x86, microcode: Sanitize per-cpu microcode reloading interface
[linux-2.6.git] / fs / splice.c
blobc9f1318a3b820b363526576036c4894205552921
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
44 struct page *page = buf->page;
45 struct address_space *mapping;
47 lock_page(page);
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
61 wait_on_page_writeback(page);
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
81 out_unlock:
82 unlock_page(page);
83 return 1;
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 struct page *page = buf->page;
101 int err;
103 if (!PageUptodate(page)) {
104 lock_page(page);
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
116 * Uh oh, read-error from disk.
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
124 * Page is ok afterall, we are done.
126 unlock_page(page);
129 return 0;
130 error:
131 unlock_page(page);
132 return err;
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 smp_mb();
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
176 * @spd: data to fill
178 * Description:
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
194 pipe_lock(pipe);
196 for (;;) {
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
199 if (!ret)
200 ret = -EPIPE;
201 break;
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
212 buf->ops = spd->ops;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
216 pipe->nrbufs++;
217 page_nr++;
218 ret += buf->len;
220 if (pipe->inode)
221 do_wakeup = 1;
223 if (!--spd->nr_pages)
224 break;
225 if (pipe->nrbufs < pipe->buffers)
226 continue;
228 break;
231 if (spd->flags & SPLICE_F_NONBLOCK) {
232 if (!ret)
233 ret = -EAGAIN;
234 break;
237 if (signal_pending(current)) {
238 if (!ret)
239 ret = -ERESTARTSYS;
240 break;
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 do_wakeup = 0;
251 pipe->waiting_writers++;
252 pipe_wait(pipe);
253 pipe->waiting_writers--;
256 pipe_unlock(pipe);
258 if (do_wakeup)
259 wakeup_pipe_readers(pipe);
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
264 return ret;
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 page_cache_release(spd->pages[i]);
273 * Check if we need to grow the arrays holding pages and partial page
274 * descriptions.
276 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 if (pipe->buffers <= PIPE_DEF_BUFFERS)
279 return 0;
281 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
282 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
284 if (spd->pages && spd->partial)
285 return 0;
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
292 void splice_shrink_spd(struct pipe_inode_info *pipe,
293 struct splice_pipe_desc *spd)
295 if (pipe->buffers <= PIPE_DEF_BUFFERS)
296 return;
298 kfree(spd->pages);
299 kfree(spd->partial);
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .flags = flags,
319 .ops = &page_cache_pipe_buf_ops,
320 .spd_release = spd_release_page,
323 if (splice_grow_spd(pipe, &spd))
324 return -ENOMEM;
326 index = *ppos >> PAGE_CACHE_SHIFT;
327 loff = *ppos & ~PAGE_CACHE_MASK;
328 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
329 nr_pages = min(req_pages, pipe->buffers);
332 * Lookup the (hopefully) full range of pages we need.
334 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
335 index += spd.nr_pages;
338 * If find_get_pages_contig() returned fewer pages than we needed,
339 * readahead/allocate the rest and fill in the holes.
341 if (spd.nr_pages < nr_pages)
342 page_cache_sync_readahead(mapping, &in->f_ra, in,
343 index, req_pages - spd.nr_pages);
345 error = 0;
346 while (spd.nr_pages < nr_pages) {
348 * Page could be there, find_get_pages_contig() breaks on
349 * the first hole.
351 page = find_get_page(mapping, index);
352 if (!page) {
354 * page didn't exist, allocate one.
356 page = page_cache_alloc_cold(mapping);
357 if (!page)
358 break;
360 error = add_to_page_cache_lru(page, mapping, index,
361 GFP_KERNEL);
362 if (unlikely(error)) {
363 page_cache_release(page);
364 if (error == -EEXIST)
365 continue;
366 break;
369 * add_to_page_cache() locks the page, unlock it
370 * to avoid convoluting the logic below even more.
372 unlock_page(page);
375 spd.pages[spd.nr_pages++] = page;
376 index++;
380 * Now loop over the map and see if we need to start IO on any
381 * pages, fill in the partial map, etc.
383 index = *ppos >> PAGE_CACHE_SHIFT;
384 nr_pages = spd.nr_pages;
385 spd.nr_pages = 0;
386 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
387 unsigned int this_len;
389 if (!len)
390 break;
393 * this_len is the max we'll use from this page
395 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
396 page = spd.pages[page_nr];
398 if (PageReadahead(page))
399 page_cache_async_readahead(mapping, &in->f_ra, in,
400 page, index, req_pages - page_nr);
403 * If the page isn't uptodate, we may need to start io on it
405 if (!PageUptodate(page)) {
406 lock_page(page);
409 * Page was truncated, or invalidated by the
410 * filesystem. Redo the find/create, but this time the
411 * page is kept locked, so there's no chance of another
412 * race with truncate/invalidate.
414 if (!page->mapping) {
415 unlock_page(page);
416 page = find_or_create_page(mapping, index,
417 mapping_gfp_mask(mapping));
419 if (!page) {
420 error = -ENOMEM;
421 break;
423 page_cache_release(spd.pages[page_nr]);
424 spd.pages[page_nr] = page;
427 * page was already under io and is now done, great
429 if (PageUptodate(page)) {
430 unlock_page(page);
431 goto fill_it;
435 * need to read in the page
437 error = mapping->a_ops->readpage(in, page);
438 if (unlikely(error)) {
440 * We really should re-lookup the page here,
441 * but it complicates things a lot. Instead
442 * lets just do what we already stored, and
443 * we'll get it the next time we are called.
445 if (error == AOP_TRUNCATED_PAGE)
446 error = 0;
448 break;
451 fill_it:
453 * i_size must be checked after PageUptodate.
455 isize = i_size_read(mapping->host);
456 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 if (unlikely(!isize || index > end_index))
458 break;
461 * if this is the last page, see if we need to shrink
462 * the length and stop
464 if (end_index == index) {
465 unsigned int plen;
468 * max good bytes in this page
470 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 if (plen <= loff)
472 break;
475 * force quit after adding this page
477 this_len = min(this_len, plen - loff);
478 len = this_len;
481 spd.partial[page_nr].offset = loff;
482 spd.partial[page_nr].len = this_len;
483 len -= this_len;
484 loff = 0;
485 spd.nr_pages++;
486 index++;
490 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 * we got, 'nr_pages' is how many pages are in the map.
493 while (page_nr < nr_pages)
494 page_cache_release(spd.pages[page_nr++]);
495 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497 if (spd.nr_pages)
498 error = splice_to_pipe(pipe, &spd);
500 splice_shrink_spd(pipe, &spd);
501 return error;
505 * generic_file_splice_read - splice data from file to a pipe
506 * @in: file to splice from
507 * @ppos: position in @in
508 * @pipe: pipe to splice to
509 * @len: number of bytes to splice
510 * @flags: splice modifier flags
512 * Description:
513 * Will read pages from given file and fill them into a pipe. Can be
514 * used as long as the address_space operations for the source implements
515 * a readpage() hook.
518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 struct pipe_inode_info *pipe, size_t len,
520 unsigned int flags)
522 loff_t isize, left;
523 int ret;
525 isize = i_size_read(in->f_mapping->host);
526 if (unlikely(*ppos >= isize))
527 return 0;
529 left = isize - *ppos;
530 if (unlikely(left < len))
531 len = left;
533 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
534 if (ret > 0) {
535 *ppos += ret;
536 file_accessed(in);
539 return ret;
541 EXPORT_SYMBOL(generic_file_splice_read);
543 static const struct pipe_buf_operations default_pipe_buf_ops = {
544 .can_merge = 0,
545 .map = generic_pipe_buf_map,
546 .unmap = generic_pipe_buf_unmap,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
553 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
554 unsigned long vlen, loff_t offset)
556 mm_segment_t old_fs;
557 loff_t pos = offset;
558 ssize_t res;
560 old_fs = get_fs();
561 set_fs(get_ds());
562 /* The cast to a user pointer is valid due to the set_fs() */
563 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
564 set_fs(old_fs);
566 return res;
569 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
570 loff_t pos)
572 mm_segment_t old_fs;
573 ssize_t res;
575 old_fs = get_fs();
576 set_fs(get_ds());
577 /* The cast to a user pointer is valid due to the set_fs() */
578 res = vfs_write(file, (const char __user *)buf, count, &pos);
579 set_fs(old_fs);
581 return res;
584 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
585 struct pipe_inode_info *pipe, size_t len,
586 unsigned int flags)
588 unsigned int nr_pages;
589 unsigned int nr_freed;
590 size_t offset;
591 struct page *pages[PIPE_DEF_BUFFERS];
592 struct partial_page partial[PIPE_DEF_BUFFERS];
593 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
594 ssize_t res;
595 size_t this_len;
596 int error;
597 int i;
598 struct splice_pipe_desc spd = {
599 .pages = pages,
600 .partial = partial,
601 .flags = flags,
602 .ops = &default_pipe_buf_ops,
603 .spd_release = spd_release_page,
606 if (splice_grow_spd(pipe, &spd))
607 return -ENOMEM;
609 res = -ENOMEM;
610 vec = __vec;
611 if (pipe->buffers > PIPE_DEF_BUFFERS) {
612 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
613 if (!vec)
614 goto shrink_ret;
617 offset = *ppos & ~PAGE_CACHE_MASK;
618 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
620 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
621 struct page *page;
623 page = alloc_page(GFP_USER);
624 error = -ENOMEM;
625 if (!page)
626 goto err;
628 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
629 vec[i].iov_base = (void __user *) page_address(page);
630 vec[i].iov_len = this_len;
631 spd.pages[i] = page;
632 spd.nr_pages++;
633 len -= this_len;
634 offset = 0;
637 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
638 if (res < 0) {
639 error = res;
640 goto err;
643 error = 0;
644 if (!res)
645 goto err;
647 nr_freed = 0;
648 for (i = 0; i < spd.nr_pages; i++) {
649 this_len = min_t(size_t, vec[i].iov_len, res);
650 spd.partial[i].offset = 0;
651 spd.partial[i].len = this_len;
652 if (!this_len) {
653 __free_page(spd.pages[i]);
654 spd.pages[i] = NULL;
655 nr_freed++;
657 res -= this_len;
659 spd.nr_pages -= nr_freed;
661 res = splice_to_pipe(pipe, &spd);
662 if (res > 0)
663 *ppos += res;
665 shrink_ret:
666 if (vec != __vec)
667 kfree(vec);
668 splice_shrink_spd(pipe, &spd);
669 return res;
671 err:
672 for (i = 0; i < spd.nr_pages; i++)
673 __free_page(spd.pages[i]);
675 res = error;
676 goto shrink_ret;
678 EXPORT_SYMBOL(default_file_splice_read);
681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
682 * using sendpage(). Return the number of bytes sent.
684 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
685 struct pipe_buffer *buf, struct splice_desc *sd)
687 struct file *file = sd->u.file;
688 loff_t pos = sd->pos;
689 int more;
691 if (!likely(file->f_op && file->f_op->sendpage))
692 return -EINVAL;
694 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
695 if (sd->len < sd->total_len)
696 more |= MSG_SENDPAGE_NOTLAST;
697 return file->f_op->sendpage(file, buf->page, buf->offset,
698 sd->len, &pos, more);
702 * This is a little more tricky than the file -> pipe splicing. There are
703 * basically three cases:
705 * - Destination page already exists in the address space and there
706 * are users of it. For that case we have no other option that
707 * copying the data. Tough luck.
708 * - Destination page already exists in the address space, but there
709 * are no users of it. Make sure it's uptodate, then drop it. Fall
710 * through to last case.
711 * - Destination page does not exist, we can add the pipe page to
712 * the page cache and avoid the copy.
714 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
715 * sd->flags), we attempt to migrate pages from the pipe to the output
716 * file address space page cache. This is possible if no one else has
717 * the pipe page referenced outside of the pipe and page cache. If
718 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
719 * a new page in the output file page cache and fill/dirty that.
721 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
722 struct splice_desc *sd)
724 struct file *file = sd->u.file;
725 struct address_space *mapping = file->f_mapping;
726 unsigned int offset, this_len;
727 struct page *page;
728 void *fsdata;
729 int ret;
731 offset = sd->pos & ~PAGE_CACHE_MASK;
733 this_len = sd->len;
734 if (this_len + offset > PAGE_CACHE_SIZE)
735 this_len = PAGE_CACHE_SIZE - offset;
737 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
738 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
739 if (unlikely(ret))
740 goto out;
742 if (buf->page != page) {
743 char *src = buf->ops->map(pipe, buf, 1);
744 char *dst = kmap_atomic(page);
746 memcpy(dst + offset, src + buf->offset, this_len);
747 flush_dcache_page(page);
748 kunmap_atomic(dst);
749 buf->ops->unmap(pipe, buf, src);
751 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
752 page, fsdata);
753 out:
754 return ret;
756 EXPORT_SYMBOL(pipe_to_file);
758 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
760 smp_mb();
761 if (waitqueue_active(&pipe->wait))
762 wake_up_interruptible(&pipe->wait);
763 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
767 * splice_from_pipe_feed - feed available data from a pipe to a file
768 * @pipe: pipe to splice from
769 * @sd: information to @actor
770 * @actor: handler that splices the data
772 * Description:
773 * This function loops over the pipe and calls @actor to do the
774 * actual moving of a single struct pipe_buffer to the desired
775 * destination. It returns when there's no more buffers left in
776 * the pipe or if the requested number of bytes (@sd->total_len)
777 * have been copied. It returns a positive number (one) if the
778 * pipe needs to be filled with more data, zero if the required
779 * number of bytes have been copied and -errno on error.
781 * This, together with splice_from_pipe_{begin,end,next}, may be
782 * used to implement the functionality of __splice_from_pipe() when
783 * locking is required around copying the pipe buffers to the
784 * destination.
786 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
787 splice_actor *actor)
789 int ret;
791 while (pipe->nrbufs) {
792 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
793 const struct pipe_buf_operations *ops = buf->ops;
795 sd->len = buf->len;
796 if (sd->len > sd->total_len)
797 sd->len = sd->total_len;
799 ret = buf->ops->confirm(pipe, buf);
800 if (unlikely(ret)) {
801 if (ret == -ENODATA)
802 ret = 0;
803 return ret;
806 ret = actor(pipe, buf, sd);
807 if (ret <= 0)
808 return ret;
810 buf->offset += ret;
811 buf->len -= ret;
813 sd->num_spliced += ret;
814 sd->len -= ret;
815 sd->pos += ret;
816 sd->total_len -= ret;
818 if (!buf->len) {
819 buf->ops = NULL;
820 ops->release(pipe, buf);
821 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
822 pipe->nrbufs--;
823 if (pipe->inode)
824 sd->need_wakeup = true;
827 if (!sd->total_len)
828 return 0;
831 return 1;
833 EXPORT_SYMBOL(splice_from_pipe_feed);
836 * splice_from_pipe_next - wait for some data to splice from
837 * @pipe: pipe to splice from
838 * @sd: information about the splice operation
840 * Description:
841 * This function will wait for some data and return a positive
842 * value (one) if pipe buffers are available. It will return zero
843 * or -errno if no more data needs to be spliced.
845 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
847 while (!pipe->nrbufs) {
848 if (!pipe->writers)
849 return 0;
851 if (!pipe->waiting_writers && sd->num_spliced)
852 return 0;
854 if (sd->flags & SPLICE_F_NONBLOCK)
855 return -EAGAIN;
857 if (signal_pending(current))
858 return -ERESTARTSYS;
860 if (sd->need_wakeup) {
861 wakeup_pipe_writers(pipe);
862 sd->need_wakeup = false;
865 pipe_wait(pipe);
868 return 1;
870 EXPORT_SYMBOL(splice_from_pipe_next);
873 * splice_from_pipe_begin - start splicing from pipe
874 * @sd: information about the splice operation
876 * Description:
877 * This function should be called before a loop containing
878 * splice_from_pipe_next() and splice_from_pipe_feed() to
879 * initialize the necessary fields of @sd.
881 void splice_from_pipe_begin(struct splice_desc *sd)
883 sd->num_spliced = 0;
884 sd->need_wakeup = false;
886 EXPORT_SYMBOL(splice_from_pipe_begin);
889 * splice_from_pipe_end - finish splicing from pipe
890 * @pipe: pipe to splice from
891 * @sd: information about the splice operation
893 * Description:
894 * This function will wake up pipe writers if necessary. It should
895 * be called after a loop containing splice_from_pipe_next() and
896 * splice_from_pipe_feed().
898 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
900 if (sd->need_wakeup)
901 wakeup_pipe_writers(pipe);
903 EXPORT_SYMBOL(splice_from_pipe_end);
906 * __splice_from_pipe - splice data from a pipe to given actor
907 * @pipe: pipe to splice from
908 * @sd: information to @actor
909 * @actor: handler that splices the data
911 * Description:
912 * This function does little more than loop over the pipe and call
913 * @actor to do the actual moving of a single struct pipe_buffer to
914 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
915 * pipe_to_user.
918 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
919 splice_actor *actor)
921 int ret;
923 splice_from_pipe_begin(sd);
924 do {
925 ret = splice_from_pipe_next(pipe, sd);
926 if (ret > 0)
927 ret = splice_from_pipe_feed(pipe, sd, actor);
928 } while (ret > 0);
929 splice_from_pipe_end(pipe, sd);
931 return sd->num_spliced ? sd->num_spliced : ret;
933 EXPORT_SYMBOL(__splice_from_pipe);
936 * splice_from_pipe - splice data from a pipe to a file
937 * @pipe: pipe to splice from
938 * @out: file to splice to
939 * @ppos: position in @out
940 * @len: how many bytes to splice
941 * @flags: splice modifier flags
942 * @actor: handler that splices the data
944 * Description:
945 * See __splice_from_pipe. This function locks the pipe inode,
946 * otherwise it's identical to __splice_from_pipe().
949 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
950 loff_t *ppos, size_t len, unsigned int flags,
951 splice_actor *actor)
953 ssize_t ret;
954 struct splice_desc sd = {
955 .total_len = len,
956 .flags = flags,
957 .pos = *ppos,
958 .u.file = out,
961 pipe_lock(pipe);
962 ret = __splice_from_pipe(pipe, &sd, actor);
963 pipe_unlock(pipe);
965 return ret;
969 * generic_file_splice_write - splice data from a pipe to a file
970 * @pipe: pipe info
971 * @out: file to write to
972 * @ppos: position in @out
973 * @len: number of bytes to splice
974 * @flags: splice modifier flags
976 * Description:
977 * Will either move or copy pages (determined by @flags options) from
978 * the given pipe inode to the given file.
981 ssize_t
982 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
983 loff_t *ppos, size_t len, unsigned int flags)
985 struct address_space *mapping = out->f_mapping;
986 struct inode *inode = mapping->host;
987 struct splice_desc sd = {
988 .total_len = len,
989 .flags = flags,
990 .pos = *ppos,
991 .u.file = out,
993 ssize_t ret;
995 pipe_lock(pipe);
997 splice_from_pipe_begin(&sd);
998 do {
999 ret = splice_from_pipe_next(pipe, &sd);
1000 if (ret <= 0)
1001 break;
1003 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1004 ret = file_remove_suid(out);
1005 if (!ret) {
1006 ret = file_update_time(out);
1007 if (!ret)
1008 ret = splice_from_pipe_feed(pipe, &sd,
1009 pipe_to_file);
1011 mutex_unlock(&inode->i_mutex);
1012 } while (ret > 0);
1013 splice_from_pipe_end(pipe, &sd);
1015 pipe_unlock(pipe);
1017 if (sd.num_spliced)
1018 ret = sd.num_spliced;
1020 if (ret > 0) {
1021 unsigned long nr_pages;
1022 int err;
1024 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1026 err = generic_write_sync(out, *ppos, ret);
1027 if (err)
1028 ret = err;
1029 else
1030 *ppos += ret;
1031 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1034 return ret;
1037 EXPORT_SYMBOL(generic_file_splice_write);
1039 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1040 struct splice_desc *sd)
1042 int ret;
1043 void *data;
1045 data = buf->ops->map(pipe, buf, 0);
1046 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1047 buf->ops->unmap(pipe, buf, data);
1049 return ret;
1052 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1053 struct file *out, loff_t *ppos,
1054 size_t len, unsigned int flags)
1056 ssize_t ret;
1058 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1059 if (ret > 0)
1060 *ppos += ret;
1062 return ret;
1066 * generic_splice_sendpage - splice data from a pipe to a socket
1067 * @pipe: pipe to splice from
1068 * @out: socket to write to
1069 * @ppos: position in @out
1070 * @len: number of bytes to splice
1071 * @flags: splice modifier flags
1073 * Description:
1074 * Will send @len bytes from the pipe to a network socket. No data copying
1075 * is involved.
1078 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1079 loff_t *ppos, size_t len, unsigned int flags)
1081 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1084 EXPORT_SYMBOL(generic_splice_sendpage);
1087 * Attempt to initiate a splice from pipe to file.
1089 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1090 loff_t *ppos, size_t len, unsigned int flags)
1092 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1093 loff_t *, size_t, unsigned int);
1094 int ret;
1096 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1097 return -EBADF;
1099 if (unlikely(out->f_flags & O_APPEND))
1100 return -EINVAL;
1102 ret = rw_verify_area(WRITE, out, ppos, len);
1103 if (unlikely(ret < 0))
1104 return ret;
1106 if (out->f_op && out->f_op->splice_write)
1107 splice_write = out->f_op->splice_write;
1108 else
1109 splice_write = default_file_splice_write;
1111 return splice_write(pipe, out, ppos, len, flags);
1115 * Attempt to initiate a splice from a file to a pipe.
1117 static long do_splice_to(struct file *in, loff_t *ppos,
1118 struct pipe_inode_info *pipe, size_t len,
1119 unsigned int flags)
1121 ssize_t (*splice_read)(struct file *, loff_t *,
1122 struct pipe_inode_info *, size_t, unsigned int);
1123 int ret;
1125 if (unlikely(!(in->f_mode & FMODE_READ)))
1126 return -EBADF;
1128 ret = rw_verify_area(READ, in, ppos, len);
1129 if (unlikely(ret < 0))
1130 return ret;
1132 if (in->f_op && in->f_op->splice_read)
1133 splice_read = in->f_op->splice_read;
1134 else
1135 splice_read = default_file_splice_read;
1137 return splice_read(in, ppos, pipe, len, flags);
1141 * splice_direct_to_actor - splices data directly between two non-pipes
1142 * @in: file to splice from
1143 * @sd: actor information on where to splice to
1144 * @actor: handles the data splicing
1146 * Description:
1147 * This is a special case helper to splice directly between two
1148 * points, without requiring an explicit pipe. Internally an allocated
1149 * pipe is cached in the process, and reused during the lifetime of
1150 * that process.
1153 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1154 splice_direct_actor *actor)
1156 struct pipe_inode_info *pipe;
1157 long ret, bytes;
1158 umode_t i_mode;
1159 size_t len;
1160 int i, flags;
1163 * We require the input being a regular file, as we don't want to
1164 * randomly drop data for eg socket -> socket splicing. Use the
1165 * piped splicing for that!
1167 i_mode = in->f_path.dentry->d_inode->i_mode;
1168 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1169 return -EINVAL;
1172 * neither in nor out is a pipe, setup an internal pipe attached to
1173 * 'out' and transfer the wanted data from 'in' to 'out' through that
1175 pipe = current->splice_pipe;
1176 if (unlikely(!pipe)) {
1177 pipe = alloc_pipe_info(NULL);
1178 if (!pipe)
1179 return -ENOMEM;
1182 * We don't have an immediate reader, but we'll read the stuff
1183 * out of the pipe right after the splice_to_pipe(). So set
1184 * PIPE_READERS appropriately.
1186 pipe->readers = 1;
1188 current->splice_pipe = pipe;
1192 * Do the splice.
1194 ret = 0;
1195 bytes = 0;
1196 len = sd->total_len;
1197 flags = sd->flags;
1200 * Don't block on output, we have to drain the direct pipe.
1202 sd->flags &= ~SPLICE_F_NONBLOCK;
1204 while (len) {
1205 size_t read_len;
1206 loff_t pos = sd->pos, prev_pos = pos;
1208 ret = do_splice_to(in, &pos, pipe, len, flags);
1209 if (unlikely(ret <= 0))
1210 goto out_release;
1212 read_len = ret;
1213 sd->total_len = read_len;
1216 * NOTE: nonblocking mode only applies to the input. We
1217 * must not do the output in nonblocking mode as then we
1218 * could get stuck data in the internal pipe:
1220 ret = actor(pipe, sd);
1221 if (unlikely(ret <= 0)) {
1222 sd->pos = prev_pos;
1223 goto out_release;
1226 bytes += ret;
1227 len -= ret;
1228 sd->pos = pos;
1230 if (ret < read_len) {
1231 sd->pos = prev_pos + ret;
1232 goto out_release;
1236 done:
1237 pipe->nrbufs = pipe->curbuf = 0;
1238 file_accessed(in);
1239 return bytes;
1241 out_release:
1243 * If we did an incomplete transfer we must release
1244 * the pipe buffers in question:
1246 for (i = 0; i < pipe->buffers; i++) {
1247 struct pipe_buffer *buf = pipe->bufs + i;
1249 if (buf->ops) {
1250 buf->ops->release(pipe, buf);
1251 buf->ops = NULL;
1255 if (!bytes)
1256 bytes = ret;
1258 goto done;
1260 EXPORT_SYMBOL(splice_direct_to_actor);
1262 static int direct_splice_actor(struct pipe_inode_info *pipe,
1263 struct splice_desc *sd)
1265 struct file *file = sd->u.file;
1267 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1268 sd->flags);
1272 * do_splice_direct - splices data directly between two files
1273 * @in: file to splice from
1274 * @ppos: input file offset
1275 * @out: file to splice to
1276 * @len: number of bytes to splice
1277 * @flags: splice modifier flags
1279 * Description:
1280 * For use by do_sendfile(). splice can easily emulate sendfile, but
1281 * doing it in the application would incur an extra system call
1282 * (splice in + splice out, as compared to just sendfile()). So this helper
1283 * can splice directly through a process-private pipe.
1286 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1287 size_t len, unsigned int flags)
1289 struct splice_desc sd = {
1290 .len = len,
1291 .total_len = len,
1292 .flags = flags,
1293 .pos = *ppos,
1294 .u.file = out,
1296 long ret;
1298 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1299 if (ret > 0)
1300 *ppos = sd.pos;
1302 return ret;
1305 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1306 struct pipe_inode_info *opipe,
1307 size_t len, unsigned int flags);
1310 * Determine where to splice to/from.
1312 static long do_splice(struct file *in, loff_t __user *off_in,
1313 struct file *out, loff_t __user *off_out,
1314 size_t len, unsigned int flags)
1316 struct pipe_inode_info *ipipe;
1317 struct pipe_inode_info *opipe;
1318 loff_t offset, *off;
1319 long ret;
1321 ipipe = get_pipe_info(in);
1322 opipe = get_pipe_info(out);
1324 if (ipipe && opipe) {
1325 if (off_in || off_out)
1326 return -ESPIPE;
1328 if (!(in->f_mode & FMODE_READ))
1329 return -EBADF;
1331 if (!(out->f_mode & FMODE_WRITE))
1332 return -EBADF;
1334 /* Splicing to self would be fun, but... */
1335 if (ipipe == opipe)
1336 return -EINVAL;
1338 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1341 if (ipipe) {
1342 if (off_in)
1343 return -ESPIPE;
1344 if (off_out) {
1345 if (!(out->f_mode & FMODE_PWRITE))
1346 return -EINVAL;
1347 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1348 return -EFAULT;
1349 off = &offset;
1350 } else
1351 off = &out->f_pos;
1353 ret = do_splice_from(ipipe, out, off, len, flags);
1355 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1356 ret = -EFAULT;
1358 return ret;
1361 if (opipe) {
1362 if (off_out)
1363 return -ESPIPE;
1364 if (off_in) {
1365 if (!(in->f_mode & FMODE_PREAD))
1366 return -EINVAL;
1367 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1368 return -EFAULT;
1369 off = &offset;
1370 } else
1371 off = &in->f_pos;
1373 ret = do_splice_to(in, off, opipe, len, flags);
1375 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1376 ret = -EFAULT;
1378 return ret;
1381 return -EINVAL;
1385 * Map an iov into an array of pages and offset/length tupples. With the
1386 * partial_page structure, we can map several non-contiguous ranges into
1387 * our ones pages[] map instead of splitting that operation into pieces.
1388 * Could easily be exported as a generic helper for other users, in which
1389 * case one would probably want to add a 'max_nr_pages' parameter as well.
1391 static int get_iovec_page_array(const struct iovec __user *iov,
1392 unsigned int nr_vecs, struct page **pages,
1393 struct partial_page *partial, bool aligned,
1394 unsigned int pipe_buffers)
1396 int buffers = 0, error = 0;
1398 while (nr_vecs) {
1399 unsigned long off, npages;
1400 struct iovec entry;
1401 void __user *base;
1402 size_t len;
1403 int i;
1405 error = -EFAULT;
1406 if (copy_from_user(&entry, iov, sizeof(entry)))
1407 break;
1409 base = entry.iov_base;
1410 len = entry.iov_len;
1413 * Sanity check this iovec. 0 read succeeds.
1415 error = 0;
1416 if (unlikely(!len))
1417 break;
1418 error = -EFAULT;
1419 if (!access_ok(VERIFY_READ, base, len))
1420 break;
1423 * Get this base offset and number of pages, then map
1424 * in the user pages.
1426 off = (unsigned long) base & ~PAGE_MASK;
1429 * If asked for alignment, the offset must be zero and the
1430 * length a multiple of the PAGE_SIZE.
1432 error = -EINVAL;
1433 if (aligned && (off || len & ~PAGE_MASK))
1434 break;
1436 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1437 if (npages > pipe_buffers - buffers)
1438 npages = pipe_buffers - buffers;
1440 error = get_user_pages_fast((unsigned long)base, npages,
1441 0, &pages[buffers]);
1443 if (unlikely(error <= 0))
1444 break;
1447 * Fill this contiguous range into the partial page map.
1449 for (i = 0; i < error; i++) {
1450 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1452 partial[buffers].offset = off;
1453 partial[buffers].len = plen;
1455 off = 0;
1456 len -= plen;
1457 buffers++;
1461 * We didn't complete this iov, stop here since it probably
1462 * means we have to move some of this into a pipe to
1463 * be able to continue.
1465 if (len)
1466 break;
1469 * Don't continue if we mapped fewer pages than we asked for,
1470 * or if we mapped the max number of pages that we have
1471 * room for.
1473 if (error < npages || buffers == pipe_buffers)
1474 break;
1476 nr_vecs--;
1477 iov++;
1480 if (buffers)
1481 return buffers;
1483 return error;
1486 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1487 struct splice_desc *sd)
1489 char *src;
1490 int ret;
1493 * See if we can use the atomic maps, by prefaulting in the
1494 * pages and doing an atomic copy
1496 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1497 src = buf->ops->map(pipe, buf, 1);
1498 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1499 sd->len);
1500 buf->ops->unmap(pipe, buf, src);
1501 if (!ret) {
1502 ret = sd->len;
1503 goto out;
1508 * No dice, use slow non-atomic map and copy
1510 src = buf->ops->map(pipe, buf, 0);
1512 ret = sd->len;
1513 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1514 ret = -EFAULT;
1516 buf->ops->unmap(pipe, buf, src);
1517 out:
1518 if (ret > 0)
1519 sd->u.userptr += ret;
1520 return ret;
1524 * For lack of a better implementation, implement vmsplice() to userspace
1525 * as a simple copy of the pipes pages to the user iov.
1527 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1528 unsigned long nr_segs, unsigned int flags)
1530 struct pipe_inode_info *pipe;
1531 struct splice_desc sd;
1532 ssize_t size;
1533 int error;
1534 long ret;
1536 pipe = get_pipe_info(file);
1537 if (!pipe)
1538 return -EBADF;
1540 pipe_lock(pipe);
1542 error = ret = 0;
1543 while (nr_segs) {
1544 void __user *base;
1545 size_t len;
1548 * Get user address base and length for this iovec.
1550 error = get_user(base, &iov->iov_base);
1551 if (unlikely(error))
1552 break;
1553 error = get_user(len, &iov->iov_len);
1554 if (unlikely(error))
1555 break;
1558 * Sanity check this iovec. 0 read succeeds.
1560 if (unlikely(!len))
1561 break;
1562 if (unlikely(!base)) {
1563 error = -EFAULT;
1564 break;
1567 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1568 error = -EFAULT;
1569 break;
1572 sd.len = 0;
1573 sd.total_len = len;
1574 sd.flags = flags;
1575 sd.u.userptr = base;
1576 sd.pos = 0;
1578 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1579 if (size < 0) {
1580 if (!ret)
1581 ret = size;
1583 break;
1586 ret += size;
1588 if (size < len)
1589 break;
1591 nr_segs--;
1592 iov++;
1595 pipe_unlock(pipe);
1597 if (!ret)
1598 ret = error;
1600 return ret;
1604 * vmsplice splices a user address range into a pipe. It can be thought of
1605 * as splice-from-memory, where the regular splice is splice-from-file (or
1606 * to file). In both cases the output is a pipe, naturally.
1608 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1609 unsigned long nr_segs, unsigned int flags)
1611 struct pipe_inode_info *pipe;
1612 struct page *pages[PIPE_DEF_BUFFERS];
1613 struct partial_page partial[PIPE_DEF_BUFFERS];
1614 struct splice_pipe_desc spd = {
1615 .pages = pages,
1616 .partial = partial,
1617 .flags = flags,
1618 .ops = &user_page_pipe_buf_ops,
1619 .spd_release = spd_release_page,
1621 long ret;
1623 pipe = get_pipe_info(file);
1624 if (!pipe)
1625 return -EBADF;
1627 if (splice_grow_spd(pipe, &spd))
1628 return -ENOMEM;
1630 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1631 spd.partial, false,
1632 pipe->buffers);
1633 if (spd.nr_pages <= 0)
1634 ret = spd.nr_pages;
1635 else
1636 ret = splice_to_pipe(pipe, &spd);
1638 splice_shrink_spd(pipe, &spd);
1639 return ret;
1643 * Note that vmsplice only really supports true splicing _from_ user memory
1644 * to a pipe, not the other way around. Splicing from user memory is a simple
1645 * operation that can be supported without any funky alignment restrictions
1646 * or nasty vm tricks. We simply map in the user memory and fill them into
1647 * a pipe. The reverse isn't quite as easy, though. There are two possible
1648 * solutions for that:
1650 * - memcpy() the data internally, at which point we might as well just
1651 * do a regular read() on the buffer anyway.
1652 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1653 * has restriction limitations on both ends of the pipe).
1655 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1658 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1659 unsigned long, nr_segs, unsigned int, flags)
1661 struct file *file;
1662 long error;
1663 int fput;
1665 if (unlikely(nr_segs > UIO_MAXIOV))
1666 return -EINVAL;
1667 else if (unlikely(!nr_segs))
1668 return 0;
1670 error = -EBADF;
1671 file = fget_light(fd, &fput);
1672 if (file) {
1673 if (file->f_mode & FMODE_WRITE)
1674 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1675 else if (file->f_mode & FMODE_READ)
1676 error = vmsplice_to_user(file, iov, nr_segs, flags);
1678 fput_light(file, fput);
1681 return error;
1684 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1685 int, fd_out, loff_t __user *, off_out,
1686 size_t, len, unsigned int, flags)
1688 long error;
1689 struct file *in, *out;
1690 int fput_in, fput_out;
1692 if (unlikely(!len))
1693 return 0;
1695 error = -EBADF;
1696 in = fget_light(fd_in, &fput_in);
1697 if (in) {
1698 if (in->f_mode & FMODE_READ) {
1699 out = fget_light(fd_out, &fput_out);
1700 if (out) {
1701 if (out->f_mode & FMODE_WRITE)
1702 error = do_splice(in, off_in,
1703 out, off_out,
1704 len, flags);
1705 fput_light(out, fput_out);
1709 fput_light(in, fput_in);
1712 return error;
1716 * Make sure there's data to read. Wait for input if we can, otherwise
1717 * return an appropriate error.
1719 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1721 int ret;
1724 * Check ->nrbufs without the inode lock first. This function
1725 * is speculative anyways, so missing one is ok.
1727 if (pipe->nrbufs)
1728 return 0;
1730 ret = 0;
1731 pipe_lock(pipe);
1733 while (!pipe->nrbufs) {
1734 if (signal_pending(current)) {
1735 ret = -ERESTARTSYS;
1736 break;
1738 if (!pipe->writers)
1739 break;
1740 if (!pipe->waiting_writers) {
1741 if (flags & SPLICE_F_NONBLOCK) {
1742 ret = -EAGAIN;
1743 break;
1746 pipe_wait(pipe);
1749 pipe_unlock(pipe);
1750 return ret;
1754 * Make sure there's writeable room. Wait for room if we can, otherwise
1755 * return an appropriate error.
1757 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1759 int ret;
1762 * Check ->nrbufs without the inode lock first. This function
1763 * is speculative anyways, so missing one is ok.
1765 if (pipe->nrbufs < pipe->buffers)
1766 return 0;
1768 ret = 0;
1769 pipe_lock(pipe);
1771 while (pipe->nrbufs >= pipe->buffers) {
1772 if (!pipe->readers) {
1773 send_sig(SIGPIPE, current, 0);
1774 ret = -EPIPE;
1775 break;
1777 if (flags & SPLICE_F_NONBLOCK) {
1778 ret = -EAGAIN;
1779 break;
1781 if (signal_pending(current)) {
1782 ret = -ERESTARTSYS;
1783 break;
1785 pipe->waiting_writers++;
1786 pipe_wait(pipe);
1787 pipe->waiting_writers--;
1790 pipe_unlock(pipe);
1791 return ret;
1795 * Splice contents of ipipe to opipe.
1797 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1798 struct pipe_inode_info *opipe,
1799 size_t len, unsigned int flags)
1801 struct pipe_buffer *ibuf, *obuf;
1802 int ret = 0, nbuf;
1803 bool input_wakeup = false;
1806 retry:
1807 ret = ipipe_prep(ipipe, flags);
1808 if (ret)
1809 return ret;
1811 ret = opipe_prep(opipe, flags);
1812 if (ret)
1813 return ret;
1816 * Potential ABBA deadlock, work around it by ordering lock
1817 * grabbing by pipe info address. Otherwise two different processes
1818 * could deadlock (one doing tee from A -> B, the other from B -> A).
1820 pipe_double_lock(ipipe, opipe);
1822 do {
1823 if (!opipe->readers) {
1824 send_sig(SIGPIPE, current, 0);
1825 if (!ret)
1826 ret = -EPIPE;
1827 break;
1830 if (!ipipe->nrbufs && !ipipe->writers)
1831 break;
1834 * Cannot make any progress, because either the input
1835 * pipe is empty or the output pipe is full.
1837 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1838 /* Already processed some buffers, break */
1839 if (ret)
1840 break;
1842 if (flags & SPLICE_F_NONBLOCK) {
1843 ret = -EAGAIN;
1844 break;
1848 * We raced with another reader/writer and haven't
1849 * managed to process any buffers. A zero return
1850 * value means EOF, so retry instead.
1852 pipe_unlock(ipipe);
1853 pipe_unlock(opipe);
1854 goto retry;
1857 ibuf = ipipe->bufs + ipipe->curbuf;
1858 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1859 obuf = opipe->bufs + nbuf;
1861 if (len >= ibuf->len) {
1863 * Simply move the whole buffer from ipipe to opipe
1865 *obuf = *ibuf;
1866 ibuf->ops = NULL;
1867 opipe->nrbufs++;
1868 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1869 ipipe->nrbufs--;
1870 input_wakeup = true;
1871 } else {
1873 * Get a reference to this pipe buffer,
1874 * so we can copy the contents over.
1876 ibuf->ops->get(ipipe, ibuf);
1877 *obuf = *ibuf;
1880 * Don't inherit the gift flag, we need to
1881 * prevent multiple steals of this page.
1883 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1885 obuf->len = len;
1886 opipe->nrbufs++;
1887 ibuf->offset += obuf->len;
1888 ibuf->len -= obuf->len;
1890 ret += obuf->len;
1891 len -= obuf->len;
1892 } while (len);
1894 pipe_unlock(ipipe);
1895 pipe_unlock(opipe);
1898 * If we put data in the output pipe, wakeup any potential readers.
1900 if (ret > 0)
1901 wakeup_pipe_readers(opipe);
1903 if (input_wakeup)
1904 wakeup_pipe_writers(ipipe);
1906 return ret;
1910 * Link contents of ipipe to opipe.
1912 static int link_pipe(struct pipe_inode_info *ipipe,
1913 struct pipe_inode_info *opipe,
1914 size_t len, unsigned int flags)
1916 struct pipe_buffer *ibuf, *obuf;
1917 int ret = 0, i = 0, nbuf;
1920 * Potential ABBA deadlock, work around it by ordering lock
1921 * grabbing by pipe info address. Otherwise two different processes
1922 * could deadlock (one doing tee from A -> B, the other from B -> A).
1924 pipe_double_lock(ipipe, opipe);
1926 do {
1927 if (!opipe->readers) {
1928 send_sig(SIGPIPE, current, 0);
1929 if (!ret)
1930 ret = -EPIPE;
1931 break;
1935 * If we have iterated all input buffers or ran out of
1936 * output room, break.
1938 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1939 break;
1941 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1942 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1945 * Get a reference to this pipe buffer,
1946 * so we can copy the contents over.
1948 ibuf->ops->get(ipipe, ibuf);
1950 obuf = opipe->bufs + nbuf;
1951 *obuf = *ibuf;
1954 * Don't inherit the gift flag, we need to
1955 * prevent multiple steals of this page.
1957 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1959 if (obuf->len > len)
1960 obuf->len = len;
1962 opipe->nrbufs++;
1963 ret += obuf->len;
1964 len -= obuf->len;
1965 i++;
1966 } while (len);
1969 * return EAGAIN if we have the potential of some data in the
1970 * future, otherwise just return 0
1972 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1973 ret = -EAGAIN;
1975 pipe_unlock(ipipe);
1976 pipe_unlock(opipe);
1979 * If we put data in the output pipe, wakeup any potential readers.
1981 if (ret > 0)
1982 wakeup_pipe_readers(opipe);
1984 return ret;
1988 * This is a tee(1) implementation that works on pipes. It doesn't copy
1989 * any data, it simply references the 'in' pages on the 'out' pipe.
1990 * The 'flags' used are the SPLICE_F_* variants, currently the only
1991 * applicable one is SPLICE_F_NONBLOCK.
1993 static long do_tee(struct file *in, struct file *out, size_t len,
1994 unsigned int flags)
1996 struct pipe_inode_info *ipipe = get_pipe_info(in);
1997 struct pipe_inode_info *opipe = get_pipe_info(out);
1998 int ret = -EINVAL;
2001 * Duplicate the contents of ipipe to opipe without actually
2002 * copying the data.
2004 if (ipipe && opipe && ipipe != opipe) {
2006 * Keep going, unless we encounter an error. The ipipe/opipe
2007 * ordering doesn't really matter.
2009 ret = ipipe_prep(ipipe, flags);
2010 if (!ret) {
2011 ret = opipe_prep(opipe, flags);
2012 if (!ret)
2013 ret = link_pipe(ipipe, opipe, len, flags);
2017 return ret;
2020 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2022 struct file *in;
2023 int error, fput_in;
2025 if (unlikely(!len))
2026 return 0;
2028 error = -EBADF;
2029 in = fget_light(fdin, &fput_in);
2030 if (in) {
2031 if (in->f_mode & FMODE_READ) {
2032 int fput_out;
2033 struct file *out = fget_light(fdout, &fput_out);
2035 if (out) {
2036 if (out->f_mode & FMODE_WRITE)
2037 error = do_tee(in, out, len, flags);
2038 fput_light(out, fput_out);
2041 fput_light(in, fput_in);
2044 return error;