[PATCH] tty: make __proc_set_tty static
[linux-2.6.git] / drivers / char / tty_io.c
blobb9fce77c8f032ce0f7af9803eee6d9f6ba20e79d
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
123 EXPORT_SYMBOL(tty_std_termios);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
144 extern void disable_early_printk(void);
146 static void initialize_tty_struct(struct tty_struct *tty);
148 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
149 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
150 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
151 static unsigned int tty_poll(struct file *, poll_table *);
152 static int tty_open(struct inode *, struct file *);
153 static int tty_release(struct inode *, struct file *);
154 int tty_ioctl(struct inode * inode, struct file * file,
155 unsigned int cmd, unsigned long arg);
156 static int tty_fasync(int fd, struct file * filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
161 * alloc_tty_struct - allocate a tty object
163 * Return a new empty tty structure. The data fields have not
164 * been initialized in any way but has been zeroed
166 * Locking: none
169 static struct tty_struct *alloc_tty_struct(void)
171 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
174 static void tty_buffer_free_all(struct tty_struct *);
177 * free_tty_struct - free a disused tty
178 * @tty: tty struct to free
180 * Free the write buffers, tty queue and tty memory itself.
182 * Locking: none. Must be called after tty is definitely unused
185 static inline void free_tty_struct(struct tty_struct *tty)
187 kfree(tty->write_buf);
188 tty_buffer_free_all(tty);
189 kfree(tty);
192 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
195 * tty_name - return tty naming
196 * @tty: tty structure
197 * @buf: buffer for output
199 * Convert a tty structure into a name. The name reflects the kernel
200 * naming policy and if udev is in use may not reflect user space
202 * Locking: none
205 char *tty_name(struct tty_struct *tty, char *buf)
207 if (!tty) /* Hmm. NULL pointer. That's fun. */
208 strcpy(buf, "NULL tty");
209 else
210 strcpy(buf, tty->name);
211 return buf;
214 EXPORT_SYMBOL(tty_name);
216 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
217 const char *routine)
219 #ifdef TTY_PARANOIA_CHECK
220 if (!tty) {
221 printk(KERN_WARNING
222 "null TTY for (%d:%d) in %s\n",
223 imajor(inode), iminor(inode), routine);
224 return 1;
226 if (tty->magic != TTY_MAGIC) {
227 printk(KERN_WARNING
228 "bad magic number for tty struct (%d:%d) in %s\n",
229 imajor(inode), iminor(inode), routine);
230 return 1;
232 #endif
233 return 0;
236 static int check_tty_count(struct tty_struct *tty, const char *routine)
238 #ifdef CHECK_TTY_COUNT
239 struct list_head *p;
240 int count = 0;
242 file_list_lock();
243 list_for_each(p, &tty->tty_files) {
244 count++;
246 file_list_unlock();
247 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
248 tty->driver->subtype == PTY_TYPE_SLAVE &&
249 tty->link && tty->link->count)
250 count++;
251 if (tty->count != count) {
252 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
253 "!= #fd's(%d) in %s\n",
254 tty->name, tty->count, count, routine);
255 return count;
257 #endif
258 return 0;
262 * Tty buffer allocation management
266 * tty_buffer_free_all - free buffers used by a tty
267 * @tty: tty to free from
269 * Remove all the buffers pending on a tty whether queued with data
270 * or in the free ring. Must be called when the tty is no longer in use
272 * Locking: none
275 static void tty_buffer_free_all(struct tty_struct *tty)
277 struct tty_buffer *thead;
278 while((thead = tty->buf.head) != NULL) {
279 tty->buf.head = thead->next;
280 kfree(thead);
282 while((thead = tty->buf.free) != NULL) {
283 tty->buf.free = thead->next;
284 kfree(thead);
286 tty->buf.tail = NULL;
287 tty->buf.memory_used = 0;
291 * tty_buffer_init - prepare a tty buffer structure
292 * @tty: tty to initialise
294 * Set up the initial state of the buffer management for a tty device.
295 * Must be called before the other tty buffer functions are used.
297 * Locking: none
300 static void tty_buffer_init(struct tty_struct *tty)
302 spin_lock_init(&tty->buf.lock);
303 tty->buf.head = NULL;
304 tty->buf.tail = NULL;
305 tty->buf.free = NULL;
306 tty->buf.memory_used = 0;
310 * tty_buffer_alloc - allocate a tty buffer
311 * @tty: tty device
312 * @size: desired size (characters)
314 * Allocate a new tty buffer to hold the desired number of characters.
315 * Return NULL if out of memory or the allocation would exceed the
316 * per device queue
318 * Locking: Caller must hold tty->buf.lock
321 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
323 struct tty_buffer *p;
325 if (tty->buf.memory_used + size > 65536)
326 return NULL;
327 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
328 if(p == NULL)
329 return NULL;
330 p->used = 0;
331 p->size = size;
332 p->next = NULL;
333 p->commit = 0;
334 p->read = 0;
335 p->char_buf_ptr = (char *)(p->data);
336 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
337 tty->buf.memory_used += size;
338 return p;
342 * tty_buffer_free - free a tty buffer
343 * @tty: tty owning the buffer
344 * @b: the buffer to free
346 * Free a tty buffer, or add it to the free list according to our
347 * internal strategy
349 * Locking: Caller must hold tty->buf.lock
352 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
354 /* Dumb strategy for now - should keep some stats */
355 tty->buf.memory_used -= b->size;
356 WARN_ON(tty->buf.memory_used < 0);
358 if(b->size >= 512)
359 kfree(b);
360 else {
361 b->next = tty->buf.free;
362 tty->buf.free = b;
367 * tty_buffer_find - find a free tty buffer
368 * @tty: tty owning the buffer
369 * @size: characters wanted
371 * Locate an existing suitable tty buffer or if we are lacking one then
372 * allocate a new one. We round our buffers off in 256 character chunks
373 * to get better allocation behaviour.
375 * Locking: Caller must hold tty->buf.lock
378 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
380 struct tty_buffer **tbh = &tty->buf.free;
381 while((*tbh) != NULL) {
382 struct tty_buffer *t = *tbh;
383 if(t->size >= size) {
384 *tbh = t->next;
385 t->next = NULL;
386 t->used = 0;
387 t->commit = 0;
388 t->read = 0;
389 tty->buf.memory_used += t->size;
390 return t;
392 tbh = &((*tbh)->next);
394 /* Round the buffer size out */
395 size = (size + 0xFF) & ~ 0xFF;
396 return tty_buffer_alloc(tty, size);
397 /* Should possibly check if this fails for the largest buffer we
398 have queued and recycle that ? */
402 * tty_buffer_request_room - grow tty buffer if needed
403 * @tty: tty structure
404 * @size: size desired
406 * Make at least size bytes of linear space available for the tty
407 * buffer. If we fail return the size we managed to find.
409 * Locking: Takes tty->buf.lock
411 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
413 struct tty_buffer *b, *n;
414 int left;
415 unsigned long flags;
417 spin_lock_irqsave(&tty->buf.lock, flags);
419 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
420 remove this conditional if its worth it. This would be invisible
421 to the callers */
422 if ((b = tty->buf.tail) != NULL)
423 left = b->size - b->used;
424 else
425 left = 0;
427 if (left < size) {
428 /* This is the slow path - looking for new buffers to use */
429 if ((n = tty_buffer_find(tty, size)) != NULL) {
430 if (b != NULL) {
431 b->next = n;
432 b->commit = b->used;
433 } else
434 tty->buf.head = n;
435 tty->buf.tail = n;
436 } else
437 size = left;
440 spin_unlock_irqrestore(&tty->buf.lock, flags);
441 return size;
443 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
446 * tty_insert_flip_string - Add characters to the tty buffer
447 * @tty: tty structure
448 * @chars: characters
449 * @size: size
451 * Queue a series of bytes to the tty buffering. All the characters
452 * passed are marked as without error. Returns the number added.
454 * Locking: Called functions may take tty->buf.lock
457 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
458 size_t size)
460 int copied = 0;
461 do {
462 int space = tty_buffer_request_room(tty, size - copied);
463 struct tty_buffer *tb = tty->buf.tail;
464 /* If there is no space then tb may be NULL */
465 if(unlikely(space == 0))
466 break;
467 memcpy(tb->char_buf_ptr + tb->used, chars, space);
468 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
469 tb->used += space;
470 copied += space;
471 chars += space;
472 /* There is a small chance that we need to split the data over
473 several buffers. If this is the case we must loop */
474 } while (unlikely(size > copied));
475 return copied;
477 EXPORT_SYMBOL(tty_insert_flip_string);
480 * tty_insert_flip_string_flags - Add characters to the tty buffer
481 * @tty: tty structure
482 * @chars: characters
483 * @flags: flag bytes
484 * @size: size
486 * Queue a series of bytes to the tty buffering. For each character
487 * the flags array indicates the status of the character. Returns the
488 * number added.
490 * Locking: Called functions may take tty->buf.lock
493 int tty_insert_flip_string_flags(struct tty_struct *tty,
494 const unsigned char *chars, const char *flags, size_t size)
496 int copied = 0;
497 do {
498 int space = tty_buffer_request_room(tty, size - copied);
499 struct tty_buffer *tb = tty->buf.tail;
500 /* If there is no space then tb may be NULL */
501 if(unlikely(space == 0))
502 break;
503 memcpy(tb->char_buf_ptr + tb->used, chars, space);
504 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
505 tb->used += space;
506 copied += space;
507 chars += space;
508 flags += space;
509 /* There is a small chance that we need to split the data over
510 several buffers. If this is the case we must loop */
511 } while (unlikely(size > copied));
512 return copied;
514 EXPORT_SYMBOL(tty_insert_flip_string_flags);
517 * tty_schedule_flip - push characters to ldisc
518 * @tty: tty to push from
520 * Takes any pending buffers and transfers their ownership to the
521 * ldisc side of the queue. It then schedules those characters for
522 * processing by the line discipline.
524 * Locking: Takes tty->buf.lock
527 void tty_schedule_flip(struct tty_struct *tty)
529 unsigned long flags;
530 spin_lock_irqsave(&tty->buf.lock, flags);
531 if (tty->buf.tail != NULL)
532 tty->buf.tail->commit = tty->buf.tail->used;
533 spin_unlock_irqrestore(&tty->buf.lock, flags);
534 schedule_delayed_work(&tty->buf.work, 1);
536 EXPORT_SYMBOL(tty_schedule_flip);
539 * tty_prepare_flip_string - make room for characters
540 * @tty: tty
541 * @chars: return pointer for character write area
542 * @size: desired size
544 * Prepare a block of space in the buffer for data. Returns the length
545 * available and buffer pointer to the space which is now allocated and
546 * accounted for as ready for normal characters. This is used for drivers
547 * that need their own block copy routines into the buffer. There is no
548 * guarantee the buffer is a DMA target!
550 * Locking: May call functions taking tty->buf.lock
553 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
555 int space = tty_buffer_request_room(tty, size);
556 if (likely(space)) {
557 struct tty_buffer *tb = tty->buf.tail;
558 *chars = tb->char_buf_ptr + tb->used;
559 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
560 tb->used += space;
562 return space;
565 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
568 * tty_prepare_flip_string_flags - make room for characters
569 * @tty: tty
570 * @chars: return pointer for character write area
571 * @flags: return pointer for status flag write area
572 * @size: desired size
574 * Prepare a block of space in the buffer for data. Returns the length
575 * available and buffer pointer to the space which is now allocated and
576 * accounted for as ready for characters. This is used for drivers
577 * that need their own block copy routines into the buffer. There is no
578 * guarantee the buffer is a DMA target!
580 * Locking: May call functions taking tty->buf.lock
583 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
585 int space = tty_buffer_request_room(tty, size);
586 if (likely(space)) {
587 struct tty_buffer *tb = tty->buf.tail;
588 *chars = tb->char_buf_ptr + tb->used;
589 *flags = tb->flag_buf_ptr + tb->used;
590 tb->used += space;
592 return space;
595 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
600 * tty_set_termios_ldisc - set ldisc field
601 * @tty: tty structure
602 * @num: line discipline number
604 * This is probably overkill for real world processors but
605 * they are not on hot paths so a little discipline won't do
606 * any harm.
608 * Locking: takes termios_mutex
611 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
613 mutex_lock(&tty->termios_mutex);
614 tty->termios->c_line = num;
615 mutex_unlock(&tty->termios_mutex);
619 * This guards the refcounted line discipline lists. The lock
620 * must be taken with irqs off because there are hangup path
621 * callers who will do ldisc lookups and cannot sleep.
624 static DEFINE_SPINLOCK(tty_ldisc_lock);
625 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
626 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
629 * tty_register_ldisc - install a line discipline
630 * @disc: ldisc number
631 * @new_ldisc: pointer to the ldisc object
633 * Installs a new line discipline into the kernel. The discipline
634 * is set up as unreferenced and then made available to the kernel
635 * from this point onwards.
637 * Locking:
638 * takes tty_ldisc_lock to guard against ldisc races
641 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
643 unsigned long flags;
644 int ret = 0;
646 if (disc < N_TTY || disc >= NR_LDISCS)
647 return -EINVAL;
649 spin_lock_irqsave(&tty_ldisc_lock, flags);
650 tty_ldiscs[disc] = *new_ldisc;
651 tty_ldiscs[disc].num = disc;
652 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
653 tty_ldiscs[disc].refcount = 0;
654 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
656 return ret;
658 EXPORT_SYMBOL(tty_register_ldisc);
661 * tty_unregister_ldisc - unload a line discipline
662 * @disc: ldisc number
663 * @new_ldisc: pointer to the ldisc object
665 * Remove a line discipline from the kernel providing it is not
666 * currently in use.
668 * Locking:
669 * takes tty_ldisc_lock to guard against ldisc races
672 int tty_unregister_ldisc(int disc)
674 unsigned long flags;
675 int ret = 0;
677 if (disc < N_TTY || disc >= NR_LDISCS)
678 return -EINVAL;
680 spin_lock_irqsave(&tty_ldisc_lock, flags);
681 if (tty_ldiscs[disc].refcount)
682 ret = -EBUSY;
683 else
684 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
685 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
687 return ret;
689 EXPORT_SYMBOL(tty_unregister_ldisc);
692 * tty_ldisc_get - take a reference to an ldisc
693 * @disc: ldisc number
695 * Takes a reference to a line discipline. Deals with refcounts and
696 * module locking counts. Returns NULL if the discipline is not available.
697 * Returns a pointer to the discipline and bumps the ref count if it is
698 * available
700 * Locking:
701 * takes tty_ldisc_lock to guard against ldisc races
704 struct tty_ldisc *tty_ldisc_get(int disc)
706 unsigned long flags;
707 struct tty_ldisc *ld;
709 if (disc < N_TTY || disc >= NR_LDISCS)
710 return NULL;
712 spin_lock_irqsave(&tty_ldisc_lock, flags);
714 ld = &tty_ldiscs[disc];
715 /* Check the entry is defined */
716 if(ld->flags & LDISC_FLAG_DEFINED)
718 /* If the module is being unloaded we can't use it */
719 if (!try_module_get(ld->owner))
720 ld = NULL;
721 else /* lock it */
722 ld->refcount++;
724 else
725 ld = NULL;
726 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
727 return ld;
730 EXPORT_SYMBOL_GPL(tty_ldisc_get);
733 * tty_ldisc_put - drop ldisc reference
734 * @disc: ldisc number
736 * Drop a reference to a line discipline. Manage refcounts and
737 * module usage counts
739 * Locking:
740 * takes tty_ldisc_lock to guard against ldisc races
743 void tty_ldisc_put(int disc)
745 struct tty_ldisc *ld;
746 unsigned long flags;
748 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
750 spin_lock_irqsave(&tty_ldisc_lock, flags);
751 ld = &tty_ldiscs[disc];
752 BUG_ON(ld->refcount == 0);
753 ld->refcount--;
754 module_put(ld->owner);
755 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
758 EXPORT_SYMBOL_GPL(tty_ldisc_put);
761 * tty_ldisc_assign - set ldisc on a tty
762 * @tty: tty to assign
763 * @ld: line discipline
765 * Install an instance of a line discipline into a tty structure. The
766 * ldisc must have a reference count above zero to ensure it remains/
767 * The tty instance refcount starts at zero.
769 * Locking:
770 * Caller must hold references
773 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
775 tty->ldisc = *ld;
776 tty->ldisc.refcount = 0;
780 * tty_ldisc_try - internal helper
781 * @tty: the tty
783 * Make a single attempt to grab and bump the refcount on
784 * the tty ldisc. Return 0 on failure or 1 on success. This is
785 * used to implement both the waiting and non waiting versions
786 * of tty_ldisc_ref
788 * Locking: takes tty_ldisc_lock
791 static int tty_ldisc_try(struct tty_struct *tty)
793 unsigned long flags;
794 struct tty_ldisc *ld;
795 int ret = 0;
797 spin_lock_irqsave(&tty_ldisc_lock, flags);
798 ld = &tty->ldisc;
799 if(test_bit(TTY_LDISC, &tty->flags))
801 ld->refcount++;
802 ret = 1;
804 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
805 return ret;
809 * tty_ldisc_ref_wait - wait for the tty ldisc
810 * @tty: tty device
812 * Dereference the line discipline for the terminal and take a
813 * reference to it. If the line discipline is in flux then
814 * wait patiently until it changes.
816 * Note: Must not be called from an IRQ/timer context. The caller
817 * must also be careful not to hold other locks that will deadlock
818 * against a discipline change, such as an existing ldisc reference
819 * (which we check for)
821 * Locking: call functions take tty_ldisc_lock
824 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
826 /* wait_event is a macro */
827 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
828 if(tty->ldisc.refcount == 0)
829 printk(KERN_ERR "tty_ldisc_ref_wait\n");
830 return &tty->ldisc;
833 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
836 * tty_ldisc_ref - get the tty ldisc
837 * @tty: tty device
839 * Dereference the line discipline for the terminal and take a
840 * reference to it. If the line discipline is in flux then
841 * return NULL. Can be called from IRQ and timer functions.
843 * Locking: called functions take tty_ldisc_lock
846 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
848 if(tty_ldisc_try(tty))
849 return &tty->ldisc;
850 return NULL;
853 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
856 * tty_ldisc_deref - free a tty ldisc reference
857 * @ld: reference to free up
859 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
860 * be called in IRQ context.
862 * Locking: takes tty_ldisc_lock
865 void tty_ldisc_deref(struct tty_ldisc *ld)
867 unsigned long flags;
869 BUG_ON(ld == NULL);
871 spin_lock_irqsave(&tty_ldisc_lock, flags);
872 if(ld->refcount == 0)
873 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
874 else
875 ld->refcount--;
876 if(ld->refcount == 0)
877 wake_up(&tty_ldisc_wait);
878 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
881 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
884 * tty_ldisc_enable - allow ldisc use
885 * @tty: terminal to activate ldisc on
887 * Set the TTY_LDISC flag when the line discipline can be called
888 * again. Do neccessary wakeups for existing sleepers.
890 * Note: nobody should set this bit except via this function. Clearing
891 * directly is allowed.
894 static void tty_ldisc_enable(struct tty_struct *tty)
896 set_bit(TTY_LDISC, &tty->flags);
897 wake_up(&tty_ldisc_wait);
901 * tty_set_ldisc - set line discipline
902 * @tty: the terminal to set
903 * @ldisc: the line discipline
905 * Set the discipline of a tty line. Must be called from a process
906 * context.
908 * Locking: takes tty_ldisc_lock.
909 * called functions take termios_mutex
912 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
914 int retval = 0;
915 struct tty_ldisc o_ldisc;
916 char buf[64];
917 int work;
918 unsigned long flags;
919 struct tty_ldisc *ld;
920 struct tty_struct *o_tty;
922 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
923 return -EINVAL;
925 restart:
927 ld = tty_ldisc_get(ldisc);
928 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
929 /* Cyrus Durgin <cider@speakeasy.org> */
930 if (ld == NULL) {
931 request_module("tty-ldisc-%d", ldisc);
932 ld = tty_ldisc_get(ldisc);
934 if (ld == NULL)
935 return -EINVAL;
938 * No more input please, we are switching. The new ldisc
939 * will update this value in the ldisc open function
942 tty->receive_room = 0;
945 * Problem: What do we do if this blocks ?
948 tty_wait_until_sent(tty, 0);
950 if (tty->ldisc.num == ldisc) {
951 tty_ldisc_put(ldisc);
952 return 0;
955 o_ldisc = tty->ldisc;
956 o_tty = tty->link;
959 * Make sure we don't change while someone holds a
960 * reference to the line discipline. The TTY_LDISC bit
961 * prevents anyone taking a reference once it is clear.
962 * We need the lock to avoid racing reference takers.
965 spin_lock_irqsave(&tty_ldisc_lock, flags);
966 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
967 if(tty->ldisc.refcount) {
968 /* Free the new ldisc we grabbed. Must drop the lock
969 first. */
970 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
971 tty_ldisc_put(ldisc);
973 * There are several reasons we may be busy, including
974 * random momentary I/O traffic. We must therefore
975 * retry. We could distinguish between blocking ops
976 * and retries if we made tty_ldisc_wait() smarter. That
977 * is up for discussion.
979 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
980 return -ERESTARTSYS;
981 goto restart;
983 if(o_tty && o_tty->ldisc.refcount) {
984 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
985 tty_ldisc_put(ldisc);
986 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
987 return -ERESTARTSYS;
988 goto restart;
992 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
994 if (!test_bit(TTY_LDISC, &tty->flags)) {
995 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
996 tty_ldisc_put(ldisc);
997 ld = tty_ldisc_ref_wait(tty);
998 tty_ldisc_deref(ld);
999 goto restart;
1002 clear_bit(TTY_LDISC, &tty->flags);
1003 if (o_tty)
1004 clear_bit(TTY_LDISC, &o_tty->flags);
1005 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1008 * From this point on we know nobody has an ldisc
1009 * usage reference, nor can they obtain one until
1010 * we say so later on.
1013 work = cancel_delayed_work(&tty->buf.work);
1015 * Wait for ->hangup_work and ->buf.work handlers to terminate
1018 flush_scheduled_work();
1019 /* Shutdown the current discipline. */
1020 if (tty->ldisc.close)
1021 (tty->ldisc.close)(tty);
1023 /* Now set up the new line discipline. */
1024 tty_ldisc_assign(tty, ld);
1025 tty_set_termios_ldisc(tty, ldisc);
1026 if (tty->ldisc.open)
1027 retval = (tty->ldisc.open)(tty);
1028 if (retval < 0) {
1029 tty_ldisc_put(ldisc);
1030 /* There is an outstanding reference here so this is safe */
1031 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1032 tty_set_termios_ldisc(tty, tty->ldisc.num);
1033 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1034 tty_ldisc_put(o_ldisc.num);
1035 /* This driver is always present */
1036 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1037 tty_set_termios_ldisc(tty, N_TTY);
1038 if (tty->ldisc.open) {
1039 int r = tty->ldisc.open(tty);
1041 if (r < 0)
1042 panic("Couldn't open N_TTY ldisc for "
1043 "%s --- error %d.",
1044 tty_name(tty, buf), r);
1048 /* At this point we hold a reference to the new ldisc and a
1049 a reference to the old ldisc. If we ended up flipping back
1050 to the existing ldisc we have two references to it */
1052 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1053 tty->driver->set_ldisc(tty);
1055 tty_ldisc_put(o_ldisc.num);
1058 * Allow ldisc referencing to occur as soon as the driver
1059 * ldisc callback completes.
1062 tty_ldisc_enable(tty);
1063 if (o_tty)
1064 tty_ldisc_enable(o_tty);
1066 /* Restart it in case no characters kick it off. Safe if
1067 already running */
1068 if (work)
1069 schedule_delayed_work(&tty->buf.work, 1);
1070 return retval;
1074 * get_tty_driver - find device of a tty
1075 * @dev_t: device identifier
1076 * @index: returns the index of the tty
1078 * This routine returns a tty driver structure, given a device number
1079 * and also passes back the index number.
1081 * Locking: caller must hold tty_mutex
1084 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1086 struct tty_driver *p;
1088 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1089 dev_t base = MKDEV(p->major, p->minor_start);
1090 if (device < base || device >= base + p->num)
1091 continue;
1092 *index = device - base;
1093 return p;
1095 return NULL;
1099 * tty_check_change - check for POSIX terminal changes
1100 * @tty: tty to check
1102 * If we try to write to, or set the state of, a terminal and we're
1103 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1104 * ignored, go ahead and perform the operation. (POSIX 7.2)
1106 * Locking: none
1109 int tty_check_change(struct tty_struct * tty)
1111 if (current->signal->tty != tty)
1112 return 0;
1113 if (tty->pgrp <= 0) {
1114 printk(KERN_WARNING "tty_check_change: tty->pgrp <= 0!\n");
1115 return 0;
1117 if (process_group(current) == tty->pgrp)
1118 return 0;
1119 if (is_ignored(SIGTTOU))
1120 return 0;
1121 if (is_orphaned_pgrp(process_group(current)))
1122 return -EIO;
1123 (void) kill_pg(process_group(current), SIGTTOU, 1);
1124 return -ERESTARTSYS;
1127 EXPORT_SYMBOL(tty_check_change);
1129 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1130 size_t count, loff_t *ppos)
1132 return 0;
1135 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1136 size_t count, loff_t *ppos)
1138 return -EIO;
1141 /* No kernel lock held - none needed ;) */
1142 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1144 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1147 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1148 unsigned int cmd, unsigned long arg)
1150 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1153 static const struct file_operations tty_fops = {
1154 .llseek = no_llseek,
1155 .read = tty_read,
1156 .write = tty_write,
1157 .poll = tty_poll,
1158 .ioctl = tty_ioctl,
1159 .open = tty_open,
1160 .release = tty_release,
1161 .fasync = tty_fasync,
1164 #ifdef CONFIG_UNIX98_PTYS
1165 static const struct file_operations ptmx_fops = {
1166 .llseek = no_llseek,
1167 .read = tty_read,
1168 .write = tty_write,
1169 .poll = tty_poll,
1170 .ioctl = tty_ioctl,
1171 .open = ptmx_open,
1172 .release = tty_release,
1173 .fasync = tty_fasync,
1175 #endif
1177 static const struct file_operations console_fops = {
1178 .llseek = no_llseek,
1179 .read = tty_read,
1180 .write = redirected_tty_write,
1181 .poll = tty_poll,
1182 .ioctl = tty_ioctl,
1183 .open = tty_open,
1184 .release = tty_release,
1185 .fasync = tty_fasync,
1188 static const struct file_operations hung_up_tty_fops = {
1189 .llseek = no_llseek,
1190 .read = hung_up_tty_read,
1191 .write = hung_up_tty_write,
1192 .poll = hung_up_tty_poll,
1193 .ioctl = hung_up_tty_ioctl,
1194 .release = tty_release,
1197 static DEFINE_SPINLOCK(redirect_lock);
1198 static struct file *redirect;
1201 * tty_wakeup - request more data
1202 * @tty: terminal
1204 * Internal and external helper for wakeups of tty. This function
1205 * informs the line discipline if present that the driver is ready
1206 * to receive more output data.
1209 void tty_wakeup(struct tty_struct *tty)
1211 struct tty_ldisc *ld;
1213 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1214 ld = tty_ldisc_ref(tty);
1215 if(ld) {
1216 if(ld->write_wakeup)
1217 ld->write_wakeup(tty);
1218 tty_ldisc_deref(ld);
1221 wake_up_interruptible(&tty->write_wait);
1224 EXPORT_SYMBOL_GPL(tty_wakeup);
1227 * tty_ldisc_flush - flush line discipline queue
1228 * @tty: tty
1230 * Flush the line discipline queue (if any) for this tty. If there
1231 * is no line discipline active this is a no-op.
1234 void tty_ldisc_flush(struct tty_struct *tty)
1236 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1237 if(ld) {
1238 if(ld->flush_buffer)
1239 ld->flush_buffer(tty);
1240 tty_ldisc_deref(ld);
1244 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1247 * tty_reset_termios - reset terminal state
1248 * @tty: tty to reset
1250 * Restore a terminal to the driver default state
1253 static void tty_reset_termios(struct tty_struct *tty)
1255 mutex_lock(&tty->termios_mutex);
1256 *tty->termios = tty->driver->init_termios;
1257 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1258 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1259 mutex_unlock(&tty->termios_mutex);
1263 * do_tty_hangup - actual handler for hangup events
1264 * @work: tty device
1266 * This can be called by the "eventd" kernel thread. That is process
1267 * synchronous but doesn't hold any locks, so we need to make sure we
1268 * have the appropriate locks for what we're doing.
1270 * The hangup event clears any pending redirections onto the hung up
1271 * device. It ensures future writes will error and it does the needed
1272 * line discipline hangup and signal delivery. The tty object itself
1273 * remains intact.
1275 * Locking:
1276 * BKL
1277 * redirect lock for undoing redirection
1278 * file list lock for manipulating list of ttys
1279 * tty_ldisc_lock from called functions
1280 * termios_mutex resetting termios data
1281 * tasklist_lock to walk task list for hangup event
1282 * ->siglock to protect ->signal/->sighand
1284 static void do_tty_hangup(struct work_struct *work)
1286 struct tty_struct *tty =
1287 container_of(work, struct tty_struct, hangup_work);
1288 struct file * cons_filp = NULL;
1289 struct file *filp, *f = NULL;
1290 struct task_struct *p;
1291 struct tty_ldisc *ld;
1292 int closecount = 0, n;
1294 if (!tty)
1295 return;
1297 /* inuse_filps is protected by the single kernel lock */
1298 lock_kernel();
1300 spin_lock(&redirect_lock);
1301 if (redirect && redirect->private_data == tty) {
1302 f = redirect;
1303 redirect = NULL;
1305 spin_unlock(&redirect_lock);
1307 check_tty_count(tty, "do_tty_hangup");
1308 file_list_lock();
1309 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1310 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1311 if (filp->f_op->write == redirected_tty_write)
1312 cons_filp = filp;
1313 if (filp->f_op->write != tty_write)
1314 continue;
1315 closecount++;
1316 tty_fasync(-1, filp, 0); /* can't block */
1317 filp->f_op = &hung_up_tty_fops;
1319 file_list_unlock();
1321 /* FIXME! What are the locking issues here? This may me overdoing things..
1322 * this question is especially important now that we've removed the irqlock. */
1324 ld = tty_ldisc_ref(tty);
1325 if(ld != NULL) /* We may have no line discipline at this point */
1327 if (ld->flush_buffer)
1328 ld->flush_buffer(tty);
1329 if (tty->driver->flush_buffer)
1330 tty->driver->flush_buffer(tty);
1331 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1332 ld->write_wakeup)
1333 ld->write_wakeup(tty);
1334 if (ld->hangup)
1335 ld->hangup(tty);
1338 /* FIXME: Once we trust the LDISC code better we can wait here for
1339 ldisc completion and fix the driver call race */
1341 wake_up_interruptible(&tty->write_wait);
1342 wake_up_interruptible(&tty->read_wait);
1345 * Shutdown the current line discipline, and reset it to
1346 * N_TTY.
1348 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1349 tty_reset_termios(tty);
1351 /* Defer ldisc switch */
1352 /* tty_deferred_ldisc_switch(N_TTY);
1354 This should get done automatically when the port closes and
1355 tty_release is called */
1357 read_lock(&tasklist_lock);
1358 if (tty->session > 0) {
1359 do_each_task_pid(tty->session, PIDTYPE_SID, p) {
1360 spin_lock_irq(&p->sighand->siglock);
1361 if (p->signal->tty == tty)
1362 p->signal->tty = NULL;
1363 if (!p->signal->leader) {
1364 spin_unlock_irq(&p->sighand->siglock);
1365 continue;
1367 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1368 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1369 if (tty->pgrp > 0)
1370 p->signal->tty_old_pgrp = tty->pgrp;
1371 spin_unlock_irq(&p->sighand->siglock);
1372 } while_each_task_pid(tty->session, PIDTYPE_SID, p);
1374 read_unlock(&tasklist_lock);
1376 tty->flags = 0;
1377 tty->session = 0;
1378 tty->pgrp = -1;
1379 tty->ctrl_status = 0;
1381 * If one of the devices matches a console pointer, we
1382 * cannot just call hangup() because that will cause
1383 * tty->count and state->count to go out of sync.
1384 * So we just call close() the right number of times.
1386 if (cons_filp) {
1387 if (tty->driver->close)
1388 for (n = 0; n < closecount; n++)
1389 tty->driver->close(tty, cons_filp);
1390 } else if (tty->driver->hangup)
1391 (tty->driver->hangup)(tty);
1393 /* We don't want to have driver/ldisc interactions beyond
1394 the ones we did here. The driver layer expects no
1395 calls after ->hangup() from the ldisc side. However we
1396 can't yet guarantee all that */
1398 set_bit(TTY_HUPPED, &tty->flags);
1399 if (ld) {
1400 tty_ldisc_enable(tty);
1401 tty_ldisc_deref(ld);
1403 unlock_kernel();
1404 if (f)
1405 fput(f);
1409 * tty_hangup - trigger a hangup event
1410 * @tty: tty to hangup
1412 * A carrier loss (virtual or otherwise) has occurred on this like
1413 * schedule a hangup sequence to run after this event.
1416 void tty_hangup(struct tty_struct * tty)
1418 #ifdef TTY_DEBUG_HANGUP
1419 char buf[64];
1421 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1422 #endif
1423 schedule_work(&tty->hangup_work);
1426 EXPORT_SYMBOL(tty_hangup);
1429 * tty_vhangup - process vhangup
1430 * @tty: tty to hangup
1432 * The user has asked via system call for the terminal to be hung up.
1433 * We do this synchronously so that when the syscall returns the process
1434 * is complete. That guarantee is neccessary for security reasons.
1437 void tty_vhangup(struct tty_struct * tty)
1439 #ifdef TTY_DEBUG_HANGUP
1440 char buf[64];
1442 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1443 #endif
1444 do_tty_hangup(&tty->hangup_work);
1446 EXPORT_SYMBOL(tty_vhangup);
1449 * tty_hung_up_p - was tty hung up
1450 * @filp: file pointer of tty
1452 * Return true if the tty has been subject to a vhangup or a carrier
1453 * loss
1456 int tty_hung_up_p(struct file * filp)
1458 return (filp->f_op == &hung_up_tty_fops);
1461 EXPORT_SYMBOL(tty_hung_up_p);
1463 static void session_clear_tty(pid_t session)
1465 struct task_struct *p;
1466 do_each_task_pid(session, PIDTYPE_SID, p) {
1467 proc_clear_tty(p);
1468 } while_each_task_pid(session, PIDTYPE_SID, p);
1472 * disassociate_ctty - disconnect controlling tty
1473 * @on_exit: true if exiting so need to "hang up" the session
1475 * This function is typically called only by the session leader, when
1476 * it wants to disassociate itself from its controlling tty.
1478 * It performs the following functions:
1479 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1480 * (2) Clears the tty from being controlling the session
1481 * (3) Clears the controlling tty for all processes in the
1482 * session group.
1484 * The argument on_exit is set to 1 if called when a process is
1485 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1487 * Locking:
1488 * BKL is taken for hysterical raisins
1489 * tty_mutex is taken to protect tty
1490 * ->siglock is taken to protect ->signal/->sighand
1491 * tasklist_lock is taken to walk process list for sessions
1492 * ->siglock is taken to protect ->signal/->sighand
1495 void disassociate_ctty(int on_exit)
1497 struct tty_struct *tty;
1498 int tty_pgrp = -1;
1499 int session;
1501 lock_kernel();
1503 mutex_lock(&tty_mutex);
1504 tty = get_current_tty();
1505 if (tty) {
1506 tty_pgrp = tty->pgrp;
1507 mutex_unlock(&tty_mutex);
1508 /* XXX: here we race, there is nothing protecting tty */
1509 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1510 tty_vhangup(tty);
1511 } else {
1512 pid_t old_pgrp = current->signal->tty_old_pgrp;
1513 if (old_pgrp) {
1514 kill_pg(old_pgrp, SIGHUP, on_exit);
1515 kill_pg(old_pgrp, SIGCONT, on_exit);
1517 mutex_unlock(&tty_mutex);
1518 unlock_kernel();
1519 return;
1521 if (tty_pgrp > 0) {
1522 kill_pg(tty_pgrp, SIGHUP, on_exit);
1523 if (!on_exit)
1524 kill_pg(tty_pgrp, SIGCONT, on_exit);
1527 spin_lock_irq(&current->sighand->siglock);
1528 current->signal->tty_old_pgrp = 0;
1529 session = process_session(current);
1530 spin_unlock_irq(&current->sighand->siglock);
1532 mutex_lock(&tty_mutex);
1533 /* It is possible that do_tty_hangup has free'd this tty */
1534 tty = get_current_tty();
1535 if (tty) {
1536 tty->session = 0;
1537 tty->pgrp = 0;
1538 } else {
1539 #ifdef TTY_DEBUG_HANGUP
1540 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1541 " = NULL", tty);
1542 #endif
1544 mutex_unlock(&tty_mutex);
1546 /* Now clear signal->tty under the lock */
1547 read_lock(&tasklist_lock);
1548 session_clear_tty(session);
1549 read_unlock(&tasklist_lock);
1550 unlock_kernel();
1555 * stop_tty - propogate flow control
1556 * @tty: tty to stop
1558 * Perform flow control to the driver. For PTY/TTY pairs we
1559 * must also propogate the TIOCKPKT status. May be called
1560 * on an already stopped device and will not re-call the driver
1561 * method.
1563 * This functionality is used by both the line disciplines for
1564 * halting incoming flow and by the driver. It may therefore be
1565 * called from any context, may be under the tty atomic_write_lock
1566 * but not always.
1568 * Locking:
1569 * Broken. Relies on BKL which is unsafe here.
1572 void stop_tty(struct tty_struct *tty)
1574 if (tty->stopped)
1575 return;
1576 tty->stopped = 1;
1577 if (tty->link && tty->link->packet) {
1578 tty->ctrl_status &= ~TIOCPKT_START;
1579 tty->ctrl_status |= TIOCPKT_STOP;
1580 wake_up_interruptible(&tty->link->read_wait);
1582 if (tty->driver->stop)
1583 (tty->driver->stop)(tty);
1586 EXPORT_SYMBOL(stop_tty);
1589 * start_tty - propogate flow control
1590 * @tty: tty to start
1592 * Start a tty that has been stopped if at all possible. Perform
1593 * any neccessary wakeups and propogate the TIOCPKT status. If this
1594 * is the tty was previous stopped and is being started then the
1595 * driver start method is invoked and the line discipline woken.
1597 * Locking:
1598 * Broken. Relies on BKL which is unsafe here.
1601 void start_tty(struct tty_struct *tty)
1603 if (!tty->stopped || tty->flow_stopped)
1604 return;
1605 tty->stopped = 0;
1606 if (tty->link && tty->link->packet) {
1607 tty->ctrl_status &= ~TIOCPKT_STOP;
1608 tty->ctrl_status |= TIOCPKT_START;
1609 wake_up_interruptible(&tty->link->read_wait);
1611 if (tty->driver->start)
1612 (tty->driver->start)(tty);
1614 /* If we have a running line discipline it may need kicking */
1615 tty_wakeup(tty);
1618 EXPORT_SYMBOL(start_tty);
1621 * tty_read - read method for tty device files
1622 * @file: pointer to tty file
1623 * @buf: user buffer
1624 * @count: size of user buffer
1625 * @ppos: unused
1627 * Perform the read system call function on this terminal device. Checks
1628 * for hung up devices before calling the line discipline method.
1630 * Locking:
1631 * Locks the line discipline internally while needed
1632 * For historical reasons the line discipline read method is
1633 * invoked under the BKL. This will go away in time so do not rely on it
1634 * in new code. Multiple read calls may be outstanding in parallel.
1637 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1638 loff_t *ppos)
1640 int i;
1641 struct tty_struct * tty;
1642 struct inode *inode;
1643 struct tty_ldisc *ld;
1645 tty = (struct tty_struct *)file->private_data;
1646 inode = file->f_path.dentry->d_inode;
1647 if (tty_paranoia_check(tty, inode, "tty_read"))
1648 return -EIO;
1649 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1650 return -EIO;
1652 /* We want to wait for the line discipline to sort out in this
1653 situation */
1654 ld = tty_ldisc_ref_wait(tty);
1655 lock_kernel();
1656 if (ld->read)
1657 i = (ld->read)(tty,file,buf,count);
1658 else
1659 i = -EIO;
1660 tty_ldisc_deref(ld);
1661 unlock_kernel();
1662 if (i > 0)
1663 inode->i_atime = current_fs_time(inode->i_sb);
1664 return i;
1668 * Split writes up in sane blocksizes to avoid
1669 * denial-of-service type attacks
1671 static inline ssize_t do_tty_write(
1672 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1673 struct tty_struct *tty,
1674 struct file *file,
1675 const char __user *buf,
1676 size_t count)
1678 ssize_t ret = 0, written = 0;
1679 unsigned int chunk;
1681 /* FIXME: O_NDELAY ... */
1682 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1683 return -ERESTARTSYS;
1687 * We chunk up writes into a temporary buffer. This
1688 * simplifies low-level drivers immensely, since they
1689 * don't have locking issues and user mode accesses.
1691 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1692 * big chunk-size..
1694 * The default chunk-size is 2kB, because the NTTY
1695 * layer has problems with bigger chunks. It will
1696 * claim to be able to handle more characters than
1697 * it actually does.
1699 * FIXME: This can probably go away now except that 64K chunks
1700 * are too likely to fail unless switched to vmalloc...
1702 chunk = 2048;
1703 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1704 chunk = 65536;
1705 if (count < chunk)
1706 chunk = count;
1708 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1709 if (tty->write_cnt < chunk) {
1710 unsigned char *buf;
1712 if (chunk < 1024)
1713 chunk = 1024;
1715 buf = kmalloc(chunk, GFP_KERNEL);
1716 if (!buf) {
1717 mutex_unlock(&tty->atomic_write_lock);
1718 return -ENOMEM;
1720 kfree(tty->write_buf);
1721 tty->write_cnt = chunk;
1722 tty->write_buf = buf;
1725 /* Do the write .. */
1726 for (;;) {
1727 size_t size = count;
1728 if (size > chunk)
1729 size = chunk;
1730 ret = -EFAULT;
1731 if (copy_from_user(tty->write_buf, buf, size))
1732 break;
1733 lock_kernel();
1734 ret = write(tty, file, tty->write_buf, size);
1735 unlock_kernel();
1736 if (ret <= 0)
1737 break;
1738 written += ret;
1739 buf += ret;
1740 count -= ret;
1741 if (!count)
1742 break;
1743 ret = -ERESTARTSYS;
1744 if (signal_pending(current))
1745 break;
1746 cond_resched();
1748 if (written) {
1749 struct inode *inode = file->f_path.dentry->d_inode;
1750 inode->i_mtime = current_fs_time(inode->i_sb);
1751 ret = written;
1753 mutex_unlock(&tty->atomic_write_lock);
1754 return ret;
1759 * tty_write - write method for tty device file
1760 * @file: tty file pointer
1761 * @buf: user data to write
1762 * @count: bytes to write
1763 * @ppos: unused
1765 * Write data to a tty device via the line discipline.
1767 * Locking:
1768 * Locks the line discipline as required
1769 * Writes to the tty driver are serialized by the atomic_write_lock
1770 * and are then processed in chunks to the device. The line discipline
1771 * write method will not be involked in parallel for each device
1772 * The line discipline write method is called under the big
1773 * kernel lock for historical reasons. New code should not rely on this.
1776 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1777 loff_t *ppos)
1779 struct tty_struct * tty;
1780 struct inode *inode = file->f_path.dentry->d_inode;
1781 ssize_t ret;
1782 struct tty_ldisc *ld;
1784 tty = (struct tty_struct *)file->private_data;
1785 if (tty_paranoia_check(tty, inode, "tty_write"))
1786 return -EIO;
1787 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1788 return -EIO;
1790 ld = tty_ldisc_ref_wait(tty);
1791 if (!ld->write)
1792 ret = -EIO;
1793 else
1794 ret = do_tty_write(ld->write, tty, file, buf, count);
1795 tty_ldisc_deref(ld);
1796 return ret;
1799 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1800 loff_t *ppos)
1802 struct file *p = NULL;
1804 spin_lock(&redirect_lock);
1805 if (redirect) {
1806 get_file(redirect);
1807 p = redirect;
1809 spin_unlock(&redirect_lock);
1811 if (p) {
1812 ssize_t res;
1813 res = vfs_write(p, buf, count, &p->f_pos);
1814 fput(p);
1815 return res;
1818 return tty_write(file, buf, count, ppos);
1821 static char ptychar[] = "pqrstuvwxyzabcde";
1824 * pty_line_name - generate name for a pty
1825 * @driver: the tty driver in use
1826 * @index: the minor number
1827 * @p: output buffer of at least 6 bytes
1829 * Generate a name from a driver reference and write it to the output
1830 * buffer.
1832 * Locking: None
1834 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1836 int i = index + driver->name_base;
1837 /* ->name is initialized to "ttyp", but "tty" is expected */
1838 sprintf(p, "%s%c%x",
1839 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1840 ptychar[i >> 4 & 0xf], i & 0xf);
1844 * pty_line_name - generate name for a tty
1845 * @driver: the tty driver in use
1846 * @index: the minor number
1847 * @p: output buffer of at least 7 bytes
1849 * Generate a name from a driver reference and write it to the output
1850 * buffer.
1852 * Locking: None
1854 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1856 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1860 * init_dev - initialise a tty device
1861 * @driver: tty driver we are opening a device on
1862 * @idx: device index
1863 * @tty: returned tty structure
1865 * Prepare a tty device. This may not be a "new" clean device but
1866 * could also be an active device. The pty drivers require special
1867 * handling because of this.
1869 * Locking:
1870 * The function is called under the tty_mutex, which
1871 * protects us from the tty struct or driver itself going away.
1873 * On exit the tty device has the line discipline attached and
1874 * a reference count of 1. If a pair was created for pty/tty use
1875 * and the other was a pty master then it too has a reference count of 1.
1877 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1878 * failed open. The new code protects the open with a mutex, so it's
1879 * really quite straightforward. The mutex locking can probably be
1880 * relaxed for the (most common) case of reopening a tty.
1883 static int init_dev(struct tty_driver *driver, int idx,
1884 struct tty_struct **ret_tty)
1886 struct tty_struct *tty, *o_tty;
1887 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1888 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1889 int retval = 0;
1891 /* check whether we're reopening an existing tty */
1892 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1893 tty = devpts_get_tty(idx);
1894 if (tty && driver->subtype == PTY_TYPE_MASTER)
1895 tty = tty->link;
1896 } else {
1897 tty = driver->ttys[idx];
1899 if (tty) goto fast_track;
1902 * First time open is complex, especially for PTY devices.
1903 * This code guarantees that either everything succeeds and the
1904 * TTY is ready for operation, or else the table slots are vacated
1905 * and the allocated memory released. (Except that the termios
1906 * and locked termios may be retained.)
1909 if (!try_module_get(driver->owner)) {
1910 retval = -ENODEV;
1911 goto end_init;
1914 o_tty = NULL;
1915 tp = o_tp = NULL;
1916 ltp = o_ltp = NULL;
1918 tty = alloc_tty_struct();
1919 if(!tty)
1920 goto fail_no_mem;
1921 initialize_tty_struct(tty);
1922 tty->driver = driver;
1923 tty->index = idx;
1924 tty_line_name(driver, idx, tty->name);
1926 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1927 tp_loc = &tty->termios;
1928 ltp_loc = &tty->termios_locked;
1929 } else {
1930 tp_loc = &driver->termios[idx];
1931 ltp_loc = &driver->termios_locked[idx];
1934 if (!*tp_loc) {
1935 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1936 GFP_KERNEL);
1937 if (!tp)
1938 goto free_mem_out;
1939 *tp = driver->init_termios;
1942 if (!*ltp_loc) {
1943 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1944 GFP_KERNEL);
1945 if (!ltp)
1946 goto free_mem_out;
1947 memset(ltp, 0, sizeof(struct ktermios));
1950 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1951 o_tty = alloc_tty_struct();
1952 if (!o_tty)
1953 goto free_mem_out;
1954 initialize_tty_struct(o_tty);
1955 o_tty->driver = driver->other;
1956 o_tty->index = idx;
1957 tty_line_name(driver->other, idx, o_tty->name);
1959 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1960 o_tp_loc = &o_tty->termios;
1961 o_ltp_loc = &o_tty->termios_locked;
1962 } else {
1963 o_tp_loc = &driver->other->termios[idx];
1964 o_ltp_loc = &driver->other->termios_locked[idx];
1967 if (!*o_tp_loc) {
1968 o_tp = (struct ktermios *)
1969 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1970 if (!o_tp)
1971 goto free_mem_out;
1972 *o_tp = driver->other->init_termios;
1975 if (!*o_ltp_loc) {
1976 o_ltp = (struct ktermios *)
1977 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1978 if (!o_ltp)
1979 goto free_mem_out;
1980 memset(o_ltp, 0, sizeof(struct ktermios));
1984 * Everything allocated ... set up the o_tty structure.
1986 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
1987 driver->other->ttys[idx] = o_tty;
1989 if (!*o_tp_loc)
1990 *o_tp_loc = o_tp;
1991 if (!*o_ltp_loc)
1992 *o_ltp_loc = o_ltp;
1993 o_tty->termios = *o_tp_loc;
1994 o_tty->termios_locked = *o_ltp_loc;
1995 driver->other->refcount++;
1996 if (driver->subtype == PTY_TYPE_MASTER)
1997 o_tty->count++;
1999 /* Establish the links in both directions */
2000 tty->link = o_tty;
2001 o_tty->link = tty;
2005 * All structures have been allocated, so now we install them.
2006 * Failures after this point use release_tty to clean up, so
2007 * there's no need to null out the local pointers.
2009 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2010 driver->ttys[idx] = tty;
2013 if (!*tp_loc)
2014 *tp_loc = tp;
2015 if (!*ltp_loc)
2016 *ltp_loc = ltp;
2017 tty->termios = *tp_loc;
2018 tty->termios_locked = *ltp_loc;
2019 /* Compatibility until drivers always set this */
2020 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2021 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2022 driver->refcount++;
2023 tty->count++;
2026 * Structures all installed ... call the ldisc open routines.
2027 * If we fail here just call release_tty to clean up. No need
2028 * to decrement the use counts, as release_tty doesn't care.
2031 if (tty->ldisc.open) {
2032 retval = (tty->ldisc.open)(tty);
2033 if (retval)
2034 goto release_mem_out;
2036 if (o_tty && o_tty->ldisc.open) {
2037 retval = (o_tty->ldisc.open)(o_tty);
2038 if (retval) {
2039 if (tty->ldisc.close)
2040 (tty->ldisc.close)(tty);
2041 goto release_mem_out;
2043 tty_ldisc_enable(o_tty);
2045 tty_ldisc_enable(tty);
2046 goto success;
2049 * This fast open can be used if the tty is already open.
2050 * No memory is allocated, and the only failures are from
2051 * attempting to open a closing tty or attempting multiple
2052 * opens on a pty master.
2054 fast_track:
2055 if (test_bit(TTY_CLOSING, &tty->flags)) {
2056 retval = -EIO;
2057 goto end_init;
2059 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2060 driver->subtype == PTY_TYPE_MASTER) {
2062 * special case for PTY masters: only one open permitted,
2063 * and the slave side open count is incremented as well.
2065 if (tty->count) {
2066 retval = -EIO;
2067 goto end_init;
2069 tty->link->count++;
2071 tty->count++;
2072 tty->driver = driver; /* N.B. why do this every time?? */
2074 /* FIXME */
2075 if(!test_bit(TTY_LDISC, &tty->flags))
2076 printk(KERN_ERR "init_dev but no ldisc\n");
2077 success:
2078 *ret_tty = tty;
2080 /* All paths come through here to release the mutex */
2081 end_init:
2082 return retval;
2084 /* Release locally allocated memory ... nothing placed in slots */
2085 free_mem_out:
2086 kfree(o_tp);
2087 if (o_tty)
2088 free_tty_struct(o_tty);
2089 kfree(ltp);
2090 kfree(tp);
2091 free_tty_struct(tty);
2093 fail_no_mem:
2094 module_put(driver->owner);
2095 retval = -ENOMEM;
2096 goto end_init;
2098 /* call the tty release_tty routine to clean out this slot */
2099 release_mem_out:
2100 if (printk_ratelimit())
2101 printk(KERN_INFO "init_dev: ldisc open failed, "
2102 "clearing slot %d\n", idx);
2103 release_tty(tty, idx);
2104 goto end_init;
2108 * release_one_tty - release tty structure memory
2110 * Releases memory associated with a tty structure, and clears out the
2111 * driver table slots. This function is called when a device is no longer
2112 * in use. It also gets called when setup of a device fails.
2114 * Locking:
2115 * tty_mutex - sometimes only
2116 * takes the file list lock internally when working on the list
2117 * of ttys that the driver keeps.
2118 * FIXME: should we require tty_mutex is held here ??
2120 static void release_one_tty(struct tty_struct *tty, int idx)
2122 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2123 struct ktermios *tp;
2125 if (!devpts)
2126 tty->driver->ttys[idx] = NULL;
2128 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2129 tp = tty->termios;
2130 if (!devpts)
2131 tty->driver->termios[idx] = NULL;
2132 kfree(tp);
2134 tp = tty->termios_locked;
2135 if (!devpts)
2136 tty->driver->termios_locked[idx] = NULL;
2137 kfree(tp);
2141 tty->magic = 0;
2142 tty->driver->refcount--;
2144 file_list_lock();
2145 list_del_init(&tty->tty_files);
2146 file_list_unlock();
2148 free_tty_struct(tty);
2152 * release_tty - release tty structure memory
2154 * Release both @tty and a possible linked partner (think pty pair),
2155 * and decrement the refcount of the backing module.
2157 * Locking:
2158 * tty_mutex - sometimes only
2159 * takes the file list lock internally when working on the list
2160 * of ttys that the driver keeps.
2161 * FIXME: should we require tty_mutex is held here ??
2163 static void release_tty(struct tty_struct *tty, int idx)
2165 struct tty_driver *driver = tty->driver;
2167 if (tty->link)
2168 release_one_tty(tty->link, idx);
2169 release_one_tty(tty, idx);
2170 module_put(driver->owner);
2174 * Even releasing the tty structures is a tricky business.. We have
2175 * to be very careful that the structures are all released at the
2176 * same time, as interrupts might otherwise get the wrong pointers.
2178 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2179 * lead to double frees or releasing memory still in use.
2181 static void release_dev(struct file * filp)
2183 struct tty_struct *tty, *o_tty;
2184 int pty_master, tty_closing, o_tty_closing, do_sleep;
2185 int devpts;
2186 int idx;
2187 char buf[64];
2188 unsigned long flags;
2190 tty = (struct tty_struct *)filp->private_data;
2191 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2192 return;
2194 check_tty_count(tty, "release_dev");
2196 tty_fasync(-1, filp, 0);
2198 idx = tty->index;
2199 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2200 tty->driver->subtype == PTY_TYPE_MASTER);
2201 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2202 o_tty = tty->link;
2204 #ifdef TTY_PARANOIA_CHECK
2205 if (idx < 0 || idx >= tty->driver->num) {
2206 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2207 "free (%s)\n", tty->name);
2208 return;
2210 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2211 if (tty != tty->driver->ttys[idx]) {
2212 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2213 "for (%s)\n", idx, tty->name);
2214 return;
2216 if (tty->termios != tty->driver->termios[idx]) {
2217 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2218 "for (%s)\n",
2219 idx, tty->name);
2220 return;
2222 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2223 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2224 "termios_locked for (%s)\n",
2225 idx, tty->name);
2226 return;
2229 #endif
2231 #ifdef TTY_DEBUG_HANGUP
2232 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2233 tty_name(tty, buf), tty->count);
2234 #endif
2236 #ifdef TTY_PARANOIA_CHECK
2237 if (tty->driver->other &&
2238 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2239 if (o_tty != tty->driver->other->ttys[idx]) {
2240 printk(KERN_DEBUG "release_dev: other->table[%d] "
2241 "not o_tty for (%s)\n",
2242 idx, tty->name);
2243 return;
2245 if (o_tty->termios != tty->driver->other->termios[idx]) {
2246 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2247 "not o_termios for (%s)\n",
2248 idx, tty->name);
2249 return;
2251 if (o_tty->termios_locked !=
2252 tty->driver->other->termios_locked[idx]) {
2253 printk(KERN_DEBUG "release_dev: other->termios_locked["
2254 "%d] not o_termios_locked for (%s)\n",
2255 idx, tty->name);
2256 return;
2258 if (o_tty->link != tty) {
2259 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2260 return;
2263 #endif
2264 if (tty->driver->close)
2265 tty->driver->close(tty, filp);
2268 * Sanity check: if tty->count is going to zero, there shouldn't be
2269 * any waiters on tty->read_wait or tty->write_wait. We test the
2270 * wait queues and kick everyone out _before_ actually starting to
2271 * close. This ensures that we won't block while releasing the tty
2272 * structure.
2274 * The test for the o_tty closing is necessary, since the master and
2275 * slave sides may close in any order. If the slave side closes out
2276 * first, its count will be one, since the master side holds an open.
2277 * Thus this test wouldn't be triggered at the time the slave closes,
2278 * so we do it now.
2280 * Note that it's possible for the tty to be opened again while we're
2281 * flushing out waiters. By recalculating the closing flags before
2282 * each iteration we avoid any problems.
2284 while (1) {
2285 /* Guard against races with tty->count changes elsewhere and
2286 opens on /dev/tty */
2288 mutex_lock(&tty_mutex);
2289 tty_closing = tty->count <= 1;
2290 o_tty_closing = o_tty &&
2291 (o_tty->count <= (pty_master ? 1 : 0));
2292 do_sleep = 0;
2294 if (tty_closing) {
2295 if (waitqueue_active(&tty->read_wait)) {
2296 wake_up(&tty->read_wait);
2297 do_sleep++;
2299 if (waitqueue_active(&tty->write_wait)) {
2300 wake_up(&tty->write_wait);
2301 do_sleep++;
2304 if (o_tty_closing) {
2305 if (waitqueue_active(&o_tty->read_wait)) {
2306 wake_up(&o_tty->read_wait);
2307 do_sleep++;
2309 if (waitqueue_active(&o_tty->write_wait)) {
2310 wake_up(&o_tty->write_wait);
2311 do_sleep++;
2314 if (!do_sleep)
2315 break;
2317 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2318 "active!\n", tty_name(tty, buf));
2319 mutex_unlock(&tty_mutex);
2320 schedule();
2324 * The closing flags are now consistent with the open counts on
2325 * both sides, and we've completed the last operation that could
2326 * block, so it's safe to proceed with closing.
2328 if (pty_master) {
2329 if (--o_tty->count < 0) {
2330 printk(KERN_WARNING "release_dev: bad pty slave count "
2331 "(%d) for %s\n",
2332 o_tty->count, tty_name(o_tty, buf));
2333 o_tty->count = 0;
2336 if (--tty->count < 0) {
2337 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2338 tty->count, tty_name(tty, buf));
2339 tty->count = 0;
2343 * We've decremented tty->count, so we need to remove this file
2344 * descriptor off the tty->tty_files list; this serves two
2345 * purposes:
2346 * - check_tty_count sees the correct number of file descriptors
2347 * associated with this tty.
2348 * - do_tty_hangup no longer sees this file descriptor as
2349 * something that needs to be handled for hangups.
2351 file_kill(filp);
2352 filp->private_data = NULL;
2355 * Perform some housekeeping before deciding whether to return.
2357 * Set the TTY_CLOSING flag if this was the last open. In the
2358 * case of a pty we may have to wait around for the other side
2359 * to close, and TTY_CLOSING makes sure we can't be reopened.
2361 if(tty_closing)
2362 set_bit(TTY_CLOSING, &tty->flags);
2363 if(o_tty_closing)
2364 set_bit(TTY_CLOSING, &o_tty->flags);
2367 * If _either_ side is closing, make sure there aren't any
2368 * processes that still think tty or o_tty is their controlling
2369 * tty.
2371 if (tty_closing || o_tty_closing) {
2372 read_lock(&tasklist_lock);
2373 session_clear_tty(tty->session);
2374 if (o_tty)
2375 session_clear_tty(o_tty->session);
2376 read_unlock(&tasklist_lock);
2379 mutex_unlock(&tty_mutex);
2381 /* check whether both sides are closing ... */
2382 if (!tty_closing || (o_tty && !o_tty_closing))
2383 return;
2385 #ifdef TTY_DEBUG_HANGUP
2386 printk(KERN_DEBUG "freeing tty structure...");
2387 #endif
2389 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2390 * kill any delayed work. As this is the final close it does not
2391 * race with the set_ldisc code path.
2393 clear_bit(TTY_LDISC, &tty->flags);
2394 cancel_delayed_work(&tty->buf.work);
2397 * Wait for ->hangup_work and ->buf.work handlers to terminate
2400 flush_scheduled_work();
2403 * Wait for any short term users (we know they are just driver
2404 * side waiters as the file is closing so user count on the file
2405 * side is zero.
2407 spin_lock_irqsave(&tty_ldisc_lock, flags);
2408 while(tty->ldisc.refcount)
2410 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2411 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2412 spin_lock_irqsave(&tty_ldisc_lock, flags);
2414 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2416 * Shutdown the current line discipline, and reset it to N_TTY.
2417 * N.B. why reset ldisc when we're releasing the memory??
2419 * FIXME: this MUST get fixed for the new reflocking
2421 if (tty->ldisc.close)
2422 (tty->ldisc.close)(tty);
2423 tty_ldisc_put(tty->ldisc.num);
2426 * Switch the line discipline back
2428 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2429 tty_set_termios_ldisc(tty,N_TTY);
2430 if (o_tty) {
2431 /* FIXME: could o_tty be in setldisc here ? */
2432 clear_bit(TTY_LDISC, &o_tty->flags);
2433 if (o_tty->ldisc.close)
2434 (o_tty->ldisc.close)(o_tty);
2435 tty_ldisc_put(o_tty->ldisc.num);
2436 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2437 tty_set_termios_ldisc(o_tty,N_TTY);
2440 * The release_tty function takes care of the details of clearing
2441 * the slots and preserving the termios structure.
2443 release_tty(tty, idx);
2445 #ifdef CONFIG_UNIX98_PTYS
2446 /* Make this pty number available for reallocation */
2447 if (devpts) {
2448 down(&allocated_ptys_lock);
2449 idr_remove(&allocated_ptys, idx);
2450 up(&allocated_ptys_lock);
2452 #endif
2457 * tty_open - open a tty device
2458 * @inode: inode of device file
2459 * @filp: file pointer to tty
2461 * tty_open and tty_release keep up the tty count that contains the
2462 * number of opens done on a tty. We cannot use the inode-count, as
2463 * different inodes might point to the same tty.
2465 * Open-counting is needed for pty masters, as well as for keeping
2466 * track of serial lines: DTR is dropped when the last close happens.
2467 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2469 * The termios state of a pty is reset on first open so that
2470 * settings don't persist across reuse.
2472 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2473 * tty->count should protect the rest.
2474 * ->siglock protects ->signal/->sighand
2477 static int tty_open(struct inode * inode, struct file * filp)
2479 struct tty_struct *tty;
2480 int noctty, retval;
2481 struct tty_driver *driver;
2482 int index;
2483 dev_t device = inode->i_rdev;
2484 unsigned short saved_flags = filp->f_flags;
2486 nonseekable_open(inode, filp);
2488 retry_open:
2489 noctty = filp->f_flags & O_NOCTTY;
2490 index = -1;
2491 retval = 0;
2493 mutex_lock(&tty_mutex);
2495 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2496 tty = get_current_tty();
2497 if (!tty) {
2498 mutex_unlock(&tty_mutex);
2499 return -ENXIO;
2501 driver = tty->driver;
2502 index = tty->index;
2503 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2504 /* noctty = 1; */
2505 goto got_driver;
2507 #ifdef CONFIG_VT
2508 if (device == MKDEV(TTY_MAJOR,0)) {
2509 extern struct tty_driver *console_driver;
2510 driver = console_driver;
2511 index = fg_console;
2512 noctty = 1;
2513 goto got_driver;
2515 #endif
2516 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2517 driver = console_device(&index);
2518 if (driver) {
2519 /* Don't let /dev/console block */
2520 filp->f_flags |= O_NONBLOCK;
2521 noctty = 1;
2522 goto got_driver;
2524 mutex_unlock(&tty_mutex);
2525 return -ENODEV;
2528 driver = get_tty_driver(device, &index);
2529 if (!driver) {
2530 mutex_unlock(&tty_mutex);
2531 return -ENODEV;
2533 got_driver:
2534 retval = init_dev(driver, index, &tty);
2535 mutex_unlock(&tty_mutex);
2536 if (retval)
2537 return retval;
2539 filp->private_data = tty;
2540 file_move(filp, &tty->tty_files);
2541 check_tty_count(tty, "tty_open");
2542 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2543 tty->driver->subtype == PTY_TYPE_MASTER)
2544 noctty = 1;
2545 #ifdef TTY_DEBUG_HANGUP
2546 printk(KERN_DEBUG "opening %s...", tty->name);
2547 #endif
2548 if (!retval) {
2549 if (tty->driver->open)
2550 retval = tty->driver->open(tty, filp);
2551 else
2552 retval = -ENODEV;
2554 filp->f_flags = saved_flags;
2556 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2557 retval = -EBUSY;
2559 if (retval) {
2560 #ifdef TTY_DEBUG_HANGUP
2561 printk(KERN_DEBUG "error %d in opening %s...", retval,
2562 tty->name);
2563 #endif
2564 release_dev(filp);
2565 if (retval != -ERESTARTSYS)
2566 return retval;
2567 if (signal_pending(current))
2568 return retval;
2569 schedule();
2571 * Need to reset f_op in case a hangup happened.
2573 if (filp->f_op == &hung_up_tty_fops)
2574 filp->f_op = &tty_fops;
2575 goto retry_open;
2578 mutex_lock(&tty_mutex);
2579 spin_lock_irq(&current->sighand->siglock);
2580 if (!noctty &&
2581 current->signal->leader &&
2582 !current->signal->tty &&
2583 tty->session == 0)
2584 __proc_set_tty(current, tty);
2585 spin_unlock_irq(&current->sighand->siglock);
2586 mutex_unlock(&tty_mutex);
2587 return 0;
2590 #ifdef CONFIG_UNIX98_PTYS
2592 * ptmx_open - open a unix 98 pty master
2593 * @inode: inode of device file
2594 * @filp: file pointer to tty
2596 * Allocate a unix98 pty master device from the ptmx driver.
2598 * Locking: tty_mutex protects theinit_dev work. tty->count should
2599 protect the rest.
2600 * allocated_ptys_lock handles the list of free pty numbers
2603 static int ptmx_open(struct inode * inode, struct file * filp)
2605 struct tty_struct *tty;
2606 int retval;
2607 int index;
2608 int idr_ret;
2610 nonseekable_open(inode, filp);
2612 /* find a device that is not in use. */
2613 down(&allocated_ptys_lock);
2614 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2615 up(&allocated_ptys_lock);
2616 return -ENOMEM;
2618 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2619 if (idr_ret < 0) {
2620 up(&allocated_ptys_lock);
2621 if (idr_ret == -EAGAIN)
2622 return -ENOMEM;
2623 return -EIO;
2625 if (index >= pty_limit) {
2626 idr_remove(&allocated_ptys, index);
2627 up(&allocated_ptys_lock);
2628 return -EIO;
2630 up(&allocated_ptys_lock);
2632 mutex_lock(&tty_mutex);
2633 retval = init_dev(ptm_driver, index, &tty);
2634 mutex_unlock(&tty_mutex);
2636 if (retval)
2637 goto out;
2639 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2640 filp->private_data = tty;
2641 file_move(filp, &tty->tty_files);
2643 retval = -ENOMEM;
2644 if (devpts_pty_new(tty->link))
2645 goto out1;
2647 check_tty_count(tty, "tty_open");
2648 retval = ptm_driver->open(tty, filp);
2649 if (!retval)
2650 return 0;
2651 out1:
2652 release_dev(filp);
2653 return retval;
2654 out:
2655 down(&allocated_ptys_lock);
2656 idr_remove(&allocated_ptys, index);
2657 up(&allocated_ptys_lock);
2658 return retval;
2660 #endif
2663 * tty_release - vfs callback for close
2664 * @inode: inode of tty
2665 * @filp: file pointer for handle to tty
2667 * Called the last time each file handle is closed that references
2668 * this tty. There may however be several such references.
2670 * Locking:
2671 * Takes bkl. See release_dev
2674 static int tty_release(struct inode * inode, struct file * filp)
2676 lock_kernel();
2677 release_dev(filp);
2678 unlock_kernel();
2679 return 0;
2683 * tty_poll - check tty status
2684 * @filp: file being polled
2685 * @wait: poll wait structures to update
2687 * Call the line discipline polling method to obtain the poll
2688 * status of the device.
2690 * Locking: locks called line discipline but ldisc poll method
2691 * may be re-entered freely by other callers.
2694 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2696 struct tty_struct * tty;
2697 struct tty_ldisc *ld;
2698 int ret = 0;
2700 tty = (struct tty_struct *)filp->private_data;
2701 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2702 return 0;
2704 ld = tty_ldisc_ref_wait(tty);
2705 if (ld->poll)
2706 ret = (ld->poll)(tty, filp, wait);
2707 tty_ldisc_deref(ld);
2708 return ret;
2711 static int tty_fasync(int fd, struct file * filp, int on)
2713 struct tty_struct * tty;
2714 int retval;
2716 tty = (struct tty_struct *)filp->private_data;
2717 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2718 return 0;
2720 retval = fasync_helper(fd, filp, on, &tty->fasync);
2721 if (retval <= 0)
2722 return retval;
2724 if (on) {
2725 if (!waitqueue_active(&tty->read_wait))
2726 tty->minimum_to_wake = 1;
2727 retval = f_setown(filp, (-tty->pgrp) ? : current->pid, 0);
2728 if (retval)
2729 return retval;
2730 } else {
2731 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2732 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2734 return 0;
2738 * tiocsti - fake input character
2739 * @tty: tty to fake input into
2740 * @p: pointer to character
2742 * Fake input to a tty device. Does the neccessary locking and
2743 * input management.
2745 * FIXME: does not honour flow control ??
2747 * Locking:
2748 * Called functions take tty_ldisc_lock
2749 * current->signal->tty check is safe without locks
2751 * FIXME: may race normal receive processing
2754 static int tiocsti(struct tty_struct *tty, char __user *p)
2756 char ch, mbz = 0;
2757 struct tty_ldisc *ld;
2759 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2760 return -EPERM;
2761 if (get_user(ch, p))
2762 return -EFAULT;
2763 ld = tty_ldisc_ref_wait(tty);
2764 ld->receive_buf(tty, &ch, &mbz, 1);
2765 tty_ldisc_deref(ld);
2766 return 0;
2770 * tiocgwinsz - implement window query ioctl
2771 * @tty; tty
2772 * @arg: user buffer for result
2774 * Copies the kernel idea of the window size into the user buffer.
2776 * Locking: tty->termios_mutex is taken to ensure the winsize data
2777 * is consistent.
2780 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2782 int err;
2784 mutex_lock(&tty->termios_mutex);
2785 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2786 mutex_unlock(&tty->termios_mutex);
2788 return err ? -EFAULT: 0;
2792 * tiocswinsz - implement window size set ioctl
2793 * @tty; tty
2794 * @arg: user buffer for result
2796 * Copies the user idea of the window size to the kernel. Traditionally
2797 * this is just advisory information but for the Linux console it
2798 * actually has driver level meaning and triggers a VC resize.
2800 * Locking:
2801 * Called function use the console_sem is used to ensure we do
2802 * not try and resize the console twice at once.
2803 * The tty->termios_mutex is used to ensure we don't double
2804 * resize and get confused. Lock order - tty->termios_mutex before
2805 * console sem
2808 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2809 struct winsize __user * arg)
2811 struct winsize tmp_ws;
2813 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2814 return -EFAULT;
2816 mutex_lock(&tty->termios_mutex);
2817 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2818 goto done;
2820 #ifdef CONFIG_VT
2821 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2822 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2823 tmp_ws.ws_row)) {
2824 mutex_unlock(&tty->termios_mutex);
2825 return -ENXIO;
2828 #endif
2829 if (tty->pgrp > 0)
2830 kill_pg(tty->pgrp, SIGWINCH, 1);
2831 if ((real_tty->pgrp != tty->pgrp) && (real_tty->pgrp > 0))
2832 kill_pg(real_tty->pgrp, SIGWINCH, 1);
2833 tty->winsize = tmp_ws;
2834 real_tty->winsize = tmp_ws;
2835 done:
2836 mutex_unlock(&tty->termios_mutex);
2837 return 0;
2841 * tioccons - allow admin to move logical console
2842 * @file: the file to become console
2844 * Allow the adminstrator to move the redirected console device
2846 * Locking: uses redirect_lock to guard the redirect information
2849 static int tioccons(struct file *file)
2851 if (!capable(CAP_SYS_ADMIN))
2852 return -EPERM;
2853 if (file->f_op->write == redirected_tty_write) {
2854 struct file *f;
2855 spin_lock(&redirect_lock);
2856 f = redirect;
2857 redirect = NULL;
2858 spin_unlock(&redirect_lock);
2859 if (f)
2860 fput(f);
2861 return 0;
2863 spin_lock(&redirect_lock);
2864 if (redirect) {
2865 spin_unlock(&redirect_lock);
2866 return -EBUSY;
2868 get_file(file);
2869 redirect = file;
2870 spin_unlock(&redirect_lock);
2871 return 0;
2875 * fionbio - non blocking ioctl
2876 * @file: file to set blocking value
2877 * @p: user parameter
2879 * Historical tty interfaces had a blocking control ioctl before
2880 * the generic functionality existed. This piece of history is preserved
2881 * in the expected tty API of posix OS's.
2883 * Locking: none, the open fle handle ensures it won't go away.
2886 static int fionbio(struct file *file, int __user *p)
2888 int nonblock;
2890 if (get_user(nonblock, p))
2891 return -EFAULT;
2893 if (nonblock)
2894 file->f_flags |= O_NONBLOCK;
2895 else
2896 file->f_flags &= ~O_NONBLOCK;
2897 return 0;
2901 * tiocsctty - set controlling tty
2902 * @tty: tty structure
2903 * @arg: user argument
2905 * This ioctl is used to manage job control. It permits a session
2906 * leader to set this tty as the controlling tty for the session.
2908 * Locking:
2909 * Takes tty_mutex() to protect tty instance
2910 * Takes tasklist_lock internally to walk sessions
2911 * Takes ->siglock() when updating signal->tty
2914 static int tiocsctty(struct tty_struct *tty, int arg)
2916 int ret = 0;
2917 if (current->signal->leader &&
2918 (process_session(current) == tty->session))
2919 return ret;
2921 mutex_lock(&tty_mutex);
2923 * The process must be a session leader and
2924 * not have a controlling tty already.
2926 if (!current->signal->leader || current->signal->tty) {
2927 ret = -EPERM;
2928 goto unlock;
2931 if (tty->session > 0) {
2933 * This tty is already the controlling
2934 * tty for another session group!
2936 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
2938 * Steal it away
2940 read_lock(&tasklist_lock);
2941 session_clear_tty(tty->session);
2942 read_unlock(&tasklist_lock);
2943 } else {
2944 ret = -EPERM;
2945 goto unlock;
2948 proc_set_tty(current, tty);
2949 unlock:
2950 mutex_unlock(&tty_mutex);
2951 return ret;
2955 * tiocgpgrp - get process group
2956 * @tty: tty passed by user
2957 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2958 * @p: returned pid
2960 * Obtain the process group of the tty. If there is no process group
2961 * return an error.
2963 * Locking: none. Reference to current->signal->tty is safe.
2966 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2969 * (tty == real_tty) is a cheap way of
2970 * testing if the tty is NOT a master pty.
2972 if (tty == real_tty && current->signal->tty != real_tty)
2973 return -ENOTTY;
2974 return put_user(real_tty->pgrp, p);
2978 * tiocspgrp - attempt to set process group
2979 * @tty: tty passed by user
2980 * @real_tty: tty side device matching tty passed by user
2981 * @p: pid pointer
2983 * Set the process group of the tty to the session passed. Only
2984 * permitted where the tty session is our session.
2986 * Locking: None
2989 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2991 pid_t pgrp;
2992 int retval = tty_check_change(real_tty);
2994 if (retval == -EIO)
2995 return -ENOTTY;
2996 if (retval)
2997 return retval;
2998 if (!current->signal->tty ||
2999 (current->signal->tty != real_tty) ||
3000 (real_tty->session != process_session(current)))
3001 return -ENOTTY;
3002 if (get_user(pgrp, p))
3003 return -EFAULT;
3004 if (pgrp < 0)
3005 return -EINVAL;
3006 if (session_of_pgrp(pgrp) != process_session(current))
3007 return -EPERM;
3008 real_tty->pgrp = pgrp;
3009 return 0;
3013 * tiocgsid - get session id
3014 * @tty: tty passed by user
3015 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3016 * @p: pointer to returned session id
3018 * Obtain the session id of the tty. If there is no session
3019 * return an error.
3021 * Locking: none. Reference to current->signal->tty is safe.
3024 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3027 * (tty == real_tty) is a cheap way of
3028 * testing if the tty is NOT a master pty.
3030 if (tty == real_tty && current->signal->tty != real_tty)
3031 return -ENOTTY;
3032 if (real_tty->session <= 0)
3033 return -ENOTTY;
3034 return put_user(real_tty->session, p);
3038 * tiocsetd - set line discipline
3039 * @tty: tty device
3040 * @p: pointer to user data
3042 * Set the line discipline according to user request.
3044 * Locking: see tty_set_ldisc, this function is just a helper
3047 static int tiocsetd(struct tty_struct *tty, int __user *p)
3049 int ldisc;
3051 if (get_user(ldisc, p))
3052 return -EFAULT;
3053 return tty_set_ldisc(tty, ldisc);
3057 * send_break - performed time break
3058 * @tty: device to break on
3059 * @duration: timeout in mS
3061 * Perform a timed break on hardware that lacks its own driver level
3062 * timed break functionality.
3064 * Locking:
3065 * atomic_write_lock serializes
3069 static int send_break(struct tty_struct *tty, unsigned int duration)
3071 if (mutex_lock_interruptible(&tty->atomic_write_lock))
3072 return -EINTR;
3073 tty->driver->break_ctl(tty, -1);
3074 if (!signal_pending(current)) {
3075 msleep_interruptible(duration);
3077 tty->driver->break_ctl(tty, 0);
3078 mutex_unlock(&tty->atomic_write_lock);
3079 if (signal_pending(current))
3080 return -EINTR;
3081 return 0;
3085 * tiocmget - get modem status
3086 * @tty: tty device
3087 * @file: user file pointer
3088 * @p: pointer to result
3090 * Obtain the modem status bits from the tty driver if the feature
3091 * is supported. Return -EINVAL if it is not available.
3093 * Locking: none (up to the driver)
3096 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3098 int retval = -EINVAL;
3100 if (tty->driver->tiocmget) {
3101 retval = tty->driver->tiocmget(tty, file);
3103 if (retval >= 0)
3104 retval = put_user(retval, p);
3106 return retval;
3110 * tiocmset - set modem status
3111 * @tty: tty device
3112 * @file: user file pointer
3113 * @cmd: command - clear bits, set bits or set all
3114 * @p: pointer to desired bits
3116 * Set the modem status bits from the tty driver if the feature
3117 * is supported. Return -EINVAL if it is not available.
3119 * Locking: none (up to the driver)
3122 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3123 unsigned __user *p)
3125 int retval = -EINVAL;
3127 if (tty->driver->tiocmset) {
3128 unsigned int set, clear, val;
3130 retval = get_user(val, p);
3131 if (retval)
3132 return retval;
3134 set = clear = 0;
3135 switch (cmd) {
3136 case TIOCMBIS:
3137 set = val;
3138 break;
3139 case TIOCMBIC:
3140 clear = val;
3141 break;
3142 case TIOCMSET:
3143 set = val;
3144 clear = ~val;
3145 break;
3148 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3149 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3151 retval = tty->driver->tiocmset(tty, file, set, clear);
3153 return retval;
3157 * Split this up, as gcc can choke on it otherwise..
3159 int tty_ioctl(struct inode * inode, struct file * file,
3160 unsigned int cmd, unsigned long arg)
3162 struct tty_struct *tty, *real_tty;
3163 void __user *p = (void __user *)arg;
3164 int retval;
3165 struct tty_ldisc *ld;
3167 tty = (struct tty_struct *)file->private_data;
3168 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3169 return -EINVAL;
3171 /* CHECKME: is this safe as one end closes ? */
3173 real_tty = tty;
3174 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3175 tty->driver->subtype == PTY_TYPE_MASTER)
3176 real_tty = tty->link;
3179 * Break handling by driver
3181 if (!tty->driver->break_ctl) {
3182 switch(cmd) {
3183 case TIOCSBRK:
3184 case TIOCCBRK:
3185 if (tty->driver->ioctl)
3186 return tty->driver->ioctl(tty, file, cmd, arg);
3187 return -EINVAL;
3189 /* These two ioctl's always return success; even if */
3190 /* the driver doesn't support them. */
3191 case TCSBRK:
3192 case TCSBRKP:
3193 if (!tty->driver->ioctl)
3194 return 0;
3195 retval = tty->driver->ioctl(tty, file, cmd, arg);
3196 if (retval == -ENOIOCTLCMD)
3197 retval = 0;
3198 return retval;
3203 * Factor out some common prep work
3205 switch (cmd) {
3206 case TIOCSETD:
3207 case TIOCSBRK:
3208 case TIOCCBRK:
3209 case TCSBRK:
3210 case TCSBRKP:
3211 retval = tty_check_change(tty);
3212 if (retval)
3213 return retval;
3214 if (cmd != TIOCCBRK) {
3215 tty_wait_until_sent(tty, 0);
3216 if (signal_pending(current))
3217 return -EINTR;
3219 break;
3222 switch (cmd) {
3223 case TIOCSTI:
3224 return tiocsti(tty, p);
3225 case TIOCGWINSZ:
3226 return tiocgwinsz(tty, p);
3227 case TIOCSWINSZ:
3228 return tiocswinsz(tty, real_tty, p);
3229 case TIOCCONS:
3230 return real_tty!=tty ? -EINVAL : tioccons(file);
3231 case FIONBIO:
3232 return fionbio(file, p);
3233 case TIOCEXCL:
3234 set_bit(TTY_EXCLUSIVE, &tty->flags);
3235 return 0;
3236 case TIOCNXCL:
3237 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3238 return 0;
3239 case TIOCNOTTY:
3240 if (current->signal->tty != tty)
3241 return -ENOTTY;
3242 if (current->signal->leader)
3243 disassociate_ctty(0);
3244 proc_clear_tty(current);
3245 return 0;
3246 case TIOCSCTTY:
3247 return tiocsctty(tty, arg);
3248 case TIOCGPGRP:
3249 return tiocgpgrp(tty, real_tty, p);
3250 case TIOCSPGRP:
3251 return tiocspgrp(tty, real_tty, p);
3252 case TIOCGSID:
3253 return tiocgsid(tty, real_tty, p);
3254 case TIOCGETD:
3255 /* FIXME: check this is ok */
3256 return put_user(tty->ldisc.num, (int __user *)p);
3257 case TIOCSETD:
3258 return tiocsetd(tty, p);
3259 #ifdef CONFIG_VT
3260 case TIOCLINUX:
3261 return tioclinux(tty, arg);
3262 #endif
3264 * Break handling
3266 case TIOCSBRK: /* Turn break on, unconditionally */
3267 tty->driver->break_ctl(tty, -1);
3268 return 0;
3270 case TIOCCBRK: /* Turn break off, unconditionally */
3271 tty->driver->break_ctl(tty, 0);
3272 return 0;
3273 case TCSBRK: /* SVID version: non-zero arg --> no break */
3274 /* non-zero arg means wait for all output data
3275 * to be sent (performed above) but don't send break.
3276 * This is used by the tcdrain() termios function.
3278 if (!arg)
3279 return send_break(tty, 250);
3280 return 0;
3281 case TCSBRKP: /* support for POSIX tcsendbreak() */
3282 return send_break(tty, arg ? arg*100 : 250);
3284 case TIOCMGET:
3285 return tty_tiocmget(tty, file, p);
3287 case TIOCMSET:
3288 case TIOCMBIC:
3289 case TIOCMBIS:
3290 return tty_tiocmset(tty, file, cmd, p);
3292 if (tty->driver->ioctl) {
3293 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3294 if (retval != -ENOIOCTLCMD)
3295 return retval;
3297 ld = tty_ldisc_ref_wait(tty);
3298 retval = -EINVAL;
3299 if (ld->ioctl) {
3300 retval = ld->ioctl(tty, file, cmd, arg);
3301 if (retval == -ENOIOCTLCMD)
3302 retval = -EINVAL;
3304 tty_ldisc_deref(ld);
3305 return retval;
3310 * This implements the "Secure Attention Key" --- the idea is to
3311 * prevent trojan horses by killing all processes associated with this
3312 * tty when the user hits the "Secure Attention Key". Required for
3313 * super-paranoid applications --- see the Orange Book for more details.
3315 * This code could be nicer; ideally it should send a HUP, wait a few
3316 * seconds, then send a INT, and then a KILL signal. But you then
3317 * have to coordinate with the init process, since all processes associated
3318 * with the current tty must be dead before the new getty is allowed
3319 * to spawn.
3321 * Now, if it would be correct ;-/ The current code has a nasty hole -
3322 * it doesn't catch files in flight. We may send the descriptor to ourselves
3323 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3325 * Nasty bug: do_SAK is being called in interrupt context. This can
3326 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3328 void __do_SAK(struct tty_struct *tty)
3330 #ifdef TTY_SOFT_SAK
3331 tty_hangup(tty);
3332 #else
3333 struct task_struct *g, *p;
3334 int session;
3335 int i;
3336 struct file *filp;
3337 struct fdtable *fdt;
3339 if (!tty)
3340 return;
3341 session = tty->session;
3343 tty_ldisc_flush(tty);
3345 if (tty->driver->flush_buffer)
3346 tty->driver->flush_buffer(tty);
3348 read_lock(&tasklist_lock);
3349 /* Kill the entire session */
3350 do_each_task_pid(session, PIDTYPE_SID, p) {
3351 printk(KERN_NOTICE "SAK: killed process %d"
3352 " (%s): process_session(p)==tty->session\n",
3353 p->pid, p->comm);
3354 send_sig(SIGKILL, p, 1);
3355 } while_each_task_pid(session, PIDTYPE_SID, p);
3356 /* Now kill any processes that happen to have the
3357 * tty open.
3359 do_each_thread(g, p) {
3360 if (p->signal->tty == tty) {
3361 printk(KERN_NOTICE "SAK: killed process %d"
3362 " (%s): process_session(p)==tty->session\n",
3363 p->pid, p->comm);
3364 send_sig(SIGKILL, p, 1);
3365 continue;
3367 task_lock(p);
3368 if (p->files) {
3370 * We don't take a ref to the file, so we must
3371 * hold ->file_lock instead.
3373 spin_lock(&p->files->file_lock);
3374 fdt = files_fdtable(p->files);
3375 for (i=0; i < fdt->max_fds; i++) {
3376 filp = fcheck_files(p->files, i);
3377 if (!filp)
3378 continue;
3379 if (filp->f_op->read == tty_read &&
3380 filp->private_data == tty) {
3381 printk(KERN_NOTICE "SAK: killed process %d"
3382 " (%s): fd#%d opened to the tty\n",
3383 p->pid, p->comm, i);
3384 force_sig(SIGKILL, p);
3385 break;
3388 spin_unlock(&p->files->file_lock);
3390 task_unlock(p);
3391 } while_each_thread(g, p);
3392 read_unlock(&tasklist_lock);
3393 #endif
3396 static void do_SAK_work(struct work_struct *work)
3398 struct tty_struct *tty =
3399 container_of(work, struct tty_struct, SAK_work);
3400 __do_SAK(tty);
3404 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3405 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3406 * the values which we write to it will be identical to the values which it
3407 * already has. --akpm
3409 void do_SAK(struct tty_struct *tty)
3411 if (!tty)
3412 return;
3413 PREPARE_WORK(&tty->SAK_work, do_SAK_work);
3414 schedule_work(&tty->SAK_work);
3417 EXPORT_SYMBOL(do_SAK);
3420 * flush_to_ldisc
3421 * @work: tty structure passed from work queue.
3423 * This routine is called out of the software interrupt to flush data
3424 * from the buffer chain to the line discipline.
3426 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3427 * while invoking the line discipline receive_buf method. The
3428 * receive_buf method is single threaded for each tty instance.
3431 static void flush_to_ldisc(struct work_struct *work)
3433 struct tty_struct *tty =
3434 container_of(work, struct tty_struct, buf.work.work);
3435 unsigned long flags;
3436 struct tty_ldisc *disc;
3437 struct tty_buffer *tbuf, *head;
3438 char *char_buf;
3439 unsigned char *flag_buf;
3441 disc = tty_ldisc_ref(tty);
3442 if (disc == NULL) /* !TTY_LDISC */
3443 return;
3445 spin_lock_irqsave(&tty->buf.lock, flags);
3446 head = tty->buf.head;
3447 if (head != NULL) {
3448 tty->buf.head = NULL;
3449 for (;;) {
3450 int count = head->commit - head->read;
3451 if (!count) {
3452 if (head->next == NULL)
3453 break;
3454 tbuf = head;
3455 head = head->next;
3456 tty_buffer_free(tty, tbuf);
3457 continue;
3459 if (!tty->receive_room) {
3460 schedule_delayed_work(&tty->buf.work, 1);
3461 break;
3463 if (count > tty->receive_room)
3464 count = tty->receive_room;
3465 char_buf = head->char_buf_ptr + head->read;
3466 flag_buf = head->flag_buf_ptr + head->read;
3467 head->read += count;
3468 spin_unlock_irqrestore(&tty->buf.lock, flags);
3469 disc->receive_buf(tty, char_buf, flag_buf, count);
3470 spin_lock_irqsave(&tty->buf.lock, flags);
3472 tty->buf.head = head;
3474 spin_unlock_irqrestore(&tty->buf.lock, flags);
3476 tty_ldisc_deref(disc);
3480 * tty_flip_buffer_push - terminal
3481 * @tty: tty to push
3483 * Queue a push of the terminal flip buffers to the line discipline. This
3484 * function must not be called from IRQ context if tty->low_latency is set.
3486 * In the event of the queue being busy for flipping the work will be
3487 * held off and retried later.
3489 * Locking: tty buffer lock. Driver locks in low latency mode.
3492 void tty_flip_buffer_push(struct tty_struct *tty)
3494 unsigned long flags;
3495 spin_lock_irqsave(&tty->buf.lock, flags);
3496 if (tty->buf.tail != NULL)
3497 tty->buf.tail->commit = tty->buf.tail->used;
3498 spin_unlock_irqrestore(&tty->buf.lock, flags);
3500 if (tty->low_latency)
3501 flush_to_ldisc(&tty->buf.work.work);
3502 else
3503 schedule_delayed_work(&tty->buf.work, 1);
3506 EXPORT_SYMBOL(tty_flip_buffer_push);
3510 * initialize_tty_struct
3511 * @tty: tty to initialize
3513 * This subroutine initializes a tty structure that has been newly
3514 * allocated.
3516 * Locking: none - tty in question must not be exposed at this point
3519 static void initialize_tty_struct(struct tty_struct *tty)
3521 memset(tty, 0, sizeof(struct tty_struct));
3522 tty->magic = TTY_MAGIC;
3523 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3524 tty->pgrp = -1;
3525 tty->overrun_time = jiffies;
3526 tty->buf.head = tty->buf.tail = NULL;
3527 tty_buffer_init(tty);
3528 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3529 init_MUTEX(&tty->buf.pty_sem);
3530 mutex_init(&tty->termios_mutex);
3531 init_waitqueue_head(&tty->write_wait);
3532 init_waitqueue_head(&tty->read_wait);
3533 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3534 mutex_init(&tty->atomic_read_lock);
3535 mutex_init(&tty->atomic_write_lock);
3536 spin_lock_init(&tty->read_lock);
3537 INIT_LIST_HEAD(&tty->tty_files);
3538 INIT_WORK(&tty->SAK_work, NULL);
3542 * The default put_char routine if the driver did not define one.
3545 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3547 tty->driver->write(tty, &ch, 1);
3550 static struct class *tty_class;
3553 * tty_register_device - register a tty device
3554 * @driver: the tty driver that describes the tty device
3555 * @index: the index in the tty driver for this tty device
3556 * @device: a struct device that is associated with this tty device.
3557 * This field is optional, if there is no known struct device
3558 * for this tty device it can be set to NULL safely.
3560 * Returns a pointer to the struct device for this tty device
3561 * (or ERR_PTR(-EFOO) on error).
3563 * This call is required to be made to register an individual tty device
3564 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3565 * that bit is not set, this function should not be called by a tty
3566 * driver.
3568 * Locking: ??
3571 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3572 struct device *device)
3574 char name[64];
3575 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3577 if (index >= driver->num) {
3578 printk(KERN_ERR "Attempt to register invalid tty line number "
3579 " (%d).\n", index);
3580 return ERR_PTR(-EINVAL);
3583 if (driver->type == TTY_DRIVER_TYPE_PTY)
3584 pty_line_name(driver, index, name);
3585 else
3586 tty_line_name(driver, index, name);
3588 return device_create(tty_class, device, dev, name);
3592 * tty_unregister_device - unregister a tty device
3593 * @driver: the tty driver that describes the tty device
3594 * @index: the index in the tty driver for this tty device
3596 * If a tty device is registered with a call to tty_register_device() then
3597 * this function must be called when the tty device is gone.
3599 * Locking: ??
3602 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3604 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3607 EXPORT_SYMBOL(tty_register_device);
3608 EXPORT_SYMBOL(tty_unregister_device);
3610 struct tty_driver *alloc_tty_driver(int lines)
3612 struct tty_driver *driver;
3614 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3615 if (driver) {
3616 memset(driver, 0, sizeof(struct tty_driver));
3617 driver->magic = TTY_DRIVER_MAGIC;
3618 driver->num = lines;
3619 /* later we'll move allocation of tables here */
3621 return driver;
3624 void put_tty_driver(struct tty_driver *driver)
3626 kfree(driver);
3629 void tty_set_operations(struct tty_driver *driver,
3630 const struct tty_operations *op)
3632 driver->open = op->open;
3633 driver->close = op->close;
3634 driver->write = op->write;
3635 driver->put_char = op->put_char;
3636 driver->flush_chars = op->flush_chars;
3637 driver->write_room = op->write_room;
3638 driver->chars_in_buffer = op->chars_in_buffer;
3639 driver->ioctl = op->ioctl;
3640 driver->set_termios = op->set_termios;
3641 driver->throttle = op->throttle;
3642 driver->unthrottle = op->unthrottle;
3643 driver->stop = op->stop;
3644 driver->start = op->start;
3645 driver->hangup = op->hangup;
3646 driver->break_ctl = op->break_ctl;
3647 driver->flush_buffer = op->flush_buffer;
3648 driver->set_ldisc = op->set_ldisc;
3649 driver->wait_until_sent = op->wait_until_sent;
3650 driver->send_xchar = op->send_xchar;
3651 driver->read_proc = op->read_proc;
3652 driver->write_proc = op->write_proc;
3653 driver->tiocmget = op->tiocmget;
3654 driver->tiocmset = op->tiocmset;
3658 EXPORT_SYMBOL(alloc_tty_driver);
3659 EXPORT_SYMBOL(put_tty_driver);
3660 EXPORT_SYMBOL(tty_set_operations);
3663 * Called by a tty driver to register itself.
3665 int tty_register_driver(struct tty_driver *driver)
3667 int error;
3668 int i;
3669 dev_t dev;
3670 void **p = NULL;
3672 if (driver->flags & TTY_DRIVER_INSTALLED)
3673 return 0;
3675 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
3676 p = kmalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3677 if (!p)
3678 return -ENOMEM;
3679 memset(p, 0, driver->num * 3 * sizeof(void *));
3682 if (!driver->major) {
3683 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3684 (char*)driver->name);
3685 if (!error) {
3686 driver->major = MAJOR(dev);
3687 driver->minor_start = MINOR(dev);
3689 } else {
3690 dev = MKDEV(driver->major, driver->minor_start);
3691 error = register_chrdev_region(dev, driver->num,
3692 (char*)driver->name);
3694 if (error < 0) {
3695 kfree(p);
3696 return error;
3699 if (p) {
3700 driver->ttys = (struct tty_struct **)p;
3701 driver->termios = (struct ktermios **)(p + driver->num);
3702 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3703 } else {
3704 driver->ttys = NULL;
3705 driver->termios = NULL;
3706 driver->termios_locked = NULL;
3709 cdev_init(&driver->cdev, &tty_fops);
3710 driver->cdev.owner = driver->owner;
3711 error = cdev_add(&driver->cdev, dev, driver->num);
3712 if (error) {
3713 unregister_chrdev_region(dev, driver->num);
3714 driver->ttys = NULL;
3715 driver->termios = driver->termios_locked = NULL;
3716 kfree(p);
3717 return error;
3720 if (!driver->put_char)
3721 driver->put_char = tty_default_put_char;
3723 list_add(&driver->tty_drivers, &tty_drivers);
3725 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3726 for(i = 0; i < driver->num; i++)
3727 tty_register_device(driver, i, NULL);
3729 proc_tty_register_driver(driver);
3730 return 0;
3733 EXPORT_SYMBOL(tty_register_driver);
3736 * Called by a tty driver to unregister itself.
3738 int tty_unregister_driver(struct tty_driver *driver)
3740 int i;
3741 struct ktermios *tp;
3742 void *p;
3744 if (driver->refcount)
3745 return -EBUSY;
3747 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3748 driver->num);
3750 list_del(&driver->tty_drivers);
3753 * Free the termios and termios_locked structures because
3754 * we don't want to get memory leaks when modular tty
3755 * drivers are removed from the kernel.
3757 for (i = 0; i < driver->num; i++) {
3758 tp = driver->termios[i];
3759 if (tp) {
3760 driver->termios[i] = NULL;
3761 kfree(tp);
3763 tp = driver->termios_locked[i];
3764 if (tp) {
3765 driver->termios_locked[i] = NULL;
3766 kfree(tp);
3768 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3769 tty_unregister_device(driver, i);
3771 p = driver->ttys;
3772 proc_tty_unregister_driver(driver);
3773 driver->ttys = NULL;
3774 driver->termios = driver->termios_locked = NULL;
3775 kfree(p);
3776 cdev_del(&driver->cdev);
3777 return 0;
3779 EXPORT_SYMBOL(tty_unregister_driver);
3781 dev_t tty_devnum(struct tty_struct *tty)
3783 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3785 EXPORT_SYMBOL(tty_devnum);
3787 void proc_clear_tty(struct task_struct *p)
3789 spin_lock_irq(&p->sighand->siglock);
3790 p->signal->tty = NULL;
3791 spin_unlock_irq(&p->sighand->siglock);
3793 EXPORT_SYMBOL(proc_clear_tty);
3795 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3797 if (tty) {
3798 tty->session = process_session(tsk);
3799 tty->pgrp = process_group(tsk);
3801 tsk->signal->tty = tty;
3802 tsk->signal->tty_old_pgrp = 0;
3805 void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3807 spin_lock_irq(&tsk->sighand->siglock);
3808 __proc_set_tty(tsk, tty);
3809 spin_unlock_irq(&tsk->sighand->siglock);
3812 struct tty_struct *get_current_tty(void)
3814 struct tty_struct *tty;
3815 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3816 tty = current->signal->tty;
3818 * session->tty can be changed/cleared from under us, make sure we
3819 * issue the load. The obtained pointer, when not NULL, is valid as
3820 * long as we hold tty_mutex.
3822 barrier();
3823 return tty;
3825 EXPORT_SYMBOL_GPL(get_current_tty);
3828 * Initialize the console device. This is called *early*, so
3829 * we can't necessarily depend on lots of kernel help here.
3830 * Just do some early initializations, and do the complex setup
3831 * later.
3833 void __init console_init(void)
3835 initcall_t *call;
3837 /* Setup the default TTY line discipline. */
3838 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3841 * set up the console device so that later boot sequences can
3842 * inform about problems etc..
3844 #ifdef CONFIG_EARLY_PRINTK
3845 disable_early_printk();
3846 #endif
3847 call = __con_initcall_start;
3848 while (call < __con_initcall_end) {
3849 (*call)();
3850 call++;
3854 #ifdef CONFIG_VT
3855 extern int vty_init(void);
3856 #endif
3858 static int __init tty_class_init(void)
3860 tty_class = class_create(THIS_MODULE, "tty");
3861 if (IS_ERR(tty_class))
3862 return PTR_ERR(tty_class);
3863 return 0;
3866 postcore_initcall(tty_class_init);
3868 /* 3/2004 jmc: why do these devices exist? */
3870 static struct cdev tty_cdev, console_cdev;
3871 #ifdef CONFIG_UNIX98_PTYS
3872 static struct cdev ptmx_cdev;
3873 #endif
3874 #ifdef CONFIG_VT
3875 static struct cdev vc0_cdev;
3876 #endif
3879 * Ok, now we can initialize the rest of the tty devices and can count
3880 * on memory allocations, interrupts etc..
3882 static int __init tty_init(void)
3884 cdev_init(&tty_cdev, &tty_fops);
3885 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3886 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3887 panic("Couldn't register /dev/tty driver\n");
3888 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
3890 cdev_init(&console_cdev, &console_fops);
3891 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3892 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3893 panic("Couldn't register /dev/console driver\n");
3894 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
3896 #ifdef CONFIG_UNIX98_PTYS
3897 cdev_init(&ptmx_cdev, &ptmx_fops);
3898 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3899 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3900 panic("Couldn't register /dev/ptmx driver\n");
3901 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
3902 #endif
3904 #ifdef CONFIG_VT
3905 cdev_init(&vc0_cdev, &console_fops);
3906 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3907 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3908 panic("Couldn't register /dev/tty0 driver\n");
3909 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
3911 vty_init();
3912 #endif
3913 return 0;
3915 module_init(tty_init);