2 * Interface for controlling IO bandwidth on a request queue
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
14 /* Max dispatch from a group in 1 round */
15 static int throtl_grp_quantum
= 8;
17 /* Total max dispatch from all groups in one round */
18 static int throtl_quantum
= 32;
20 /* Throttling is performed over 100ms slice and after that slice is renewed */
21 static unsigned long throtl_slice
= HZ
/10; /* 100 ms */
23 /* A workqueue to queue throttle related work */
24 static struct workqueue_struct
*kthrotld_workqueue
;
25 static void throtl_schedule_delayed_work(struct throtl_data
*td
,
28 struct throtl_rb_root
{
32 unsigned long min_disptime
;
35 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
36 .count = 0, .min_disptime = 0}
38 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
41 /* List of throtl groups on the request queue*/
42 struct hlist_node tg_node
;
44 /* active throtl group service_tree member */
45 struct rb_node rb_node
;
48 * Dispatch time in jiffies. This is the estimated time when group
49 * will unthrottle and is ready to dispatch more bio. It is used as
50 * key to sort active groups in service tree.
52 unsigned long disptime
;
54 struct blkio_group blkg
;
58 /* Two lists for READ and WRITE */
59 struct bio_list bio_lists
[2];
61 /* Number of queued bios on READ and WRITE lists */
62 unsigned int nr_queued
[2];
64 /* bytes per second rate limits */
70 /* Number of bytes disptached in current slice */
71 uint64_t bytes_disp
[2];
72 /* Number of bio's dispatched in current slice */
73 unsigned int io_disp
[2];
75 /* When did we start a new slice */
76 unsigned long slice_start
[2];
77 unsigned long slice_end
[2];
79 /* Some throttle limits got updated for the group */
85 /* List of throtl groups */
86 struct hlist_head tg_list
;
88 /* service tree for active throtl groups */
89 struct throtl_rb_root tg_service_tree
;
91 struct throtl_grp root_tg
;
92 struct request_queue
*queue
;
94 /* Total Number of queued bios on READ and WRITE lists */
95 unsigned int nr_queued
[2];
98 * number of total undestroyed groups
100 unsigned int nr_undestroyed_grps
;
102 /* Work for dispatching throttled bios */
103 struct delayed_work throtl_work
;
108 enum tg_state_flags
{
109 THROTL_TG_FLAG_on_rr
= 0, /* on round-robin busy list */
112 #define THROTL_TG_FNS(name) \
113 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
115 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
117 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
119 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
121 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
123 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
126 THROTL_TG_FNS(on_rr
);
128 #define throtl_log_tg(td, tg, fmt, args...) \
129 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
130 blkg_path(&(tg)->blkg), ##args); \
132 #define throtl_log(td, fmt, args...) \
133 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
135 static inline struct throtl_grp
*tg_of_blkg(struct blkio_group
*blkg
)
138 return container_of(blkg
, struct throtl_grp
, blkg
);
143 static inline int total_nr_queued(struct throtl_data
*td
)
145 return (td
->nr_queued
[0] + td
->nr_queued
[1]);
148 static inline struct throtl_grp
*throtl_ref_get_tg(struct throtl_grp
*tg
)
150 atomic_inc(&tg
->ref
);
154 static void throtl_put_tg(struct throtl_grp
*tg
)
156 BUG_ON(atomic_read(&tg
->ref
) <= 0);
157 if (!atomic_dec_and_test(&tg
->ref
))
162 static struct throtl_grp
* throtl_find_alloc_tg(struct throtl_data
*td
,
163 struct cgroup
*cgroup
)
165 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
166 struct throtl_grp
*tg
= NULL
;
168 struct backing_dev_info
*bdi
= &td
->queue
->backing_dev_info
;
169 unsigned int major
, minor
;
172 * TODO: Speed up blkiocg_lookup_group() by maintaining a radix
173 * tree of blkg (instead of traversing through hash list all
178 * This is the common case when there are no blkio cgroups.
179 * Avoid lookup in this case
181 if (blkcg
== &blkio_root_cgroup
)
184 tg
= tg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
186 /* Fill in device details for root group */
187 if (tg
&& !tg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
188 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
189 tg
->blkg
.dev
= MKDEV(major
, minor
);
196 tg
= kzalloc_node(sizeof(*tg
), GFP_ATOMIC
, td
->queue
->node
);
200 INIT_HLIST_NODE(&tg
->tg_node
);
201 RB_CLEAR_NODE(&tg
->rb_node
);
202 bio_list_init(&tg
->bio_lists
[0]);
203 bio_list_init(&tg
->bio_lists
[1]);
204 td
->limits_changed
= false;
207 * Take the initial reference that will be released on destroy
208 * This can be thought of a joint reference by cgroup and
209 * request queue which will be dropped by either request queue
210 * exit or cgroup deletion path depending on who is exiting first.
212 atomic_set(&tg
->ref
, 1);
214 /* Add group onto cgroup list */
215 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
216 blkiocg_add_blkio_group(blkcg
, &tg
->blkg
, (void *)td
,
217 MKDEV(major
, minor
), BLKIO_POLICY_THROTL
);
219 tg
->bps
[READ
] = blkcg_get_read_bps(blkcg
, tg
->blkg
.dev
);
220 tg
->bps
[WRITE
] = blkcg_get_write_bps(blkcg
, tg
->blkg
.dev
);
221 tg
->iops
[READ
] = blkcg_get_read_iops(blkcg
, tg
->blkg
.dev
);
222 tg
->iops
[WRITE
] = blkcg_get_write_iops(blkcg
, tg
->blkg
.dev
);
224 hlist_add_head(&tg
->tg_node
, &td
->tg_list
);
225 td
->nr_undestroyed_grps
++;
230 static struct throtl_grp
* throtl_get_tg(struct throtl_data
*td
)
232 struct cgroup
*cgroup
;
233 struct throtl_grp
*tg
= NULL
;
236 cgroup
= task_cgroup(current
, blkio_subsys_id
);
237 tg
= throtl_find_alloc_tg(td
, cgroup
);
244 static struct throtl_grp
*throtl_rb_first(struct throtl_rb_root
*root
)
246 /* Service tree is empty */
251 root
->left
= rb_first(&root
->rb
);
254 return rb_entry_tg(root
->left
);
259 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
265 static void throtl_rb_erase(struct rb_node
*n
, struct throtl_rb_root
*root
)
269 rb_erase_init(n
, &root
->rb
);
273 static void update_min_dispatch_time(struct throtl_rb_root
*st
)
275 struct throtl_grp
*tg
;
277 tg
= throtl_rb_first(st
);
281 st
->min_disptime
= tg
->disptime
;
285 tg_service_tree_add(struct throtl_rb_root
*st
, struct throtl_grp
*tg
)
287 struct rb_node
**node
= &st
->rb
.rb_node
;
288 struct rb_node
*parent
= NULL
;
289 struct throtl_grp
*__tg
;
290 unsigned long key
= tg
->disptime
;
293 while (*node
!= NULL
) {
295 __tg
= rb_entry_tg(parent
);
297 if (time_before(key
, __tg
->disptime
))
298 node
= &parent
->rb_left
;
300 node
= &parent
->rb_right
;
306 st
->left
= &tg
->rb_node
;
308 rb_link_node(&tg
->rb_node
, parent
, node
);
309 rb_insert_color(&tg
->rb_node
, &st
->rb
);
312 static void __throtl_enqueue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
314 struct throtl_rb_root
*st
= &td
->tg_service_tree
;
316 tg_service_tree_add(st
, tg
);
317 throtl_mark_tg_on_rr(tg
);
321 static void throtl_enqueue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
323 if (!throtl_tg_on_rr(tg
))
324 __throtl_enqueue_tg(td
, tg
);
327 static void __throtl_dequeue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
329 throtl_rb_erase(&tg
->rb_node
, &td
->tg_service_tree
);
330 throtl_clear_tg_on_rr(tg
);
333 static void throtl_dequeue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
335 if (throtl_tg_on_rr(tg
))
336 __throtl_dequeue_tg(td
, tg
);
339 static void throtl_schedule_next_dispatch(struct throtl_data
*td
)
341 struct throtl_rb_root
*st
= &td
->tg_service_tree
;
344 * If there are more bios pending, schedule more work.
346 if (!total_nr_queued(td
))
351 update_min_dispatch_time(st
);
353 if (time_before_eq(st
->min_disptime
, jiffies
))
354 throtl_schedule_delayed_work(td
, 0);
356 throtl_schedule_delayed_work(td
, (st
->min_disptime
- jiffies
));
360 throtl_start_new_slice(struct throtl_data
*td
, struct throtl_grp
*tg
, bool rw
)
362 tg
->bytes_disp
[rw
] = 0;
364 tg
->slice_start
[rw
] = jiffies
;
365 tg
->slice_end
[rw
] = jiffies
+ throtl_slice
;
366 throtl_log_tg(td
, tg
, "[%c] new slice start=%lu end=%lu jiffies=%lu",
367 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
368 tg
->slice_end
[rw
], jiffies
);
371 static inline void throtl_set_slice_end(struct throtl_data
*td
,
372 struct throtl_grp
*tg
, bool rw
, unsigned long jiffy_end
)
374 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
377 static inline void throtl_extend_slice(struct throtl_data
*td
,
378 struct throtl_grp
*tg
, bool rw
, unsigned long jiffy_end
)
380 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
381 throtl_log_tg(td
, tg
, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
382 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
383 tg
->slice_end
[rw
], jiffies
);
386 /* Determine if previously allocated or extended slice is complete or not */
388 throtl_slice_used(struct throtl_data
*td
, struct throtl_grp
*tg
, bool rw
)
390 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
396 /* Trim the used slices and adjust slice start accordingly */
398 throtl_trim_slice(struct throtl_data
*td
, struct throtl_grp
*tg
, bool rw
)
400 unsigned long nr_slices
, time_elapsed
, io_trim
;
403 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
406 * If bps are unlimited (-1), then time slice don't get
407 * renewed. Don't try to trim the slice if slice is used. A new
408 * slice will start when appropriate.
410 if (throtl_slice_used(td
, tg
, rw
))
414 * A bio has been dispatched. Also adjust slice_end. It might happen
415 * that initially cgroup limit was very low resulting in high
416 * slice_end, but later limit was bumped up and bio was dispached
417 * sooner, then we need to reduce slice_end. A high bogus slice_end
418 * is bad because it does not allow new slice to start.
421 throtl_set_slice_end(td
, tg
, rw
, jiffies
+ throtl_slice
);
423 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
425 nr_slices
= time_elapsed
/ throtl_slice
;
429 tmp
= tg
->bps
[rw
] * throtl_slice
* nr_slices
;
433 io_trim
= (tg
->iops
[rw
] * throtl_slice
* nr_slices
)/HZ
;
435 if (!bytes_trim
&& !io_trim
)
438 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
439 tg
->bytes_disp
[rw
] -= bytes_trim
;
441 tg
->bytes_disp
[rw
] = 0;
443 if (tg
->io_disp
[rw
] >= io_trim
)
444 tg
->io_disp
[rw
] -= io_trim
;
448 tg
->slice_start
[rw
] += nr_slices
* throtl_slice
;
450 throtl_log_tg(td
, tg
, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
451 " start=%lu end=%lu jiffies=%lu",
452 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
453 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
456 static bool tg_with_in_iops_limit(struct throtl_data
*td
, struct throtl_grp
*tg
,
457 struct bio
*bio
, unsigned long *wait
)
459 bool rw
= bio_data_dir(bio
);
460 unsigned int io_allowed
;
461 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
464 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
466 /* Slice has just started. Consider one slice interval */
468 jiffy_elapsed_rnd
= throtl_slice
;
470 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
473 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
474 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
475 * will allow dispatch after 1 second and after that slice should
479 tmp
= (u64
)tg
->iops
[rw
] * jiffy_elapsed_rnd
;
483 io_allowed
= UINT_MAX
;
487 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
493 /* Calc approx time to dispatch */
494 jiffy_wait
= ((tg
->io_disp
[rw
] + 1) * HZ
)/tg
->iops
[rw
] + 1;
496 if (jiffy_wait
> jiffy_elapsed
)
497 jiffy_wait
= jiffy_wait
- jiffy_elapsed
;
506 static bool tg_with_in_bps_limit(struct throtl_data
*td
, struct throtl_grp
*tg
,
507 struct bio
*bio
, unsigned long *wait
)
509 bool rw
= bio_data_dir(bio
);
510 u64 bytes_allowed
, extra_bytes
, tmp
;
511 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
513 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
515 /* Slice has just started. Consider one slice interval */
517 jiffy_elapsed_rnd
= throtl_slice
;
519 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
521 tmp
= tg
->bps
[rw
] * jiffy_elapsed_rnd
;
525 if (tg
->bytes_disp
[rw
] + bio
->bi_size
<= bytes_allowed
) {
531 /* Calc approx time to dispatch */
532 extra_bytes
= tg
->bytes_disp
[rw
] + bio
->bi_size
- bytes_allowed
;
533 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg
->bps
[rw
]);
539 * This wait time is without taking into consideration the rounding
540 * up we did. Add that time also.
542 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
549 * Returns whether one can dispatch a bio or not. Also returns approx number
550 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
552 static bool tg_may_dispatch(struct throtl_data
*td
, struct throtl_grp
*tg
,
553 struct bio
*bio
, unsigned long *wait
)
555 bool rw
= bio_data_dir(bio
);
556 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
559 * Currently whole state machine of group depends on first bio
560 * queued in the group bio list. So one should not be calling
561 * this function with a different bio if there are other bios
564 BUG_ON(tg
->nr_queued
[rw
] && bio
!= bio_list_peek(&tg
->bio_lists
[rw
]));
566 /* If tg->bps = -1, then BW is unlimited */
567 if (tg
->bps
[rw
] == -1 && tg
->iops
[rw
] == -1) {
574 * If previous slice expired, start a new one otherwise renew/extend
575 * existing slice to make sure it is at least throtl_slice interval
578 if (throtl_slice_used(td
, tg
, rw
))
579 throtl_start_new_slice(td
, tg
, rw
);
581 if (time_before(tg
->slice_end
[rw
], jiffies
+ throtl_slice
))
582 throtl_extend_slice(td
, tg
, rw
, jiffies
+ throtl_slice
);
585 if (tg_with_in_bps_limit(td
, tg
, bio
, &bps_wait
)
586 && tg_with_in_iops_limit(td
, tg
, bio
, &iops_wait
)) {
592 max_wait
= max(bps_wait
, iops_wait
);
597 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
598 throtl_extend_slice(td
, tg
, rw
, jiffies
+ max_wait
);
603 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
605 bool rw
= bio_data_dir(bio
);
606 bool sync
= bio
->bi_rw
& REQ_SYNC
;
608 /* Charge the bio to the group */
609 tg
->bytes_disp
[rw
] += bio
->bi_size
;
613 * TODO: This will take blkg->stats_lock. Figure out a way
614 * to avoid this cost.
616 blkiocg_update_dispatch_stats(&tg
->blkg
, bio
->bi_size
, rw
, sync
);
619 static void throtl_add_bio_tg(struct throtl_data
*td
, struct throtl_grp
*tg
,
622 bool rw
= bio_data_dir(bio
);
624 bio_list_add(&tg
->bio_lists
[rw
], bio
);
625 /* Take a bio reference on tg */
626 throtl_ref_get_tg(tg
);
629 throtl_enqueue_tg(td
, tg
);
632 static void tg_update_disptime(struct throtl_data
*td
, struct throtl_grp
*tg
)
634 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
637 if ((bio
= bio_list_peek(&tg
->bio_lists
[READ
])))
638 tg_may_dispatch(td
, tg
, bio
, &read_wait
);
640 if ((bio
= bio_list_peek(&tg
->bio_lists
[WRITE
])))
641 tg_may_dispatch(td
, tg
, bio
, &write_wait
);
643 min_wait
= min(read_wait
, write_wait
);
644 disptime
= jiffies
+ min_wait
;
646 /* Update dispatch time */
647 throtl_dequeue_tg(td
, tg
);
648 tg
->disptime
= disptime
;
649 throtl_enqueue_tg(td
, tg
);
652 static void tg_dispatch_one_bio(struct throtl_data
*td
, struct throtl_grp
*tg
,
653 bool rw
, struct bio_list
*bl
)
657 bio
= bio_list_pop(&tg
->bio_lists
[rw
]);
659 /* Drop bio reference on tg */
662 BUG_ON(td
->nr_queued
[rw
] <= 0);
665 throtl_charge_bio(tg
, bio
);
666 bio_list_add(bl
, bio
);
667 bio
->bi_rw
|= REQ_THROTTLED
;
669 throtl_trim_slice(td
, tg
, rw
);
672 static int throtl_dispatch_tg(struct throtl_data
*td
, struct throtl_grp
*tg
,
675 unsigned int nr_reads
= 0, nr_writes
= 0;
676 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
677 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
680 /* Try to dispatch 75% READS and 25% WRITES */
682 while ((bio
= bio_list_peek(&tg
->bio_lists
[READ
]))
683 && tg_may_dispatch(td
, tg
, bio
, NULL
)) {
685 tg_dispatch_one_bio(td
, tg
, bio_data_dir(bio
), bl
);
688 if (nr_reads
>= max_nr_reads
)
692 while ((bio
= bio_list_peek(&tg
->bio_lists
[WRITE
]))
693 && tg_may_dispatch(td
, tg
, bio
, NULL
)) {
695 tg_dispatch_one_bio(td
, tg
, bio_data_dir(bio
), bl
);
698 if (nr_writes
>= max_nr_writes
)
702 return nr_reads
+ nr_writes
;
705 static int throtl_select_dispatch(struct throtl_data
*td
, struct bio_list
*bl
)
707 unsigned int nr_disp
= 0;
708 struct throtl_grp
*tg
;
709 struct throtl_rb_root
*st
= &td
->tg_service_tree
;
712 tg
= throtl_rb_first(st
);
717 if (time_before(jiffies
, tg
->disptime
))
720 throtl_dequeue_tg(td
, tg
);
722 nr_disp
+= throtl_dispatch_tg(td
, tg
, bl
);
724 if (tg
->nr_queued
[0] || tg
->nr_queued
[1]) {
725 tg_update_disptime(td
, tg
);
726 throtl_enqueue_tg(td
, tg
);
729 if (nr_disp
>= throtl_quantum
)
736 static void throtl_process_limit_change(struct throtl_data
*td
)
738 struct throtl_grp
*tg
;
739 struct hlist_node
*pos
, *n
;
741 if (!td
->limits_changed
)
744 xchg(&td
->limits_changed
, false);
746 throtl_log(td
, "limits changed");
748 hlist_for_each_entry_safe(tg
, pos
, n
, &td
->tg_list
, tg_node
) {
749 if (!tg
->limits_changed
)
752 if (!xchg(&tg
->limits_changed
, false))
755 throtl_log_tg(td
, tg
, "limit change rbps=%llu wbps=%llu"
756 " riops=%u wiops=%u", tg
->bps
[READ
], tg
->bps
[WRITE
],
757 tg
->iops
[READ
], tg
->iops
[WRITE
]);
760 * Restart the slices for both READ and WRITES. It
761 * might happen that a group's limit are dropped
762 * suddenly and we don't want to account recently
763 * dispatched IO with new low rate
765 throtl_start_new_slice(td
, tg
, 0);
766 throtl_start_new_slice(td
, tg
, 1);
768 if (throtl_tg_on_rr(tg
))
769 tg_update_disptime(td
, tg
);
773 /* Dispatch throttled bios. Should be called without queue lock held. */
774 static int throtl_dispatch(struct request_queue
*q
)
776 struct throtl_data
*td
= q
->td
;
777 unsigned int nr_disp
= 0;
778 struct bio_list bio_list_on_stack
;
780 struct blk_plug plug
;
782 spin_lock_irq(q
->queue_lock
);
784 throtl_process_limit_change(td
);
786 if (!total_nr_queued(td
))
789 bio_list_init(&bio_list_on_stack
);
791 throtl_log(td
, "dispatch nr_queued=%lu read=%u write=%u",
792 total_nr_queued(td
), td
->nr_queued
[READ
],
793 td
->nr_queued
[WRITE
]);
795 nr_disp
= throtl_select_dispatch(td
, &bio_list_on_stack
);
798 throtl_log(td
, "bios disp=%u", nr_disp
);
800 throtl_schedule_next_dispatch(td
);
802 spin_unlock_irq(q
->queue_lock
);
805 * If we dispatched some requests, unplug the queue to make sure
809 blk_start_plug(&plug
);
810 while((bio
= bio_list_pop(&bio_list_on_stack
)))
811 generic_make_request(bio
);
812 blk_finish_plug(&plug
);
817 void blk_throtl_work(struct work_struct
*work
)
819 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
821 struct request_queue
*q
= td
->queue
;
826 /* Call with queue lock held */
828 throtl_schedule_delayed_work(struct throtl_data
*td
, unsigned long delay
)
831 struct delayed_work
*dwork
= &td
->throtl_work
;
833 /* schedule work if limits changed even if no bio is queued */
834 if (total_nr_queued(td
) > 0 || td
->limits_changed
) {
836 * We might have a work scheduled to be executed in future.
837 * Cancel that and schedule a new one.
839 __cancel_delayed_work(dwork
);
840 queue_delayed_work(kthrotld_workqueue
, dwork
, delay
);
841 throtl_log(td
, "schedule work. delay=%lu jiffies=%lu",
847 throtl_destroy_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
849 /* Something wrong if we are trying to remove same group twice */
850 BUG_ON(hlist_unhashed(&tg
->tg_node
));
852 hlist_del_init(&tg
->tg_node
);
855 * Put the reference taken at the time of creation so that when all
856 * queues are gone, group can be destroyed.
859 td
->nr_undestroyed_grps
--;
862 static void throtl_release_tgs(struct throtl_data
*td
)
864 struct hlist_node
*pos
, *n
;
865 struct throtl_grp
*tg
;
867 hlist_for_each_entry_safe(tg
, pos
, n
, &td
->tg_list
, tg_node
) {
869 * If cgroup removal path got to blk_group first and removed
870 * it from cgroup list, then it will take care of destroying
873 if (!blkiocg_del_blkio_group(&tg
->blkg
))
874 throtl_destroy_tg(td
, tg
);
878 static void throtl_td_free(struct throtl_data
*td
)
884 * Blk cgroup controller notification saying that blkio_group object is being
885 * delinked as associated cgroup object is going away. That also means that
886 * no new IO will come in this group. So get rid of this group as soon as
887 * any pending IO in the group is finished.
889 * This function is called under rcu_read_lock(). key is the rcu protected
890 * pointer. That means "key" is a valid throtl_data pointer as long as we are
893 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
894 * it should not be NULL as even if queue was going away, cgroup deltion
895 * path got to it first.
897 void throtl_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
900 struct throtl_data
*td
= key
;
902 spin_lock_irqsave(td
->queue
->queue_lock
, flags
);
903 throtl_destroy_tg(td
, tg_of_blkg(blkg
));
904 spin_unlock_irqrestore(td
->queue
->queue_lock
, flags
);
907 static void throtl_update_blkio_group_common(struct throtl_data
*td
,
908 struct throtl_grp
*tg
)
910 xchg(&tg
->limits_changed
, true);
911 xchg(&td
->limits_changed
, true);
912 /* Schedule a work now to process the limit change */
913 throtl_schedule_delayed_work(td
, 0);
917 * For all update functions, key should be a valid pointer because these
918 * update functions are called under blkcg_lock, that means, blkg is
919 * valid and in turn key is valid. queue exit path can not race because
922 * Can not take queue lock in update functions as queue lock under blkcg_lock
923 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
925 static void throtl_update_blkio_group_read_bps(void *key
,
926 struct blkio_group
*blkg
, u64 read_bps
)
928 struct throtl_data
*td
= key
;
929 struct throtl_grp
*tg
= tg_of_blkg(blkg
);
931 tg
->bps
[READ
] = read_bps
;
932 throtl_update_blkio_group_common(td
, tg
);
935 static void throtl_update_blkio_group_write_bps(void *key
,
936 struct blkio_group
*blkg
, u64 write_bps
)
938 struct throtl_data
*td
= key
;
939 struct throtl_grp
*tg
= tg_of_blkg(blkg
);
941 tg
->bps
[WRITE
] = write_bps
;
942 throtl_update_blkio_group_common(td
, tg
);
945 static void throtl_update_blkio_group_read_iops(void *key
,
946 struct blkio_group
*blkg
, unsigned int read_iops
)
948 struct throtl_data
*td
= key
;
949 struct throtl_grp
*tg
= tg_of_blkg(blkg
);
951 tg
->iops
[READ
] = read_iops
;
952 throtl_update_blkio_group_common(td
, tg
);
955 static void throtl_update_blkio_group_write_iops(void *key
,
956 struct blkio_group
*blkg
, unsigned int write_iops
)
958 struct throtl_data
*td
= key
;
959 struct throtl_grp
*tg
= tg_of_blkg(blkg
);
961 tg
->iops
[WRITE
] = write_iops
;
962 throtl_update_blkio_group_common(td
, tg
);
965 static void throtl_shutdown_wq(struct request_queue
*q
)
967 struct throtl_data
*td
= q
->td
;
969 cancel_delayed_work_sync(&td
->throtl_work
);
972 static struct blkio_policy_type blkio_policy_throtl
= {
974 .blkio_unlink_group_fn
= throtl_unlink_blkio_group
,
975 .blkio_update_group_read_bps_fn
=
976 throtl_update_blkio_group_read_bps
,
977 .blkio_update_group_write_bps_fn
=
978 throtl_update_blkio_group_write_bps
,
979 .blkio_update_group_read_iops_fn
=
980 throtl_update_blkio_group_read_iops
,
981 .blkio_update_group_write_iops_fn
=
982 throtl_update_blkio_group_write_iops
,
984 .plid
= BLKIO_POLICY_THROTL
,
987 int blk_throtl_bio(struct request_queue
*q
, struct bio
**biop
)
989 struct throtl_data
*td
= q
->td
;
990 struct throtl_grp
*tg
;
991 struct bio
*bio
= *biop
;
992 bool rw
= bio_data_dir(bio
), update_disptime
= true;
994 if (bio
->bi_rw
& REQ_THROTTLED
) {
995 bio
->bi_rw
&= ~REQ_THROTTLED
;
999 spin_lock_irq(q
->queue_lock
);
1000 tg
= throtl_get_tg(td
);
1002 if (tg
->nr_queued
[rw
]) {
1004 * There is already another bio queued in same dir. No
1005 * need to update dispatch time.
1007 update_disptime
= false;
1012 /* Bio is with-in rate limit of group */
1013 if (tg_may_dispatch(td
, tg
, bio
, NULL
)) {
1014 throtl_charge_bio(tg
, bio
);
1017 * We need to trim slice even when bios are not being queued
1018 * otherwise it might happen that a bio is not queued for
1019 * a long time and slice keeps on extending and trim is not
1020 * called for a long time. Now if limits are reduced suddenly
1021 * we take into account all the IO dispatched so far at new
1022 * low rate and * newly queued IO gets a really long dispatch
1025 * So keep on trimming slice even if bio is not queued.
1027 throtl_trim_slice(td
, tg
, rw
);
1032 throtl_log_tg(td
, tg
, "[%c] bio. bdisp=%u sz=%u bps=%llu"
1033 " iodisp=%u iops=%u queued=%d/%d",
1034 rw
== READ
? 'R' : 'W',
1035 tg
->bytes_disp
[rw
], bio
->bi_size
, tg
->bps
[rw
],
1036 tg
->io_disp
[rw
], tg
->iops
[rw
],
1037 tg
->nr_queued
[READ
], tg
->nr_queued
[WRITE
]);
1039 throtl_add_bio_tg(q
->td
, tg
, bio
);
1042 if (update_disptime
) {
1043 tg_update_disptime(td
, tg
);
1044 throtl_schedule_next_dispatch(td
);
1048 spin_unlock_irq(q
->queue_lock
);
1052 int blk_throtl_init(struct request_queue
*q
)
1054 struct throtl_data
*td
;
1055 struct throtl_grp
*tg
;
1057 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
1061 INIT_HLIST_HEAD(&td
->tg_list
);
1062 td
->tg_service_tree
= THROTL_RB_ROOT
;
1063 td
->limits_changed
= false;
1065 /* Init root group */
1067 INIT_HLIST_NODE(&tg
->tg_node
);
1068 RB_CLEAR_NODE(&tg
->rb_node
);
1069 bio_list_init(&tg
->bio_lists
[0]);
1070 bio_list_init(&tg
->bio_lists
[1]);
1072 /* Practically unlimited BW */
1073 tg
->bps
[0] = tg
->bps
[1] = -1;
1074 tg
->iops
[0] = tg
->iops
[1] = -1;
1075 td
->limits_changed
= false;
1078 * Set root group reference to 2. One reference will be dropped when
1079 * all groups on tg_list are being deleted during queue exit. Other
1080 * reference will remain there as we don't want to delete this group
1081 * as it is statically allocated and gets destroyed when throtl_data
1084 atomic_set(&tg
->ref
, 2);
1085 hlist_add_head(&tg
->tg_node
, &td
->tg_list
);
1086 td
->nr_undestroyed_grps
++;
1088 INIT_DELAYED_WORK(&td
->throtl_work
, blk_throtl_work
);
1091 blkiocg_add_blkio_group(&blkio_root_cgroup
, &tg
->blkg
, (void *)td
,
1092 0, BLKIO_POLICY_THROTL
);
1095 /* Attach throtl data to request queue */
1101 void blk_throtl_exit(struct request_queue
*q
)
1103 struct throtl_data
*td
= q
->td
;
1108 throtl_shutdown_wq(q
);
1110 spin_lock_irq(q
->queue_lock
);
1111 throtl_release_tgs(td
);
1113 /* If there are other groups */
1114 if (td
->nr_undestroyed_grps
> 0)
1117 spin_unlock_irq(q
->queue_lock
);
1120 * Wait for tg->blkg->key accessors to exit their grace periods.
1121 * Do this wait only if there are other undestroyed groups out
1122 * there (other than root group). This can happen if cgroup deletion
1123 * path claimed the responsibility of cleaning up a group before
1124 * queue cleanup code get to the group.
1126 * Do not call synchronize_rcu() unconditionally as there are drivers
1127 * which create/delete request queue hundreds of times during scan/boot
1128 * and synchronize_rcu() can take significant time and slow down boot.
1134 * Just being safe to make sure after previous flush if some body did
1135 * update limits through cgroup and another work got queued, cancel
1138 throtl_shutdown_wq(q
);
1142 static int __init
throtl_init(void)
1144 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
1145 if (!kthrotld_workqueue
)
1146 panic("Failed to create kthrotld\n");
1148 blkio_policy_register(&blkio_policy_throtl
);
1152 module_init(throtl_init
);