 if (ret)
1676 return ret;
1678 goto retry;
1681 static long futex_wait_restart(struct restart_block *restart);
1684 * fixup_owner() - Post lock pi_state and corner case management
1685 * @uaddr: user address of the futex
1686 * @q: futex_q (contains pi_state and access to the rt_mutex)
1687 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1689 * After attempting to lock an rt_mutex, this function is called to cleanup
1690 * the pi_state owner as well as handle race conditions that may allow us to
1691 * acquire the lock. Must be called with the hb lock held.
1693 * Returns:
1694 * 1 - success, lock taken
1695 * 0 - success, lock not taken
1696 * <0 - on error (-EFAULT)
1698 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1700 struct task_struct *owner;
1701 int ret = 0;
1703 if (locked) {
1705 * Got the lock. We might not be the anticipated owner if we
1706 * did a lock-steal - fix up the PI-state in that case:
1708 if (q->pi_state->owner != current)
1709 ret = fixup_pi_state_owner(uaddr, q, current);
1710 goto out;
1714 * Catch the rare case, where the lock was released when we were on the
1715 * way back before we locked the hash bucket.
1717 if (q->pi_state->owner == current) {
1719 * Try to get the rt_mutex now. This might fail as some other
1720 * task acquired the rt_mutex after we removed ourself from the
1721 * rt_mutex waiters list.
1723 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1724 locked = 1;
1725 goto out;
1729 * pi_state is incorrect, some other task did a lock steal and
1730 * we returned due to timeout or signal without taking the
1731 * rt_mutex. Too late.
1733 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1734 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1735 if (!owner)
1736 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1737 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1738 ret = fixup_pi_state_owner(uaddr, q, owner);
1739 goto out;
1743 * Paranoia check. If we did not take the lock, then we should not be
1744 * the owner of the rt_mutex.
1746 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1747 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1748 "pi-state %p\n", ret,
1749 q->pi_state->pi_mutex.owner,
1750 q->pi_state->owner);
1752 out:
1753 return ret ? ret : locked;
1757 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1758 * @hb: the futex hash bucket, must be locked by the caller
1759 * @q: the futex_q to queue up on
1760 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1762 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1763 struct hrtimer_sleeper *timeout)
1766 * The task state is guaranteed to be set before another task can
1767 * wake it. set_current_state() is implemented using set_mb() and
1768 * queue_me() calls spin_unlock() upon completion, both serializing
1769 * access to the hash list and forcing another memory barrier.
1771 set_current_state(TASK_INTERRUPTIBLE);
1772 queue_me(q, hb);
1774 /* Arm the timer */
1775 if (timeout) {
1776 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1777 if (!hrtimer_active(&timeout->timer))
1778 timeout->task = NULL;
1782 * If we have been removed from the hash list, then another task
1783 * has tried to wake us, and we can skip the call to schedule().
1785 if (likely(!plist_node_empty(&q->list))) {
1787 * If the timer has already expired, current will already be
1788 * flagged for rescheduling. Only call schedule if there
1789 * is no timeout, or if it has yet to expire.
1791 if (!timeout || timeout->task)
1792 schedule();
1794 __set_current_state(TASK_RUNNING);
1798 * futex_wait_setup() - Prepare to wait on a futex
1799 * @uaddr: the futex userspace address
1800 * @val: the expected value
1801 * @flags: futex flags (FLAGS_SHARED, etc.)
1802 * @q: the associated futex_q
1803 * @hb: storage for hash_bucket pointer to be returned to caller
1805 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1806 * compare it with the expected value. Handle atomic faults internally.
1807 * Return with the hb lock held and a q.key reference on success, and unlocked
1808 * with no q.key reference on failure.
1810 * Returns:
1811 * 0 - uaddr contains val and hb has been locked
1812 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1814 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1815 struct futex_q *q, struct futex_hash_bucket **hb)
1817 u32 uval;
1818 int ret;
1821 * Access the page AFTER the hash-bucket is locked.
1822 * Order is important:
1824 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1825 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1827 * The basic logical guarantee of a futex is that it blocks ONLY
1828 * if cond(var) is known to be true at the time of blocking, for
1829 * any cond. If we locked the hash-bucket after testing *uaddr, that
1830 * would open a race condition where we could block indefinitely with
1831 * cond(var) false, which would violate the guarantee.
1833 * On the other hand, we insert q and release the hash-bucket only
1834 * after testing *uaddr. This guarantees that futex_wait() will NOT
1835 * absorb a wakeup if *uaddr does not match the desired values
1836 * while the syscall executes.
1838 retry:
1839 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1840 if (unlikely(ret != 0))
1841 return ret;
1843 retry_private:
1844 *hb = queue_lock(q);
1846 ret = get_futex_value_locked(&uval, uaddr);
1848 if (ret) {
1849 queue_unlock(q, *hb);
1851 ret = get_user(uval, uaddr);
1852 if (ret)
1853 goto out;
1855 if (!(flags & FLAGS_SHARED))
1856 goto retry_private;
1858 put_futex_key(&q->key);
1859 goto retry;
1862 if (uval != val) {
1863 queue_unlock(q, *hb);
1864 ret = -EWOULDBLOCK;
1867 out:
1868 if (ret)
1869 put_futex_key(&q->key);
1870 return ret;
1873 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1874 ktime_t *abs_time, u32 bitset)
1876 struct hrtimer_sleeper timeout, *to = NULL;
1877 struct restart_block *restart;
1878 struct futex_hash_bucket *hb;
1879 struct futex_q q = futex_q_init;
1880 int ret;
1882 if (!bitset)
1883 return -EINVAL;
1884 q.bitset = bitset;
1886 if (abs_time) {
1887 to = &timeout;
1889 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1890 CLOCK_REALTIME : CLOCK_MONOTONIC,
1891 HRTIMER_MODE_ABS);
1892 hrtimer_init_sleeper(to, current);
1893 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1894 current->timer_slack_ns);
1897 retry:
1899 * Prepare to wait on uaddr. On success, holds hb lock and increments
1900 * q.key refs.
1902 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1903 if (ret)
1904 goto out;
1906 /* queue_me and wait for wakeup, timeout, or a signal. */
1907 futex_wait_queue_me(hb, &q, to);
1909 /* If we were woken (and unqueued), we succeeded, whatever. */
1910 ret = 0;
1911 /* unqueue_me() drops q.key ref */
1912 if (!unqueue_me(&q))
1913 goto out;
1914 ret = -ETIMEDOUT;
1915 if (to && !to->task)
1916 goto out;
1919 * We expect signal_pending(current), but we might be the
1920 * victim of a spurious wakeup as well.
1922 if (!signal_pending(current))
1923 goto retry;
1925 ret = -ERESTARTSYS;
1926 if (!abs_time)
1927 goto out;
1929 restart = &current_thread_info()->restart_block;
1930 restart->fn = futex_wait_restart;
1931 restart->futex.uaddr = uaddr;
1932 restart->futex.val = val;
1933 restart->futex.time = abs_time->tv64;
1934 restart->futex.bitset = bitset;
1935 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1937 ret = -ERESTART_RESTARTBLOCK;
1939 out:
1940 if (to) {
1941 hrtimer_cancel(&to->timer);
1942 destroy_hrtimer_on_stack(&to->timer);
1944 return ret;
1948 static long futex_wait_restart(struct restart_block *restart)
1950 u32 __user *uaddr = restart->futex.uaddr;
1951 ktime_t t, *tp = NULL;
1953 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1954 t.tv64 = restart->futex.time;
1955 tp = &t;
1957 restart->fn = do_no_restart_syscall;
1959 return (long)futex_wait(uaddr, restart->futex.flags,
1960 restart->futex.val, tp, restart->futex.bitset);
1965 * Userspace tried a 0 -> TID atomic transition of the futex value
1966 * and failed. The kernel side here does the whole locking operation:
1967 * if there are waiters then it will block, it does PI, etc. (Due to
1968 * races the kernel might see a 0 value of the futex too.)
1970 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1971 ktime_t *time, int trylock)
1973 struct hrtimer_sleeper timeout, *to = NULL;
1974 struct futex_hash_bucket *hb;
1975 struct futex_q q = futex_q_init;
1976 int res, ret;
1978 if (refill_pi_state_cache())
1979 return -ENOMEM;
1981 if (time) {
1982 to = &timeout;
1983 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1984 HRTIMER_MODE_ABS);
1985 hrtimer_init_sleeper(to, current);
1986 hrtimer_set_expires(&to->timer, *time);
1989 retry:
1990 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
1991 if (unlikely(ret != 0))
1992 goto out;
1994 retry_private:
1995 hb = queue_lock(&q);
1997 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1998 if (unlikely(ret)) {
1999 switch (ret) {
2000 case 1:
2001 /* We got the lock. */
2002 ret = 0;
2003 goto out_unlock_put_key;
2004 case -EFAULT:
2005 goto uaddr_faulted;
2006 case -EAGAIN:
2008 * Task is exiting and we just wait for the
2009 * exit to complete.
2011 queue_unlock(&q, hb);
2012 put_futex_key(&q.key);
2013 cond_resched();
2014 goto retry;
2015 default:
2016 goto out_unlock_put_key;
2021 * Only actually queue now that the atomic ops are done:
2023 queue_me(&q, hb);
2025 WARN_ON(!q.pi_state);
2027 * Block on the PI mutex:
2029 if (!trylock)
2030 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2031 else {
2032 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2033 /* Fixup the trylock return value: */
2034 ret = ret ? 0 : -EWOULDBLOCK;
2037 spin_lock(q.lock_ptr);
2039 * Fixup the pi_state owner and possibly acquire the lock if we
2040 * haven't already.
2042 res = fixup_owner(uaddr, &q, !ret);
2044 * If fixup_owner() returned an error, proprogate that. If it acquired
2045 * the lock, clear our -ETIMEDOUT or -EINTR.
2047 if (res)
2048 ret = (res < 0) ? res : 0;
2051 * If fixup_owner() faulted and was unable to handle the fault, unlock
2052 * it and return the fault to userspace.
2054 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2055 rt_mutex_unlock(&q.pi_state->pi_mutex);
2057 /* Unqueue and drop the lock */
2058 unqueue_me_pi(&q);
2060 goto out_put_key;
2062 out_unlock_put_key:
2063 queue_unlock(&q, hb);
2065 out_put_key:
2066 put_futex_key(&q.key);
2067 out:
2068 if (to)
2069 destroy_hrtimer_on_stack(&to->timer);
2070 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2072 uaddr_faulted:
2073 queue_unlock(&q, hb);
2075 ret = fault_in_user_writeable(uaddr);
2076 if (ret)
2077 goto out_put_key;
2079 if (!(flags & FLAGS_SHARED))
2080 goto retry_private;
2082 put_futex_key(&q.key);
2083 goto retry;
2087 * Userspace attempted a TID -> 0 atomic transition, and failed.
2088 * This is the in-kernel slowpath: we look up the PI state (if any),
2089 * and do the rt-mutex unlock.
2091 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2093 struct futex_hash_bucket *hb;
2094 struct futex_q *this, *next;
2095 struct plist_head *head;
2096 union futex_key key = FUTEX_KEY_INIT;
2097 u32 uval, vpid = task_pid_vnr(current);
2098 int ret;
2100 retry:
2101 if (get_user(uval, uaddr))
2102 return -EFAULT;
2104 * We release only a lock we actually own:
2106 if ((uval & FUTEX_TID_MASK) != vpid)
2107 return -EPERM;
2109 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2110 if (unlikely(ret != 0))
2111 goto out;
2113 hb = hash_futex(&key);
2114 spin_lock(&hb->lock);
2117 * To avoid races, try to do the TID -> 0 atomic transition
2118 * again. If it succeeds then we can return without waking
2119 * anyone else up:
2121 if (!(uval & FUTEX_OWNER_DIED) &&
2122 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2123 goto pi_faulted;
2125 * Rare case: we managed to release the lock atomically,
2126 * no need to wake anyone else up:
2128 if (unlikely(uval == vpid))
2129 goto out_unlock;
2132 * Ok, other tasks may need to be woken up - check waiters
2133 * and do the wakeup if necessary:
2135 head = &hb->chain;
2137 plist_for_each_entry_safe(this, next, head, list) {
2138 if (!match_futex (&this->key, &key))
2139 continue;
2140 ret = wake_futex_pi(uaddr, uval, this);
2142 * The atomic access to the futex value
2143 * generated a pagefault, so retry the
2144 * user-access and the wakeup:
2146 if (ret == -EFAULT)
2147 goto pi_faulted;
2148 goto out_unlock;
2151 * No waiters - kernel unlocks the futex:
2153 if (!(uval & FUTEX_OWNER_DIED)) {
2154 ret = unlock_futex_pi(uaddr, uval);
2155 if (ret == -EFAULT)
2156 goto pi_faulted;
2159 out_unlock:
2160 spin_unlock(&hb->lock);
2161 put_futex_key(&key);
2163 out:
2164 return ret;
2166 pi_faulted:
2167 spin_unlock(&hb->lock);
2168 put_futex_key(&key);
2170 ret = fault_in_user_writeable(uaddr);
2171 if (!ret)
2172 goto retry;
2174 return ret;
2178 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2179 * @hb: the hash_bucket futex_q was original enqueued on
2180 * @q: the futex_q woken while waiting to be requeued
2181 * @key2: the futex_key of the requeue target futex
2182 * @timeout: the timeout associated with the wait (NULL if none)
2184 * Detect if the task was woken on the initial futex as opposed to the requeue
2185 * target futex. If so, determine if it was a timeout or a signal that caused
2186 * the wakeup and return the appropriate error code to the caller. Must be
2187 * called with the hb lock held.
2189 * Returns
2190 * 0 - no early wakeup detected
2191 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2193 static inline
2194 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2195 struct futex_q *q, union futex_key *key2,
2196 struct hrtimer_sleeper *timeout)
2198 int ret = 0;
2201 * With the hb lock held, we avoid races while we process the wakeup.
2202 * We only need to hold hb (and not hb2) to ensure atomicity as the
2203 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2204 * It can't be requeued from uaddr2 to something else since we don't
2205 * support a PI aware source futex for requeue.
2207 if (!match_futex(&q->key, key2)) {
2208 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2210 * We were woken prior to requeue by a timeout or a signal.
2211 * Unqueue the futex_q and determine which it was.
2213 plist_del(&q->list, &hb->chain);
2215 /* Handle spurious wakeups gracefully */
2216 ret = -EWOULDBLOCK;
2217 if (timeout && !timeout->task)
2218 ret = -ETIMEDOUT;
2219 else if (signal_pending(current))
2220 ret = -ERESTARTNOINTR;
2222 return ret;
2226 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2227 * @uaddr: the futex we initially wait on (non-pi)
2228 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2229 * the same type, no requeueing from private to shared, etc.
2230 * @val: the expected value of uaddr
2231 * @abs_time: absolute timeout
2232 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2233 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2234 * @uaddr2: the pi futex we will take prior to returning to user-space
2236 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2237 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2238 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2239 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2240 * without one, the pi logic would not know which task to boost/deboost, if
2241 * there was a need to.
2243 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2244 * via the following:
2245 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2246 * 2) wakeup on uaddr2 after a requeue
2247 * 3) signal
2248 * 4) timeout
2250 * If 3, cleanup and return -ERESTARTNOINTR.
2252 * If 2, we may then block on trying to take the rt_mutex and return via:
2253 * 5) successful lock
2254 * 6) signal
2255 * 7) timeout
2256 * 8) other lock acquisition failure
2258 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2260 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2262 * Returns:
2263 * 0 - On success
2264 * <0 - On error
2266 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2267 u32 val, ktime_t *abs_time, u32 bitset,
2268 u32 __user *uaddr2)
2270 struct hrtimer_sleeper timeout, *to = NULL;
2271 struct rt_mutex_waiter rt_waiter;
2272 struct rt_mutex *pi_mutex = NULL;
2273 struct futex_hash_bucket *hb;
2274 union futex_key key2 = FUTEX_KEY_INIT;
2275 struct futex_q q = futex_q_init;
2276 int res, ret;
2278 if (uaddr == uaddr2)
2279 return -EINVAL;
2281 if (!bitset)
2282 return -EINVAL;
2284 if (abs_time) {
2285 to = &timeout;
2286 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2287 CLOCK_REALTIME : CLOCK_MONOTONIC,
2288 HRTIMER_MODE_ABS);
2289 hrtimer_init_sleeper(to, current);
2290 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2291 current->timer_slack_ns);
2295 * The waiter is allocated on our stack, manipulated by the requeue
2296 * code while we sleep on uaddr.
2298 debug_rt_mutex_init_waiter(&rt_waiter);
2299 rt_waiter.task = NULL;
2301 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2302 if (unlikely(ret != 0))
2303 goto out;
2305 q.bitset = bitset;
2306 q.rt_waiter = &rt_waiter;
2307 q.requeue_pi_key = &key2;
2310 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2311 * count.
2313 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2314 if (ret)
2315 goto out_key2;
2317 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2318 futex_wait_queue_me(hb, &q, to);
2320 spin_lock(&hb->lock);
2321 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2322 spin_unlock(&hb->lock);
2323 if (ret)
2324 goto out_put_keys;
2327 * In order for us to be here, we know our q.key == key2, and since
2328 * we took the hb->lock above, we also know that futex_requeue() has
2329 * completed and we no longer have to concern ourselves with a wakeup
2330 * race with the atomic proxy lock acquisition by the requeue code. The
2331 * futex_requeue dropped our key1 reference and incremented our key2
2332 * reference count.
2335 /* Check if the requeue code acquired the second futex for us. */
2336 if (!q.rt_waiter) {
2338 * Got the lock. We might not be the anticipated owner if we
2339 * did a lock-steal - fix up the PI-state in that case.
2341 if (q.pi_state && (q.pi_state->owner != current)) {
2342 spin_lock(q.lock_ptr);
2343 ret = fixup_pi_state_owner(uaddr2, &q, current);
2344 spin_unlock(q.lock_ptr);
2346 } else {
2348 * We have been woken up by futex_unlock_pi(), a timeout, or a
2349 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2350 * the pi_state.
2352 WARN_ON(!q.pi_state);
2353 pi_mutex = &q.pi_state->pi_mutex;
2354 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2355 debug_rt_mutex_free_waiter(&rt_waiter);
2357 spin_lock(q.lock_ptr);
2359 * Fixup the pi_state owner and possibly acquire the lock if we
2360 * haven't already.
2362 res = fixup_owner(uaddr2, &q, !ret);
2364 * If fixup_owner() returned an error, proprogate that. If it
2365 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2367 if (res)
2368 ret = (res < 0) ? res : 0;
2370 /* Unqueue and drop the lock. */
2371 unqueue_me_pi(&q);
2375 * If fixup_pi_state_owner() faulted and was unable to handle the
2376 * fault, unlock the rt_mutex and return the fault to userspace.
2378 if (ret == -EFAULT) {
2379 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2380 rt_mutex_unlock(pi_mutex);
2381 } else if (ret == -EINTR) {
2383 * We've already been requeued, but cannot restart by calling
2384 * futex_lock_pi() directly. We could restart this syscall, but
2385 * it would detect that the user space "val" changed and return
2386 * -EWOULDBLOCK. Save the overhead of the restart and return
2387 * -EWOULDBLOCK directly.
2389 ret = -EWOULDBLOCK;
2392 out_put_keys:
2393 put_futex_key(&q.key);
2394 out_key2:
2395 put_futex_key(&key2);
2397 out:
2398 if (to) {
2399 hrtimer_cancel(&to->timer);
2400 destroy_hrtimer_on_stack(&to->timer);
2402 return ret;
2406 * Support for robust futexes: the kernel cleans up held futexes at
2407 * thread exit time.
2409 * Implementation: user-space maintains a per-thread list of locks it
2410 * is holding. Upon do_exit(), the kernel carefully walks this list,
2411 * and marks all locks that are owned by this thread with the
2412 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2413 * always manipulated with the lock held, so the list is private and
2414 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2415 * field, to allow the kernel to clean up if the thread dies after
2416 * acquiring the lock, but just before it could have added itself to
2417 * the list. There can only be one such pending lock.
2421 * sys_set_robust_list() - Set the robust-futex list head of a task
2422 * @head: pointer to the list-head
2423 * @len: length of the list-head, as userspace expects
2425 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2426 size_t, len)
2428 if (!futex_cmpxchg_enabled)
2429 return -ENOSYS;
2431 * The kernel knows only one size for now:
2433 if (unlikely(len != sizeof(*head)))
2434 return -EINVAL;
2436 current->robust_list = head;
2438 return 0;
2442 * sys_get_robust_list() - Get the robust-futex list head of a task
2443 * @pid: pid of the process [zero for current task]
2444 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2445 * @len_ptr: pointer to a length field, the kernel fills in the header size
2447 SYSCALL_DEFINE3(get_robust_list, int, pid,
2448 struct robust_list_head __user * __user *, head_ptr,
2449 size_t __user *, len_ptr)
2451 struct robust_list_head __user *head;
2452 unsigned long ret;
2453 struct task_struct *p;
2455 if (!futex_cmpxchg_enabled)
2456 return -ENOSYS;
2458 WARN_ONCE(1, "deprecated: get_robust_list will be deleted in 2013.\n");
2460 rcu_read_lock();
2462 ret = -ESRCH;
2463 if (!pid)
2464 p = current;
2465 else {
2466 p = find_task_by_vpid(pid);
2467 if (!p)
2468 goto err_unlock;
2471 ret = -EPERM;
2472 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2473 goto err_unlock;
2475 head = p->robust_list;
2476 rcu_read_unlock();
2478 if (put_user(sizeof(*head), len_ptr))
2479 return -EFAULT;
2480 return put_user(head, head_ptr);
2482 err_unlock:
2483 rcu_read_unlock();
2485 return ret;
2489 * Process a futex-list entry, check whether it's owned by the
2490 * dying task, and do notification if so:
2492 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2494 u32 uval, uninitialized_var(nval), mval;
2496 retry:
2497 if (get_user(uval, uaddr))
2498 return -1;
2500 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2502 * Ok, this dying thread is truly holding a futex
2503 * of interest. Set the OWNER_DIED bit atomically
2504 * via cmpxchg, and if the value had FUTEX_WAITERS
2505 * set, wake up a waiter (if any). (We have to do a
2506 * futex_wake() even if OWNER_DIED is already set -
2507 * to handle the rare but possible case of recursive
2508 * thread-death.) The rest of the cleanup is done in
2509 * userspace.
2511 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2513 * We are not holding a lock here, but we want to have
2514 * the pagefault_disable/enable() protection because
2515 * we want to handle the fault gracefully. If the
2516 * access fails we try to fault in the futex with R/W
2517 * verification via get_user_pages. get_user() above
2518 * does not guarantee R/W access. If that fails we
2519 * give up and leave the futex locked.
2521 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2522 if (fault_in_user_writeable(uaddr))
2523 return -1;
2524 goto retry;
2526 if (nval != uval)
2527 goto retry;
2530 * Wake robust non-PI futexes here. The wakeup of
2531 * PI futexes happens in exit_pi_state():
2533 if (!pi && (uval & FUTEX_WAITERS))
2534 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2536 return 0;
2540 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2542 static inline int fetch_robust_entry(struct robust_list __user **entry,
2543 struct robust_list __user * __user *head,
2544 unsigned int *pi)
2546 unsigned long uentry;
2548 if (get_user(uentry, (unsigned long __user *)head))
2549 return -EFAULT;
2551 *entry = (void __user *)(uentry & ~1UL);
2552 *pi = uentry & 1;
2554 return 0;
2558 * Walk curr->robust_list (very carefully, it's a userspace list!)
2559 * and mark any locks found there dead, and notify any waiters.
2561 * We silently return on any sign of list-walking problem.
2563 void exit_robust_list(struct task_struct *curr)
2565 struct robust_list_head __user *head = curr->robust_list;
2566 struct robust_list __user *entry, *next_entry, *pending;
2567 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2568 unsigned int uninitialized_var(next_pi);
2569 unsigned long futex_offset;
2570 int rc;
2572 if (!futex_cmpxchg_enabled)
2573 return;
2576 * Fetch the list head (which was registered earlier, via
2577 * sys_set_robust_list()):
2579 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2580 return;
2582 * Fetch the relative futex offset:
2584 if (get_user(futex_offset, &head->futex_offset))
2585 return;
2587 * Fetch any possibly pending lock-add first, and handle it
2588 * if it exists:
2590 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2591 return;
2593 next_entry = NULL; /* avoid warning with gcc */
2594 while (entry != &head->list) {
2596 * Fetch the next entry in the list before calling
2597 * handle_futex_death:
2599 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2601 * A pending lock might already be on the list, so
2602 * don't process it twice:
2604 if (entry != pending)
2605 if (handle_futex_death((void __user *)entry + futex_offset,
2606 curr, pi))
2607 return;
2608 if (rc)
2609 return;
2610 entry = next_entry;
2611 pi = next_pi;
2613 * Avoid excessively long or circular lists:
2615 if (!--limit)
2616 break;
2618 cond_resched();
2621 if (pending)
2622 handle_futex_death((void __user *)pending + futex_offset,
2623 curr, pip);
2626 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2627 u32 __user *uaddr2, u32 val2, u32 val3)
2629 int cmd = op & FUTEX_CMD_MASK;
2630 unsigned int flags = 0;
2632 if (!(op & FUTEX_PRIVATE_FLAG))
2633 flags |= FLAGS_SHARED;
2635 if (op & FUTEX_CLOCK_REALTIME) {
2636 flags |= FLAGS_CLOCKRT;
2637 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2638 return -ENOSYS;
2641 switch (cmd) {
2642 case FUTEX_LOCK_PI:
2643 case FUTEX_UNLOCK_PI:
2644 case FUTEX_TRYLOCK_PI:
2645 case FUTEX_WAIT_REQUEUE_PI:
2646 case FUTEX_CMP_REQUEUE_PI:
2647 if (!futex_cmpxchg_enabled)
2648 return -ENOSYS;
2651 switch (cmd) {
2652 case FUTEX_WAIT:
2653 val3 = FUTEX_BITSET_MATCH_ANY;
2654 case FUTEX_WAIT_BITSET:
2655 return futex_wait(uaddr, flags, val, timeout, val3);
2656 case FUTEX_WAKE:
2657 val3 = FUTEX_BITSET_MATCH_ANY;
2658 case FUTEX_WAKE_BITSET:
2659 return futex_wake(uaddr, flags, val, val3);
2660 case FUTEX_REQUEUE:
2661 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2662 case FUTEX_CMP_REQUEUE:
2663 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2664 case FUTEX_WAKE_OP:
2665 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2666 case FUTEX_LOCK_PI:
2667 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2668 case FUTEX_UNLOCK_PI:
2669 return futex_unlock_pi(uaddr, flags);
2670 case FUTEX_TRYLOCK_PI:
2671 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2672 case FUTEX_WAIT_REQUEUE_PI:
2673 val3 = FUTEX_BITSET_MATCH_ANY;
2674 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2675 uaddr2);
2676 case FUTEX_CMP_REQUEUE_PI:
2677 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2679 return -ENOSYS;
2683 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2684 struct timespec __user *, utime, u32 __user *, uaddr2,
2685 u32, val3)
2687 struct timespec ts;
2688 ktime_t t, *tp = NULL;
2689 u32 val2 = 0;
2690 int cmd = op & FUTEX_CMD_MASK;
2692 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2693 cmd == FUTEX_WAIT_BITSET ||
2694 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2695 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2696 return -EFAULT;
2697 if (!timespec_valid(&ts))
2698 return -EINVAL;
2700 t = timespec_to_ktime(ts);
2701 if (cmd == FUTEX_WAIT)
2702 t = ktime_add_safe(ktime_get(), t);
2703 tp = &t;
2706 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2707 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2709 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2710 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2711 val2 = (u32) (unsigned long) utime;
2713 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2716 static int __init futex_init(void)
2718 u32 curval;
2719 int i;
2722 * This will fail and we want it. Some arch implementations do
2723 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2724 * functionality. We want to know that before we call in any
2725 * of the complex code paths. Also we want to prevent
2726 * registration of robust lists in that case. NULL is
2727 * guaranteed to fault and we get -EFAULT on functional
2728 * implementation, the non-functional ones will return
2729 * -ENOSYS.
2731 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2732 futex_cmpxchg_enabled = 1;
2734 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2735 plist_head_init(&futex_queues[i].chain);
2736 spin_lock_init(&futex_queues[i].lock);
2739 return 0;
2741 __initcall(futex_init);