percpu: use KERN_CONT in pcpu_dump_alloc_info()
[linux-2.6.git] / include / linux / skbuff.h
blob33370271b8b2c43ac65925619d15305d27a7018c
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X) \
45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) + \
53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
56 /* A. Checksumming of received packets by device.
58 * NONE: device failed to checksum this packet.
59 * skb->csum is undefined.
61 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
62 * skb->csum is undefined.
63 * It is bad option, but, unfortunately, many of vendors do this.
64 * Apparently with secret goal to sell you new device, when you
65 * will add new protocol to your host. F.e. IPv6. 8)
67 * COMPLETE: the most generic way. Device supplied checksum of _all_
68 * the packet as seen by netif_rx in skb->csum.
69 * NOTE: Even if device supports only some protocols, but
70 * is able to produce some skb->csum, it MUST use COMPLETE,
71 * not UNNECESSARY.
73 * PARTIAL: identical to the case for output below. This may occur
74 * on a packet received directly from another Linux OS, e.g.,
75 * a virtualised Linux kernel on the same host. The packet can
76 * be treated in the same way as UNNECESSARY except that on
77 * output (i.e., forwarding) the checksum must be filled in
78 * by the OS or the hardware.
80 * B. Checksumming on output.
82 * NONE: skb is checksummed by protocol or csum is not required.
84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
85 * from skb->csum_start to the end and to record the checksum
86 * at skb->csum_start + skb->csum_offset.
88 * Device must show its capabilities in dev->features, set
89 * at device setup time.
90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
91 * everything.
92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93 * TCP/UDP over IPv4. Sigh. Vendors like this
94 * way by an unknown reason. Though, see comment above
95 * about CHECKSUM_UNNECESSARY. 8)
96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99 * that do not want net to perform the checksum calculation should use
100 * this flag in their outgoing skbs.
101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
102 * offload. Correspondingly, the FCoE protocol driver
103 * stack should use CHECKSUM_UNNECESSARY.
105 * Any questions? No questions, good. --ANK
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 atomic_t use;
116 #endif
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 atomic_t use;
121 struct net_device *physindev;
122 struct net_device *physoutdev;
123 unsigned int mask;
124 unsigned long data[32 / sizeof(unsigned long)];
126 #endif
128 struct sk_buff_head {
129 /* These two members must be first. */
130 struct sk_buff *next;
131 struct sk_buff *prev;
133 __u32 qlen;
134 spinlock_t lock;
137 struct sk_buff;
139 /* To allow 64K frame to be packed as single skb without frag_list we
140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141 * buffers which do not start on a page boundary.
143 * Since GRO uses frags we allocate at least 16 regardless of page
144 * size.
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
152 typedef struct skb_frag_struct skb_frag_t;
154 struct skb_frag_struct {
155 struct {
156 struct page *p;
157 } page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 __u32 page_offset;
160 __u32 size;
161 #else
162 __u16 page_offset;
163 __u16 size;
164 #endif
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
169 return frag->size;
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
174 frag->size = size;
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
179 frag->size += delta;
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
184 frag->size -= delta;
187 #define HAVE_HW_TIME_STAMP
190 * struct skb_shared_hwtstamps - hardware time stamps
191 * @hwtstamp: hardware time stamp transformed into duration
192 * since arbitrary point in time
193 * @syststamp: hwtstamp transformed to system time base
195 * Software time stamps generated by ktime_get_real() are stored in
196 * skb->tstamp. The relation between the different kinds of time
197 * stamps is as follows:
199 * syststamp and tstamp can be compared against each other in
200 * arbitrary combinations. The accuracy of a
201 * syststamp/tstamp/"syststamp from other device" comparison is
202 * limited by the accuracy of the transformation into system time
203 * base. This depends on the device driver and its underlying
204 * hardware.
206 * hwtstamps can only be compared against other hwtstamps from
207 * the same device.
209 * This structure is attached to packets as part of the
210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
212 struct skb_shared_hwtstamps {
213 ktime_t hwtstamp;
214 ktime_t syststamp;
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 /* generate hardware time stamp */
220 SKBTX_HW_TSTAMP = 1 << 0,
222 /* generate software time stamp */
223 SKBTX_SW_TSTAMP = 1 << 1,
225 /* device driver is going to provide hardware time stamp */
226 SKBTX_IN_PROGRESS = 1 << 2,
228 /* ensure the originating sk reference is available on driver level */
229 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
231 /* device driver supports TX zero-copy buffers */
232 SKBTX_DEV_ZEROCOPY = 1 << 4,
234 /* generate wifi status information (where possible) */
235 SKBTX_WIFI_STATUS = 1 << 5,
239 * The callback notifies userspace to release buffers when skb DMA is done in
240 * lower device, the skb last reference should be 0 when calling this.
241 * The desc is used to track userspace buffer index.
243 struct ubuf_info {
244 void (*callback)(void *);
245 void *arg;
246 unsigned long desc;
249 /* This data is invariant across clones and lives at
250 * the end of the header data, ie. at skb->end.
252 struct skb_shared_info {
253 unsigned char nr_frags;
254 __u8 tx_flags;
255 unsigned short gso_size;
256 /* Warning: this field is not always filled in (UFO)! */
257 unsigned short gso_segs;
258 unsigned short gso_type;
259 struct sk_buff *frag_list;
260 struct skb_shared_hwtstamps hwtstamps;
261 __be32 ip6_frag_id;
264 * Warning : all fields before dataref are cleared in __alloc_skb()
266 atomic_t dataref;
268 /* Intermediate layers must ensure that destructor_arg
269 * remains valid until skb destructor */
270 void * destructor_arg;
272 /* must be last field, see pskb_expand_head() */
273 skb_frag_t frags[MAX_SKB_FRAGS];
276 /* We divide dataref into two halves. The higher 16 bits hold references
277 * to the payload part of skb->data. The lower 16 bits hold references to
278 * the entire skb->data. A clone of a headerless skb holds the length of
279 * the header in skb->hdr_len.
281 * All users must obey the rule that the skb->data reference count must be
282 * greater than or equal to the payload reference count.
284 * Holding a reference to the payload part means that the user does not
285 * care about modifications to the header part of skb->data.
287 #define SKB_DATAREF_SHIFT 16
288 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
291 enum {
292 SKB_FCLONE_UNAVAILABLE,
293 SKB_FCLONE_ORIG,
294 SKB_FCLONE_CLONE,
297 enum {
298 SKB_GSO_TCPV4 = 1 << 0,
299 SKB_GSO_UDP = 1 << 1,
301 /* This indicates the skb is from an untrusted source. */
302 SKB_GSO_DODGY = 1 << 2,
304 /* This indicates the tcp segment has CWR set. */
305 SKB_GSO_TCP_ECN = 1 << 3,
307 SKB_GSO_TCPV6 = 1 << 4,
309 SKB_GSO_FCOE = 1 << 5,
312 #if BITS_PER_LONG > 32
313 #define NET_SKBUFF_DATA_USES_OFFSET 1
314 #endif
316 #ifdef NET_SKBUFF_DATA_USES_OFFSET
317 typedef unsigned int sk_buff_data_t;
318 #else
319 typedef unsigned char *sk_buff_data_t;
320 #endif
322 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
323 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
324 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
325 #endif
327 /**
328 * struct sk_buff - socket buffer
329 * @next: Next buffer in list
330 * @prev: Previous buffer in list
331 * @tstamp: Time we arrived
332 * @sk: Socket we are owned by
333 * @dev: Device we arrived on/are leaving by
334 * @cb: Control buffer. Free for use by every layer. Put private vars here
335 * @_skb_refdst: destination entry (with norefcount bit)
336 * @sp: the security path, used for xfrm
337 * @len: Length of actual data
338 * @data_len: Data length
339 * @mac_len: Length of link layer header
340 * @hdr_len: writable header length of cloned skb
341 * @csum: Checksum (must include start/offset pair)
342 * @csum_start: Offset from skb->head where checksumming should start
343 * @csum_offset: Offset from csum_start where checksum should be stored
344 * @priority: Packet queueing priority
345 * @local_df: allow local fragmentation
346 * @cloned: Head may be cloned (check refcnt to be sure)
347 * @ip_summed: Driver fed us an IP checksum
348 * @nohdr: Payload reference only, must not modify header
349 * @nfctinfo: Relationship of this skb to the connection
350 * @pkt_type: Packet class
351 * @fclone: skbuff clone status
352 * @ipvs_property: skbuff is owned by ipvs
353 * @peeked: this packet has been seen already, so stats have been
354 * done for it, don't do them again
355 * @nf_trace: netfilter packet trace flag
356 * @protocol: Packet protocol from driver
357 * @destructor: Destruct function
358 * @nfct: Associated connection, if any
359 * @nfct_reasm: netfilter conntrack re-assembly pointer
360 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
361 * @skb_iif: ifindex of device we arrived on
362 * @tc_index: Traffic control index
363 * @tc_verd: traffic control verdict
364 * @rxhash: the packet hash computed on receive
365 * @queue_mapping: Queue mapping for multiqueue devices
366 * @ndisc_nodetype: router type (from link layer)
367 * @ooo_okay: allow the mapping of a socket to a queue to be changed
368 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
369 * ports.
370 * @wifi_acked_valid: wifi_acked was set
371 * @wifi_acked: whether frame was acked on wifi or not
372 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
373 * @dma_cookie: a cookie to one of several possible DMA operations
374 * done by skb DMA functions
375 * @secmark: security marking
376 * @mark: Generic packet mark
377 * @dropcount: total number of sk_receive_queue overflows
378 * @vlan_tci: vlan tag control information
379 * @transport_header: Transport layer header
380 * @network_header: Network layer header
381 * @mac_header: Link layer header
382 * @tail: Tail pointer
383 * @end: End pointer
384 * @head: Head of buffer
385 * @data: Data head pointer
386 * @truesize: Buffer size
387 * @users: User count - see {datagram,tcp}.c
390 struct sk_buff {
391 /* These two members must be first. */
392 struct sk_buff *next;
393 struct sk_buff *prev;
395 ktime_t tstamp;
397 struct sock *sk;
398 struct net_device *dev;
401 * This is the control buffer. It is free to use for every
402 * layer. Please put your private variables there. If you
403 * want to keep them across layers you have to do a skb_clone()
404 * first. This is owned by whoever has the skb queued ATM.
406 char cb[48] __aligned(8);
408 unsigned long _skb_refdst;
409 #ifdef CONFIG_XFRM
410 struct sec_path *sp;
411 #endif
412 unsigned int len,
413 data_len;
414 __u16 mac_len,
415 hdr_len;
416 union {
417 __wsum csum;
418 struct {
419 __u16 csum_start;
420 __u16 csum_offset;
423 __u32 priority;
424 kmemcheck_bitfield_begin(flags1);
425 __u8 local_df:1,
426 cloned:1,
427 ip_summed:2,
428 nohdr:1,
429 nfctinfo:3;
430 __u8 pkt_type:3,
431 fclone:2,
432 ipvs_property:1,
433 peeked:1,
434 nf_trace:1;
435 kmemcheck_bitfield_end(flags1);
436 __be16 protocol;
438 void (*destructor)(struct sk_buff *skb);
439 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
440 struct nf_conntrack *nfct;
441 #endif
442 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
443 struct sk_buff *nfct_reasm;
444 #endif
445 #ifdef CONFIG_BRIDGE_NETFILTER
446 struct nf_bridge_info *nf_bridge;
447 #endif
449 int skb_iif;
451 __u32 rxhash;
453 __u16 vlan_tci;
455 #ifdef CONFIG_NET_SCHED
456 __u16 tc_index; /* traffic control index */
457 #ifdef CONFIG_NET_CLS_ACT
458 __u16 tc_verd; /* traffic control verdict */
459 #endif
460 #endif
462 __u16 queue_mapping;
463 kmemcheck_bitfield_begin(flags2);
464 #ifdef CONFIG_IPV6_NDISC_NODETYPE
465 __u8 ndisc_nodetype:2;
466 #endif
467 __u8 ooo_okay:1;
468 __u8 l4_rxhash:1;
469 __u8 wifi_acked_valid:1;
470 __u8 wifi_acked:1;
471 __u8 no_fcs:1;
472 /* 9/11 bit hole (depending on ndisc_nodetype presence) */
473 kmemcheck_bitfield_end(flags2);
475 #ifdef CONFIG_NET_DMA
476 dma_cookie_t dma_cookie;
477 #endif
478 #ifdef CONFIG_NETWORK_SECMARK
479 __u32 secmark;
480 #endif
481 union {
482 __u32 mark;
483 __u32 dropcount;
486 sk_buff_data_t transport_header;
487 sk_buff_data_t network_header;
488 sk_buff_data_t mac_header;
489 /* These elements must be at the end, see alloc_skb() for details. */
490 sk_buff_data_t tail;
491 sk_buff_data_t end;
492 unsigned char *head,
493 *data;
494 unsigned int truesize;
495 atomic_t users;
498 #ifdef __KERNEL__
500 * Handling routines are only of interest to the kernel
502 #include <linux/slab.h>
506 * skb might have a dst pointer attached, refcounted or not.
507 * _skb_refdst low order bit is set if refcount was _not_ taken
509 #define SKB_DST_NOREF 1UL
510 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
513 * skb_dst - returns skb dst_entry
514 * @skb: buffer
516 * Returns skb dst_entry, regardless of reference taken or not.
518 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
520 /* If refdst was not refcounted, check we still are in a
521 * rcu_read_lock section
523 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
524 !rcu_read_lock_held() &&
525 !rcu_read_lock_bh_held());
526 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
530 * skb_dst_set - sets skb dst
531 * @skb: buffer
532 * @dst: dst entry
534 * Sets skb dst, assuming a reference was taken on dst and should
535 * be released by skb_dst_drop()
537 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
539 skb->_skb_refdst = (unsigned long)dst;
542 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
545 * skb_dst_is_noref - Test if skb dst isn't refcounted
546 * @skb: buffer
548 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
550 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
553 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
555 return (struct rtable *)skb_dst(skb);
558 extern void kfree_skb(struct sk_buff *skb);
559 extern void consume_skb(struct sk_buff *skb);
560 extern void __kfree_skb(struct sk_buff *skb);
561 extern struct sk_buff *__alloc_skb(unsigned int size,
562 gfp_t priority, int fclone, int node);
563 extern struct sk_buff *build_skb(void *data);
564 static inline struct sk_buff *alloc_skb(unsigned int size,
565 gfp_t priority)
567 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
570 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
571 gfp_t priority)
573 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
576 extern void skb_recycle(struct sk_buff *skb);
577 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
579 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
580 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
581 extern struct sk_buff *skb_clone(struct sk_buff *skb,
582 gfp_t priority);
583 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
584 gfp_t priority);
585 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
586 int headroom, gfp_t gfp_mask);
588 extern int pskb_expand_head(struct sk_buff *skb,
589 int nhead, int ntail,
590 gfp_t gfp_mask);
591 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
592 unsigned int headroom);
593 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
594 int newheadroom, int newtailroom,
595 gfp_t priority);
596 extern int skb_to_sgvec(struct sk_buff *skb,
597 struct scatterlist *sg, int offset,
598 int len);
599 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
600 struct sk_buff **trailer);
601 extern int skb_pad(struct sk_buff *skb, int pad);
602 #define dev_kfree_skb(a) consume_skb(a)
604 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
605 int getfrag(void *from, char *to, int offset,
606 int len,int odd, struct sk_buff *skb),
607 void *from, int length);
609 struct skb_seq_state {
610 __u32 lower_offset;
611 __u32 upper_offset;
612 __u32 frag_idx;
613 __u32 stepped_offset;
614 struct sk_buff *root_skb;
615 struct sk_buff *cur_skb;
616 __u8 *frag_data;
619 extern void skb_prepare_seq_read(struct sk_buff *skb,
620 unsigned int from, unsigned int to,
621 struct skb_seq_state *st);
622 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
623 struct skb_seq_state *st);
624 extern void skb_abort_seq_read(struct skb_seq_state *st);
626 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
627 unsigned int to, struct ts_config *config,
628 struct ts_state *state);
630 extern void __skb_get_rxhash(struct sk_buff *skb);
631 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
633 if (!skb->rxhash)
634 __skb_get_rxhash(skb);
636 return skb->rxhash;
639 #ifdef NET_SKBUFF_DATA_USES_OFFSET
640 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
642 return skb->head + skb->end;
644 #else
645 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
647 return skb->end;
649 #endif
651 /* Internal */
652 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
654 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
656 return &skb_shinfo(skb)->hwtstamps;
660 * skb_queue_empty - check if a queue is empty
661 * @list: queue head
663 * Returns true if the queue is empty, false otherwise.
665 static inline int skb_queue_empty(const struct sk_buff_head *list)
667 return list->next == (struct sk_buff *)list;
671 * skb_queue_is_last - check if skb is the last entry in the queue
672 * @list: queue head
673 * @skb: buffer
675 * Returns true if @skb is the last buffer on the list.
677 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
678 const struct sk_buff *skb)
680 return skb->next == (struct sk_buff *)list;
684 * skb_queue_is_first - check if skb is the first entry in the queue
685 * @list: queue head
686 * @skb: buffer
688 * Returns true if @skb is the first buffer on the list.
690 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
691 const struct sk_buff *skb)
693 return skb->prev == (struct sk_buff *)list;
697 * skb_queue_next - return the next packet in the queue
698 * @list: queue head
699 * @skb: current buffer
701 * Return the next packet in @list after @skb. It is only valid to
702 * call this if skb_queue_is_last() evaluates to false.
704 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
705 const struct sk_buff *skb)
707 /* This BUG_ON may seem severe, but if we just return then we
708 * are going to dereference garbage.
710 BUG_ON(skb_queue_is_last(list, skb));
711 return skb->next;
715 * skb_queue_prev - return the prev packet in the queue
716 * @list: queue head
717 * @skb: current buffer
719 * Return the prev packet in @list before @skb. It is only valid to
720 * call this if skb_queue_is_first() evaluates to false.
722 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
723 const struct sk_buff *skb)
725 /* This BUG_ON may seem severe, but if we just return then we
726 * are going to dereference garbage.
728 BUG_ON(skb_queue_is_first(list, skb));
729 return skb->prev;
733 * skb_get - reference buffer
734 * @skb: buffer to reference
736 * Makes another reference to a socket buffer and returns a pointer
737 * to the buffer.
739 static inline struct sk_buff *skb_get(struct sk_buff *skb)
741 atomic_inc(&skb->users);
742 return skb;
746 * If users == 1, we are the only owner and are can avoid redundant
747 * atomic change.
751 * skb_cloned - is the buffer a clone
752 * @skb: buffer to check
754 * Returns true if the buffer was generated with skb_clone() and is
755 * one of multiple shared copies of the buffer. Cloned buffers are
756 * shared data so must not be written to under normal circumstances.
758 static inline int skb_cloned(const struct sk_buff *skb)
760 return skb->cloned &&
761 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
765 * skb_header_cloned - is the header a clone
766 * @skb: buffer to check
768 * Returns true if modifying the header part of the buffer requires
769 * the data to be copied.
771 static inline int skb_header_cloned(const struct sk_buff *skb)
773 int dataref;
775 if (!skb->cloned)
776 return 0;
778 dataref = atomic_read(&skb_shinfo(skb)->dataref);
779 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
780 return dataref != 1;
784 * skb_header_release - release reference to header
785 * @skb: buffer to operate on
787 * Drop a reference to the header part of the buffer. This is done
788 * by acquiring a payload reference. You must not read from the header
789 * part of skb->data after this.
791 static inline void skb_header_release(struct sk_buff *skb)
793 BUG_ON(skb->nohdr);
794 skb->nohdr = 1;
795 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
799 * skb_shared - is the buffer shared
800 * @skb: buffer to check
802 * Returns true if more than one person has a reference to this
803 * buffer.
805 static inline int skb_shared(const struct sk_buff *skb)
807 return atomic_read(&skb->users) != 1;
811 * skb_share_check - check if buffer is shared and if so clone it
812 * @skb: buffer to check
813 * @pri: priority for memory allocation
815 * If the buffer is shared the buffer is cloned and the old copy
816 * drops a reference. A new clone with a single reference is returned.
817 * If the buffer is not shared the original buffer is returned. When
818 * being called from interrupt status or with spinlocks held pri must
819 * be GFP_ATOMIC.
821 * NULL is returned on a memory allocation failure.
823 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
824 gfp_t pri)
826 might_sleep_if(pri & __GFP_WAIT);
827 if (skb_shared(skb)) {
828 struct sk_buff *nskb = skb_clone(skb, pri);
829 kfree_skb(skb);
830 skb = nskb;
832 return skb;
836 * Copy shared buffers into a new sk_buff. We effectively do COW on
837 * packets to handle cases where we have a local reader and forward
838 * and a couple of other messy ones. The normal one is tcpdumping
839 * a packet thats being forwarded.
843 * skb_unshare - make a copy of a shared buffer
844 * @skb: buffer to check
845 * @pri: priority for memory allocation
847 * If the socket buffer is a clone then this function creates a new
848 * copy of the data, drops a reference count on the old copy and returns
849 * the new copy with the reference count at 1. If the buffer is not a clone
850 * the original buffer is returned. When called with a spinlock held or
851 * from interrupt state @pri must be %GFP_ATOMIC
853 * %NULL is returned on a memory allocation failure.
855 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
856 gfp_t pri)
858 might_sleep_if(pri & __GFP_WAIT);
859 if (skb_cloned(skb)) {
860 struct sk_buff *nskb = skb_copy(skb, pri);
861 kfree_skb(skb); /* Free our shared copy */
862 skb = nskb;
864 return skb;
868 * skb_peek - peek at the head of an &sk_buff_head
869 * @list_: list to peek at
871 * Peek an &sk_buff. Unlike most other operations you _MUST_
872 * be careful with this one. A peek leaves the buffer on the
873 * list and someone else may run off with it. You must hold
874 * the appropriate locks or have a private queue to do this.
876 * Returns %NULL for an empty list or a pointer to the head element.
877 * The reference count is not incremented and the reference is therefore
878 * volatile. Use with caution.
880 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
882 struct sk_buff *list = ((const struct sk_buff *)list_)->next;
883 if (list == (struct sk_buff *)list_)
884 list = NULL;
885 return list;
889 * skb_peek_next - peek skb following the given one from a queue
890 * @skb: skb to start from
891 * @list_: list to peek at
893 * Returns %NULL when the end of the list is met or a pointer to the
894 * next element. The reference count is not incremented and the
895 * reference is therefore volatile. Use with caution.
897 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
898 const struct sk_buff_head *list_)
900 struct sk_buff *next = skb->next;
901 if (next == (struct sk_buff *)list_)
902 next = NULL;
903 return next;
907 * skb_peek_tail - peek at the tail of an &sk_buff_head
908 * @list_: list to peek at
910 * Peek an &sk_buff. Unlike most other operations you _MUST_
911 * be careful with this one. A peek leaves the buffer on the
912 * list and someone else may run off with it. You must hold
913 * the appropriate locks or have a private queue to do this.
915 * Returns %NULL for an empty list or a pointer to the tail element.
916 * The reference count is not incremented and the reference is therefore
917 * volatile. Use with caution.
919 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
921 struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
922 if (list == (struct sk_buff *)list_)
923 list = NULL;
924 return list;
928 * skb_queue_len - get queue length
929 * @list_: list to measure
931 * Return the length of an &sk_buff queue.
933 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
935 return list_->qlen;
939 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
940 * @list: queue to initialize
942 * This initializes only the list and queue length aspects of
943 * an sk_buff_head object. This allows to initialize the list
944 * aspects of an sk_buff_head without reinitializing things like
945 * the spinlock. It can also be used for on-stack sk_buff_head
946 * objects where the spinlock is known to not be used.
948 static inline void __skb_queue_head_init(struct sk_buff_head *list)
950 list->prev = list->next = (struct sk_buff *)list;
951 list->qlen = 0;
955 * This function creates a split out lock class for each invocation;
956 * this is needed for now since a whole lot of users of the skb-queue
957 * infrastructure in drivers have different locking usage (in hardirq)
958 * than the networking core (in softirq only). In the long run either the
959 * network layer or drivers should need annotation to consolidate the
960 * main types of usage into 3 classes.
962 static inline void skb_queue_head_init(struct sk_buff_head *list)
964 spin_lock_init(&list->lock);
965 __skb_queue_head_init(list);
968 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
969 struct lock_class_key *class)
971 skb_queue_head_init(list);
972 lockdep_set_class(&list->lock, class);
976 * Insert an sk_buff on a list.
978 * The "__skb_xxxx()" functions are the non-atomic ones that
979 * can only be called with interrupts disabled.
981 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
982 static inline void __skb_insert(struct sk_buff *newsk,
983 struct sk_buff *prev, struct sk_buff *next,
984 struct sk_buff_head *list)
986 newsk->next = next;
987 newsk->prev = prev;
988 next->prev = prev->next = newsk;
989 list->qlen++;
992 static inline void __skb_queue_splice(const struct sk_buff_head *list,
993 struct sk_buff *prev,
994 struct sk_buff *next)
996 struct sk_buff *first = list->next;
997 struct sk_buff *last = list->prev;
999 first->prev = prev;
1000 prev->next = first;
1002 last->next = next;
1003 next->prev = last;
1007 * skb_queue_splice - join two skb lists, this is designed for stacks
1008 * @list: the new list to add
1009 * @head: the place to add it in the first list
1011 static inline void skb_queue_splice(const struct sk_buff_head *list,
1012 struct sk_buff_head *head)
1014 if (!skb_queue_empty(list)) {
1015 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1016 head->qlen += list->qlen;
1021 * skb_queue_splice - join two skb lists and reinitialise the emptied list
1022 * @list: the new list to add
1023 * @head: the place to add it in the first list
1025 * The list at @list is reinitialised
1027 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1028 struct sk_buff_head *head)
1030 if (!skb_queue_empty(list)) {
1031 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1032 head->qlen += list->qlen;
1033 __skb_queue_head_init(list);
1038 * skb_queue_splice_tail - join two skb lists, each list being a queue
1039 * @list: the new list to add
1040 * @head: the place to add it in the first list
1042 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1043 struct sk_buff_head *head)
1045 if (!skb_queue_empty(list)) {
1046 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1047 head->qlen += list->qlen;
1052 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1053 * @list: the new list to add
1054 * @head: the place to add it in the first list
1056 * Each of the lists is a queue.
1057 * The list at @list is reinitialised
1059 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1060 struct sk_buff_head *head)
1062 if (!skb_queue_empty(list)) {
1063 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1064 head->qlen += list->qlen;
1065 __skb_queue_head_init(list);
1070 * __skb_queue_after - queue a buffer at the list head
1071 * @list: list to use
1072 * @prev: place after this buffer
1073 * @newsk: buffer to queue
1075 * Queue a buffer int the middle of a list. This function takes no locks
1076 * and you must therefore hold required locks before calling it.
1078 * A buffer cannot be placed on two lists at the same time.
1080 static inline void __skb_queue_after(struct sk_buff_head *list,
1081 struct sk_buff *prev,
1082 struct sk_buff *newsk)
1084 __skb_insert(newsk, prev, prev->next, list);
1087 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1088 struct sk_buff_head *list);
1090 static inline void __skb_queue_before(struct sk_buff_head *list,
1091 struct sk_buff *next,
1092 struct sk_buff *newsk)
1094 __skb_insert(newsk, next->prev, next, list);
1098 * __skb_queue_head - queue a buffer at the list head
1099 * @list: list to use
1100 * @newsk: buffer to queue
1102 * Queue a buffer at the start of a list. This function takes no locks
1103 * and you must therefore hold required locks before calling it.
1105 * A buffer cannot be placed on two lists at the same time.
1107 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1108 static inline void __skb_queue_head(struct sk_buff_head *list,
1109 struct sk_buff *newsk)
1111 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1115 * __skb_queue_tail - queue a buffer at the list tail
1116 * @list: list to use
1117 * @newsk: buffer to queue
1119 * Queue a buffer at the end of a list. This function takes no locks
1120 * and you must therefore hold required locks before calling it.
1122 * A buffer cannot be placed on two lists at the same time.
1124 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1125 static inline void __skb_queue_tail(struct sk_buff_head *list,
1126 struct sk_buff *newsk)
1128 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1132 * remove sk_buff from list. _Must_ be called atomically, and with
1133 * the list known..
1135 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1136 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1138 struct sk_buff *next, *prev;
1140 list->qlen--;
1141 next = skb->next;
1142 prev = skb->prev;
1143 skb->next = skb->prev = NULL;
1144 next->prev = prev;
1145 prev->next = next;
1149 * __skb_dequeue - remove from the head of the queue
1150 * @list: list to dequeue from
1152 * Remove the head of the list. This function does not take any locks
1153 * so must be used with appropriate locks held only. The head item is
1154 * returned or %NULL if the list is empty.
1156 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1157 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1159 struct sk_buff *skb = skb_peek(list);
1160 if (skb)
1161 __skb_unlink(skb, list);
1162 return skb;
1166 * __skb_dequeue_tail - remove from the tail of the queue
1167 * @list: list to dequeue from
1169 * Remove the tail of the list. This function does not take any locks
1170 * so must be used with appropriate locks held only. The tail item is
1171 * returned or %NULL if the list is empty.
1173 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1174 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1176 struct sk_buff *skb = skb_peek_tail(list);
1177 if (skb)
1178 __skb_unlink(skb, list);
1179 return skb;
1183 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1185 return skb->data_len;
1188 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1190 return skb->len - skb->data_len;
1193 static inline int skb_pagelen(const struct sk_buff *skb)
1195 int i, len = 0;
1197 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1198 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1199 return len + skb_headlen(skb);
1203 * __skb_fill_page_desc - initialise a paged fragment in an skb
1204 * @skb: buffer containing fragment to be initialised
1205 * @i: paged fragment index to initialise
1206 * @page: the page to use for this fragment
1207 * @off: the offset to the data with @page
1208 * @size: the length of the data
1210 * Initialises the @i'th fragment of @skb to point to &size bytes at
1211 * offset @off within @page.
1213 * Does not take any additional reference on the fragment.
1215 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1216 struct page *page, int off, int size)
1218 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1220 frag->page.p = page;
1221 frag->page_offset = off;
1222 skb_frag_size_set(frag, size);
1226 * skb_fill_page_desc - initialise a paged fragment in an skb
1227 * @skb: buffer containing fragment to be initialised
1228 * @i: paged fragment index to initialise
1229 * @page: the page to use for this fragment
1230 * @off: the offset to the data with @page
1231 * @size: the length of the data
1233 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1234 * @skb to point to &size bytes at offset @off within @page. In
1235 * addition updates @skb such that @i is the last fragment.
1237 * Does not take any additional reference on the fragment.
1239 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1240 struct page *page, int off, int size)
1242 __skb_fill_page_desc(skb, i, page, off, size);
1243 skb_shinfo(skb)->nr_frags = i + 1;
1246 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1247 int off, int size, unsigned int truesize);
1249 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1250 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1251 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1253 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1254 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1256 return skb->head + skb->tail;
1259 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1261 skb->tail = skb->data - skb->head;
1264 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1266 skb_reset_tail_pointer(skb);
1267 skb->tail += offset;
1269 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1270 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1272 return skb->tail;
1275 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1277 skb->tail = skb->data;
1280 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1282 skb->tail = skb->data + offset;
1285 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1288 * Add data to an sk_buff
1290 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1291 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1293 unsigned char *tmp = skb_tail_pointer(skb);
1294 SKB_LINEAR_ASSERT(skb);
1295 skb->tail += len;
1296 skb->len += len;
1297 return tmp;
1300 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1301 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1303 skb->data -= len;
1304 skb->len += len;
1305 return skb->data;
1308 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1309 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1311 skb->len -= len;
1312 BUG_ON(skb->len < skb->data_len);
1313 return skb->data += len;
1316 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1318 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1321 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1323 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1325 if (len > skb_headlen(skb) &&
1326 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1327 return NULL;
1328 skb->len -= len;
1329 return skb->data += len;
1332 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1334 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1337 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1339 if (likely(len <= skb_headlen(skb)))
1340 return 1;
1341 if (unlikely(len > skb->len))
1342 return 0;
1343 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1347 * skb_headroom - bytes at buffer head
1348 * @skb: buffer to check
1350 * Return the number of bytes of free space at the head of an &sk_buff.
1352 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1354 return skb->data - skb->head;
1358 * skb_tailroom - bytes at buffer end
1359 * @skb: buffer to check
1361 * Return the number of bytes of free space at the tail of an sk_buff
1363 static inline int skb_tailroom(const struct sk_buff *skb)
1365 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1369 * skb_reserve - adjust headroom
1370 * @skb: buffer to alter
1371 * @len: bytes to move
1373 * Increase the headroom of an empty &sk_buff by reducing the tail
1374 * room. This is only allowed for an empty buffer.
1376 static inline void skb_reserve(struct sk_buff *skb, int len)
1378 skb->data += len;
1379 skb->tail += len;
1382 static inline void skb_reset_mac_len(struct sk_buff *skb)
1384 skb->mac_len = skb->network_header - skb->mac_header;
1387 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1388 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1390 return skb->head + skb->transport_header;
1393 static inline void skb_reset_transport_header(struct sk_buff *skb)
1395 skb->transport_header = skb->data - skb->head;
1398 static inline void skb_set_transport_header(struct sk_buff *skb,
1399 const int offset)
1401 skb_reset_transport_header(skb);
1402 skb->transport_header += offset;
1405 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1407 return skb->head + skb->network_header;
1410 static inline void skb_reset_network_header(struct sk_buff *skb)
1412 skb->network_header = skb->data - skb->head;
1415 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1417 skb_reset_network_header(skb);
1418 skb->network_header += offset;
1421 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1423 return skb->head + skb->mac_header;
1426 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1428 return skb->mac_header != ~0U;
1431 static inline void skb_reset_mac_header(struct sk_buff *skb)
1433 skb->mac_header = skb->data - skb->head;
1436 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1438 skb_reset_mac_header(skb);
1439 skb->mac_header += offset;
1442 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1444 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1446 return skb->transport_header;
1449 static inline void skb_reset_transport_header(struct sk_buff *skb)
1451 skb->transport_header = skb->data;
1454 static inline void skb_set_transport_header(struct sk_buff *skb,
1455 const int offset)
1457 skb->transport_header = skb->data + offset;
1460 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1462 return skb->network_header;
1465 static inline void skb_reset_network_header(struct sk_buff *skb)
1467 skb->network_header = skb->data;
1470 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1472 skb->network_header = skb->data + offset;
1475 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1477 return skb->mac_header;
1480 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1482 return skb->mac_header != NULL;
1485 static inline void skb_reset_mac_header(struct sk_buff *skb)
1487 skb->mac_header = skb->data;
1490 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1492 skb->mac_header = skb->data + offset;
1494 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1496 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1498 if (skb_mac_header_was_set(skb)) {
1499 const unsigned char *old_mac = skb_mac_header(skb);
1501 skb_set_mac_header(skb, -skb->mac_len);
1502 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1506 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1508 return skb->csum_start - skb_headroom(skb);
1511 static inline int skb_transport_offset(const struct sk_buff *skb)
1513 return skb_transport_header(skb) - skb->data;
1516 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1518 return skb->transport_header - skb->network_header;
1521 static inline int skb_network_offset(const struct sk_buff *skb)
1523 return skb_network_header(skb) - skb->data;
1526 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1528 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1532 * CPUs often take a performance hit when accessing unaligned memory
1533 * locations. The actual performance hit varies, it can be small if the
1534 * hardware handles it or large if we have to take an exception and fix it
1535 * in software.
1537 * Since an ethernet header is 14 bytes network drivers often end up with
1538 * the IP header at an unaligned offset. The IP header can be aligned by
1539 * shifting the start of the packet by 2 bytes. Drivers should do this
1540 * with:
1542 * skb_reserve(skb, NET_IP_ALIGN);
1544 * The downside to this alignment of the IP header is that the DMA is now
1545 * unaligned. On some architectures the cost of an unaligned DMA is high
1546 * and this cost outweighs the gains made by aligning the IP header.
1548 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1549 * to be overridden.
1551 #ifndef NET_IP_ALIGN
1552 #define NET_IP_ALIGN 2
1553 #endif
1556 * The networking layer reserves some headroom in skb data (via
1557 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1558 * the header has to grow. In the default case, if the header has to grow
1559 * 32 bytes or less we avoid the reallocation.
1561 * Unfortunately this headroom changes the DMA alignment of the resulting
1562 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1563 * on some architectures. An architecture can override this value,
1564 * perhaps setting it to a cacheline in size (since that will maintain
1565 * cacheline alignment of the DMA). It must be a power of 2.
1567 * Various parts of the networking layer expect at least 32 bytes of
1568 * headroom, you should not reduce this.
1570 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1571 * to reduce average number of cache lines per packet.
1572 * get_rps_cpus() for example only access one 64 bytes aligned block :
1573 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1575 #ifndef NET_SKB_PAD
1576 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1577 #endif
1579 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1581 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1583 if (unlikely(skb_is_nonlinear(skb))) {
1584 WARN_ON(1);
1585 return;
1587 skb->len = len;
1588 skb_set_tail_pointer(skb, len);
1591 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1593 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1595 if (skb->data_len)
1596 return ___pskb_trim(skb, len);
1597 __skb_trim(skb, len);
1598 return 0;
1601 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1603 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1607 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1608 * @skb: buffer to alter
1609 * @len: new length
1611 * This is identical to pskb_trim except that the caller knows that
1612 * the skb is not cloned so we should never get an error due to out-
1613 * of-memory.
1615 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1617 int err = pskb_trim(skb, len);
1618 BUG_ON(err);
1622 * skb_orphan - orphan a buffer
1623 * @skb: buffer to orphan
1625 * If a buffer currently has an owner then we call the owner's
1626 * destructor function and make the @skb unowned. The buffer continues
1627 * to exist but is no longer charged to its former owner.
1629 static inline void skb_orphan(struct sk_buff *skb)
1631 if (skb->destructor)
1632 skb->destructor(skb);
1633 skb->destructor = NULL;
1634 skb->sk = NULL;
1638 * __skb_queue_purge - empty a list
1639 * @list: list to empty
1641 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1642 * the list and one reference dropped. This function does not take the
1643 * list lock and the caller must hold the relevant locks to use it.
1645 extern void skb_queue_purge(struct sk_buff_head *list);
1646 static inline void __skb_queue_purge(struct sk_buff_head *list)
1648 struct sk_buff *skb;
1649 while ((skb = __skb_dequeue(list)) != NULL)
1650 kfree_skb(skb);
1654 * __dev_alloc_skb - allocate an skbuff for receiving
1655 * @length: length to allocate
1656 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1658 * Allocate a new &sk_buff and assign it a usage count of one. The
1659 * buffer has unspecified headroom built in. Users should allocate
1660 * the headroom they think they need without accounting for the
1661 * built in space. The built in space is used for optimisations.
1663 * %NULL is returned if there is no free memory.
1665 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1666 gfp_t gfp_mask)
1668 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1669 if (likely(skb))
1670 skb_reserve(skb, NET_SKB_PAD);
1671 return skb;
1674 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1676 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1677 unsigned int length, gfp_t gfp_mask);
1680 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1681 * @dev: network device to receive on
1682 * @length: length to allocate
1684 * Allocate a new &sk_buff and assign it a usage count of one. The
1685 * buffer has unspecified headroom built in. Users should allocate
1686 * the headroom they think they need without accounting for the
1687 * built in space. The built in space is used for optimisations.
1689 * %NULL is returned if there is no free memory. Although this function
1690 * allocates memory it can be called from an interrupt.
1692 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1693 unsigned int length)
1695 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1698 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1699 unsigned int length, gfp_t gfp)
1701 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1703 if (NET_IP_ALIGN && skb)
1704 skb_reserve(skb, NET_IP_ALIGN);
1705 return skb;
1708 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1709 unsigned int length)
1711 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1715 * skb_frag_page - retrieve the page refered to by a paged fragment
1716 * @frag: the paged fragment
1718 * Returns the &struct page associated with @frag.
1720 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1722 return frag->page.p;
1726 * __skb_frag_ref - take an addition reference on a paged fragment.
1727 * @frag: the paged fragment
1729 * Takes an additional reference on the paged fragment @frag.
1731 static inline void __skb_frag_ref(skb_frag_t *frag)
1733 get_page(skb_frag_page(frag));
1737 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1738 * @skb: the buffer
1739 * @f: the fragment offset.
1741 * Takes an additional reference on the @f'th paged fragment of @skb.
1743 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1745 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1749 * __skb_frag_unref - release a reference on a paged fragment.
1750 * @frag: the paged fragment
1752 * Releases a reference on the paged fragment @frag.
1754 static inline void __skb_frag_unref(skb_frag_t *frag)
1756 put_page(skb_frag_page(frag));
1760 * skb_frag_unref - release a reference on a paged fragment of an skb.
1761 * @skb: the buffer
1762 * @f: the fragment offset
1764 * Releases a reference on the @f'th paged fragment of @skb.
1766 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1768 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1772 * skb_frag_address - gets the address of the data contained in a paged fragment
1773 * @frag: the paged fragment buffer
1775 * Returns the address of the data within @frag. The page must already
1776 * be mapped.
1778 static inline void *skb_frag_address(const skb_frag_t *frag)
1780 return page_address(skb_frag_page(frag)) + frag->page_offset;
1784 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1785 * @frag: the paged fragment buffer
1787 * Returns the address of the data within @frag. Checks that the page
1788 * is mapped and returns %NULL otherwise.
1790 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1792 void *ptr = page_address(skb_frag_page(frag));
1793 if (unlikely(!ptr))
1794 return NULL;
1796 return ptr + frag->page_offset;
1800 * __skb_frag_set_page - sets the page contained in a paged fragment
1801 * @frag: the paged fragment
1802 * @page: the page to set
1804 * Sets the fragment @frag to contain @page.
1806 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1808 frag->page.p = page;
1812 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1813 * @skb: the buffer
1814 * @f: the fragment offset
1815 * @page: the page to set
1817 * Sets the @f'th fragment of @skb to contain @page.
1819 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1820 struct page *page)
1822 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1826 * skb_frag_dma_map - maps a paged fragment via the DMA API
1827 * @dev: the device to map the fragment to
1828 * @frag: the paged fragment to map
1829 * @offset: the offset within the fragment (starting at the
1830 * fragment's own offset)
1831 * @size: the number of bytes to map
1832 * @dir: the direction of the mapping (%PCI_DMA_*)
1834 * Maps the page associated with @frag to @device.
1836 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1837 const skb_frag_t *frag,
1838 size_t offset, size_t size,
1839 enum dma_data_direction dir)
1841 return dma_map_page(dev, skb_frag_page(frag),
1842 frag->page_offset + offset, size, dir);
1845 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1846 gfp_t gfp_mask)
1848 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1852 * skb_clone_writable - is the header of a clone writable
1853 * @skb: buffer to check
1854 * @len: length up to which to write
1856 * Returns true if modifying the header part of the cloned buffer
1857 * does not requires the data to be copied.
1859 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1861 return !skb_header_cloned(skb) &&
1862 skb_headroom(skb) + len <= skb->hdr_len;
1865 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1866 int cloned)
1868 int delta = 0;
1870 if (headroom < NET_SKB_PAD)
1871 headroom = NET_SKB_PAD;
1872 if (headroom > skb_headroom(skb))
1873 delta = headroom - skb_headroom(skb);
1875 if (delta || cloned)
1876 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1877 GFP_ATOMIC);
1878 return 0;
1882 * skb_cow - copy header of skb when it is required
1883 * @skb: buffer to cow
1884 * @headroom: needed headroom
1886 * If the skb passed lacks sufficient headroom or its data part
1887 * is shared, data is reallocated. If reallocation fails, an error
1888 * is returned and original skb is not changed.
1890 * The result is skb with writable area skb->head...skb->tail
1891 * and at least @headroom of space at head.
1893 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1895 return __skb_cow(skb, headroom, skb_cloned(skb));
1899 * skb_cow_head - skb_cow but only making the head writable
1900 * @skb: buffer to cow
1901 * @headroom: needed headroom
1903 * This function is identical to skb_cow except that we replace the
1904 * skb_cloned check by skb_header_cloned. It should be used when
1905 * you only need to push on some header and do not need to modify
1906 * the data.
1908 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1910 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1914 * skb_padto - pad an skbuff up to a minimal size
1915 * @skb: buffer to pad
1916 * @len: minimal length
1918 * Pads up a buffer to ensure the trailing bytes exist and are
1919 * blanked. If the buffer already contains sufficient data it
1920 * is untouched. Otherwise it is extended. Returns zero on
1921 * success. The skb is freed on error.
1924 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1926 unsigned int size = skb->len;
1927 if (likely(size >= len))
1928 return 0;
1929 return skb_pad(skb, len - size);
1932 static inline int skb_add_data(struct sk_buff *skb,
1933 char __user *from, int copy)
1935 const int off = skb->len;
1937 if (skb->ip_summed == CHECKSUM_NONE) {
1938 int err = 0;
1939 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1940 copy, 0, &err);
1941 if (!err) {
1942 skb->csum = csum_block_add(skb->csum, csum, off);
1943 return 0;
1945 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1946 return 0;
1948 __skb_trim(skb, off);
1949 return -EFAULT;
1952 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1953 const struct page *page, int off)
1955 if (i) {
1956 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1958 return page == skb_frag_page(frag) &&
1959 off == frag->page_offset + skb_frag_size(frag);
1961 return 0;
1964 static inline int __skb_linearize(struct sk_buff *skb)
1966 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1970 * skb_linearize - convert paged skb to linear one
1971 * @skb: buffer to linarize
1973 * If there is no free memory -ENOMEM is returned, otherwise zero
1974 * is returned and the old skb data released.
1976 static inline int skb_linearize(struct sk_buff *skb)
1978 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1982 * skb_linearize_cow - make sure skb is linear and writable
1983 * @skb: buffer to process
1985 * If there is no free memory -ENOMEM is returned, otherwise zero
1986 * is returned and the old skb data released.
1988 static inline int skb_linearize_cow(struct sk_buff *skb)
1990 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1991 __skb_linearize(skb) : 0;
1995 * skb_postpull_rcsum - update checksum for received skb after pull
1996 * @skb: buffer to update
1997 * @start: start of data before pull
1998 * @len: length of data pulled
2000 * After doing a pull on a received packet, you need to call this to
2001 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2002 * CHECKSUM_NONE so that it can be recomputed from scratch.
2005 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2006 const void *start, unsigned int len)
2008 if (skb->ip_summed == CHECKSUM_COMPLETE)
2009 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2012 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2015 * pskb_trim_rcsum - trim received skb and update checksum
2016 * @skb: buffer to trim
2017 * @len: new length
2019 * This is exactly the same as pskb_trim except that it ensures the
2020 * checksum of received packets are still valid after the operation.
2023 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2025 if (likely(len >= skb->len))
2026 return 0;
2027 if (skb->ip_summed == CHECKSUM_COMPLETE)
2028 skb->ip_summed = CHECKSUM_NONE;
2029 return __pskb_trim(skb, len);
2032 #define skb_queue_walk(queue, skb) \
2033 for (skb = (queue)->next; \
2034 skb != (struct sk_buff *)(queue); \
2035 skb = skb->next)
2037 #define skb_queue_walk_safe(queue, skb, tmp) \
2038 for (skb = (queue)->next, tmp = skb->next; \
2039 skb != (struct sk_buff *)(queue); \
2040 skb = tmp, tmp = skb->next)
2042 #define skb_queue_walk_from(queue, skb) \
2043 for (; skb != (struct sk_buff *)(queue); \
2044 skb = skb->next)
2046 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2047 for (tmp = skb->next; \
2048 skb != (struct sk_buff *)(queue); \
2049 skb = tmp, tmp = skb->next)
2051 #define skb_queue_reverse_walk(queue, skb) \
2052 for (skb = (queue)->prev; \
2053 skb != (struct sk_buff *)(queue); \
2054 skb = skb->prev)
2056 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2057 for (skb = (queue)->prev, tmp = skb->prev; \
2058 skb != (struct sk_buff *)(queue); \
2059 skb = tmp, tmp = skb->prev)
2061 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2062 for (tmp = skb->prev; \
2063 skb != (struct sk_buff *)(queue); \
2064 skb = tmp, tmp = skb->prev)
2066 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2068 return skb_shinfo(skb)->frag_list != NULL;
2071 static inline void skb_frag_list_init(struct sk_buff *skb)
2073 skb_shinfo(skb)->frag_list = NULL;
2076 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2078 frag->next = skb_shinfo(skb)->frag_list;
2079 skb_shinfo(skb)->frag_list = frag;
2082 #define skb_walk_frags(skb, iter) \
2083 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2085 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2086 int *peeked, int *off, int *err);
2087 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2088 int noblock, int *err);
2089 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2090 struct poll_table_struct *wait);
2091 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2092 int offset, struct iovec *to,
2093 int size);
2094 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2095 int hlen,
2096 struct iovec *iov);
2097 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2098 int offset,
2099 const struct iovec *from,
2100 int from_offset,
2101 int len);
2102 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2103 int offset,
2104 const struct iovec *to,
2105 int to_offset,
2106 int size);
2107 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2108 extern void skb_free_datagram_locked(struct sock *sk,
2109 struct sk_buff *skb);
2110 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2111 unsigned int flags);
2112 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2113 int len, __wsum csum);
2114 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2115 void *to, int len);
2116 extern int skb_store_bits(struct sk_buff *skb, int offset,
2117 const void *from, int len);
2118 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2119 int offset, u8 *to, int len,
2120 __wsum csum);
2121 extern int skb_splice_bits(struct sk_buff *skb,
2122 unsigned int offset,
2123 struct pipe_inode_info *pipe,
2124 unsigned int len,
2125 unsigned int flags);
2126 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2127 extern void skb_split(struct sk_buff *skb,
2128 struct sk_buff *skb1, const u32 len);
2129 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2130 int shiftlen);
2132 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2133 netdev_features_t features);
2135 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2136 int len, void *buffer)
2138 int hlen = skb_headlen(skb);
2140 if (hlen - offset >= len)
2141 return skb->data + offset;
2143 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2144 return NULL;
2146 return buffer;
2149 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2150 void *to,
2151 const unsigned int len)
2153 memcpy(to, skb->data, len);
2156 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2157 const int offset, void *to,
2158 const unsigned int len)
2160 memcpy(to, skb->data + offset, len);
2163 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2164 const void *from,
2165 const unsigned int len)
2167 memcpy(skb->data, from, len);
2170 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2171 const int offset,
2172 const void *from,
2173 const unsigned int len)
2175 memcpy(skb->data + offset, from, len);
2178 extern void skb_init(void);
2180 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2182 return skb->tstamp;
2186 * skb_get_timestamp - get timestamp from a skb
2187 * @skb: skb to get stamp from
2188 * @stamp: pointer to struct timeval to store stamp in
2190 * Timestamps are stored in the skb as offsets to a base timestamp.
2191 * This function converts the offset back to a struct timeval and stores
2192 * it in stamp.
2194 static inline void skb_get_timestamp(const struct sk_buff *skb,
2195 struct timeval *stamp)
2197 *stamp = ktime_to_timeval(skb->tstamp);
2200 static inline void skb_get_timestampns(const struct sk_buff *skb,
2201 struct timespec *stamp)
2203 *stamp = ktime_to_timespec(skb->tstamp);
2206 static inline void __net_timestamp(struct sk_buff *skb)
2208 skb->tstamp = ktime_get_real();
2211 static inline ktime_t net_timedelta(ktime_t t)
2213 return ktime_sub(ktime_get_real(), t);
2216 static inline ktime_t net_invalid_timestamp(void)
2218 return ktime_set(0, 0);
2221 extern void skb_timestamping_init(void);
2223 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2225 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2226 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2228 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2230 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2234 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2236 return false;
2239 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2242 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2244 * PHY drivers may accept clones of transmitted packets for
2245 * timestamping via their phy_driver.txtstamp method. These drivers
2246 * must call this function to return the skb back to the stack, with
2247 * or without a timestamp.
2249 * @skb: clone of the the original outgoing packet
2250 * @hwtstamps: hardware time stamps, may be NULL if not available
2253 void skb_complete_tx_timestamp(struct sk_buff *skb,
2254 struct skb_shared_hwtstamps *hwtstamps);
2257 * skb_tstamp_tx - queue clone of skb with send time stamps
2258 * @orig_skb: the original outgoing packet
2259 * @hwtstamps: hardware time stamps, may be NULL if not available
2261 * If the skb has a socket associated, then this function clones the
2262 * skb (thus sharing the actual data and optional structures), stores
2263 * the optional hardware time stamping information (if non NULL) or
2264 * generates a software time stamp (otherwise), then queues the clone
2265 * to the error queue of the socket. Errors are silently ignored.
2267 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2268 struct skb_shared_hwtstamps *hwtstamps);
2270 static inline void sw_tx_timestamp(struct sk_buff *skb)
2272 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2273 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2274 skb_tstamp_tx(skb, NULL);
2278 * skb_tx_timestamp() - Driver hook for transmit timestamping
2280 * Ethernet MAC Drivers should call this function in their hard_xmit()
2281 * function immediately before giving the sk_buff to the MAC hardware.
2283 * @skb: A socket buffer.
2285 static inline void skb_tx_timestamp(struct sk_buff *skb)
2287 skb_clone_tx_timestamp(skb);
2288 sw_tx_timestamp(skb);
2292 * skb_complete_wifi_ack - deliver skb with wifi status
2294 * @skb: the original outgoing packet
2295 * @acked: ack status
2298 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2300 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2301 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2303 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2305 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2309 * skb_checksum_complete - Calculate checksum of an entire packet
2310 * @skb: packet to process
2312 * This function calculates the checksum over the entire packet plus
2313 * the value of skb->csum. The latter can be used to supply the
2314 * checksum of a pseudo header as used by TCP/UDP. It returns the
2315 * checksum.
2317 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2318 * this function can be used to verify that checksum on received
2319 * packets. In that case the function should return zero if the
2320 * checksum is correct. In particular, this function will return zero
2321 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2322 * hardware has already verified the correctness of the checksum.
2324 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2326 return skb_csum_unnecessary(skb) ?
2327 0 : __skb_checksum_complete(skb);
2330 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2331 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2332 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2334 if (nfct && atomic_dec_and_test(&nfct->use))
2335 nf_conntrack_destroy(nfct);
2337 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2339 if (nfct)
2340 atomic_inc(&nfct->use);
2342 #endif
2343 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2344 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2346 if (skb)
2347 atomic_inc(&skb->users);
2349 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2351 if (skb)
2352 kfree_skb(skb);
2354 #endif
2355 #ifdef CONFIG_BRIDGE_NETFILTER
2356 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2358 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2359 kfree(nf_bridge);
2361 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2363 if (nf_bridge)
2364 atomic_inc(&nf_bridge->use);
2366 #endif /* CONFIG_BRIDGE_NETFILTER */
2367 static inline void nf_reset(struct sk_buff *skb)
2369 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2370 nf_conntrack_put(skb->nfct);
2371 skb->nfct = NULL;
2372 #endif
2373 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2374 nf_conntrack_put_reasm(skb->nfct_reasm);
2375 skb->nfct_reasm = NULL;
2376 #endif
2377 #ifdef CONFIG_BRIDGE_NETFILTER
2378 nf_bridge_put(skb->nf_bridge);
2379 skb->nf_bridge = NULL;
2380 #endif
2383 /* Note: This doesn't put any conntrack and bridge info in dst. */
2384 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2386 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2387 dst->nfct = src->nfct;
2388 nf_conntrack_get(src->nfct);
2389 dst->nfctinfo = src->nfctinfo;
2390 #endif
2391 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2392 dst->nfct_reasm = src->nfct_reasm;
2393 nf_conntrack_get_reasm(src->nfct_reasm);
2394 #endif
2395 #ifdef CONFIG_BRIDGE_NETFILTER
2396 dst->nf_bridge = src->nf_bridge;
2397 nf_bridge_get(src->nf_bridge);
2398 #endif
2401 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2403 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2404 nf_conntrack_put(dst->nfct);
2405 #endif
2406 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2407 nf_conntrack_put_reasm(dst->nfct_reasm);
2408 #endif
2409 #ifdef CONFIG_BRIDGE_NETFILTER
2410 nf_bridge_put(dst->nf_bridge);
2411 #endif
2412 __nf_copy(dst, src);
2415 #ifdef CONFIG_NETWORK_SECMARK
2416 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2418 to->secmark = from->secmark;
2421 static inline void skb_init_secmark(struct sk_buff *skb)
2423 skb->secmark = 0;
2425 #else
2426 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2429 static inline void skb_init_secmark(struct sk_buff *skb)
2431 #endif
2433 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2435 skb->queue_mapping = queue_mapping;
2438 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2440 return skb->queue_mapping;
2443 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2445 to->queue_mapping = from->queue_mapping;
2448 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2450 skb->queue_mapping = rx_queue + 1;
2453 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2455 return skb->queue_mapping - 1;
2458 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2460 return skb->queue_mapping != 0;
2463 extern u16 __skb_tx_hash(const struct net_device *dev,
2464 const struct sk_buff *skb,
2465 unsigned int num_tx_queues);
2467 #ifdef CONFIG_XFRM
2468 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2470 return skb->sp;
2472 #else
2473 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2475 return NULL;
2477 #endif
2479 static inline bool skb_is_gso(const struct sk_buff *skb)
2481 return skb_shinfo(skb)->gso_size;
2484 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2486 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2489 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2491 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2493 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2494 * wanted then gso_type will be set. */
2495 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2497 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2498 unlikely(shinfo->gso_type == 0)) {
2499 __skb_warn_lro_forwarding(skb);
2500 return true;
2502 return false;
2505 static inline void skb_forward_csum(struct sk_buff *skb)
2507 /* Unfortunately we don't support this one. Any brave souls? */
2508 if (skb->ip_summed == CHECKSUM_COMPLETE)
2509 skb->ip_summed = CHECKSUM_NONE;
2513 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2514 * @skb: skb to check
2516 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2517 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2518 * use this helper, to document places where we make this assertion.
2520 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2522 #ifdef DEBUG
2523 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2524 #endif
2527 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2529 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2531 if (irqs_disabled())
2532 return false;
2534 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2535 return false;
2537 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2538 return false;
2540 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2541 if (skb_end_pointer(skb) - skb->head < skb_size)
2542 return false;
2544 if (skb_shared(skb) || skb_cloned(skb))
2545 return false;
2547 return true;
2549 #endif /* __KERNEL__ */
2550 #endif /* _LINUX_SKBUFF_H */