1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
4 /* structs and defines to help the user use the ptrace system call. */
6 /* has the defines to get at the registers. */
8 #define PTRACE_TRACEME 0
9 #define PTRACE_PEEKTEXT 1
10 #define PTRACE_PEEKDATA 2
11 #define PTRACE_PEEKUSR 3
12 #define PTRACE_POKETEXT 4
13 #define PTRACE_POKEDATA 5
14 #define PTRACE_POKEUSR 6
17 #define PTRACE_SINGLESTEP 9
19 #define PTRACE_ATTACH 16
20 #define PTRACE_DETACH 17
22 #define PTRACE_SYSCALL 24
24 /* 0x4200-0x4300 are reserved for architecture-independent additions. */
25 #define PTRACE_SETOPTIONS 0x4200
26 #define PTRACE_GETEVENTMSG 0x4201
27 #define PTRACE_GETSIGINFO 0x4202
28 #define PTRACE_SETSIGINFO 0x4203
30 /* options set using PTRACE_SETOPTIONS */
31 #define PTRACE_O_TRACESYSGOOD 0x00000001
32 #define PTRACE_O_TRACEFORK 0x00000002
33 #define PTRACE_O_TRACEVFORK 0x00000004
34 #define PTRACE_O_TRACECLONE 0x00000008
35 #define PTRACE_O_TRACEEXEC 0x00000010
36 #define PTRACE_O_TRACEVFORKDONE 0x00000020
37 #define PTRACE_O_TRACEEXIT 0x00000040
39 #define PTRACE_O_MASK 0x0000007f
41 /* Wait extended result codes for the above trace options. */
42 #define PTRACE_EVENT_FORK 1
43 #define PTRACE_EVENT_VFORK 2
44 #define PTRACE_EVENT_CLONE 3
45 #define PTRACE_EVENT_EXEC 4
46 #define PTRACE_EVENT_VFORK_DONE 5
47 #define PTRACE_EVENT_EXIT 6
49 #include <asm/ptrace.h>
55 * The owner ship rules for task->ptrace which holds the ptrace
56 * flags is simple. When a task is running it owns it's task->ptrace
57 * flags. When the a task is stopped the ptracer owns task->ptrace.
60 #define PT_PTRACED 0x00000001
61 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
62 #define PT_TRACESYSGOOD 0x00000004
63 #define PT_PTRACE_CAP 0x00000008 /* ptracer can follow suid-exec */
64 #define PT_TRACE_FORK 0x00000010
65 #define PT_TRACE_VFORK 0x00000020
66 #define PT_TRACE_CLONE 0x00000040
67 #define PT_TRACE_EXEC 0x00000080
68 #define PT_TRACE_VFORK_DONE 0x00000100
69 #define PT_TRACE_EXIT 0x00000200
71 #define PT_TRACE_MASK 0x000003f4
73 /* single stepping state bits (used on ARM and PA-RISC) */
74 #define PT_SINGLESTEP_BIT 31
75 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
76 #define PT_BLOCKSTEP_BIT 30
77 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
79 #include <linux/compiler.h> /* For unlikely. */
80 #include <linux/sched.h> /* For struct task_struct. */
83 extern long arch_ptrace(struct task_struct
*child
, long request
, long addr
, long data
);
84 extern int ptrace_traceme(void);
85 extern int ptrace_readdata(struct task_struct
*tsk
, unsigned long src
, char __user
*dst
, int len
);
86 extern int ptrace_writedata(struct task_struct
*tsk
, char __user
*src
, unsigned long dst
, int len
);
87 extern int ptrace_attach(struct task_struct
*tsk
);
88 extern int ptrace_detach(struct task_struct
*, unsigned int);
89 extern void ptrace_disable(struct task_struct
*);
90 extern int ptrace_check_attach(struct task_struct
*task
, int kill
);
91 extern int ptrace_request(struct task_struct
*child
, long request
, long addr
, long data
);
92 extern void ptrace_notify(int exit_code
);
93 extern void __ptrace_link(struct task_struct
*child
,
94 struct task_struct
*new_parent
);
95 extern void __ptrace_unlink(struct task_struct
*child
);
96 extern void exit_ptrace(struct task_struct
*tracer
);
97 #define PTRACE_MODE_READ 1
98 #define PTRACE_MODE_ATTACH 2
99 /* Returns 0 on success, -errno on denial. */
100 extern int __ptrace_may_access(struct task_struct
*task
, unsigned int mode
);
101 /* Returns true on success, false on denial. */
102 extern bool ptrace_may_access(struct task_struct
*task
, unsigned int mode
);
104 static inline int ptrace_reparented(struct task_struct
*child
)
106 return child
->real_parent
!= child
->parent
;
108 static inline void ptrace_link(struct task_struct
*child
,
109 struct task_struct
*new_parent
)
111 if (unlikely(child
->ptrace
))
112 __ptrace_link(child
, new_parent
);
114 static inline void ptrace_unlink(struct task_struct
*child
)
116 if (unlikely(child
->ptrace
))
117 __ptrace_unlink(child
);
120 int generic_ptrace_peekdata(struct task_struct
*tsk
, long addr
, long data
);
121 int generic_ptrace_pokedata(struct task_struct
*tsk
, long addr
, long data
);
124 * task_ptrace - return %PT_* flags that apply to a task
125 * @task: pointer to &task_struct in question
127 * Returns the %PT_* flags that apply to @task.
129 static inline int task_ptrace(struct task_struct
*task
)
135 * ptrace_event - possibly stop for a ptrace event notification
136 * @mask: %PT_* bit to check in @current->ptrace
137 * @event: %PTRACE_EVENT_* value to report if @mask is set
138 * @message: value for %PTRACE_GETEVENTMSG to return
140 * This checks the @mask bit to see if ptrace wants stops for this event.
141 * If so we stop, reporting @event and @message to the ptrace parent.
143 * Returns nonzero if we did a ptrace notification, zero if not.
145 * Called without locks.
147 static inline int ptrace_event(int mask
, int event
, unsigned long message
)
149 if (mask
&& likely(!(current
->ptrace
& mask
)))
151 current
->ptrace_message
= message
;
152 ptrace_notify((event
<< 8) | SIGTRAP
);
157 * ptrace_init_task - initialize ptrace state for a new child
158 * @child: new child task
159 * @ptrace: true if child should be ptrace'd by parent's tracer
161 * This is called immediately after adding @child to its parent's children
162 * list. @ptrace is false in the normal case, and true to ptrace @child.
164 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
166 static inline void ptrace_init_task(struct task_struct
*child
, bool ptrace
)
168 INIT_LIST_HEAD(&child
->ptrace_entry
);
169 INIT_LIST_HEAD(&child
->ptraced
);
170 child
->parent
= child
->real_parent
;
172 if (unlikely(ptrace
)) {
173 child
->ptrace
= current
->ptrace
;
174 ptrace_link(child
, current
->parent
);
179 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
180 * @task: task in %EXIT_DEAD state
182 * Called with write_lock(&tasklist_lock) held.
184 static inline void ptrace_release_task(struct task_struct
*task
)
186 BUG_ON(!list_empty(&task
->ptraced
));
188 BUG_ON(!list_empty(&task
->ptrace_entry
));
191 #ifndef force_successful_syscall_return
193 * System call handlers that, upon successful completion, need to return a
194 * negative value should call force_successful_syscall_return() right before
195 * returning. On architectures where the syscall convention provides for a
196 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
197 * others), this macro can be used to ensure that the error flag will not get
198 * set. On architectures which do not support a separate error flag, the macro
199 * is a no-op and the spurious error condition needs to be filtered out by some
200 * other means (e.g., in user-level, by passing an extra argument to the
201 * syscall handler, or something along those lines).
203 #define force_successful_syscall_return() do { } while (0)
207 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
209 * These do-nothing inlines are used when the arch does not
210 * implement single-step. The kerneldoc comments are here
211 * to document the interface for all arch definitions.
214 #ifndef arch_has_single_step
216 * arch_has_single_step - does this CPU support user-mode single-step?
218 * If this is defined, then there must be function declarations or
219 * inlines for user_enable_single_step() and user_disable_single_step().
220 * arch_has_single_step() should evaluate to nonzero iff the machine
221 * supports instruction single-step for user mode.
222 * It can be a constant or it can test a CPU feature bit.
224 #define arch_has_single_step() (0)
227 * user_enable_single_step - single-step in user-mode task
228 * @task: either current or a task stopped in %TASK_TRACED
230 * This can only be called when arch_has_single_step() has returned nonzero.
231 * Set @task so that when it returns to user mode, it will trap after the
232 * next single instruction executes. If arch_has_block_step() is defined,
233 * this must clear the effects of user_enable_block_step() too.
235 static inline void user_enable_single_step(struct task_struct
*task
)
237 BUG(); /* This can never be called. */
241 * user_disable_single_step - cancel user-mode single-step
242 * @task: either current or a task stopped in %TASK_TRACED
244 * Clear @task of the effects of user_enable_single_step() and
245 * user_enable_block_step(). This can be called whether or not either
246 * of those was ever called on @task, and even if arch_has_single_step()
249 static inline void user_disable_single_step(struct task_struct
*task
)
252 #endif /* arch_has_single_step */
254 #ifndef arch_has_block_step
256 * arch_has_block_step - does this CPU support user-mode block-step?
258 * If this is defined, then there must be a function declaration or inline
259 * for user_enable_block_step(), and arch_has_single_step() must be defined
260 * too. arch_has_block_step() should evaluate to nonzero iff the machine
261 * supports step-until-branch for user mode. It can be a constant or it
262 * can test a CPU feature bit.
264 #define arch_has_block_step() (0)
267 * user_enable_block_step - step until branch in user-mode task
268 * @task: either current or a task stopped in %TASK_TRACED
270 * This can only be called when arch_has_block_step() has returned nonzero,
271 * and will never be called when single-instruction stepping is being used.
272 * Set @task so that when it returns to user mode, it will trap after the
273 * next branch or trap taken.
275 static inline void user_enable_block_step(struct task_struct
*task
)
277 BUG(); /* This can never be called. */
279 #endif /* arch_has_block_step */
281 #ifndef arch_ptrace_stop_needed
283 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
284 * @code: current->exit_code value ptrace will stop with
285 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
287 * This is called with the siglock held, to decide whether or not it's
288 * necessary to release the siglock and call arch_ptrace_stop() with the
289 * same @code and @info arguments. It can be defined to a constant if
290 * arch_ptrace_stop() is never required, or always is. On machines where
291 * this makes sense, it should be defined to a quick test to optimize out
292 * calling arch_ptrace_stop() when it would be superfluous. For example,
293 * if the thread has not been back to user mode since the last stop, the
294 * thread state might indicate that nothing needs to be done.
296 #define arch_ptrace_stop_needed(code, info) (0)
299 #ifndef arch_ptrace_stop
301 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
302 * @code: current->exit_code value ptrace will stop with
303 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
305 * This is called with no locks held when arch_ptrace_stop_needed() has
306 * just returned nonzero. It is allowed to block, e.g. for user memory
307 * access. The arch can have machine-specific work to be done before
308 * ptrace stops. On ia64, register backing store gets written back to user
309 * memory here. Since this can be costly (requires dropping the siglock),
310 * we only do it when the arch requires it for this particular stop, as
311 * indicated by arch_ptrace_stop_needed().
313 #define arch_ptrace_stop(code, info) do { } while (0)
316 #ifndef arch_ptrace_untrace
318 * Do machine-specific work before untracing child.
320 * This is called for a normal detach as well as from ptrace_exit()
321 * when the tracing task dies.
323 * Called with write_lock(&tasklist_lock) held.
325 #define arch_ptrace_untrace(task) do { } while (0)
328 extern int task_current_syscall(struct task_struct
*target
, long *callno
,
329 unsigned long args
[6], unsigned int maxargs
,
330 unsigned long *sp
, unsigned long *pc
);