x86, microcode: Sanitize per-cpu microcode reloading interface
[linux-2.6.git] / net / ipv4 / tcp_ipv4.c
blobc8d28c433b2b0dc958f7bdebaa77f2b899dfd22e
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
53 #define pr_fmt(fmt) "TCP: " fmt
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
137 return 0;
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141 static int tcp_repair_connect(struct sock *sk)
143 tcp_connect_init(sk);
144 tcp_finish_connect(sk, NULL);
146 return 0;
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153 struct inet_sock *inet = inet_sk(sk);
154 struct tcp_sock *tp = tcp_sk(sk);
155 __be16 orig_sport, orig_dport;
156 __be32 daddr, nexthop;
157 struct flowi4 *fl4;
158 struct rtable *rt;
159 int err;
160 struct ip_options_rcu *inet_opt;
162 if (addr_len < sizeof(struct sockaddr_in))
163 return -EINVAL;
165 if (usin->sin_family != AF_INET)
166 return -EAFNOSUPPORT;
168 nexthop = daddr = usin->sin_addr.s_addr;
169 inet_opt = rcu_dereference_protected(inet->inet_opt,
170 sock_owned_by_user(sk));
171 if (inet_opt && inet_opt->opt.srr) {
172 if (!daddr)
173 return -EINVAL;
174 nexthop = inet_opt->opt.faddr;
177 orig_sport = inet->inet_sport;
178 orig_dport = usin->sin_port;
179 fl4 = &inet->cork.fl.u.ip4;
180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 IPPROTO_TCP,
183 orig_sport, orig_dport, sk, true);
184 if (IS_ERR(rt)) {
185 err = PTR_ERR(rt);
186 if (err == -ENETUNREACH)
187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188 return err;
191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192 ip_rt_put(rt);
193 return -ENETUNREACH;
196 if (!inet_opt || !inet_opt->opt.srr)
197 daddr = fl4->daddr;
199 if (!inet->inet_saddr)
200 inet->inet_saddr = fl4->saddr;
201 inet->inet_rcv_saddr = inet->inet_saddr;
203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204 /* Reset inherited state */
205 tp->rx_opt.ts_recent = 0;
206 tp->rx_opt.ts_recent_stamp = 0;
207 if (likely(!tp->repair))
208 tp->write_seq = 0;
211 if (tcp_death_row.sysctl_tw_recycle &&
212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
213 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
215 * VJ's idea. We save last timestamp seen from
216 * the destination in peer table, when entering state
217 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
218 * when trying new connection.
220 if (peer) {
221 inet_peer_refcheck(peer);
222 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
223 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
224 tp->rx_opt.ts_recent = peer->tcp_ts;
229 inet->inet_dport = usin->sin_port;
230 inet->inet_daddr = daddr;
232 inet_csk(sk)->icsk_ext_hdr_len = 0;
233 if (inet_opt)
234 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
236 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
238 /* Socket identity is still unknown (sport may be zero).
239 * However we set state to SYN-SENT and not releasing socket
240 * lock select source port, enter ourselves into the hash tables and
241 * complete initialization after this.
243 tcp_set_state(sk, TCP_SYN_SENT);
244 err = inet_hash_connect(&tcp_death_row, sk);
245 if (err)
246 goto failure;
248 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
249 inet->inet_sport, inet->inet_dport, sk);
250 if (IS_ERR(rt)) {
251 err = PTR_ERR(rt);
252 rt = NULL;
253 goto failure;
255 /* OK, now commit destination to socket. */
256 sk->sk_gso_type = SKB_GSO_TCPV4;
257 sk_setup_caps(sk, &rt->dst);
259 if (!tp->write_seq && likely(!tp->repair))
260 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
261 inet->inet_daddr,
262 inet->inet_sport,
263 usin->sin_port);
265 inet->inet_id = tp->write_seq ^ jiffies;
267 if (likely(!tp->repair))
268 err = tcp_connect(sk);
269 else
270 err = tcp_repair_connect(sk);
272 rt = NULL;
273 if (err)
274 goto failure;
276 return 0;
278 failure:
280 * This unhashes the socket and releases the local port,
281 * if necessary.
283 tcp_set_state(sk, TCP_CLOSE);
284 ip_rt_put(rt);
285 sk->sk_route_caps = 0;
286 inet->inet_dport = 0;
287 return err;
289 EXPORT_SYMBOL(tcp_v4_connect);
292 * This routine does path mtu discovery as defined in RFC1191.
294 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
296 struct dst_entry *dst;
297 struct inet_sock *inet = inet_sk(sk);
299 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
300 * send out by Linux are always <576bytes so they should go through
301 * unfragmented).
303 if (sk->sk_state == TCP_LISTEN)
304 return;
306 /* We don't check in the destentry if pmtu discovery is forbidden
307 * on this route. We just assume that no packet_to_big packets
308 * are send back when pmtu discovery is not active.
309 * There is a small race when the user changes this flag in the
310 * route, but I think that's acceptable.
312 if ((dst = __sk_dst_check(sk, 0)) == NULL)
313 return;
315 dst->ops->update_pmtu(dst, mtu);
317 /* Something is about to be wrong... Remember soft error
318 * for the case, if this connection will not able to recover.
320 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
321 sk->sk_err_soft = EMSGSIZE;
323 mtu = dst_mtu(dst);
325 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
326 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
327 tcp_sync_mss(sk, mtu);
329 /* Resend the TCP packet because it's
330 * clear that the old packet has been
331 * dropped. This is the new "fast" path mtu
332 * discovery.
334 tcp_simple_retransmit(sk);
335 } /* else let the usual retransmit timer handle it */
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
354 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 __u32 seq;
366 __u32 remaining;
367 int err;
368 struct net *net = dev_net(icmp_skb->dev);
370 if (icmp_skb->len < (iph->ihl << 2) + 8) {
371 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372 return;
375 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
376 iph->saddr, th->source, inet_iif(icmp_skb));
377 if (!sk) {
378 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379 return;
381 if (sk->sk_state == TCP_TIME_WAIT) {
382 inet_twsk_put(inet_twsk(sk));
383 return;
386 bh_lock_sock(sk);
387 /* If too many ICMPs get dropped on busy
388 * servers this needs to be solved differently.
390 if (sock_owned_by_user(sk))
391 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
393 if (sk->sk_state == TCP_CLOSE)
394 goto out;
396 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
397 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
398 goto out;
401 icsk = inet_csk(sk);
402 tp = tcp_sk(sk);
403 seq = ntohl(th->seq);
404 if (sk->sk_state != TCP_LISTEN &&
405 !between(seq, tp->snd_una, tp->snd_nxt)) {
406 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
407 goto out;
410 switch (type) {
411 case ICMP_SOURCE_QUENCH:
412 /* Just silently ignore these. */
413 goto out;
414 case ICMP_PARAMETERPROB:
415 err = EPROTO;
416 break;
417 case ICMP_DEST_UNREACH:
418 if (code > NR_ICMP_UNREACH)
419 goto out;
421 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
422 if (!sock_owned_by_user(sk))
423 do_pmtu_discovery(sk, iph, info);
424 goto out;
427 err = icmp_err_convert[code].errno;
428 /* check if icmp_skb allows revert of backoff
429 * (see draft-zimmermann-tcp-lcd) */
430 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431 break;
432 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
433 !icsk->icsk_backoff)
434 break;
436 if (sock_owned_by_user(sk))
437 break;
439 icsk->icsk_backoff--;
440 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442 tcp_bound_rto(sk);
444 skb = tcp_write_queue_head(sk);
445 BUG_ON(!skb);
447 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448 tcp_time_stamp - TCP_SKB_CB(skb)->when);
450 if (remaining) {
451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452 remaining, TCP_RTO_MAX);
453 } else {
454 /* RTO revert clocked out retransmission.
455 * Will retransmit now */
456 tcp_retransmit_timer(sk);
459 break;
460 case ICMP_TIME_EXCEEDED:
461 err = EHOSTUNREACH;
462 break;
463 default:
464 goto out;
467 switch (sk->sk_state) {
468 struct request_sock *req, **prev;
469 case TCP_LISTEN:
470 if (sock_owned_by_user(sk))
471 goto out;
473 req = inet_csk_search_req(sk, &prev, th->dest,
474 iph->daddr, iph->saddr);
475 if (!req)
476 goto out;
478 /* ICMPs are not backlogged, hence we cannot get
479 an established socket here.
481 WARN_ON(req->sk);
483 if (seq != tcp_rsk(req)->snt_isn) {
484 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485 goto out;
489 * Still in SYN_RECV, just remove it silently.
490 * There is no good way to pass the error to the newly
491 * created socket, and POSIX does not want network
492 * errors returned from accept().
494 inet_csk_reqsk_queue_drop(sk, req, prev);
495 goto out;
497 case TCP_SYN_SENT:
498 case TCP_SYN_RECV: /* Cannot happen.
499 It can f.e. if SYNs crossed.
501 if (!sock_owned_by_user(sk)) {
502 sk->sk_err = err;
504 sk->sk_error_report(sk);
506 tcp_done(sk);
507 } else {
508 sk->sk_err_soft = err;
510 goto out;
513 /* If we've already connected we will keep trying
514 * until we time out, or the user gives up.
516 * rfc1122 4.2.3.9 allows to consider as hard errors
517 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518 * but it is obsoleted by pmtu discovery).
520 * Note, that in modern internet, where routing is unreliable
521 * and in each dark corner broken firewalls sit, sending random
522 * errors ordered by their masters even this two messages finally lose
523 * their original sense (even Linux sends invalid PORT_UNREACHs)
525 * Now we are in compliance with RFCs.
526 * --ANK (980905)
529 inet = inet_sk(sk);
530 if (!sock_owned_by_user(sk) && inet->recverr) {
531 sk->sk_err = err;
532 sk->sk_error_report(sk);
533 } else { /* Only an error on timeout */
534 sk->sk_err_soft = err;
537 out:
538 bh_unlock_sock(sk);
539 sock_put(sk);
542 static void __tcp_v4_send_check(struct sk_buff *skb,
543 __be32 saddr, __be32 daddr)
545 struct tcphdr *th = tcp_hdr(skb);
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
562 const struct inet_sock *inet = inet_sk(sk);
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
566 EXPORT_SYMBOL(tcp_v4_send_check);
568 int tcp_v4_gso_send_check(struct sk_buff *skb)
570 const struct iphdr *iph;
571 struct tcphdr *th;
573 if (!pskb_may_pull(skb, sizeof(*th)))
574 return -EINVAL;
576 iph = ip_hdr(skb);
577 th = tcp_hdr(skb);
579 th->check = 0;
580 skb->ip_summed = CHECKSUM_PARTIAL;
581 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582 return 0;
586 * This routine will send an RST to the other tcp.
588 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589 * for reset.
590 * Answer: if a packet caused RST, it is not for a socket
591 * existing in our system, if it is matched to a socket,
592 * it is just duplicate segment or bug in other side's TCP.
593 * So that we build reply only basing on parameters
594 * arrived with segment.
595 * Exception: precedence violation. We do not implement it in any case.
598 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
600 const struct tcphdr *th = tcp_hdr(skb);
601 struct {
602 struct tcphdr th;
603 #ifdef CONFIG_TCP_MD5SIG
604 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605 #endif
606 } rep;
607 struct ip_reply_arg arg;
608 #ifdef CONFIG_TCP_MD5SIG
609 struct tcp_md5sig_key *key;
610 const __u8 *hash_location = NULL;
611 unsigned char newhash[16];
612 int genhash;
613 struct sock *sk1 = NULL;
614 #endif
615 struct net *net;
617 /* Never send a reset in response to a reset. */
618 if (th->rst)
619 return;
621 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622 return;
624 /* Swap the send and the receive. */
625 memset(&rep, 0, sizeof(rep));
626 rep.th.dest = th->source;
627 rep.th.source = th->dest;
628 rep.th.doff = sizeof(struct tcphdr) / 4;
629 rep.th.rst = 1;
631 if (th->ack) {
632 rep.th.seq = th->ack_seq;
633 } else {
634 rep.th.ack = 1;
635 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636 skb->len - (th->doff << 2));
639 memset(&arg, 0, sizeof(arg));
640 arg.iov[0].iov_base = (unsigned char *)&rep;
641 arg.iov[0].iov_len = sizeof(rep.th);
643 #ifdef CONFIG_TCP_MD5SIG
644 hash_location = tcp_parse_md5sig_option(th);
645 if (!sk && hash_location) {
647 * active side is lost. Try to find listening socket through
648 * source port, and then find md5 key through listening socket.
649 * we are not loose security here:
650 * Incoming packet is checked with md5 hash with finding key,
651 * no RST generated if md5 hash doesn't match.
653 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654 &tcp_hashinfo, ip_hdr(skb)->daddr,
655 ntohs(th->source), inet_iif(skb));
656 /* don't send rst if it can't find key */
657 if (!sk1)
658 return;
659 rcu_read_lock();
660 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr, AF_INET);
662 if (!key)
663 goto release_sk1;
665 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666 if (genhash || memcmp(hash_location, newhash, 16) != 0)
667 goto release_sk1;
668 } else {
669 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670 &ip_hdr(skb)->saddr,
671 AF_INET) : NULL;
674 if (key) {
675 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676 (TCPOPT_NOP << 16) |
677 (TCPOPT_MD5SIG << 8) |
678 TCPOLEN_MD5SIG);
679 /* Update length and the length the header thinks exists */
680 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681 rep.th.doff = arg.iov[0].iov_len / 4;
683 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684 key, ip_hdr(skb)->saddr,
685 ip_hdr(skb)->daddr, &rep.th);
687 #endif
688 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689 ip_hdr(skb)->saddr, /* XXX */
690 arg.iov[0].iov_len, IPPROTO_TCP, 0);
691 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693 /* When socket is gone, all binding information is lost.
694 * routing might fail in this case. using iif for oif to
695 * make sure we can deliver it
697 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
699 net = dev_net(skb_dst(skb)->dev);
700 arg.tos = ip_hdr(skb)->tos;
701 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
702 &arg, arg.iov[0].iov_len);
704 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
707 #ifdef CONFIG_TCP_MD5SIG
708 release_sk1:
709 if (sk1) {
710 rcu_read_unlock();
711 sock_put(sk1);
713 #endif
716 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717 outside socket context is ugly, certainly. What can I do?
720 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721 u32 win, u32 ts, int oif,
722 struct tcp_md5sig_key *key,
723 int reply_flags, u8 tos)
725 const struct tcphdr *th = tcp_hdr(skb);
726 struct {
727 struct tcphdr th;
728 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729 #ifdef CONFIG_TCP_MD5SIG
730 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731 #endif
733 } rep;
734 struct ip_reply_arg arg;
735 struct net *net = dev_net(skb_dst(skb)->dev);
737 memset(&rep.th, 0, sizeof(struct tcphdr));
738 memset(&arg, 0, sizeof(arg));
740 arg.iov[0].iov_base = (unsigned char *)&rep;
741 arg.iov[0].iov_len = sizeof(rep.th);
742 if (ts) {
743 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744 (TCPOPT_TIMESTAMP << 8) |
745 TCPOLEN_TIMESTAMP);
746 rep.opt[1] = htonl(tcp_time_stamp);
747 rep.opt[2] = htonl(ts);
748 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
751 /* Swap the send and the receive. */
752 rep.th.dest = th->source;
753 rep.th.source = th->dest;
754 rep.th.doff = arg.iov[0].iov_len / 4;
755 rep.th.seq = htonl(seq);
756 rep.th.ack_seq = htonl(ack);
757 rep.th.ack = 1;
758 rep.th.window = htons(win);
760 #ifdef CONFIG_TCP_MD5SIG
761 if (key) {
762 int offset = (ts) ? 3 : 0;
764 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765 (TCPOPT_NOP << 16) |
766 (TCPOPT_MD5SIG << 8) |
767 TCPOLEN_MD5SIG);
768 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769 rep.th.doff = arg.iov[0].iov_len/4;
771 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772 key, ip_hdr(skb)->saddr,
773 ip_hdr(skb)->daddr, &rep.th);
775 #endif
776 arg.flags = reply_flags;
777 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778 ip_hdr(skb)->saddr, /* XXX */
779 arg.iov[0].iov_len, IPPROTO_TCP, 0);
780 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781 if (oif)
782 arg.bound_dev_if = oif;
783 arg.tos = tos;
784 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
785 &arg, arg.iov[0].iov_len);
787 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
790 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
792 struct inet_timewait_sock *tw = inet_twsk(sk);
793 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
795 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797 tcptw->tw_ts_recent,
798 tw->tw_bound_dev_if,
799 tcp_twsk_md5_key(tcptw),
800 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801 tw->tw_tos
804 inet_twsk_put(tw);
807 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808 struct request_sock *req)
810 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812 req->ts_recent,
814 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815 AF_INET),
816 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817 ip_hdr(skb)->tos);
821 * Send a SYN-ACK after having received a SYN.
822 * This still operates on a request_sock only, not on a big
823 * socket.
825 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826 struct request_sock *req,
827 struct request_values *rvp,
828 u16 queue_mapping)
830 const struct inet_request_sock *ireq = inet_rsk(req);
831 struct flowi4 fl4;
832 int err = -1;
833 struct sk_buff * skb;
835 /* First, grab a route. */
836 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
837 return -1;
839 skb = tcp_make_synack(sk, dst, req, rvp);
841 if (skb) {
842 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
844 skb_set_queue_mapping(skb, queue_mapping);
845 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
846 ireq->rmt_addr,
847 ireq->opt);
848 err = net_xmit_eval(err);
851 dst_release(dst);
852 return err;
855 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
856 struct request_values *rvp)
858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859 return tcp_v4_send_synack(sk, NULL, req, rvp, 0);
863 * IPv4 request_sock destructor.
865 static void tcp_v4_reqsk_destructor(struct request_sock *req)
867 kfree(inet_rsk(req)->opt);
871 * Return true if a syncookie should be sent
873 bool tcp_syn_flood_action(struct sock *sk,
874 const struct sk_buff *skb,
875 const char *proto)
877 const char *msg = "Dropping request";
878 bool want_cookie = false;
879 struct listen_sock *lopt;
883 #ifdef CONFIG_SYN_COOKIES
884 if (sysctl_tcp_syncookies) {
885 msg = "Sending cookies";
886 want_cookie = true;
887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888 } else
889 #endif
890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893 if (!lopt->synflood_warned) {
894 lopt->synflood_warned = 1;
895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
896 proto, ntohs(tcp_hdr(skb)->dest), msg);
898 return want_cookie;
900 EXPORT_SYMBOL(tcp_syn_flood_action);
903 * Save and compile IPv4 options into the request_sock if needed.
905 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
906 struct sk_buff *skb)
908 const struct ip_options *opt = &(IPCB(skb)->opt);
909 struct ip_options_rcu *dopt = NULL;
911 if (opt && opt->optlen) {
912 int opt_size = sizeof(*dopt) + opt->optlen;
914 dopt = kmalloc(opt_size, GFP_ATOMIC);
915 if (dopt) {
916 if (ip_options_echo(&dopt->opt, skb)) {
917 kfree(dopt);
918 dopt = NULL;
922 return dopt;
925 #ifdef CONFIG_TCP_MD5SIG
927 * RFC2385 MD5 checksumming requires a mapping of
928 * IP address->MD5 Key.
929 * We need to maintain these in the sk structure.
932 /* Find the Key structure for an address. */
933 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
934 const union tcp_md5_addr *addr,
935 int family)
937 struct tcp_sock *tp = tcp_sk(sk);
938 struct tcp_md5sig_key *key;
939 struct hlist_node *pos;
940 unsigned int size = sizeof(struct in_addr);
941 struct tcp_md5sig_info *md5sig;
943 /* caller either holds rcu_read_lock() or socket lock */
944 md5sig = rcu_dereference_check(tp->md5sig_info,
945 sock_owned_by_user(sk) ||
946 lockdep_is_held(&sk->sk_lock.slock));
947 if (!md5sig)
948 return NULL;
949 #if IS_ENABLED(CONFIG_IPV6)
950 if (family == AF_INET6)
951 size = sizeof(struct in6_addr);
952 #endif
953 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
954 if (key->family != family)
955 continue;
956 if (!memcmp(&key->addr, addr, size))
957 return key;
959 return NULL;
961 EXPORT_SYMBOL(tcp_md5_do_lookup);
963 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
964 struct sock *addr_sk)
966 union tcp_md5_addr *addr;
968 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
969 return tcp_md5_do_lookup(sk, addr, AF_INET);
971 EXPORT_SYMBOL(tcp_v4_md5_lookup);
973 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
974 struct request_sock *req)
976 union tcp_md5_addr *addr;
978 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
979 return tcp_md5_do_lookup(sk, addr, AF_INET);
982 /* This can be called on a newly created socket, from other files */
983 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
984 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
986 /* Add Key to the list */
987 struct tcp_md5sig_key *key;
988 struct tcp_sock *tp = tcp_sk(sk);
989 struct tcp_md5sig_info *md5sig;
991 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
992 if (key) {
993 /* Pre-existing entry - just update that one. */
994 memcpy(key->key, newkey, newkeylen);
995 key->keylen = newkeylen;
996 return 0;
999 md5sig = rcu_dereference_protected(tp->md5sig_info,
1000 sock_owned_by_user(sk));
1001 if (!md5sig) {
1002 md5sig = kmalloc(sizeof(*md5sig), gfp);
1003 if (!md5sig)
1004 return -ENOMEM;
1006 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007 INIT_HLIST_HEAD(&md5sig->head);
1008 rcu_assign_pointer(tp->md5sig_info, md5sig);
1011 key = sock_kmalloc(sk, sizeof(*key), gfp);
1012 if (!key)
1013 return -ENOMEM;
1014 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015 sock_kfree_s(sk, key, sizeof(*key));
1016 return -ENOMEM;
1019 memcpy(key->key, newkey, newkeylen);
1020 key->keylen = newkeylen;
1021 key->family = family;
1022 memcpy(&key->addr, addr,
1023 (family == AF_INET6) ? sizeof(struct in6_addr) :
1024 sizeof(struct in_addr));
1025 hlist_add_head_rcu(&key->node, &md5sig->head);
1026 return 0;
1028 EXPORT_SYMBOL(tcp_md5_do_add);
1030 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1032 struct tcp_sock *tp = tcp_sk(sk);
1033 struct tcp_md5sig_key *key;
1034 struct tcp_md5sig_info *md5sig;
1036 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037 if (!key)
1038 return -ENOENT;
1039 hlist_del_rcu(&key->node);
1040 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041 kfree_rcu(key, rcu);
1042 md5sig = rcu_dereference_protected(tp->md5sig_info,
1043 sock_owned_by_user(sk));
1044 if (hlist_empty(&md5sig->head))
1045 tcp_free_md5sig_pool();
1046 return 0;
1048 EXPORT_SYMBOL(tcp_md5_do_del);
1050 void tcp_clear_md5_list(struct sock *sk)
1052 struct tcp_sock *tp = tcp_sk(sk);
1053 struct tcp_md5sig_key *key;
1054 struct hlist_node *pos, *n;
1055 struct tcp_md5sig_info *md5sig;
1057 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1059 if (!hlist_empty(&md5sig->head))
1060 tcp_free_md5sig_pool();
1061 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062 hlist_del_rcu(&key->node);
1063 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064 kfree_rcu(key, rcu);
1068 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069 int optlen)
1071 struct tcp_md5sig cmd;
1072 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1074 if (optlen < sizeof(cmd))
1075 return -EINVAL;
1077 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078 return -EFAULT;
1080 if (sin->sin_family != AF_INET)
1081 return -EINVAL;
1083 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085 AF_INET);
1087 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088 return -EINVAL;
1090 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092 GFP_KERNEL);
1095 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096 __be32 daddr, __be32 saddr, int nbytes)
1098 struct tcp4_pseudohdr *bp;
1099 struct scatterlist sg;
1101 bp = &hp->md5_blk.ip4;
1104 * 1. the TCP pseudo-header (in the order: source IP address,
1105 * destination IP address, zero-padded protocol number, and
1106 * segment length)
1108 bp->saddr = saddr;
1109 bp->daddr = daddr;
1110 bp->pad = 0;
1111 bp->protocol = IPPROTO_TCP;
1112 bp->len = cpu_to_be16(nbytes);
1114 sg_init_one(&sg, bp, sizeof(*bp));
1115 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1118 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1121 struct tcp_md5sig_pool *hp;
1122 struct hash_desc *desc;
1124 hp = tcp_get_md5sig_pool();
1125 if (!hp)
1126 goto clear_hash_noput;
1127 desc = &hp->md5_desc;
1129 if (crypto_hash_init(desc))
1130 goto clear_hash;
1131 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132 goto clear_hash;
1133 if (tcp_md5_hash_header(hp, th))
1134 goto clear_hash;
1135 if (tcp_md5_hash_key(hp, key))
1136 goto clear_hash;
1137 if (crypto_hash_final(desc, md5_hash))
1138 goto clear_hash;
1140 tcp_put_md5sig_pool();
1141 return 0;
1143 clear_hash:
1144 tcp_put_md5sig_pool();
1145 clear_hash_noput:
1146 memset(md5_hash, 0, 16);
1147 return 1;
1150 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151 const struct sock *sk, const struct request_sock *req,
1152 const struct sk_buff *skb)
1154 struct tcp_md5sig_pool *hp;
1155 struct hash_desc *desc;
1156 const struct tcphdr *th = tcp_hdr(skb);
1157 __be32 saddr, daddr;
1159 if (sk) {
1160 saddr = inet_sk(sk)->inet_saddr;
1161 daddr = inet_sk(sk)->inet_daddr;
1162 } else if (req) {
1163 saddr = inet_rsk(req)->loc_addr;
1164 daddr = inet_rsk(req)->rmt_addr;
1165 } else {
1166 const struct iphdr *iph = ip_hdr(skb);
1167 saddr = iph->saddr;
1168 daddr = iph->daddr;
1171 hp = tcp_get_md5sig_pool();
1172 if (!hp)
1173 goto clear_hash_noput;
1174 desc = &hp->md5_desc;
1176 if (crypto_hash_init(desc))
1177 goto clear_hash;
1179 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180 goto clear_hash;
1181 if (tcp_md5_hash_header(hp, th))
1182 goto clear_hash;
1183 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184 goto clear_hash;
1185 if (tcp_md5_hash_key(hp, key))
1186 goto clear_hash;
1187 if (crypto_hash_final(desc, md5_hash))
1188 goto clear_hash;
1190 tcp_put_md5sig_pool();
1191 return 0;
1193 clear_hash:
1194 tcp_put_md5sig_pool();
1195 clear_hash_noput:
1196 memset(md5_hash, 0, 16);
1197 return 1;
1199 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1201 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1204 * This gets called for each TCP segment that arrives
1205 * so we want to be efficient.
1206 * We have 3 drop cases:
1207 * o No MD5 hash and one expected.
1208 * o MD5 hash and we're not expecting one.
1209 * o MD5 hash and its wrong.
1211 const __u8 *hash_location = NULL;
1212 struct tcp_md5sig_key *hash_expected;
1213 const struct iphdr *iph = ip_hdr(skb);
1214 const struct tcphdr *th = tcp_hdr(skb);
1215 int genhash;
1216 unsigned char newhash[16];
1218 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219 AF_INET);
1220 hash_location = tcp_parse_md5sig_option(th);
1222 /* We've parsed the options - do we have a hash? */
1223 if (!hash_expected && !hash_location)
1224 return false;
1226 if (hash_expected && !hash_location) {
1227 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228 return true;
1231 if (!hash_expected && hash_location) {
1232 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233 return true;
1236 /* Okay, so this is hash_expected and hash_location -
1237 * so we need to calculate the checksum.
1239 genhash = tcp_v4_md5_hash_skb(newhash,
1240 hash_expected,
1241 NULL, NULL, skb);
1243 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245 &iph->saddr, ntohs(th->source),
1246 &iph->daddr, ntohs(th->dest),
1247 genhash ? " tcp_v4_calc_md5_hash failed"
1248 : "");
1249 return true;
1251 return false;
1254 #endif
1256 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257 .family = PF_INET,
1258 .obj_size = sizeof(struct tcp_request_sock),
1259 .rtx_syn_ack = tcp_v4_rtx_synack,
1260 .send_ack = tcp_v4_reqsk_send_ack,
1261 .destructor = tcp_v4_reqsk_destructor,
1262 .send_reset = tcp_v4_send_reset,
1263 .syn_ack_timeout = tcp_syn_ack_timeout,
1266 #ifdef CONFIG_TCP_MD5SIG
1267 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1269 .calc_md5_hash = tcp_v4_md5_hash_skb,
1271 #endif
1273 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1275 struct tcp_extend_values tmp_ext;
1276 struct tcp_options_received tmp_opt;
1277 const u8 *hash_location;
1278 struct request_sock *req;
1279 struct inet_request_sock *ireq;
1280 struct tcp_sock *tp = tcp_sk(sk);
1281 struct dst_entry *dst = NULL;
1282 __be32 saddr = ip_hdr(skb)->saddr;
1283 __be32 daddr = ip_hdr(skb)->daddr;
1284 __u32 isn = TCP_SKB_CB(skb)->when;
1285 bool want_cookie = false;
1287 /* Never answer to SYNs send to broadcast or multicast */
1288 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289 goto drop;
1291 /* TW buckets are converted to open requests without
1292 * limitations, they conserve resources and peer is
1293 * evidently real one.
1295 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1296 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297 if (!want_cookie)
1298 goto drop;
1301 /* Accept backlog is full. If we have already queued enough
1302 * of warm entries in syn queue, drop request. It is better than
1303 * clogging syn queue with openreqs with exponentially increasing
1304 * timeout.
1306 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1307 goto drop;
1309 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310 if (!req)
1311 goto drop;
1313 #ifdef CONFIG_TCP_MD5SIG
1314 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315 #endif
1317 tcp_clear_options(&tmp_opt);
1318 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319 tmp_opt.user_mss = tp->rx_opt.user_mss;
1320 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1322 if (tmp_opt.cookie_plus > 0 &&
1323 tmp_opt.saw_tstamp &&
1324 !tp->rx_opt.cookie_out_never &&
1325 (sysctl_tcp_cookie_size > 0 ||
1326 (tp->cookie_values != NULL &&
1327 tp->cookie_values->cookie_desired > 0))) {
1328 u8 *c;
1329 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1332 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333 goto drop_and_release;
1335 /* Secret recipe starts with IP addresses */
1336 *mess++ ^= (__force u32)daddr;
1337 *mess++ ^= (__force u32)saddr;
1339 /* plus variable length Initiator Cookie */
1340 c = (u8 *)mess;
1341 while (l-- > 0)
1342 *c++ ^= *hash_location++;
1344 want_cookie = false; /* not our kind of cookie */
1345 tmp_ext.cookie_out_never = 0; /* false */
1346 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347 } else if (!tp->rx_opt.cookie_in_always) {
1348 /* redundant indications, but ensure initialization. */
1349 tmp_ext.cookie_out_never = 1; /* true */
1350 tmp_ext.cookie_plus = 0;
1351 } else {
1352 goto drop_and_release;
1354 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1356 if (want_cookie && !tmp_opt.saw_tstamp)
1357 tcp_clear_options(&tmp_opt);
1359 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360 tcp_openreq_init(req, &tmp_opt, skb);
1362 ireq = inet_rsk(req);
1363 ireq->loc_addr = daddr;
1364 ireq->rmt_addr = saddr;
1365 ireq->no_srccheck = inet_sk(sk)->transparent;
1366 ireq->opt = tcp_v4_save_options(sk, skb);
1368 if (security_inet_conn_request(sk, skb, req))
1369 goto drop_and_free;
1371 if (!want_cookie || tmp_opt.tstamp_ok)
1372 TCP_ECN_create_request(req, skb);
1374 if (want_cookie) {
1375 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376 req->cookie_ts = tmp_opt.tstamp_ok;
1377 } else if (!isn) {
1378 struct inet_peer *peer = NULL;
1379 struct flowi4 fl4;
1381 /* VJ's idea. We save last timestamp seen
1382 * from the destination in peer table, when entering
1383 * state TIME-WAIT, and check against it before
1384 * accepting new connection request.
1386 * If "isn" is not zero, this request hit alive
1387 * timewait bucket, so that all the necessary checks
1388 * are made in the function processing timewait state.
1390 if (tmp_opt.saw_tstamp &&
1391 tcp_death_row.sysctl_tw_recycle &&
1392 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1393 fl4.daddr == saddr &&
1394 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1395 inet_peer_refcheck(peer);
1396 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1397 (s32)(peer->tcp_ts - req->ts_recent) >
1398 TCP_PAWS_WINDOW) {
1399 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1400 goto drop_and_release;
1403 /* Kill the following clause, if you dislike this way. */
1404 else if (!sysctl_tcp_syncookies &&
1405 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1406 (sysctl_max_syn_backlog >> 2)) &&
1407 (!peer || !peer->tcp_ts_stamp) &&
1408 (!dst || !dst_metric(dst, RTAX_RTT))) {
1409 /* Without syncookies last quarter of
1410 * backlog is filled with destinations,
1411 * proven to be alive.
1412 * It means that we continue to communicate
1413 * to destinations, already remembered
1414 * to the moment of synflood.
1416 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1417 &saddr, ntohs(tcp_hdr(skb)->source));
1418 goto drop_and_release;
1421 isn = tcp_v4_init_sequence(skb);
1423 tcp_rsk(req)->snt_isn = isn;
1424 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1426 if (tcp_v4_send_synack(sk, dst, req,
1427 (struct request_values *)&tmp_ext,
1428 skb_get_queue_mapping(skb)) ||
1429 want_cookie)
1430 goto drop_and_free;
1432 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1433 return 0;
1435 drop_and_release:
1436 dst_release(dst);
1437 drop_and_free:
1438 reqsk_free(req);
1439 drop:
1440 return 0;
1442 EXPORT_SYMBOL(tcp_v4_conn_request);
1446 * The three way handshake has completed - we got a valid synack -
1447 * now create the new socket.
1449 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1450 struct request_sock *req,
1451 struct dst_entry *dst)
1453 struct inet_request_sock *ireq;
1454 struct inet_sock *newinet;
1455 struct tcp_sock *newtp;
1456 struct sock *newsk;
1457 #ifdef CONFIG_TCP_MD5SIG
1458 struct tcp_md5sig_key *key;
1459 #endif
1460 struct ip_options_rcu *inet_opt;
1462 if (sk_acceptq_is_full(sk))
1463 goto exit_overflow;
1465 newsk = tcp_create_openreq_child(sk, req, skb);
1466 if (!newsk)
1467 goto exit_nonewsk;
1469 newsk->sk_gso_type = SKB_GSO_TCPV4;
1471 newtp = tcp_sk(newsk);
1472 newinet = inet_sk(newsk);
1473 ireq = inet_rsk(req);
1474 newinet->inet_daddr = ireq->rmt_addr;
1475 newinet->inet_rcv_saddr = ireq->loc_addr;
1476 newinet->inet_saddr = ireq->loc_addr;
1477 inet_opt = ireq->opt;
1478 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1479 ireq->opt = NULL;
1480 newinet->mc_index = inet_iif(skb);
1481 newinet->mc_ttl = ip_hdr(skb)->ttl;
1482 newinet->rcv_tos = ip_hdr(skb)->tos;
1483 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1484 if (inet_opt)
1485 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1486 newinet->inet_id = newtp->write_seq ^ jiffies;
1488 if (!dst) {
1489 dst = inet_csk_route_child_sock(sk, newsk, req);
1490 if (!dst)
1491 goto put_and_exit;
1492 } else {
1493 /* syncookie case : see end of cookie_v4_check() */
1495 sk_setup_caps(newsk, dst);
1497 tcp_mtup_init(newsk);
1498 tcp_sync_mss(newsk, dst_mtu(dst));
1499 newtp->advmss = dst_metric_advmss(dst);
1500 if (tcp_sk(sk)->rx_opt.user_mss &&
1501 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1502 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1504 tcp_initialize_rcv_mss(newsk);
1505 if (tcp_rsk(req)->snt_synack)
1506 tcp_valid_rtt_meas(newsk,
1507 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1508 newtp->total_retrans = req->retrans;
1510 #ifdef CONFIG_TCP_MD5SIG
1511 /* Copy over the MD5 key from the original socket */
1512 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1513 AF_INET);
1514 if (key != NULL) {
1516 * We're using one, so create a matching key
1517 * on the newsk structure. If we fail to get
1518 * memory, then we end up not copying the key
1519 * across. Shucks.
1521 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1522 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1523 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1525 #endif
1527 if (__inet_inherit_port(sk, newsk) < 0)
1528 goto put_and_exit;
1529 __inet_hash_nolisten(newsk, NULL);
1531 return newsk;
1533 exit_overflow:
1534 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1535 exit_nonewsk:
1536 dst_release(dst);
1537 exit:
1538 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1539 return NULL;
1540 put_and_exit:
1541 tcp_clear_xmit_timers(newsk);
1542 tcp_cleanup_congestion_control(newsk);
1543 bh_unlock_sock(newsk);
1544 sock_put(newsk);
1545 goto exit;
1547 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1549 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1551 struct tcphdr *th = tcp_hdr(skb);
1552 const struct iphdr *iph = ip_hdr(skb);
1553 struct sock *nsk;
1554 struct request_sock **prev;
1555 /* Find possible connection requests. */
1556 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1557 iph->saddr, iph->daddr);
1558 if (req)
1559 return tcp_check_req(sk, skb, req, prev);
1561 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1562 th->source, iph->daddr, th->dest, inet_iif(skb));
1564 if (nsk) {
1565 if (nsk->sk_state != TCP_TIME_WAIT) {
1566 bh_lock_sock(nsk);
1567 return nsk;
1569 inet_twsk_put(inet_twsk(nsk));
1570 return NULL;
1573 #ifdef CONFIG_SYN_COOKIES
1574 if (!th->syn)
1575 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1576 #endif
1577 return sk;
1580 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1582 const struct iphdr *iph = ip_hdr(skb);
1584 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1585 if (!tcp_v4_check(skb->len, iph->saddr,
1586 iph->daddr, skb->csum)) {
1587 skb->ip_summed = CHECKSUM_UNNECESSARY;
1588 return 0;
1592 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1593 skb->len, IPPROTO_TCP, 0);
1595 if (skb->len <= 76) {
1596 return __skb_checksum_complete(skb);
1598 return 0;
1602 /* The socket must have it's spinlock held when we get
1603 * here.
1605 * We have a potential double-lock case here, so even when
1606 * doing backlog processing we use the BH locking scheme.
1607 * This is because we cannot sleep with the original spinlock
1608 * held.
1610 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1612 struct sock *rsk;
1613 #ifdef CONFIG_TCP_MD5SIG
1615 * We really want to reject the packet as early as possible
1616 * if:
1617 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1618 * o There is an MD5 option and we're not expecting one
1620 if (tcp_v4_inbound_md5_hash(sk, skb))
1621 goto discard;
1622 #endif
1624 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1625 sock_rps_save_rxhash(sk, skb);
1626 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1627 rsk = sk;
1628 goto reset;
1630 return 0;
1633 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1634 goto csum_err;
1636 if (sk->sk_state == TCP_LISTEN) {
1637 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1638 if (!nsk)
1639 goto discard;
1641 if (nsk != sk) {
1642 sock_rps_save_rxhash(nsk, skb);
1643 if (tcp_child_process(sk, nsk, skb)) {
1644 rsk = nsk;
1645 goto reset;
1647 return 0;
1649 } else
1650 sock_rps_save_rxhash(sk, skb);
1652 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1653 rsk = sk;
1654 goto reset;
1656 return 0;
1658 reset:
1659 tcp_v4_send_reset(rsk, skb);
1660 discard:
1661 kfree_skb(skb);
1662 /* Be careful here. If this function gets more complicated and
1663 * gcc suffers from register pressure on the x86, sk (in %ebx)
1664 * might be destroyed here. This current version compiles correctly,
1665 * but you have been warned.
1667 return 0;
1669 csum_err:
1670 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1671 goto discard;
1673 EXPORT_SYMBOL(tcp_v4_do_rcv);
1676 * From tcp_input.c
1679 int tcp_v4_rcv(struct sk_buff *skb)
1681 const struct iphdr *iph;
1682 const struct tcphdr *th;
1683 struct sock *sk;
1684 int ret;
1685 struct net *net = dev_net(skb->dev);
1687 if (skb->pkt_type != PACKET_HOST)
1688 goto discard_it;
1690 /* Count it even if it's bad */
1691 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1693 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1694 goto discard_it;
1696 th = tcp_hdr(skb);
1698 if (th->doff < sizeof(struct tcphdr) / 4)
1699 goto bad_packet;
1700 if (!pskb_may_pull(skb, th->doff * 4))
1701 goto discard_it;
1703 /* An explanation is required here, I think.
1704 * Packet length and doff are validated by header prediction,
1705 * provided case of th->doff==0 is eliminated.
1706 * So, we defer the checks. */
1707 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1708 goto bad_packet;
1710 th = tcp_hdr(skb);
1711 iph = ip_hdr(skb);
1712 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1713 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1714 skb->len - th->doff * 4);
1715 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1716 TCP_SKB_CB(skb)->when = 0;
1717 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1718 TCP_SKB_CB(skb)->sacked = 0;
1720 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1721 if (!sk)
1722 goto no_tcp_socket;
1724 process:
1725 if (sk->sk_state == TCP_TIME_WAIT)
1726 goto do_time_wait;
1728 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1729 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1730 goto discard_and_relse;
1733 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1734 goto discard_and_relse;
1735 nf_reset(skb);
1737 if (sk_filter(sk, skb))
1738 goto discard_and_relse;
1740 skb->dev = NULL;
1742 bh_lock_sock_nested(sk);
1743 ret = 0;
1744 if (!sock_owned_by_user(sk)) {
1745 #ifdef CONFIG_NET_DMA
1746 struct tcp_sock *tp = tcp_sk(sk);
1747 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1748 tp->ucopy.dma_chan = net_dma_find_channel();
1749 if (tp->ucopy.dma_chan)
1750 ret = tcp_v4_do_rcv(sk, skb);
1751 else
1752 #endif
1754 if (!tcp_prequeue(sk, skb))
1755 ret = tcp_v4_do_rcv(sk, skb);
1757 } else if (unlikely(sk_add_backlog(sk, skb,
1758 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1759 bh_unlock_sock(sk);
1760 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1761 goto discard_and_relse;
1763 bh_unlock_sock(sk);
1765 sock_put(sk);
1767 return ret;
1769 no_tcp_socket:
1770 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1771 goto discard_it;
1773 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1774 bad_packet:
1775 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1776 } else {
1777 tcp_v4_send_reset(NULL, skb);
1780 discard_it:
1781 /* Discard frame. */
1782 kfree_skb(skb);
1783 return 0;
1785 discard_and_relse:
1786 sock_put(sk);
1787 goto discard_it;
1789 do_time_wait:
1790 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1791 inet_twsk_put(inet_twsk(sk));
1792 goto discard_it;
1795 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1796 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1797 inet_twsk_put(inet_twsk(sk));
1798 goto discard_it;
1800 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1801 case TCP_TW_SYN: {
1802 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1803 &tcp_hashinfo,
1804 iph->daddr, th->dest,
1805 inet_iif(skb));
1806 if (sk2) {
1807 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1808 inet_twsk_put(inet_twsk(sk));
1809 sk = sk2;
1810 goto process;
1812 /* Fall through to ACK */
1814 case TCP_TW_ACK:
1815 tcp_v4_timewait_ack(sk, skb);
1816 break;
1817 case TCP_TW_RST:
1818 goto no_tcp_socket;
1819 case TCP_TW_SUCCESS:;
1821 goto discard_it;
1824 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1826 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1827 struct inet_sock *inet = inet_sk(sk);
1828 struct inet_peer *peer;
1830 if (!rt ||
1831 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1832 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1833 *release_it = true;
1834 } else {
1835 if (!rt->peer)
1836 rt_bind_peer(rt, inet->inet_daddr, 1);
1837 peer = rt->peer;
1838 *release_it = false;
1841 return peer;
1843 EXPORT_SYMBOL(tcp_v4_get_peer);
1845 void *tcp_v4_tw_get_peer(struct sock *sk)
1847 const struct inet_timewait_sock *tw = inet_twsk(sk);
1849 return inet_getpeer_v4(tw->tw_daddr, 1);
1851 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1853 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1854 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1855 .twsk_unique = tcp_twsk_unique,
1856 .twsk_destructor= tcp_twsk_destructor,
1857 .twsk_getpeer = tcp_v4_tw_get_peer,
1860 const struct inet_connection_sock_af_ops ipv4_specific = {
1861 .queue_xmit = ip_queue_xmit,
1862 .send_check = tcp_v4_send_check,
1863 .rebuild_header = inet_sk_rebuild_header,
1864 .conn_request = tcp_v4_conn_request,
1865 .syn_recv_sock = tcp_v4_syn_recv_sock,
1866 .get_peer = tcp_v4_get_peer,
1867 .net_header_len = sizeof(struct iphdr),
1868 .setsockopt = ip_setsockopt,
1869 .getsockopt = ip_getsockopt,
1870 .addr2sockaddr = inet_csk_addr2sockaddr,
1871 .sockaddr_len = sizeof(struct sockaddr_in),
1872 .bind_conflict = inet_csk_bind_conflict,
1873 #ifdef CONFIG_COMPAT
1874 .compat_setsockopt = compat_ip_setsockopt,
1875 .compat_getsockopt = compat_ip_getsockopt,
1876 #endif
1878 EXPORT_SYMBOL(ipv4_specific);
1880 #ifdef CONFIG_TCP_MD5SIG
1881 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1882 .md5_lookup = tcp_v4_md5_lookup,
1883 .calc_md5_hash = tcp_v4_md5_hash_skb,
1884 .md5_parse = tcp_v4_parse_md5_keys,
1886 #endif
1888 /* NOTE: A lot of things set to zero explicitly by call to
1889 * sk_alloc() so need not be done here.
1891 static int tcp_v4_init_sock(struct sock *sk)
1893 struct inet_connection_sock *icsk = inet_csk(sk);
1895 tcp_init_sock(sk);
1897 icsk->icsk_af_ops = &ipv4_specific;
1899 #ifdef CONFIG_TCP_MD5SIG
1900 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1901 #endif
1903 return 0;
1906 void tcp_v4_destroy_sock(struct sock *sk)
1908 struct tcp_sock *tp = tcp_sk(sk);
1910 tcp_clear_xmit_timers(sk);
1912 tcp_cleanup_congestion_control(sk);
1914 /* Cleanup up the write buffer. */
1915 tcp_write_queue_purge(sk);
1917 /* Cleans up our, hopefully empty, out_of_order_queue. */
1918 __skb_queue_purge(&tp->out_of_order_queue);
1920 #ifdef CONFIG_TCP_MD5SIG
1921 /* Clean up the MD5 key list, if any */
1922 if (tp->md5sig_info) {
1923 tcp_clear_md5_list(sk);
1924 kfree_rcu(tp->md5sig_info, rcu);
1925 tp->md5sig_info = NULL;
1927 #endif
1929 #ifdef CONFIG_NET_DMA
1930 /* Cleans up our sk_async_wait_queue */
1931 __skb_queue_purge(&sk->sk_async_wait_queue);
1932 #endif
1934 /* Clean prequeue, it must be empty really */
1935 __skb_queue_purge(&tp->ucopy.prequeue);
1937 /* Clean up a referenced TCP bind bucket. */
1938 if (inet_csk(sk)->icsk_bind_hash)
1939 inet_put_port(sk);
1942 * If sendmsg cached page exists, toss it.
1944 if (sk->sk_sndmsg_page) {
1945 __free_page(sk->sk_sndmsg_page);
1946 sk->sk_sndmsg_page = NULL;
1949 /* TCP Cookie Transactions */
1950 if (tp->cookie_values != NULL) {
1951 kref_put(&tp->cookie_values->kref,
1952 tcp_cookie_values_release);
1953 tp->cookie_values = NULL;
1956 sk_sockets_allocated_dec(sk);
1957 sock_release_memcg(sk);
1959 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1961 #ifdef CONFIG_PROC_FS
1962 /* Proc filesystem TCP sock list dumping. */
1964 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1966 return hlist_nulls_empty(head) ? NULL :
1967 list_entry(head->first, struct inet_timewait_sock, tw_node);
1970 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1972 return !is_a_nulls(tw->tw_node.next) ?
1973 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1977 * Get next listener socket follow cur. If cur is NULL, get first socket
1978 * starting from bucket given in st->bucket; when st->bucket is zero the
1979 * very first socket in the hash table is returned.
1981 static void *listening_get_next(struct seq_file *seq, void *cur)
1983 struct inet_connection_sock *icsk;
1984 struct hlist_nulls_node *node;
1985 struct sock *sk = cur;
1986 struct inet_listen_hashbucket *ilb;
1987 struct tcp_iter_state *st = seq->private;
1988 struct net *net = seq_file_net(seq);
1990 if (!sk) {
1991 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1992 spin_lock_bh(&ilb->lock);
1993 sk = sk_nulls_head(&ilb->head);
1994 st->offset = 0;
1995 goto get_sk;
1997 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1998 ++st->num;
1999 ++st->offset;
2001 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2002 struct request_sock *req = cur;
2004 icsk = inet_csk(st->syn_wait_sk);
2005 req = req->dl_next;
2006 while (1) {
2007 while (req) {
2008 if (req->rsk_ops->family == st->family) {
2009 cur = req;
2010 goto out;
2012 req = req->dl_next;
2014 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2015 break;
2016 get_req:
2017 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2019 sk = sk_nulls_next(st->syn_wait_sk);
2020 st->state = TCP_SEQ_STATE_LISTENING;
2021 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022 } else {
2023 icsk = inet_csk(sk);
2024 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2026 goto start_req;
2027 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2028 sk = sk_nulls_next(sk);
2030 get_sk:
2031 sk_nulls_for_each_from(sk, node) {
2032 if (!net_eq(sock_net(sk), net))
2033 continue;
2034 if (sk->sk_family == st->family) {
2035 cur = sk;
2036 goto out;
2038 icsk = inet_csk(sk);
2039 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2040 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2041 start_req:
2042 st->uid = sock_i_uid(sk);
2043 st->syn_wait_sk = sk;
2044 st->state = TCP_SEQ_STATE_OPENREQ;
2045 st->sbucket = 0;
2046 goto get_req;
2048 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2050 spin_unlock_bh(&ilb->lock);
2051 st->offset = 0;
2052 if (++st->bucket < INET_LHTABLE_SIZE) {
2053 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2054 spin_lock_bh(&ilb->lock);
2055 sk = sk_nulls_head(&ilb->head);
2056 goto get_sk;
2058 cur = NULL;
2059 out:
2060 return cur;
2063 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2065 struct tcp_iter_state *st = seq->private;
2066 void *rc;
2068 st->bucket = 0;
2069 st->offset = 0;
2070 rc = listening_get_next(seq, NULL);
2072 while (rc && *pos) {
2073 rc = listening_get_next(seq, rc);
2074 --*pos;
2076 return rc;
2079 static inline bool empty_bucket(struct tcp_iter_state *st)
2081 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2082 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2086 * Get first established socket starting from bucket given in st->bucket.
2087 * If st->bucket is zero, the very first socket in the hash is returned.
2089 static void *established_get_first(struct seq_file *seq)
2091 struct tcp_iter_state *st = seq->private;
2092 struct net *net = seq_file_net(seq);
2093 void *rc = NULL;
2095 st->offset = 0;
2096 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2097 struct sock *sk;
2098 struct hlist_nulls_node *node;
2099 struct inet_timewait_sock *tw;
2100 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2102 /* Lockless fast path for the common case of empty buckets */
2103 if (empty_bucket(st))
2104 continue;
2106 spin_lock_bh(lock);
2107 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2108 if (sk->sk_family != st->family ||
2109 !net_eq(sock_net(sk), net)) {
2110 continue;
2112 rc = sk;
2113 goto out;
2115 st->state = TCP_SEQ_STATE_TIME_WAIT;
2116 inet_twsk_for_each(tw, node,
2117 &tcp_hashinfo.ehash[st->bucket].twchain) {
2118 if (tw->tw_family != st->family ||
2119 !net_eq(twsk_net(tw), net)) {
2120 continue;
2122 rc = tw;
2123 goto out;
2125 spin_unlock_bh(lock);
2126 st->state = TCP_SEQ_STATE_ESTABLISHED;
2128 out:
2129 return rc;
2132 static void *established_get_next(struct seq_file *seq, void *cur)
2134 struct sock *sk = cur;
2135 struct inet_timewait_sock *tw;
2136 struct hlist_nulls_node *node;
2137 struct tcp_iter_state *st = seq->private;
2138 struct net *net = seq_file_net(seq);
2140 ++st->num;
2141 ++st->offset;
2143 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2144 tw = cur;
2145 tw = tw_next(tw);
2146 get_tw:
2147 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2148 tw = tw_next(tw);
2150 if (tw) {
2151 cur = tw;
2152 goto out;
2154 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2155 st->state = TCP_SEQ_STATE_ESTABLISHED;
2157 /* Look for next non empty bucket */
2158 st->offset = 0;
2159 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2160 empty_bucket(st))
2162 if (st->bucket > tcp_hashinfo.ehash_mask)
2163 return NULL;
2165 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2166 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2167 } else
2168 sk = sk_nulls_next(sk);
2170 sk_nulls_for_each_from(sk, node) {
2171 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2172 goto found;
2175 st->state = TCP_SEQ_STATE_TIME_WAIT;
2176 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2177 goto get_tw;
2178 found:
2179 cur = sk;
2180 out:
2181 return cur;
2184 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2186 struct tcp_iter_state *st = seq->private;
2187 void *rc;
2189 st->bucket = 0;
2190 rc = established_get_first(seq);
2192 while (rc && pos) {
2193 rc = established_get_next(seq, rc);
2194 --pos;
2196 return rc;
2199 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2201 void *rc;
2202 struct tcp_iter_state *st = seq->private;
2204 st->state = TCP_SEQ_STATE_LISTENING;
2205 rc = listening_get_idx(seq, &pos);
2207 if (!rc) {
2208 st->state = TCP_SEQ_STATE_ESTABLISHED;
2209 rc = established_get_idx(seq, pos);
2212 return rc;
2215 static void *tcp_seek_last_pos(struct seq_file *seq)
2217 struct tcp_iter_state *st = seq->private;
2218 int offset = st->offset;
2219 int orig_num = st->num;
2220 void *rc = NULL;
2222 switch (st->state) {
2223 case TCP_SEQ_STATE_OPENREQ:
2224 case TCP_SEQ_STATE_LISTENING:
2225 if (st->bucket >= INET_LHTABLE_SIZE)
2226 break;
2227 st->state = TCP_SEQ_STATE_LISTENING;
2228 rc = listening_get_next(seq, NULL);
2229 while (offset-- && rc)
2230 rc = listening_get_next(seq, rc);
2231 if (rc)
2232 break;
2233 st->bucket = 0;
2234 /* Fallthrough */
2235 case TCP_SEQ_STATE_ESTABLISHED:
2236 case TCP_SEQ_STATE_TIME_WAIT:
2237 st->state = TCP_SEQ_STATE_ESTABLISHED;
2238 if (st->bucket > tcp_hashinfo.ehash_mask)
2239 break;
2240 rc = established_get_first(seq);
2241 while (offset-- && rc)
2242 rc = established_get_next(seq, rc);
2245 st->num = orig_num;
2247 return rc;
2250 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2252 struct tcp_iter_state *st = seq->private;
2253 void *rc;
2255 if (*pos && *pos == st->last_pos) {
2256 rc = tcp_seek_last_pos(seq);
2257 if (rc)
2258 goto out;
2261 st->state = TCP_SEQ_STATE_LISTENING;
2262 st->num = 0;
2263 st->bucket = 0;
2264 st->offset = 0;
2265 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2267 out:
2268 st->last_pos = *pos;
2269 return rc;
2272 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2274 struct tcp_iter_state *st = seq->private;
2275 void *rc = NULL;
2277 if (v == SEQ_START_TOKEN) {
2278 rc = tcp_get_idx(seq, 0);
2279 goto out;
2282 switch (st->state) {
2283 case TCP_SEQ_STATE_OPENREQ:
2284 case TCP_SEQ_STATE_LISTENING:
2285 rc = listening_get_next(seq, v);
2286 if (!rc) {
2287 st->state = TCP_SEQ_STATE_ESTABLISHED;
2288 st->bucket = 0;
2289 st->offset = 0;
2290 rc = established_get_first(seq);
2292 break;
2293 case TCP_SEQ_STATE_ESTABLISHED:
2294 case TCP_SEQ_STATE_TIME_WAIT:
2295 rc = established_get_next(seq, v);
2296 break;
2298 out:
2299 ++*pos;
2300 st->last_pos = *pos;
2301 return rc;
2304 static void tcp_seq_stop(struct seq_file *seq, void *v)
2306 struct tcp_iter_state *st = seq->private;
2308 switch (st->state) {
2309 case TCP_SEQ_STATE_OPENREQ:
2310 if (v) {
2311 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2312 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2314 case TCP_SEQ_STATE_LISTENING:
2315 if (v != SEQ_START_TOKEN)
2316 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2317 break;
2318 case TCP_SEQ_STATE_TIME_WAIT:
2319 case TCP_SEQ_STATE_ESTABLISHED:
2320 if (v)
2321 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2322 break;
2326 int tcp_seq_open(struct inode *inode, struct file *file)
2328 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2329 struct tcp_iter_state *s;
2330 int err;
2332 err = seq_open_net(inode, file, &afinfo->seq_ops,
2333 sizeof(struct tcp_iter_state));
2334 if (err < 0)
2335 return err;
2337 s = ((struct seq_file *)file->private_data)->private;
2338 s->family = afinfo->family;
2339 s->last_pos = 0;
2340 return 0;
2342 EXPORT_SYMBOL(tcp_seq_open);
2344 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2346 int rc = 0;
2347 struct proc_dir_entry *p;
2349 afinfo->seq_ops.start = tcp_seq_start;
2350 afinfo->seq_ops.next = tcp_seq_next;
2351 afinfo->seq_ops.stop = tcp_seq_stop;
2353 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2354 afinfo->seq_fops, afinfo);
2355 if (!p)
2356 rc = -ENOMEM;
2357 return rc;
2359 EXPORT_SYMBOL(tcp_proc_register);
2361 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2363 proc_net_remove(net, afinfo->name);
2365 EXPORT_SYMBOL(tcp_proc_unregister);
2367 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2368 struct seq_file *f, int i, int uid, int *len)
2370 const struct inet_request_sock *ireq = inet_rsk(req);
2371 int ttd = req->expires - jiffies;
2373 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2374 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2376 ireq->loc_addr,
2377 ntohs(inet_sk(sk)->inet_sport),
2378 ireq->rmt_addr,
2379 ntohs(ireq->rmt_port),
2380 TCP_SYN_RECV,
2381 0, 0, /* could print option size, but that is af dependent. */
2382 1, /* timers active (only the expire timer) */
2383 jiffies_to_clock_t(ttd),
2384 req->retrans,
2385 uid,
2386 0, /* non standard timer */
2387 0, /* open_requests have no inode */
2388 atomic_read(&sk->sk_refcnt),
2389 req,
2390 len);
2393 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2395 int timer_active;
2396 unsigned long timer_expires;
2397 const struct tcp_sock *tp = tcp_sk(sk);
2398 const struct inet_connection_sock *icsk = inet_csk(sk);
2399 const struct inet_sock *inet = inet_sk(sk);
2400 __be32 dest = inet->inet_daddr;
2401 __be32 src = inet->inet_rcv_saddr;
2402 __u16 destp = ntohs(inet->inet_dport);
2403 __u16 srcp = ntohs(inet->inet_sport);
2404 int rx_queue;
2406 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2407 timer_active = 1;
2408 timer_expires = icsk->icsk_timeout;
2409 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2410 timer_active = 4;
2411 timer_expires = icsk->icsk_timeout;
2412 } else if (timer_pending(&sk->sk_timer)) {
2413 timer_active = 2;
2414 timer_expires = sk->sk_timer.expires;
2415 } else {
2416 timer_active = 0;
2417 timer_expires = jiffies;
2420 if (sk->sk_state == TCP_LISTEN)
2421 rx_queue = sk->sk_ack_backlog;
2422 else
2424 * because we dont lock socket, we might find a transient negative value
2426 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2428 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2429 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2430 i, src, srcp, dest, destp, sk->sk_state,
2431 tp->write_seq - tp->snd_una,
2432 rx_queue,
2433 timer_active,
2434 jiffies_to_clock_t(timer_expires - jiffies),
2435 icsk->icsk_retransmits,
2436 sock_i_uid(sk),
2437 icsk->icsk_probes_out,
2438 sock_i_ino(sk),
2439 atomic_read(&sk->sk_refcnt), sk,
2440 jiffies_to_clock_t(icsk->icsk_rto),
2441 jiffies_to_clock_t(icsk->icsk_ack.ato),
2442 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2443 tp->snd_cwnd,
2444 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2445 len);
2448 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2449 struct seq_file *f, int i, int *len)
2451 __be32 dest, src;
2452 __u16 destp, srcp;
2453 int ttd = tw->tw_ttd - jiffies;
2455 if (ttd < 0)
2456 ttd = 0;
2458 dest = tw->tw_daddr;
2459 src = tw->tw_rcv_saddr;
2460 destp = ntohs(tw->tw_dport);
2461 srcp = ntohs(tw->tw_sport);
2463 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2464 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2465 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2466 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2467 atomic_read(&tw->tw_refcnt), tw, len);
2470 #define TMPSZ 150
2472 static int tcp4_seq_show(struct seq_file *seq, void *v)
2474 struct tcp_iter_state *st;
2475 int len;
2477 if (v == SEQ_START_TOKEN) {
2478 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2479 " sl local_address rem_address st tx_queue "
2480 "rx_queue tr tm->when retrnsmt uid timeout "
2481 "inode");
2482 goto out;
2484 st = seq->private;
2486 switch (st->state) {
2487 case TCP_SEQ_STATE_LISTENING:
2488 case TCP_SEQ_STATE_ESTABLISHED:
2489 get_tcp4_sock(v, seq, st->num, &len);
2490 break;
2491 case TCP_SEQ_STATE_OPENREQ:
2492 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2493 break;
2494 case TCP_SEQ_STATE_TIME_WAIT:
2495 get_timewait4_sock(v, seq, st->num, &len);
2496 break;
2498 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2499 out:
2500 return 0;
2503 static const struct file_operations tcp_afinfo_seq_fops = {
2504 .owner = THIS_MODULE,
2505 .open = tcp_seq_open,
2506 .read = seq_read,
2507 .llseek = seq_lseek,
2508 .release = seq_release_net
2511 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2512 .name = "tcp",
2513 .family = AF_INET,
2514 .seq_fops = &tcp_afinfo_seq_fops,
2515 .seq_ops = {
2516 .show = tcp4_seq_show,
2520 static int __net_init tcp4_proc_init_net(struct net *net)
2522 return tcp_proc_register(net, &tcp4_seq_afinfo);
2525 static void __net_exit tcp4_proc_exit_net(struct net *net)
2527 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2530 static struct pernet_operations tcp4_net_ops = {
2531 .init = tcp4_proc_init_net,
2532 .exit = tcp4_proc_exit_net,
2535 int __init tcp4_proc_init(void)
2537 return register_pernet_subsys(&tcp4_net_ops);
2540 void tcp4_proc_exit(void)
2542 unregister_pernet_subsys(&tcp4_net_ops);
2544 #endif /* CONFIG_PROC_FS */
2546 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2548 const struct iphdr *iph = skb_gro_network_header(skb);
2550 switch (skb->ip_summed) {
2551 case CHECKSUM_COMPLETE:
2552 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2553 skb->csum)) {
2554 skb->ip_summed = CHECKSUM_UNNECESSARY;
2555 break;
2558 /* fall through */
2559 case CHECKSUM_NONE:
2560 NAPI_GRO_CB(skb)->flush = 1;
2561 return NULL;
2564 return tcp_gro_receive(head, skb);
2567 int tcp4_gro_complete(struct sk_buff *skb)
2569 const struct iphdr *iph = ip_hdr(skb);
2570 struct tcphdr *th = tcp_hdr(skb);
2572 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2573 iph->saddr, iph->daddr, 0);
2574 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2576 return tcp_gro_complete(skb);
2579 struct proto tcp_prot = {
2580 .name = "TCP",
2581 .owner = THIS_MODULE,
2582 .close = tcp_close,
2583 .connect = tcp_v4_connect,
2584 .disconnect = tcp_disconnect,
2585 .accept = inet_csk_accept,
2586 .ioctl = tcp_ioctl,
2587 .init = tcp_v4_init_sock,
2588 .destroy = tcp_v4_destroy_sock,
2589 .shutdown = tcp_shutdown,
2590 .setsockopt = tcp_setsockopt,
2591 .getsockopt = tcp_getsockopt,
2592 .recvmsg = tcp_recvmsg,
2593 .sendmsg = tcp_sendmsg,
2594 .sendpage = tcp_sendpage,
2595 .backlog_rcv = tcp_v4_do_rcv,
2596 .hash = inet_hash,
2597 .unhash = inet_unhash,
2598 .get_port = inet_csk_get_port,
2599 .enter_memory_pressure = tcp_enter_memory_pressure,
2600 .sockets_allocated = &tcp_sockets_allocated,
2601 .orphan_count = &tcp_orphan_count,
2602 .memory_allocated = &tcp_memory_allocated,
2603 .memory_pressure = &tcp_memory_pressure,
2604 .sysctl_wmem = sysctl_tcp_wmem,
2605 .sysctl_rmem = sysctl_tcp_rmem,
2606 .max_header = MAX_TCP_HEADER,
2607 .obj_size = sizeof(struct tcp_sock),
2608 .slab_flags = SLAB_DESTROY_BY_RCU,
2609 .twsk_prot = &tcp_timewait_sock_ops,
2610 .rsk_prot = &tcp_request_sock_ops,
2611 .h.hashinfo = &tcp_hashinfo,
2612 .no_autobind = true,
2613 #ifdef CONFIG_COMPAT
2614 .compat_setsockopt = compat_tcp_setsockopt,
2615 .compat_getsockopt = compat_tcp_getsockopt,
2616 #endif
2617 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2618 .init_cgroup = tcp_init_cgroup,
2619 .destroy_cgroup = tcp_destroy_cgroup,
2620 .proto_cgroup = tcp_proto_cgroup,
2621 #endif
2623 EXPORT_SYMBOL(tcp_prot);
2625 static int __net_init tcp_sk_init(struct net *net)
2627 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2628 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2631 static void __net_exit tcp_sk_exit(struct net *net)
2633 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2636 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2638 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2641 static struct pernet_operations __net_initdata tcp_sk_ops = {
2642 .init = tcp_sk_init,
2643 .exit = tcp_sk_exit,
2644 .exit_batch = tcp_sk_exit_batch,
2647 void __init tcp_v4_init(void)
2649 inet_hashinfo_init(&tcp_hashinfo);
2650 if (register_pernet_subsys(&tcp_sk_ops))
2651 panic("Failed to create the TCP control socket.\n");