uml: add virt_to_pte
[linux-2.6.git] / include / asm-um / pgtable.h
blobfb477774a2e9faf3c69ee3702bd0a88e5634f924
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
8 #ifndef __UM_PGTABLE_H
9 #define __UM_PGTABLE_H
11 #include <asm/fixmap.h>
13 #define _PAGE_PRESENT 0x001
14 #define _PAGE_NEWPAGE 0x002
15 #define _PAGE_NEWPROT 0x004
16 #define _PAGE_RW 0x020
17 #define _PAGE_USER 0x040
18 #define _PAGE_ACCESSED 0x080
19 #define _PAGE_DIRTY 0x100
20 /* If _PAGE_PRESENT is clear, we use these: */
21 #define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
22 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
23 pte_present gives true */
25 #ifdef CONFIG_3_LEVEL_PGTABLES
26 #include "asm/pgtable-3level.h"
27 #else
28 #include "asm/pgtable-2level.h"
29 #endif
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
33 /* zero page used for uninitialized stuff */
34 extern unsigned long *empty_zero_page;
36 #define pgtable_cache_init() do ; while (0)
38 /* Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
46 extern unsigned long end_iomem;
48 #define VMALLOC_OFFSET (__va_space)
49 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50 #ifdef CONFIG_HIGHMEM
51 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
52 #else
53 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
54 #endif
56 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
57 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
58 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
60 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
61 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
62 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
63 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
64 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
67 * The i386 can't do page protection for execute, and considers that the same
68 * are read.
69 * Also, write permissions imply read permissions. This is the closest we can
70 * get..
72 #define __P000 PAGE_NONE
73 #define __P001 PAGE_READONLY
74 #define __P010 PAGE_COPY
75 #define __P011 PAGE_COPY
76 #define __P100 PAGE_READONLY
77 #define __P101 PAGE_READONLY
78 #define __P110 PAGE_COPY
79 #define __P111 PAGE_COPY
81 #define __S000 PAGE_NONE
82 #define __S001 PAGE_READONLY
83 #define __S010 PAGE_SHARED
84 #define __S011 PAGE_SHARED
85 #define __S100 PAGE_READONLY
86 #define __S101 PAGE_READONLY
87 #define __S110 PAGE_SHARED
88 #define __S111 PAGE_SHARED
91 * ZERO_PAGE is a global shared page that is always zero: used
92 * for zero-mapped memory areas etc..
94 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
96 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
98 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
99 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
101 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
102 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
104 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
105 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
107 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
108 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
110 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
112 #define pte_page(x) pfn_to_page(pte_pfn(x))
114 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
117 * =================================
118 * Flags checking section.
119 * =================================
122 static inline int pte_none(pte_t pte)
124 return pte_is_zero(pte);
128 * The following only work if pte_present() is true.
129 * Undefined behaviour if not..
131 static inline int pte_read(pte_t pte)
133 return((pte_get_bits(pte, _PAGE_USER)) &&
134 !(pte_get_bits(pte, _PAGE_PROTNONE)));
137 static inline int pte_exec(pte_t pte){
138 return((pte_get_bits(pte, _PAGE_USER)) &&
139 !(pte_get_bits(pte, _PAGE_PROTNONE)));
142 static inline int pte_write(pte_t pte)
144 return((pte_get_bits(pte, _PAGE_RW)) &&
145 !(pte_get_bits(pte, _PAGE_PROTNONE)));
149 * The following only works if pte_present() is not true.
151 static inline int pte_file(pte_t pte)
153 return pte_get_bits(pte, _PAGE_FILE);
156 static inline int pte_dirty(pte_t pte)
158 return pte_get_bits(pte, _PAGE_DIRTY);
161 static inline int pte_young(pte_t pte)
163 return pte_get_bits(pte, _PAGE_ACCESSED);
166 static inline int pte_newpage(pte_t pte)
168 return pte_get_bits(pte, _PAGE_NEWPAGE);
171 static inline int pte_newprot(pte_t pte)
173 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
177 * =================================
178 * Flags setting section.
179 * =================================
182 static inline pte_t pte_mknewprot(pte_t pte)
184 pte_set_bits(pte, _PAGE_NEWPROT);
185 return(pte);
188 static inline pte_t pte_mkclean(pte_t pte)
190 pte_clear_bits(pte, _PAGE_DIRTY);
191 return(pte);
194 static inline pte_t pte_mkold(pte_t pte)
196 pte_clear_bits(pte, _PAGE_ACCESSED);
197 return(pte);
200 static inline pte_t pte_wrprotect(pte_t pte)
202 pte_clear_bits(pte, _PAGE_RW);
203 return(pte_mknewprot(pte));
206 static inline pte_t pte_mkread(pte_t pte)
208 pte_set_bits(pte, _PAGE_USER);
209 return(pte_mknewprot(pte));
212 static inline pte_t pte_mkdirty(pte_t pte)
214 pte_set_bits(pte, _PAGE_DIRTY);
215 return(pte);
218 static inline pte_t pte_mkyoung(pte_t pte)
220 pte_set_bits(pte, _PAGE_ACCESSED);
221 return(pte);
224 static inline pte_t pte_mkwrite(pte_t pte)
226 pte_set_bits(pte, _PAGE_RW);
227 return(pte_mknewprot(pte));
230 static inline pte_t pte_mkuptodate(pte_t pte)
232 pte_clear_bits(pte, _PAGE_NEWPAGE);
233 if(pte_present(pte))
234 pte_clear_bits(pte, _PAGE_NEWPROT);
235 return(pte);
238 static inline pte_t pte_mknewpage(pte_t pte)
240 pte_set_bits(pte, _PAGE_NEWPAGE);
241 return(pte);
244 static inline void set_pte(pte_t *pteptr, pte_t pteval)
246 pte_copy(*pteptr, pteval);
248 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
249 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
250 * mapped pages.
253 *pteptr = pte_mknewpage(*pteptr);
254 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
256 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
259 * Conversion functions: convert a page and protection to a page entry,
260 * and a page entry and page directory to the page they refer to.
263 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
264 #define __virt_to_page(virt) phys_to_page(__pa(virt))
265 #define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
266 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
268 #define mk_pte(page, pgprot) \
269 ({ pte_t pte; \
271 pte_set_val(pte, page_to_phys(page), (pgprot)); \
272 if (pte_present(pte)) \
273 pte_mknewprot(pte_mknewpage(pte)); \
274 pte;})
276 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
278 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
279 return pte;
283 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
285 * this macro returns the index of the entry in the pgd page which would
286 * control the given virtual address
288 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
291 * pgd_offset() returns a (pgd_t *)
292 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
294 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
297 * a shortcut which implies the use of the kernel's pgd, instead
298 * of a process's
300 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
303 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
305 * this macro returns the index of the entry in the pmd page which would
306 * control the given virtual address
308 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
309 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
312 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
314 * this macro returns the index of the entry in the pte page which would
315 * control the given virtual address
317 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
318 #define pte_offset_kernel(dir, address) \
319 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
320 #define pte_offset_map(dir, address) \
321 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
322 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
323 #define pte_unmap(pte) do { } while (0)
324 #define pte_unmap_nested(pte) do { } while (0)
326 struct mm_struct;
327 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
329 #define update_mmu_cache(vma,address,pte) do ; while (0)
331 /* Encode and de-code a swap entry */
332 #define __swp_type(x) (((x).val >> 4) & 0x3f)
333 #define __swp_offset(x) ((x).val >> 11)
335 #define __swp_entry(type, offset) \
336 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
337 #define __pte_to_swp_entry(pte) \
338 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
339 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
341 #define kern_addr_valid(addr) (1)
343 #include <asm-generic/pgtable.h>
345 #endif