2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
53 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map
);
55 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
56 EXPORT_SYMBOL(node_possible_map
);
57 unsigned long totalram_pages __read_mostly
;
58 unsigned long totalreserve_pages __read_mostly
;
60 int percpu_pagelist_fraction
;
62 static void __free_pages_ok(struct page
*page
, unsigned int order
);
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
75 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
76 #ifdef CONFIG_ZONE_DMA
79 #ifdef CONFIG_ZONE_DMA32
87 EXPORT_SYMBOL(totalram_pages
);
89 static char * const zone_names
[MAX_NR_ZONES
] = {
90 #ifdef CONFIG_ZONE_DMA
93 #ifdef CONFIG_ZONE_DMA32
102 int min_free_kbytes
= 1024;
104 unsigned long __meminitdata nr_kernel_pages
;
105 unsigned long __meminitdata nr_all_pages
;
106 static unsigned long __meminitdata dma_reserve
;
108 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111 * ranges of memory (RAM) that may be registered with add_active_range().
112 * Ranges passed to add_active_range() will be merged if possible
113 * so the number of times add_active_range() can be called is
114 * related to the number of nodes and the number of holes
116 #ifdef CONFIG_MAX_ACTIVE_REGIONS
117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
120 #if MAX_NUMNODES >= 32
121 /* If there can be many nodes, allow up to 50 holes per node */
122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
124 /* By default, allow up to 256 distinct regions */
125 #define MAX_ACTIVE_REGIONS 256
129 struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
130 int __meminitdata nr_nodemap_entries
;
131 unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
132 unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
133 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134 unsigned long __initdata node_boundary_start_pfn
[MAX_NUMNODES
];
135 unsigned long __initdata node_boundary_end_pfn
[MAX_NUMNODES
];
136 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
139 #ifdef CONFIG_DEBUG_VM
140 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
144 unsigned long pfn
= page_to_pfn(page
);
147 seq
= zone_span_seqbegin(zone
);
148 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
150 else if (pfn
< zone
->zone_start_pfn
)
152 } while (zone_span_seqretry(zone
, seq
));
157 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
159 if (!pfn_valid_within(page_to_pfn(page
)))
161 if (zone
!= page_zone(page
))
167 * Temporary debugging check for pages not lying within a given zone.
169 static int bad_range(struct zone
*zone
, struct page
*page
)
171 if (page_outside_zone_boundaries(zone
, page
))
173 if (!page_is_consistent(zone
, page
))
179 static inline int bad_range(struct zone
*zone
, struct page
*page
)
185 static void bad_page(struct page
*page
)
187 printk(KERN_EMERG
"Bad page state in process '%s'\n"
188 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
189 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
190 KERN_EMERG
"Backtrace:\n",
191 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
192 (unsigned long)page
->flags
, page
->mapping
,
193 page_mapcount(page
), page_count(page
));
195 page
->flags
&= ~(1 << PG_lru
|
205 set_page_count(page
, 0);
206 reset_page_mapcount(page
);
207 page
->mapping
= NULL
;
208 add_taint(TAINT_BAD_PAGE
);
212 * Higher-order pages are called "compound pages". They are structured thusly:
214 * The first PAGE_SIZE page is called the "head page".
216 * The remaining PAGE_SIZE pages are called "tail pages".
218 * All pages have PG_compound set. All pages have their ->private pointing at
219 * the head page (even the head page has this).
221 * The first tail page's ->lru.next holds the address of the compound page's
222 * put_page() function. Its ->lru.prev holds the order of allocation.
223 * This usage means that zero-order pages may not be compound.
226 static void free_compound_page(struct page
*page
)
228 __free_pages_ok(page
, compound_order(page
));
231 static void prep_compound_page(struct page
*page
, unsigned long order
)
234 int nr_pages
= 1 << order
;
236 set_compound_page_dtor(page
, free_compound_page
);
237 set_compound_order(page
, order
);
239 for (i
= 1; i
< nr_pages
; i
++) {
240 struct page
*p
= page
+ i
;
243 p
->first_page
= page
;
247 static void destroy_compound_page(struct page
*page
, unsigned long order
)
250 int nr_pages
= 1 << order
;
252 if (unlikely(compound_order(page
) != order
))
255 if (unlikely(!PageHead(page
)))
257 __ClearPageHead(page
);
258 for (i
= 1; i
< nr_pages
; i
++) {
259 struct page
*p
= page
+ i
;
261 if (unlikely(!PageTail(p
) |
262 (p
->first_page
!= page
)))
268 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
272 VM_BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
274 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
275 * and __GFP_HIGHMEM from hard or soft interrupt context.
277 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
278 for (i
= 0; i
< (1 << order
); i
++)
279 clear_highpage(page
+ i
);
283 * function for dealing with page's order in buddy system.
284 * zone->lock is already acquired when we use these.
285 * So, we don't need atomic page->flags operations here.
287 static inline unsigned long page_order(struct page
*page
)
289 return page_private(page
);
292 static inline void set_page_order(struct page
*page
, int order
)
294 set_page_private(page
, order
);
295 __SetPageBuddy(page
);
298 static inline void rmv_page_order(struct page
*page
)
300 __ClearPageBuddy(page
);
301 set_page_private(page
, 0);
305 * Locate the struct page for both the matching buddy in our
306 * pair (buddy1) and the combined O(n+1) page they form (page).
308 * 1) Any buddy B1 will have an order O twin B2 which satisfies
309 * the following equation:
311 * For example, if the starting buddy (buddy2) is #8 its order
313 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
315 * 2) Any buddy B will have an order O+1 parent P which
316 * satisfies the following equation:
319 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
321 static inline struct page
*
322 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
324 unsigned long buddy_idx
= page_idx
^ (1 << order
);
326 return page
+ (buddy_idx
- page_idx
);
329 static inline unsigned long
330 __find_combined_index(unsigned long page_idx
, unsigned int order
)
332 return (page_idx
& ~(1 << order
));
336 * This function checks whether a page is free && is the buddy
337 * we can do coalesce a page and its buddy if
338 * (a) the buddy is not in a hole &&
339 * (b) the buddy is in the buddy system &&
340 * (c) a page and its buddy have the same order &&
341 * (d) a page and its buddy are in the same zone.
343 * For recording whether a page is in the buddy system, we use PG_buddy.
344 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
346 * For recording page's order, we use page_private(page).
348 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
351 if (!pfn_valid_within(page_to_pfn(buddy
)))
354 if (page_zone_id(page
) != page_zone_id(buddy
))
357 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
358 BUG_ON(page_count(buddy
) != 0);
365 * Freeing function for a buddy system allocator.
367 * The concept of a buddy system is to maintain direct-mapped table
368 * (containing bit values) for memory blocks of various "orders".
369 * The bottom level table contains the map for the smallest allocatable
370 * units of memory (here, pages), and each level above it describes
371 * pairs of units from the levels below, hence, "buddies".
372 * At a high level, all that happens here is marking the table entry
373 * at the bottom level available, and propagating the changes upward
374 * as necessary, plus some accounting needed to play nicely with other
375 * parts of the VM system.
376 * At each level, we keep a list of pages, which are heads of continuous
377 * free pages of length of (1 << order) and marked with PG_buddy. Page's
378 * order is recorded in page_private(page) field.
379 * So when we are allocating or freeing one, we can derive the state of the
380 * other. That is, if we allocate a small block, and both were
381 * free, the remainder of the region must be split into blocks.
382 * If a block is freed, and its buddy is also free, then this
383 * triggers coalescing into a block of larger size.
388 static inline void __free_one_page(struct page
*page
,
389 struct zone
*zone
, unsigned int order
)
391 unsigned long page_idx
;
392 int order_size
= 1 << order
;
394 if (unlikely(PageCompound(page
)))
395 destroy_compound_page(page
, order
);
397 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
399 VM_BUG_ON(page_idx
& (order_size
- 1));
400 VM_BUG_ON(bad_range(zone
, page
));
402 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
403 while (order
< MAX_ORDER
-1) {
404 unsigned long combined_idx
;
405 struct free_area
*area
;
408 buddy
= __page_find_buddy(page
, page_idx
, order
);
409 if (!page_is_buddy(page
, buddy
, order
))
410 break; /* Move the buddy up one level. */
412 list_del(&buddy
->lru
);
413 area
= zone
->free_area
+ order
;
415 rmv_page_order(buddy
);
416 combined_idx
= __find_combined_index(page_idx
, order
);
417 page
= page
+ (combined_idx
- page_idx
);
418 page_idx
= combined_idx
;
421 set_page_order(page
, order
);
422 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
423 zone
->free_area
[order
].nr_free
++;
426 static inline int free_pages_check(struct page
*page
)
428 if (unlikely(page_mapcount(page
) |
429 (page
->mapping
!= NULL
) |
430 (page_count(page
) != 0) |
443 * PageReclaim == PageTail. It is only an error
444 * for PageReclaim to be set if PageCompound is clear.
446 if (unlikely(!PageCompound(page
) && PageReclaim(page
)))
449 __ClearPageDirty(page
);
451 * For now, we report if PG_reserved was found set, but do not
452 * clear it, and do not free the page. But we shall soon need
453 * to do more, for when the ZERO_PAGE count wraps negative.
455 return PageReserved(page
);
459 * Frees a list of pages.
460 * Assumes all pages on list are in same zone, and of same order.
461 * count is the number of pages to free.
463 * If the zone was previously in an "all pages pinned" state then look to
464 * see if this freeing clears that state.
466 * And clear the zone's pages_scanned counter, to hold off the "all pages are
467 * pinned" detection logic.
469 static void free_pages_bulk(struct zone
*zone
, int count
,
470 struct list_head
*list
, int order
)
472 spin_lock(&zone
->lock
);
473 zone
->all_unreclaimable
= 0;
474 zone
->pages_scanned
= 0;
478 VM_BUG_ON(list_empty(list
));
479 page
= list_entry(list
->prev
, struct page
, lru
);
480 /* have to delete it as __free_one_page list manipulates */
481 list_del(&page
->lru
);
482 __free_one_page(page
, zone
, order
);
484 spin_unlock(&zone
->lock
);
487 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
489 spin_lock(&zone
->lock
);
490 zone
->all_unreclaimable
= 0;
491 zone
->pages_scanned
= 0;
492 __free_one_page(page
, zone
, order
);
493 spin_unlock(&zone
->lock
);
496 static void __free_pages_ok(struct page
*page
, unsigned int order
)
502 for (i
= 0 ; i
< (1 << order
) ; ++i
)
503 reserved
+= free_pages_check(page
+ i
);
507 if (!PageHighMem(page
))
508 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
509 arch_free_page(page
, order
);
510 kernel_map_pages(page
, 1 << order
, 0);
512 local_irq_save(flags
);
513 __count_vm_events(PGFREE
, 1 << order
);
514 free_one_page(page_zone(page
), page
, order
);
515 local_irq_restore(flags
);
519 * permit the bootmem allocator to evade page validation on high-order frees
521 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
524 __ClearPageReserved(page
);
525 set_page_count(page
, 0);
526 set_page_refcounted(page
);
532 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
533 struct page
*p
= &page
[loop
];
535 if (loop
+ 1 < BITS_PER_LONG
)
537 __ClearPageReserved(p
);
538 set_page_count(p
, 0);
541 set_page_refcounted(page
);
542 __free_pages(page
, order
);
548 * The order of subdivision here is critical for the IO subsystem.
549 * Please do not alter this order without good reasons and regression
550 * testing. Specifically, as large blocks of memory are subdivided,
551 * the order in which smaller blocks are delivered depends on the order
552 * they're subdivided in this function. This is the primary factor
553 * influencing the order in which pages are delivered to the IO
554 * subsystem according to empirical testing, and this is also justified
555 * by considering the behavior of a buddy system containing a single
556 * large block of memory acted on by a series of small allocations.
557 * This behavior is a critical factor in sglist merging's success.
561 static inline void expand(struct zone
*zone
, struct page
*page
,
562 int low
, int high
, struct free_area
*area
)
564 unsigned long size
= 1 << high
;
570 VM_BUG_ON(bad_range(zone
, &page
[size
]));
571 list_add(&page
[size
].lru
, &area
->free_list
);
573 set_page_order(&page
[size
], high
);
578 * This page is about to be returned from the page allocator
580 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
582 if (unlikely(page_mapcount(page
) |
583 (page
->mapping
!= NULL
) |
584 (page_count(page
) != 0) |
600 * For now, we report if PG_reserved was found set, but do not
601 * clear it, and do not allocate the page: as a safety net.
603 if (PageReserved(page
))
606 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
607 1 << PG_referenced
| 1 << PG_arch_1
|
608 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
609 set_page_private(page
, 0);
610 set_page_refcounted(page
);
612 arch_alloc_page(page
, order
);
613 kernel_map_pages(page
, 1 << order
, 1);
615 if (gfp_flags
& __GFP_ZERO
)
616 prep_zero_page(page
, order
, gfp_flags
);
618 if (order
&& (gfp_flags
& __GFP_COMP
))
619 prep_compound_page(page
, order
);
625 * Do the hard work of removing an element from the buddy allocator.
626 * Call me with the zone->lock already held.
628 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
630 struct free_area
* area
;
631 unsigned int current_order
;
634 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
635 area
= zone
->free_area
+ current_order
;
636 if (list_empty(&area
->free_list
))
639 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
640 list_del(&page
->lru
);
641 rmv_page_order(page
);
643 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
644 expand(zone
, page
, order
, current_order
, area
);
652 * Obtain a specified number of elements from the buddy allocator, all under
653 * a single hold of the lock, for efficiency. Add them to the supplied list.
654 * Returns the number of new pages which were placed at *list.
656 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
657 unsigned long count
, struct list_head
*list
)
661 spin_lock(&zone
->lock
);
662 for (i
= 0; i
< count
; ++i
) {
663 struct page
*page
= __rmqueue(zone
, order
);
664 if (unlikely(page
== NULL
))
666 list_add_tail(&page
->lru
, list
);
668 spin_unlock(&zone
->lock
);
673 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
674 EXPORT_SYMBOL(nr_node_ids
);
677 * Figure out the number of possible node ids.
679 static void __init
setup_nr_node_ids(void)
682 unsigned int highest
= 0;
684 for_each_node_mask(node
, node_possible_map
)
686 nr_node_ids
= highest
+ 1;
689 static void __init
setup_nr_node_ids(void) {}
694 * Called from the vmstat counter updater to drain pagesets of this
695 * currently executing processor on remote nodes after they have
698 * Note that this function must be called with the thread pinned to
699 * a single processor.
701 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
706 local_irq_save(flags
);
707 if (pcp
->count
>= pcp
->batch
)
708 to_drain
= pcp
->batch
;
710 to_drain
= pcp
->count
;
711 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
712 pcp
->count
-= to_drain
;
713 local_irq_restore(flags
);
717 static void __drain_pages(unsigned int cpu
)
723 for_each_zone(zone
) {
724 struct per_cpu_pageset
*pset
;
726 if (!populated_zone(zone
))
729 pset
= zone_pcp(zone
, cpu
);
730 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
731 struct per_cpu_pages
*pcp
;
734 local_irq_save(flags
);
735 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
737 local_irq_restore(flags
);
744 void mark_free_pages(struct zone
*zone
)
746 unsigned long pfn
, max_zone_pfn
;
749 struct list_head
*curr
;
751 if (!zone
->spanned_pages
)
754 spin_lock_irqsave(&zone
->lock
, flags
);
756 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
757 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
758 if (pfn_valid(pfn
)) {
759 struct page
*page
= pfn_to_page(pfn
);
761 if (!swsusp_page_is_forbidden(page
))
762 swsusp_unset_page_free(page
);
765 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
766 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
769 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
770 for (i
= 0; i
< (1UL << order
); i
++)
771 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
774 spin_unlock_irqrestore(&zone
->lock
, flags
);
778 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
780 void drain_local_pages(void)
784 local_irq_save(flags
);
785 __drain_pages(smp_processor_id());
786 local_irq_restore(flags
);
788 #endif /* CONFIG_PM */
791 * Free a 0-order page
793 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
795 struct zone
*zone
= page_zone(page
);
796 struct per_cpu_pages
*pcp
;
800 page
->mapping
= NULL
;
801 if (free_pages_check(page
))
804 if (!PageHighMem(page
))
805 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
806 arch_free_page(page
, 0);
807 kernel_map_pages(page
, 1, 0);
809 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
810 local_irq_save(flags
);
811 __count_vm_event(PGFREE
);
812 list_add(&page
->lru
, &pcp
->list
);
814 if (pcp
->count
>= pcp
->high
) {
815 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
816 pcp
->count
-= pcp
->batch
;
818 local_irq_restore(flags
);
822 void fastcall
free_hot_page(struct page
*page
)
824 free_hot_cold_page(page
, 0);
827 void fastcall
free_cold_page(struct page
*page
)
829 free_hot_cold_page(page
, 1);
833 * split_page takes a non-compound higher-order page, and splits it into
834 * n (1<<order) sub-pages: page[0..n]
835 * Each sub-page must be freed individually.
837 * Note: this is probably too low level an operation for use in drivers.
838 * Please consult with lkml before using this in your driver.
840 void split_page(struct page
*page
, unsigned int order
)
844 VM_BUG_ON(PageCompound(page
));
845 VM_BUG_ON(!page_count(page
));
846 for (i
= 1; i
< (1 << order
); i
++)
847 set_page_refcounted(page
+ i
);
851 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
852 * we cheat by calling it from here, in the order > 0 path. Saves a branch
855 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
856 struct zone
*zone
, int order
, gfp_t gfp_flags
)
860 int cold
= !!(gfp_flags
& __GFP_COLD
);
865 if (likely(order
== 0)) {
866 struct per_cpu_pages
*pcp
;
868 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
869 local_irq_save(flags
);
871 pcp
->count
= rmqueue_bulk(zone
, 0,
872 pcp
->batch
, &pcp
->list
);
873 if (unlikely(!pcp
->count
))
876 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
877 list_del(&page
->lru
);
880 spin_lock_irqsave(&zone
->lock
, flags
);
881 page
= __rmqueue(zone
, order
);
882 spin_unlock(&zone
->lock
);
887 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
888 zone_statistics(zonelist
, zone
);
889 local_irq_restore(flags
);
892 VM_BUG_ON(bad_range(zone
, page
));
893 if (prep_new_page(page
, order
, gfp_flags
))
898 local_irq_restore(flags
);
903 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
904 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
905 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
906 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
907 #define ALLOC_HARDER 0x10 /* try to alloc harder */
908 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
909 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
911 #ifdef CONFIG_FAIL_PAGE_ALLOC
913 static struct fail_page_alloc_attr
{
914 struct fault_attr attr
;
916 u32 ignore_gfp_highmem
;
919 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
921 struct dentry
*ignore_gfp_highmem_file
;
922 struct dentry
*ignore_gfp_wait_file
;
924 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
926 } fail_page_alloc
= {
927 .attr
= FAULT_ATTR_INITIALIZER
,
928 .ignore_gfp_wait
= 1,
929 .ignore_gfp_highmem
= 1,
932 static int __init
setup_fail_page_alloc(char *str
)
934 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
936 __setup("fail_page_alloc=", setup_fail_page_alloc
);
938 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
940 if (gfp_mask
& __GFP_NOFAIL
)
942 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
944 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
947 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
950 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
952 static int __init
fail_page_alloc_debugfs(void)
954 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
958 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
962 dir
= fail_page_alloc
.attr
.dentries
.dir
;
964 fail_page_alloc
.ignore_gfp_wait_file
=
965 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
966 &fail_page_alloc
.ignore_gfp_wait
);
968 fail_page_alloc
.ignore_gfp_highmem_file
=
969 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
970 &fail_page_alloc
.ignore_gfp_highmem
);
972 if (!fail_page_alloc
.ignore_gfp_wait_file
||
973 !fail_page_alloc
.ignore_gfp_highmem_file
) {
975 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
976 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
977 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
983 late_initcall(fail_page_alloc_debugfs
);
985 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
987 #else /* CONFIG_FAIL_PAGE_ALLOC */
989 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
994 #endif /* CONFIG_FAIL_PAGE_ALLOC */
997 * Return 1 if free pages are above 'mark'. This takes into account the order
1000 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1001 int classzone_idx
, int alloc_flags
)
1003 /* free_pages my go negative - that's OK */
1005 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1008 if (alloc_flags
& ALLOC_HIGH
)
1010 if (alloc_flags
& ALLOC_HARDER
)
1013 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1015 for (o
= 0; o
< order
; o
++) {
1016 /* At the next order, this order's pages become unavailable */
1017 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1019 /* Require fewer higher order pages to be free */
1022 if (free_pages
<= min
)
1030 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1031 * skip over zones that are not allowed by the cpuset, or that have
1032 * been recently (in last second) found to be nearly full. See further
1033 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1034 * that have to skip over alot of full or unallowed zones.
1036 * If the zonelist cache is present in the passed in zonelist, then
1037 * returns a pointer to the allowed node mask (either the current
1038 * tasks mems_allowed, or node_online_map.)
1040 * If the zonelist cache is not available for this zonelist, does
1041 * nothing and returns NULL.
1043 * If the fullzones BITMAP in the zonelist cache is stale (more than
1044 * a second since last zap'd) then we zap it out (clear its bits.)
1046 * We hold off even calling zlc_setup, until after we've checked the
1047 * first zone in the zonelist, on the theory that most allocations will
1048 * be satisfied from that first zone, so best to examine that zone as
1049 * quickly as we can.
1051 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1053 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1054 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1056 zlc
= zonelist
->zlcache_ptr
;
1060 if (jiffies
- zlc
->last_full_zap
> 1 * HZ
) {
1061 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1062 zlc
->last_full_zap
= jiffies
;
1065 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1066 &cpuset_current_mems_allowed
:
1068 return allowednodes
;
1072 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1073 * if it is worth looking at further for free memory:
1074 * 1) Check that the zone isn't thought to be full (doesn't have its
1075 * bit set in the zonelist_cache fullzones BITMAP).
1076 * 2) Check that the zones node (obtained from the zonelist_cache
1077 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1078 * Return true (non-zero) if zone is worth looking at further, or
1079 * else return false (zero) if it is not.
1081 * This check -ignores- the distinction between various watermarks,
1082 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1083 * found to be full for any variation of these watermarks, it will
1084 * be considered full for up to one second by all requests, unless
1085 * we are so low on memory on all allowed nodes that we are forced
1086 * into the second scan of the zonelist.
1088 * In the second scan we ignore this zonelist cache and exactly
1089 * apply the watermarks to all zones, even it is slower to do so.
1090 * We are low on memory in the second scan, and should leave no stone
1091 * unturned looking for a free page.
1093 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1094 nodemask_t
*allowednodes
)
1096 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1097 int i
; /* index of *z in zonelist zones */
1098 int n
; /* node that zone *z is on */
1100 zlc
= zonelist
->zlcache_ptr
;
1104 i
= z
- zonelist
->zones
;
1107 /* This zone is worth trying if it is allowed but not full */
1108 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1112 * Given 'z' scanning a zonelist, set the corresponding bit in
1113 * zlc->fullzones, so that subsequent attempts to allocate a page
1114 * from that zone don't waste time re-examining it.
1116 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1118 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1119 int i
; /* index of *z in zonelist zones */
1121 zlc
= zonelist
->zlcache_ptr
;
1125 i
= z
- zonelist
->zones
;
1127 set_bit(i
, zlc
->fullzones
);
1130 #else /* CONFIG_NUMA */
1132 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1137 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1138 nodemask_t
*allowednodes
)
1143 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1146 #endif /* CONFIG_NUMA */
1149 * get_page_from_freelist goes through the zonelist trying to allocate
1152 static struct page
*
1153 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
1154 struct zonelist
*zonelist
, int alloc_flags
)
1157 struct page
*page
= NULL
;
1158 int classzone_idx
= zone_idx(zonelist
->zones
[0]);
1160 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1161 int zlc_active
= 0; /* set if using zonelist_cache */
1162 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1166 * Scan zonelist, looking for a zone with enough free.
1167 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1169 z
= zonelist
->zones
;
1172 if (NUMA_BUILD
&& zlc_active
&&
1173 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1176 if (unlikely(NUMA_BUILD
&& (gfp_mask
& __GFP_THISNODE
) &&
1177 zone
->zone_pgdat
!= zonelist
->zones
[0]->zone_pgdat
))
1179 if ((alloc_flags
& ALLOC_CPUSET
) &&
1180 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1183 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1185 if (alloc_flags
& ALLOC_WMARK_MIN
)
1186 mark
= zone
->pages_min
;
1187 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1188 mark
= zone
->pages_low
;
1190 mark
= zone
->pages_high
;
1191 if (!zone_watermark_ok(zone
, order
, mark
,
1192 classzone_idx
, alloc_flags
)) {
1193 if (!zone_reclaim_mode
||
1194 !zone_reclaim(zone
, gfp_mask
, order
))
1195 goto this_zone_full
;
1199 page
= buffered_rmqueue(zonelist
, zone
, order
, gfp_mask
);
1204 zlc_mark_zone_full(zonelist
, z
);
1206 if (NUMA_BUILD
&& !did_zlc_setup
) {
1207 /* we do zlc_setup after the first zone is tried */
1208 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1212 } while (*(++z
) != NULL
);
1214 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1215 /* Disable zlc cache for second zonelist scan */
1223 * This is the 'heart' of the zoned buddy allocator.
1225 struct page
* fastcall
1226 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1227 struct zonelist
*zonelist
)
1229 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1232 struct reclaim_state reclaim_state
;
1233 struct task_struct
*p
= current
;
1236 int did_some_progress
;
1238 might_sleep_if(wait
);
1240 if (should_fail_alloc_page(gfp_mask
, order
))
1244 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
1246 if (unlikely(*z
== NULL
)) {
1247 /* Should this ever happen?? */
1251 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1252 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1257 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1258 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1259 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1260 * using a larger set of nodes after it has established that the
1261 * allowed per node queues are empty and that nodes are
1264 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1267 for (z
= zonelist
->zones
; *z
; z
++)
1268 wakeup_kswapd(*z
, order
);
1271 * OK, we're below the kswapd watermark and have kicked background
1272 * reclaim. Now things get more complex, so set up alloc_flags according
1273 * to how we want to proceed.
1275 * The caller may dip into page reserves a bit more if the caller
1276 * cannot run direct reclaim, or if the caller has realtime scheduling
1277 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1278 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1280 alloc_flags
= ALLOC_WMARK_MIN
;
1281 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1282 alloc_flags
|= ALLOC_HARDER
;
1283 if (gfp_mask
& __GFP_HIGH
)
1284 alloc_flags
|= ALLOC_HIGH
;
1286 alloc_flags
|= ALLOC_CPUSET
;
1289 * Go through the zonelist again. Let __GFP_HIGH and allocations
1290 * coming from realtime tasks go deeper into reserves.
1292 * This is the last chance, in general, before the goto nopage.
1293 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1294 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1296 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
1300 /* This allocation should allow future memory freeing. */
1303 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1304 && !in_interrupt()) {
1305 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1307 /* go through the zonelist yet again, ignoring mins */
1308 page
= get_page_from_freelist(gfp_mask
, order
,
1309 zonelist
, ALLOC_NO_WATERMARKS
);
1312 if (gfp_mask
& __GFP_NOFAIL
) {
1313 congestion_wait(WRITE
, HZ
/50);
1320 /* Atomic allocations - we can't balance anything */
1326 /* We now go into synchronous reclaim */
1327 cpuset_memory_pressure_bump();
1328 p
->flags
|= PF_MEMALLOC
;
1329 reclaim_state
.reclaimed_slab
= 0;
1330 p
->reclaim_state
= &reclaim_state
;
1332 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
1334 p
->reclaim_state
= NULL
;
1335 p
->flags
&= ~PF_MEMALLOC
;
1339 if (likely(did_some_progress
)) {
1340 page
= get_page_from_freelist(gfp_mask
, order
,
1341 zonelist
, alloc_flags
);
1344 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1346 * Go through the zonelist yet one more time, keep
1347 * very high watermark here, this is only to catch
1348 * a parallel oom killing, we must fail if we're still
1349 * under heavy pressure.
1351 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1352 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1356 out_of_memory(zonelist
, gfp_mask
, order
);
1361 * Don't let big-order allocations loop unless the caller explicitly
1362 * requests that. Wait for some write requests to complete then retry.
1364 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1365 * <= 3, but that may not be true in other implementations.
1368 if (!(gfp_mask
& __GFP_NORETRY
)) {
1369 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1371 if (gfp_mask
& __GFP_NOFAIL
)
1375 congestion_wait(WRITE
, HZ
/50);
1380 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1381 printk(KERN_WARNING
"%s: page allocation failure."
1382 " order:%d, mode:0x%x\n",
1383 p
->comm
, order
, gfp_mask
);
1391 EXPORT_SYMBOL(__alloc_pages
);
1394 * Common helper functions.
1396 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1399 page
= alloc_pages(gfp_mask
, order
);
1402 return (unsigned long) page_address(page
);
1405 EXPORT_SYMBOL(__get_free_pages
);
1407 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1412 * get_zeroed_page() returns a 32-bit address, which cannot represent
1415 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1417 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1419 return (unsigned long) page_address(page
);
1423 EXPORT_SYMBOL(get_zeroed_page
);
1425 void __pagevec_free(struct pagevec
*pvec
)
1427 int i
= pagevec_count(pvec
);
1430 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1433 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1435 if (put_page_testzero(page
)) {
1437 free_hot_page(page
);
1439 __free_pages_ok(page
, order
);
1443 EXPORT_SYMBOL(__free_pages
);
1445 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1448 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1449 __free_pages(virt_to_page((void *)addr
), order
);
1453 EXPORT_SYMBOL(free_pages
);
1455 static unsigned int nr_free_zone_pages(int offset
)
1457 /* Just pick one node, since fallback list is circular */
1458 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1459 unsigned int sum
= 0;
1461 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1462 struct zone
**zonep
= zonelist
->zones
;
1465 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1466 unsigned long size
= zone
->present_pages
;
1467 unsigned long high
= zone
->pages_high
;
1476 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1478 unsigned int nr_free_buffer_pages(void)
1480 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1484 * Amount of free RAM allocatable within all zones
1486 unsigned int nr_free_pagecache_pages(void)
1488 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1491 static inline void show_node(struct zone
*zone
)
1494 printk("Node %d ", zone_to_nid(zone
));
1497 void si_meminfo(struct sysinfo
*val
)
1499 val
->totalram
= totalram_pages
;
1501 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1502 val
->bufferram
= nr_blockdev_pages();
1503 val
->totalhigh
= totalhigh_pages
;
1504 val
->freehigh
= nr_free_highpages();
1505 val
->mem_unit
= PAGE_SIZE
;
1508 EXPORT_SYMBOL(si_meminfo
);
1511 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1513 pg_data_t
*pgdat
= NODE_DATA(nid
);
1515 val
->totalram
= pgdat
->node_present_pages
;
1516 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1517 #ifdef CONFIG_HIGHMEM
1518 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1519 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1525 val
->mem_unit
= PAGE_SIZE
;
1529 #define K(x) ((x) << (PAGE_SHIFT-10))
1532 * Show free area list (used inside shift_scroll-lock stuff)
1533 * We also calculate the percentage fragmentation. We do this by counting the
1534 * memory on each free list with the exception of the first item on the list.
1536 void show_free_areas(void)
1541 for_each_zone(zone
) {
1542 if (!populated_zone(zone
))
1546 printk("%s per-cpu:\n", zone
->name
);
1548 for_each_online_cpu(cpu
) {
1549 struct per_cpu_pageset
*pageset
;
1551 pageset
= zone_pcp(zone
, cpu
);
1553 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1554 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1555 cpu
, pageset
->pcp
[0].high
,
1556 pageset
->pcp
[0].batch
, pageset
->pcp
[0].count
,
1557 pageset
->pcp
[1].high
, pageset
->pcp
[1].batch
,
1558 pageset
->pcp
[1].count
);
1562 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1563 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1564 global_page_state(NR_ACTIVE
),
1565 global_page_state(NR_INACTIVE
),
1566 global_page_state(NR_FILE_DIRTY
),
1567 global_page_state(NR_WRITEBACK
),
1568 global_page_state(NR_UNSTABLE_NFS
),
1569 global_page_state(NR_FREE_PAGES
),
1570 global_page_state(NR_SLAB_RECLAIMABLE
) +
1571 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1572 global_page_state(NR_FILE_MAPPED
),
1573 global_page_state(NR_PAGETABLE
),
1574 global_page_state(NR_BOUNCE
));
1576 for_each_zone(zone
) {
1579 if (!populated_zone(zone
))
1591 " pages_scanned:%lu"
1592 " all_unreclaimable? %s"
1595 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1598 K(zone
->pages_high
),
1599 K(zone_page_state(zone
, NR_ACTIVE
)),
1600 K(zone_page_state(zone
, NR_INACTIVE
)),
1601 K(zone
->present_pages
),
1602 zone
->pages_scanned
,
1603 (zone
->all_unreclaimable
? "yes" : "no")
1605 printk("lowmem_reserve[]:");
1606 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1607 printk(" %lu", zone
->lowmem_reserve
[i
]);
1611 for_each_zone(zone
) {
1612 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1614 if (!populated_zone(zone
))
1618 printk("%s: ", zone
->name
);
1620 spin_lock_irqsave(&zone
->lock
, flags
);
1621 for (order
= 0; order
< MAX_ORDER
; order
++) {
1622 nr
[order
] = zone
->free_area
[order
].nr_free
;
1623 total
+= nr
[order
] << order
;
1625 spin_unlock_irqrestore(&zone
->lock
, flags
);
1626 for (order
= 0; order
< MAX_ORDER
; order
++)
1627 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1628 printk("= %lukB\n", K(total
));
1631 show_swap_cache_info();
1635 * Builds allocation fallback zone lists.
1637 * Add all populated zones of a node to the zonelist.
1639 static int __meminit
build_zonelists_node(pg_data_t
*pgdat
,
1640 struct zonelist
*zonelist
, int nr_zones
, enum zone_type zone_type
)
1644 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1649 zone
= pgdat
->node_zones
+ zone_type
;
1650 if (populated_zone(zone
)) {
1651 zonelist
->zones
[nr_zones
++] = zone
;
1652 check_highest_zone(zone_type
);
1655 } while (zone_type
);
1660 #define MAX_NODE_LOAD (num_online_nodes())
1661 static int __meminitdata node_load
[MAX_NUMNODES
];
1663 * find_next_best_node - find the next node that should appear in a given node's fallback list
1664 * @node: node whose fallback list we're appending
1665 * @used_node_mask: nodemask_t of already used nodes
1667 * We use a number of factors to determine which is the next node that should
1668 * appear on a given node's fallback list. The node should not have appeared
1669 * already in @node's fallback list, and it should be the next closest node
1670 * according to the distance array (which contains arbitrary distance values
1671 * from each node to each node in the system), and should also prefer nodes
1672 * with no CPUs, since presumably they'll have very little allocation pressure
1673 * on them otherwise.
1674 * It returns -1 if no node is found.
1676 static int __meminit
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1679 int min_val
= INT_MAX
;
1682 /* Use the local node if we haven't already */
1683 if (!node_isset(node
, *used_node_mask
)) {
1684 node_set(node
, *used_node_mask
);
1688 for_each_online_node(n
) {
1691 /* Don't want a node to appear more than once */
1692 if (node_isset(n
, *used_node_mask
))
1695 /* Use the distance array to find the distance */
1696 val
= node_distance(node
, n
);
1698 /* Penalize nodes under us ("prefer the next node") */
1701 /* Give preference to headless and unused nodes */
1702 tmp
= node_to_cpumask(n
);
1703 if (!cpus_empty(tmp
))
1704 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1706 /* Slight preference for less loaded node */
1707 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1708 val
+= node_load
[n
];
1710 if (val
< min_val
) {
1717 node_set(best_node
, *used_node_mask
);
1722 static void __meminit
build_zonelists(pg_data_t
*pgdat
)
1724 int j
, node
, local_node
;
1726 int prev_node
, load
;
1727 struct zonelist
*zonelist
;
1728 nodemask_t used_mask
;
1730 /* initialize zonelists */
1731 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1732 zonelist
= pgdat
->node_zonelists
+ i
;
1733 zonelist
->zones
[0] = NULL
;
1736 /* NUMA-aware ordering of nodes */
1737 local_node
= pgdat
->node_id
;
1738 load
= num_online_nodes();
1739 prev_node
= local_node
;
1740 nodes_clear(used_mask
);
1741 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1742 int distance
= node_distance(local_node
, node
);
1745 * If another node is sufficiently far away then it is better
1746 * to reclaim pages in a zone before going off node.
1748 if (distance
> RECLAIM_DISTANCE
)
1749 zone_reclaim_mode
= 1;
1752 * We don't want to pressure a particular node.
1753 * So adding penalty to the first node in same
1754 * distance group to make it round-robin.
1757 if (distance
!= node_distance(local_node
, prev_node
))
1758 node_load
[node
] += load
;
1761 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1762 zonelist
= pgdat
->node_zonelists
+ i
;
1763 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1765 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
1766 zonelist
->zones
[j
] = NULL
;
1771 /* Construct the zonelist performance cache - see further mmzone.h */
1772 static void __meminit
build_zonelist_cache(pg_data_t
*pgdat
)
1776 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1777 struct zonelist
*zonelist
;
1778 struct zonelist_cache
*zlc
;
1781 zonelist
= pgdat
->node_zonelists
+ i
;
1782 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
1783 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1784 for (z
= zonelist
->zones
; *z
; z
++)
1785 zlc
->z_to_n
[z
- zonelist
->zones
] = zone_to_nid(*z
);
1789 #else /* CONFIG_NUMA */
1791 static void __meminit
build_zonelists(pg_data_t
*pgdat
)
1793 int node
, local_node
;
1796 local_node
= pgdat
->node_id
;
1797 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1798 struct zonelist
*zonelist
;
1800 zonelist
= pgdat
->node_zonelists
+ i
;
1802 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
1804 * Now we build the zonelist so that it contains the zones
1805 * of all the other nodes.
1806 * We don't want to pressure a particular node, so when
1807 * building the zones for node N, we make sure that the
1808 * zones coming right after the local ones are those from
1809 * node N+1 (modulo N)
1811 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1812 if (!node_online(node
))
1814 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
1816 for (node
= 0; node
< local_node
; node
++) {
1817 if (!node_online(node
))
1819 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
1822 zonelist
->zones
[j
] = NULL
;
1826 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1827 static void __meminit
build_zonelist_cache(pg_data_t
*pgdat
)
1831 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1832 pgdat
->node_zonelists
[i
].zlcache_ptr
= NULL
;
1835 #endif /* CONFIG_NUMA */
1837 /* return values int ....just for stop_machine_run() */
1838 static int __meminit
__build_all_zonelists(void *dummy
)
1842 for_each_online_node(nid
) {
1843 build_zonelists(NODE_DATA(nid
));
1844 build_zonelist_cache(NODE_DATA(nid
));
1849 void __meminit
build_all_zonelists(void)
1851 if (system_state
== SYSTEM_BOOTING
) {
1852 __build_all_zonelists(NULL
);
1853 cpuset_init_current_mems_allowed();
1855 /* we have to stop all cpus to guaranntee there is no user
1857 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
1858 /* cpuset refresh routine should be here */
1860 vm_total_pages
= nr_free_pagecache_pages();
1861 printk("Built %i zonelists. Total pages: %ld\n",
1862 num_online_nodes(), vm_total_pages
);
1866 * Helper functions to size the waitqueue hash table.
1867 * Essentially these want to choose hash table sizes sufficiently
1868 * large so that collisions trying to wait on pages are rare.
1869 * But in fact, the number of active page waitqueues on typical
1870 * systems is ridiculously low, less than 200. So this is even
1871 * conservative, even though it seems large.
1873 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1874 * waitqueues, i.e. the size of the waitq table given the number of pages.
1876 #define PAGES_PER_WAITQUEUE 256
1878 #ifndef CONFIG_MEMORY_HOTPLUG
1879 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
1881 unsigned long size
= 1;
1883 pages
/= PAGES_PER_WAITQUEUE
;
1885 while (size
< pages
)
1889 * Once we have dozens or even hundreds of threads sleeping
1890 * on IO we've got bigger problems than wait queue collision.
1891 * Limit the size of the wait table to a reasonable size.
1893 size
= min(size
, 4096UL);
1895 return max(size
, 4UL);
1899 * A zone's size might be changed by hot-add, so it is not possible to determine
1900 * a suitable size for its wait_table. So we use the maximum size now.
1902 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1904 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1905 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1906 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1908 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1909 * or more by the traditional way. (See above). It equals:
1911 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1912 * ia64(16K page size) : = ( 8G + 4M)byte.
1913 * powerpc (64K page size) : = (32G +16M)byte.
1915 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
1922 * This is an integer logarithm so that shifts can be used later
1923 * to extract the more random high bits from the multiplicative
1924 * hash function before the remainder is taken.
1926 static inline unsigned long wait_table_bits(unsigned long size
)
1931 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1934 * Initially all pages are reserved - free ones are freed
1935 * up by free_all_bootmem() once the early boot process is
1936 * done. Non-atomic initialization, single-pass.
1938 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1939 unsigned long start_pfn
, enum memmap_context context
)
1942 unsigned long end_pfn
= start_pfn
+ size
;
1945 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1947 * There can be holes in boot-time mem_map[]s
1948 * handed to this function. They do not
1949 * exist on hotplugged memory.
1951 if (context
== MEMMAP_EARLY
) {
1952 if (!early_pfn_valid(pfn
))
1954 if (!early_pfn_in_nid(pfn
, nid
))
1957 page
= pfn_to_page(pfn
);
1958 set_page_links(page
, zone
, nid
, pfn
);
1959 init_page_count(page
);
1960 reset_page_mapcount(page
);
1961 SetPageReserved(page
);
1962 INIT_LIST_HEAD(&page
->lru
);
1963 #ifdef WANT_PAGE_VIRTUAL
1964 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1965 if (!is_highmem_idx(zone
))
1966 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1971 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1975 for (order
= 0; order
< MAX_ORDER
; order
++) {
1976 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1977 zone
->free_area
[order
].nr_free
= 0;
1981 #ifndef __HAVE_ARCH_MEMMAP_INIT
1982 #define memmap_init(size, nid, zone, start_pfn) \
1983 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1986 static int __cpuinit
zone_batchsize(struct zone
*zone
)
1991 * The per-cpu-pages pools are set to around 1000th of the
1992 * size of the zone. But no more than 1/2 of a meg.
1994 * OK, so we don't know how big the cache is. So guess.
1996 batch
= zone
->present_pages
/ 1024;
1997 if (batch
* PAGE_SIZE
> 512 * 1024)
1998 batch
= (512 * 1024) / PAGE_SIZE
;
1999 batch
/= 4; /* We effectively *= 4 below */
2004 * Clamp the batch to a 2^n - 1 value. Having a power
2005 * of 2 value was found to be more likely to have
2006 * suboptimal cache aliasing properties in some cases.
2008 * For example if 2 tasks are alternately allocating
2009 * batches of pages, one task can end up with a lot
2010 * of pages of one half of the possible page colors
2011 * and the other with pages of the other colors.
2013 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2018 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2020 struct per_cpu_pages
*pcp
;
2022 memset(p
, 0, sizeof(*p
));
2024 pcp
= &p
->pcp
[0]; /* hot */
2026 pcp
->high
= 6 * batch
;
2027 pcp
->batch
= max(1UL, 1 * batch
);
2028 INIT_LIST_HEAD(&pcp
->list
);
2030 pcp
= &p
->pcp
[1]; /* cold*/
2032 pcp
->high
= 2 * batch
;
2033 pcp
->batch
= max(1UL, batch
/2);
2034 INIT_LIST_HEAD(&pcp
->list
);
2038 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2039 * to the value high for the pageset p.
2042 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2045 struct per_cpu_pages
*pcp
;
2047 pcp
= &p
->pcp
[0]; /* hot list */
2049 pcp
->batch
= max(1UL, high
/4);
2050 if ((high
/4) > (PAGE_SHIFT
* 8))
2051 pcp
->batch
= PAGE_SHIFT
* 8;
2057 * Boot pageset table. One per cpu which is going to be used for all
2058 * zones and all nodes. The parameters will be set in such a way
2059 * that an item put on a list will immediately be handed over to
2060 * the buddy list. This is safe since pageset manipulation is done
2061 * with interrupts disabled.
2063 * Some NUMA counter updates may also be caught by the boot pagesets.
2065 * The boot_pagesets must be kept even after bootup is complete for
2066 * unused processors and/or zones. They do play a role for bootstrapping
2067 * hotplugged processors.
2069 * zoneinfo_show() and maybe other functions do
2070 * not check if the processor is online before following the pageset pointer.
2071 * Other parts of the kernel may not check if the zone is available.
2073 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2076 * Dynamically allocate memory for the
2077 * per cpu pageset array in struct zone.
2079 static int __cpuinit
process_zones(int cpu
)
2081 struct zone
*zone
, *dzone
;
2083 for_each_zone(zone
) {
2085 if (!populated_zone(zone
))
2088 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2089 GFP_KERNEL
, cpu_to_node(cpu
));
2090 if (!zone_pcp(zone
, cpu
))
2093 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2095 if (percpu_pagelist_fraction
)
2096 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2097 (zone
->present_pages
/ percpu_pagelist_fraction
));
2102 for_each_zone(dzone
) {
2105 kfree(zone_pcp(dzone
, cpu
));
2106 zone_pcp(dzone
, cpu
) = NULL
;
2111 static inline void free_zone_pagesets(int cpu
)
2115 for_each_zone(zone
) {
2116 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2118 /* Free per_cpu_pageset if it is slab allocated */
2119 if (pset
!= &boot_pageset
[cpu
])
2121 zone_pcp(zone
, cpu
) = NULL
;
2125 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2126 unsigned long action
,
2129 int cpu
= (long)hcpu
;
2130 int ret
= NOTIFY_OK
;
2133 case CPU_UP_PREPARE
:
2134 case CPU_UP_PREPARE_FROZEN
:
2135 if (process_zones(cpu
))
2138 case CPU_UP_CANCELED
:
2139 case CPU_UP_CANCELED_FROZEN
:
2141 case CPU_DEAD_FROZEN
:
2142 free_zone_pagesets(cpu
);
2150 static struct notifier_block __cpuinitdata pageset_notifier
=
2151 { &pageset_cpuup_callback
, NULL
, 0 };
2153 void __init
setup_per_cpu_pageset(void)
2157 /* Initialize per_cpu_pageset for cpu 0.
2158 * A cpuup callback will do this for every cpu
2159 * as it comes online
2161 err
= process_zones(smp_processor_id());
2163 register_cpu_notifier(&pageset_notifier
);
2168 static noinline __init_refok
2169 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2172 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2176 * The per-page waitqueue mechanism uses hashed waitqueues
2179 zone
->wait_table_hash_nr_entries
=
2180 wait_table_hash_nr_entries(zone_size_pages
);
2181 zone
->wait_table_bits
=
2182 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2183 alloc_size
= zone
->wait_table_hash_nr_entries
2184 * sizeof(wait_queue_head_t
);
2186 if (system_state
== SYSTEM_BOOTING
) {
2187 zone
->wait_table
= (wait_queue_head_t
*)
2188 alloc_bootmem_node(pgdat
, alloc_size
);
2191 * This case means that a zone whose size was 0 gets new memory
2192 * via memory hot-add.
2193 * But it may be the case that a new node was hot-added. In
2194 * this case vmalloc() will not be able to use this new node's
2195 * memory - this wait_table must be initialized to use this new
2196 * node itself as well.
2197 * To use this new node's memory, further consideration will be
2200 zone
->wait_table
= (wait_queue_head_t
*)vmalloc(alloc_size
);
2202 if (!zone
->wait_table
)
2205 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2206 init_waitqueue_head(zone
->wait_table
+ i
);
2211 static __meminit
void zone_pcp_init(struct zone
*zone
)
2214 unsigned long batch
= zone_batchsize(zone
);
2216 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2218 /* Early boot. Slab allocator not functional yet */
2219 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2220 setup_pageset(&boot_pageset
[cpu
],0);
2222 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2225 if (zone
->present_pages
)
2226 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2227 zone
->name
, zone
->present_pages
, batch
);
2230 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2231 unsigned long zone_start_pfn
,
2233 enum memmap_context context
)
2235 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2237 ret
= zone_wait_table_init(zone
, size
);
2240 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2242 zone
->zone_start_pfn
= zone_start_pfn
;
2244 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2246 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2251 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2253 * Basic iterator support. Return the first range of PFNs for a node
2254 * Note: nid == MAX_NUMNODES returns first region regardless of node
2256 static int __meminit
first_active_region_index_in_nid(int nid
)
2260 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2261 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2268 * Basic iterator support. Return the next active range of PFNs for a node
2269 * Note: nid == MAX_NUMNODES returns next region regardles of node
2271 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2273 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2274 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2280 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2282 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2283 * Architectures may implement their own version but if add_active_range()
2284 * was used and there are no special requirements, this is a convenient
2287 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2291 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2292 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2293 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2295 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2296 return early_node_map
[i
].nid
;
2301 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2303 /* Basic iterator support to walk early_node_map[] */
2304 #define for_each_active_range_index_in_nid(i, nid) \
2305 for (i = first_active_region_index_in_nid(nid); i != -1; \
2306 i = next_active_region_index_in_nid(i, nid))
2309 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2310 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2311 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2313 * If an architecture guarantees that all ranges registered with
2314 * add_active_ranges() contain no holes and may be freed, this
2315 * this function may be used instead of calling free_bootmem() manually.
2317 void __init
free_bootmem_with_active_regions(int nid
,
2318 unsigned long max_low_pfn
)
2322 for_each_active_range_index_in_nid(i
, nid
) {
2323 unsigned long size_pages
= 0;
2324 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2326 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2329 if (end_pfn
> max_low_pfn
)
2330 end_pfn
= max_low_pfn
;
2332 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2333 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2334 PFN_PHYS(early_node_map
[i
].start_pfn
),
2335 size_pages
<< PAGE_SHIFT
);
2340 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2341 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2343 * If an architecture guarantees that all ranges registered with
2344 * add_active_ranges() contain no holes and may be freed, this
2345 * function may be used instead of calling memory_present() manually.
2347 void __init
sparse_memory_present_with_active_regions(int nid
)
2351 for_each_active_range_index_in_nid(i
, nid
)
2352 memory_present(early_node_map
[i
].nid
,
2353 early_node_map
[i
].start_pfn
,
2354 early_node_map
[i
].end_pfn
);
2358 * push_node_boundaries - Push node boundaries to at least the requested boundary
2359 * @nid: The nid of the node to push the boundary for
2360 * @start_pfn: The start pfn of the node
2361 * @end_pfn: The end pfn of the node
2363 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2364 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2365 * be hotplugged even though no physical memory exists. This function allows
2366 * an arch to push out the node boundaries so mem_map is allocated that can
2369 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2370 void __init
push_node_boundaries(unsigned int nid
,
2371 unsigned long start_pfn
, unsigned long end_pfn
)
2373 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2374 nid
, start_pfn
, end_pfn
);
2376 /* Initialise the boundary for this node if necessary */
2377 if (node_boundary_end_pfn
[nid
] == 0)
2378 node_boundary_start_pfn
[nid
] = -1UL;
2380 /* Update the boundaries */
2381 if (node_boundary_start_pfn
[nid
] > start_pfn
)
2382 node_boundary_start_pfn
[nid
] = start_pfn
;
2383 if (node_boundary_end_pfn
[nid
] < end_pfn
)
2384 node_boundary_end_pfn
[nid
] = end_pfn
;
2387 /* If necessary, push the node boundary out for reserve hotadd */
2388 static void __init
account_node_boundary(unsigned int nid
,
2389 unsigned long *start_pfn
, unsigned long *end_pfn
)
2391 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
2392 nid
, *start_pfn
, *end_pfn
);
2394 /* Return if boundary information has not been provided */
2395 if (node_boundary_end_pfn
[nid
] == 0)
2398 /* Check the boundaries and update if necessary */
2399 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
2400 *start_pfn
= node_boundary_start_pfn
[nid
];
2401 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
2402 *end_pfn
= node_boundary_end_pfn
[nid
];
2405 void __init
push_node_boundaries(unsigned int nid
,
2406 unsigned long start_pfn
, unsigned long end_pfn
) {}
2408 static void __init
account_node_boundary(unsigned int nid
,
2409 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
2414 * get_pfn_range_for_nid - Return the start and end page frames for a node
2415 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2416 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2417 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2419 * It returns the start and end page frame of a node based on information
2420 * provided by an arch calling add_active_range(). If called for a node
2421 * with no available memory, a warning is printed and the start and end
2424 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
2425 unsigned long *start_pfn
, unsigned long *end_pfn
)
2431 for_each_active_range_index_in_nid(i
, nid
) {
2432 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
2433 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
2436 if (*start_pfn
== -1UL) {
2437 printk(KERN_WARNING
"Node %u active with no memory\n", nid
);
2441 /* Push the node boundaries out if requested */
2442 account_node_boundary(nid
, start_pfn
, end_pfn
);
2446 * Return the number of pages a zone spans in a node, including holes
2447 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2449 unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
2450 unsigned long zone_type
,
2451 unsigned long *ignored
)
2453 unsigned long node_start_pfn
, node_end_pfn
;
2454 unsigned long zone_start_pfn
, zone_end_pfn
;
2456 /* Get the start and end of the node and zone */
2457 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
2458 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
2459 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
2461 /* Check that this node has pages within the zone's required range */
2462 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
2465 /* Move the zone boundaries inside the node if necessary */
2466 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
2467 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
2469 /* Return the spanned pages */
2470 return zone_end_pfn
- zone_start_pfn
;
2474 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2475 * then all holes in the requested range will be accounted for.
2477 unsigned long __meminit
__absent_pages_in_range(int nid
,
2478 unsigned long range_start_pfn
,
2479 unsigned long range_end_pfn
)
2482 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
2483 unsigned long start_pfn
;
2485 /* Find the end_pfn of the first active range of pfns in the node */
2486 i
= first_active_region_index_in_nid(nid
);
2490 /* Account for ranges before physical memory on this node */
2491 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
2492 hole_pages
= early_node_map
[i
].start_pfn
- range_start_pfn
;
2494 prev_end_pfn
= early_node_map
[i
].start_pfn
;
2496 /* Find all holes for the zone within the node */
2497 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
2499 /* No need to continue if prev_end_pfn is outside the zone */
2500 if (prev_end_pfn
>= range_end_pfn
)
2503 /* Make sure the end of the zone is not within the hole */
2504 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
2505 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
2507 /* Update the hole size cound and move on */
2508 if (start_pfn
> range_start_pfn
) {
2509 BUG_ON(prev_end_pfn
> start_pfn
);
2510 hole_pages
+= start_pfn
- prev_end_pfn
;
2512 prev_end_pfn
= early_node_map
[i
].end_pfn
;
2515 /* Account for ranges past physical memory on this node */
2516 if (range_end_pfn
> prev_end_pfn
)
2517 hole_pages
+= range_end_pfn
-
2518 max(range_start_pfn
, prev_end_pfn
);
2524 * absent_pages_in_range - Return number of page frames in holes within a range
2525 * @start_pfn: The start PFN to start searching for holes
2526 * @end_pfn: The end PFN to stop searching for holes
2528 * It returns the number of pages frames in memory holes within a range.
2530 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
2531 unsigned long end_pfn
)
2533 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
2536 /* Return the number of page frames in holes in a zone on a node */
2537 unsigned long __meminit
zone_absent_pages_in_node(int nid
,
2538 unsigned long zone_type
,
2539 unsigned long *ignored
)
2541 unsigned long node_start_pfn
, node_end_pfn
;
2542 unsigned long zone_start_pfn
, zone_end_pfn
;
2544 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
2545 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
2547 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
2550 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
2554 static inline unsigned long zone_spanned_pages_in_node(int nid
,
2555 unsigned long zone_type
,
2556 unsigned long *zones_size
)
2558 return zones_size
[zone_type
];
2561 static inline unsigned long zone_absent_pages_in_node(int nid
,
2562 unsigned long zone_type
,
2563 unsigned long *zholes_size
)
2568 return zholes_size
[zone_type
];
2573 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
2574 unsigned long *zones_size
, unsigned long *zholes_size
)
2576 unsigned long realtotalpages
, totalpages
= 0;
2579 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2580 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
2582 pgdat
->node_spanned_pages
= totalpages
;
2584 realtotalpages
= totalpages
;
2585 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2587 zone_absent_pages_in_node(pgdat
->node_id
, i
,
2589 pgdat
->node_present_pages
= realtotalpages
;
2590 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
2595 * Set up the zone data structures:
2596 * - mark all pages reserved
2597 * - mark all memory queues empty
2598 * - clear the memory bitmaps
2600 static void __meminit
free_area_init_core(struct pglist_data
*pgdat
,
2601 unsigned long *zones_size
, unsigned long *zholes_size
)
2604 int nid
= pgdat
->node_id
;
2605 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2608 pgdat_resize_init(pgdat
);
2609 pgdat
->nr_zones
= 0;
2610 init_waitqueue_head(&pgdat
->kswapd_wait
);
2611 pgdat
->kswapd_max_order
= 0;
2613 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2614 struct zone
*zone
= pgdat
->node_zones
+ j
;
2615 unsigned long size
, realsize
, memmap_pages
;
2617 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
2618 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
2622 * Adjust realsize so that it accounts for how much memory
2623 * is used by this zone for memmap. This affects the watermark
2624 * and per-cpu initialisations
2626 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
2627 if (realsize
>= memmap_pages
) {
2628 realsize
-= memmap_pages
;
2630 " %s zone: %lu pages used for memmap\n",
2631 zone_names
[j
], memmap_pages
);
2634 " %s zone: %lu pages exceeds realsize %lu\n",
2635 zone_names
[j
], memmap_pages
, realsize
);
2637 /* Account for reserved pages */
2638 if (j
== 0 && realsize
> dma_reserve
) {
2639 realsize
-= dma_reserve
;
2640 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
2641 zone_names
[0], dma_reserve
);
2644 if (!is_highmem_idx(j
))
2645 nr_kernel_pages
+= realsize
;
2646 nr_all_pages
+= realsize
;
2648 zone
->spanned_pages
= size
;
2649 zone
->present_pages
= realsize
;
2652 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
2654 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
2656 zone
->name
= zone_names
[j
];
2657 spin_lock_init(&zone
->lock
);
2658 spin_lock_init(&zone
->lru_lock
);
2659 zone_seqlock_init(zone
);
2660 zone
->zone_pgdat
= pgdat
;
2662 zone
->prev_priority
= DEF_PRIORITY
;
2664 zone_pcp_init(zone
);
2665 INIT_LIST_HEAD(&zone
->active_list
);
2666 INIT_LIST_HEAD(&zone
->inactive_list
);
2667 zone
->nr_scan_active
= 0;
2668 zone
->nr_scan_inactive
= 0;
2669 zap_zone_vm_stats(zone
);
2670 atomic_set(&zone
->reclaim_in_progress
, 0);
2674 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
2675 size
, MEMMAP_EARLY
);
2677 zone_start_pfn
+= size
;
2681 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
2683 /* Skip empty nodes */
2684 if (!pgdat
->node_spanned_pages
)
2687 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2688 /* ia64 gets its own node_mem_map, before this, without bootmem */
2689 if (!pgdat
->node_mem_map
) {
2690 unsigned long size
, start
, end
;
2694 * The zone's endpoints aren't required to be MAX_ORDER
2695 * aligned but the node_mem_map endpoints must be in order
2696 * for the buddy allocator to function correctly.
2698 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
2699 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
2700 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
2701 size
= (end
- start
) * sizeof(struct page
);
2702 map
= alloc_remap(pgdat
->node_id
, size
);
2704 map
= alloc_bootmem_node(pgdat
, size
);
2705 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
2707 #ifdef CONFIG_FLATMEM
2709 * With no DISCONTIG, the global mem_map is just set as node 0's
2711 if (pgdat
== NODE_DATA(0)) {
2712 mem_map
= NODE_DATA(0)->node_mem_map
;
2713 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2714 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
2715 mem_map
-= pgdat
->node_start_pfn
;
2716 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2719 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2722 void __meminit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2723 unsigned long *zones_size
, unsigned long node_start_pfn
,
2724 unsigned long *zholes_size
)
2726 pgdat
->node_id
= nid
;
2727 pgdat
->node_start_pfn
= node_start_pfn
;
2728 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
2730 alloc_node_mem_map(pgdat
);
2732 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2735 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2737 * add_active_range - Register a range of PFNs backed by physical memory
2738 * @nid: The node ID the range resides on
2739 * @start_pfn: The start PFN of the available physical memory
2740 * @end_pfn: The end PFN of the available physical memory
2742 * These ranges are stored in an early_node_map[] and later used by
2743 * free_area_init_nodes() to calculate zone sizes and holes. If the
2744 * range spans a memory hole, it is up to the architecture to ensure
2745 * the memory is not freed by the bootmem allocator. If possible
2746 * the range being registered will be merged with existing ranges.
2748 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
2749 unsigned long end_pfn
)
2753 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
2754 "%d entries of %d used\n",
2755 nid
, start_pfn
, end_pfn
,
2756 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
2758 /* Merge with existing active regions if possible */
2759 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2760 if (early_node_map
[i
].nid
!= nid
)
2763 /* Skip if an existing region covers this new one */
2764 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
2765 end_pfn
<= early_node_map
[i
].end_pfn
)
2768 /* Merge forward if suitable */
2769 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
2770 end_pfn
> early_node_map
[i
].end_pfn
) {
2771 early_node_map
[i
].end_pfn
= end_pfn
;
2775 /* Merge backward if suitable */
2776 if (start_pfn
< early_node_map
[i
].end_pfn
&&
2777 end_pfn
>= early_node_map
[i
].start_pfn
) {
2778 early_node_map
[i
].start_pfn
= start_pfn
;
2783 /* Check that early_node_map is large enough */
2784 if (i
>= MAX_ACTIVE_REGIONS
) {
2785 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
2786 MAX_ACTIVE_REGIONS
);
2790 early_node_map
[i
].nid
= nid
;
2791 early_node_map
[i
].start_pfn
= start_pfn
;
2792 early_node_map
[i
].end_pfn
= end_pfn
;
2793 nr_nodemap_entries
= i
+ 1;
2797 * shrink_active_range - Shrink an existing registered range of PFNs
2798 * @nid: The node id the range is on that should be shrunk
2799 * @old_end_pfn: The old end PFN of the range
2800 * @new_end_pfn: The new PFN of the range
2802 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2803 * The map is kept at the end physical page range that has already been
2804 * registered with add_active_range(). This function allows an arch to shrink
2805 * an existing registered range.
2807 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
2808 unsigned long new_end_pfn
)
2812 /* Find the old active region end and shrink */
2813 for_each_active_range_index_in_nid(i
, nid
)
2814 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
2815 early_node_map
[i
].end_pfn
= new_end_pfn
;
2821 * remove_all_active_ranges - Remove all currently registered regions
2823 * During discovery, it may be found that a table like SRAT is invalid
2824 * and an alternative discovery method must be used. This function removes
2825 * all currently registered regions.
2827 void __init
remove_all_active_ranges(void)
2829 memset(early_node_map
, 0, sizeof(early_node_map
));
2830 nr_nodemap_entries
= 0;
2831 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2832 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
2833 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
2834 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2837 /* Compare two active node_active_regions */
2838 static int __init
cmp_node_active_region(const void *a
, const void *b
)
2840 struct node_active_region
*arange
= (struct node_active_region
*)a
;
2841 struct node_active_region
*brange
= (struct node_active_region
*)b
;
2843 /* Done this way to avoid overflows */
2844 if (arange
->start_pfn
> brange
->start_pfn
)
2846 if (arange
->start_pfn
< brange
->start_pfn
)
2852 /* sort the node_map by start_pfn */
2853 static void __init
sort_node_map(void)
2855 sort(early_node_map
, (size_t)nr_nodemap_entries
,
2856 sizeof(struct node_active_region
),
2857 cmp_node_active_region
, NULL
);
2860 /* Find the lowest pfn for a node */
2861 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
2864 unsigned long min_pfn
= ULONG_MAX
;
2866 /* Assuming a sorted map, the first range found has the starting pfn */
2867 for_each_active_range_index_in_nid(i
, nid
)
2868 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
2870 if (min_pfn
== ULONG_MAX
) {
2872 "Could not find start_pfn for node %lu\n", nid
);
2880 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2882 * It returns the minimum PFN based on information provided via
2883 * add_active_range().
2885 unsigned long __init
find_min_pfn_with_active_regions(void)
2887 return find_min_pfn_for_node(MAX_NUMNODES
);
2891 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2893 * It returns the maximum PFN based on information provided via
2894 * add_active_range().
2896 unsigned long __init
find_max_pfn_with_active_regions(void)
2899 unsigned long max_pfn
= 0;
2901 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2902 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
2908 * free_area_init_nodes - Initialise all pg_data_t and zone data
2909 * @max_zone_pfn: an array of max PFNs for each zone
2911 * This will call free_area_init_node() for each active node in the system.
2912 * Using the page ranges provided by add_active_range(), the size of each
2913 * zone in each node and their holes is calculated. If the maximum PFN
2914 * between two adjacent zones match, it is assumed that the zone is empty.
2915 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2916 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2917 * starts where the previous one ended. For example, ZONE_DMA32 starts
2918 * at arch_max_dma_pfn.
2920 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
2925 /* Sort early_node_map as initialisation assumes it is sorted */
2928 /* Record where the zone boundaries are */
2929 memset(arch_zone_lowest_possible_pfn
, 0,
2930 sizeof(arch_zone_lowest_possible_pfn
));
2931 memset(arch_zone_highest_possible_pfn
, 0,
2932 sizeof(arch_zone_highest_possible_pfn
));
2933 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
2934 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
2935 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
2936 arch_zone_lowest_possible_pfn
[i
] =
2937 arch_zone_highest_possible_pfn
[i
-1];
2938 arch_zone_highest_possible_pfn
[i
] =
2939 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
2942 /* Print out the zone ranges */
2943 printk("Zone PFN ranges:\n");
2944 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2945 printk(" %-8s %8lu -> %8lu\n",
2947 arch_zone_lowest_possible_pfn
[i
],
2948 arch_zone_highest_possible_pfn
[i
]);
2950 /* Print out the early_node_map[] */
2951 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
2952 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2953 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
2954 early_node_map
[i
].start_pfn
,
2955 early_node_map
[i
].end_pfn
);
2957 /* Initialise every node */
2958 setup_nr_node_ids();
2959 for_each_online_node(nid
) {
2960 pg_data_t
*pgdat
= NODE_DATA(nid
);
2961 free_area_init_node(nid
, pgdat
, NULL
,
2962 find_min_pfn_for_node(nid
), NULL
);
2965 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2968 * set_dma_reserve - set the specified number of pages reserved in the first zone
2969 * @new_dma_reserve: The number of pages to mark reserved
2971 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2972 * In the DMA zone, a significant percentage may be consumed by kernel image
2973 * and other unfreeable allocations which can skew the watermarks badly. This
2974 * function may optionally be used to account for unfreeable pages in the
2975 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2976 * smaller per-cpu batchsize.
2978 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
2980 dma_reserve
= new_dma_reserve
;
2983 #ifndef CONFIG_NEED_MULTIPLE_NODES
2984 static bootmem_data_t contig_bootmem_data
;
2985 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2987 EXPORT_SYMBOL(contig_page_data
);
2990 void __init
free_area_init(unsigned long *zones_size
)
2992 free_area_init_node(0, NODE_DATA(0), zones_size
,
2993 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2996 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2997 unsigned long action
, void *hcpu
)
2999 int cpu
= (unsigned long)hcpu
;
3001 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3002 local_irq_disable();
3004 vm_events_fold_cpu(cpu
);
3006 refresh_cpu_vm_stats(cpu
);
3011 void __init
page_alloc_init(void)
3013 hotcpu_notifier(page_alloc_cpu_notify
, 0);
3017 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3018 * or min_free_kbytes changes.
3020 static void calculate_totalreserve_pages(void)
3022 struct pglist_data
*pgdat
;
3023 unsigned long reserve_pages
= 0;
3024 enum zone_type i
, j
;
3026 for_each_online_pgdat(pgdat
) {
3027 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3028 struct zone
*zone
= pgdat
->node_zones
+ i
;
3029 unsigned long max
= 0;
3031 /* Find valid and maximum lowmem_reserve in the zone */
3032 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
3033 if (zone
->lowmem_reserve
[j
] > max
)
3034 max
= zone
->lowmem_reserve
[j
];
3037 /* we treat pages_high as reserved pages. */
3038 max
+= zone
->pages_high
;
3040 if (max
> zone
->present_pages
)
3041 max
= zone
->present_pages
;
3042 reserve_pages
+= max
;
3045 totalreserve_pages
= reserve_pages
;
3049 * setup_per_zone_lowmem_reserve - called whenever
3050 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3051 * has a correct pages reserved value, so an adequate number of
3052 * pages are left in the zone after a successful __alloc_pages().
3054 static void setup_per_zone_lowmem_reserve(void)
3056 struct pglist_data
*pgdat
;
3057 enum zone_type j
, idx
;
3059 for_each_online_pgdat(pgdat
) {
3060 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3061 struct zone
*zone
= pgdat
->node_zones
+ j
;
3062 unsigned long present_pages
= zone
->present_pages
;
3064 zone
->lowmem_reserve
[j
] = 0;
3068 struct zone
*lower_zone
;
3072 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
3073 sysctl_lowmem_reserve_ratio
[idx
] = 1;
3075 lower_zone
= pgdat
->node_zones
+ idx
;
3076 lower_zone
->lowmem_reserve
[j
] = present_pages
/
3077 sysctl_lowmem_reserve_ratio
[idx
];
3078 present_pages
+= lower_zone
->present_pages
;
3083 /* update totalreserve_pages */
3084 calculate_totalreserve_pages();
3088 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3090 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3091 * with respect to min_free_kbytes.
3093 void setup_per_zone_pages_min(void)
3095 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
3096 unsigned long lowmem_pages
= 0;
3098 unsigned long flags
;
3100 /* Calculate total number of !ZONE_HIGHMEM pages */
3101 for_each_zone(zone
) {
3102 if (!is_highmem(zone
))
3103 lowmem_pages
+= zone
->present_pages
;
3106 for_each_zone(zone
) {
3109 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3110 tmp
= (u64
)pages_min
* zone
->present_pages
;
3111 do_div(tmp
, lowmem_pages
);
3112 if (is_highmem(zone
)) {
3114 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3115 * need highmem pages, so cap pages_min to a small
3118 * The (pages_high-pages_low) and (pages_low-pages_min)
3119 * deltas controls asynch page reclaim, and so should
3120 * not be capped for highmem.
3124 min_pages
= zone
->present_pages
/ 1024;
3125 if (min_pages
< SWAP_CLUSTER_MAX
)
3126 min_pages
= SWAP_CLUSTER_MAX
;
3127 if (min_pages
> 128)
3129 zone
->pages_min
= min_pages
;
3132 * If it's a lowmem zone, reserve a number of pages
3133 * proportionate to the zone's size.
3135 zone
->pages_min
= tmp
;
3138 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
3139 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
3140 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3143 /* update totalreserve_pages */
3144 calculate_totalreserve_pages();
3148 * Initialise min_free_kbytes.
3150 * For small machines we want it small (128k min). For large machines
3151 * we want it large (64MB max). But it is not linear, because network
3152 * bandwidth does not increase linearly with machine size. We use
3154 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3155 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3171 static int __init
init_per_zone_pages_min(void)
3173 unsigned long lowmem_kbytes
;
3175 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
3177 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
3178 if (min_free_kbytes
< 128)
3179 min_free_kbytes
= 128;
3180 if (min_free_kbytes
> 65536)
3181 min_free_kbytes
= 65536;
3182 setup_per_zone_pages_min();
3183 setup_per_zone_lowmem_reserve();
3186 module_init(init_per_zone_pages_min
)
3189 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3190 * that we can call two helper functions whenever min_free_kbytes
3193 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
3194 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3196 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
3198 setup_per_zone_pages_min();
3203 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
3204 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3209 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3214 zone
->min_unmapped_pages
= (zone
->present_pages
*
3215 sysctl_min_unmapped_ratio
) / 100;
3219 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
3220 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3225 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3230 zone
->min_slab_pages
= (zone
->present_pages
*
3231 sysctl_min_slab_ratio
) / 100;
3237 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3238 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3239 * whenever sysctl_lowmem_reserve_ratio changes.
3241 * The reserve ratio obviously has absolutely no relation with the
3242 * pages_min watermarks. The lowmem reserve ratio can only make sense
3243 * if in function of the boot time zone sizes.
3245 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
3246 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3248 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3249 setup_per_zone_lowmem_reserve();
3254 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3255 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3256 * can have before it gets flushed back to buddy allocator.
3259 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
3260 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3266 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3267 if (!write
|| (ret
== -EINVAL
))
3269 for_each_zone(zone
) {
3270 for_each_online_cpu(cpu
) {
3272 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
3273 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
3279 int hashdist
= HASHDIST_DEFAULT
;
3282 static int __init
set_hashdist(char *str
)
3286 hashdist
= simple_strtoul(str
, &str
, 0);
3289 __setup("hashdist=", set_hashdist
);
3293 * allocate a large system hash table from bootmem
3294 * - it is assumed that the hash table must contain an exact power-of-2
3295 * quantity of entries
3296 * - limit is the number of hash buckets, not the total allocation size
3298 void *__init
alloc_large_system_hash(const char *tablename
,
3299 unsigned long bucketsize
,
3300 unsigned long numentries
,
3303 unsigned int *_hash_shift
,
3304 unsigned int *_hash_mask
,
3305 unsigned long limit
)
3307 unsigned long long max
= limit
;
3308 unsigned long log2qty
, size
;
3311 /* allow the kernel cmdline to have a say */
3313 /* round applicable memory size up to nearest megabyte */
3314 numentries
= nr_kernel_pages
;
3315 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
3316 numentries
>>= 20 - PAGE_SHIFT
;
3317 numentries
<<= 20 - PAGE_SHIFT
;
3319 /* limit to 1 bucket per 2^scale bytes of low memory */
3320 if (scale
> PAGE_SHIFT
)
3321 numentries
>>= (scale
- PAGE_SHIFT
);
3323 numentries
<<= (PAGE_SHIFT
- scale
);
3325 /* Make sure we've got at least a 0-order allocation.. */
3326 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
3327 numentries
= PAGE_SIZE
/ bucketsize
;
3329 numentries
= roundup_pow_of_two(numentries
);
3331 /* limit allocation size to 1/16 total memory by default */
3333 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
3334 do_div(max
, bucketsize
);
3337 if (numentries
> max
)
3340 log2qty
= ilog2(numentries
);
3343 size
= bucketsize
<< log2qty
;
3344 if (flags
& HASH_EARLY
)
3345 table
= alloc_bootmem(size
);
3347 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
3349 unsigned long order
;
3350 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
3352 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
3354 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
3357 panic("Failed to allocate %s hash table\n", tablename
);
3359 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3362 ilog2(size
) - PAGE_SHIFT
,
3366 *_hash_shift
= log2qty
;
3368 *_hash_mask
= (1 << log2qty
) - 1;
3373 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3374 struct page
*pfn_to_page(unsigned long pfn
)
3376 return __pfn_to_page(pfn
);
3378 unsigned long page_to_pfn(struct page
*page
)
3380 return __page_to_pfn(page
);
3382 EXPORT_SYMBOL(pfn_to_page
);
3383 EXPORT_SYMBOL(page_to_pfn
);
3384 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */