4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 Andrew Morton
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure in the slab cache
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
58 /* dio_state only used in the submission path */
61 struct bio
*bio
; /* bio under assembly */
62 unsigned blkbits
; /* doesn't change */
63 unsigned blkfactor
; /* When we're using an alignment which
64 is finer than the filesystem's soft
65 blocksize, this specifies how much
66 finer. blkfactor=2 means 1/4-block
67 alignment. Does not change */
68 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
69 been performed at the start of a
71 int pages_in_io
; /* approximate total IO pages */
72 size_t size
; /* total request size (doesn't change)*/
73 sector_t block_in_file
; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available
; /* At block_in_file. changes */
76 int reap_counter
; /* rate limit reaping */
77 sector_t final_block_in_request
;/* doesn't change */
78 unsigned first_block_in_page
; /* doesn't change, Used only once */
79 int boundary
; /* prev block is at a boundary */
80 get_block_t
*get_block
; /* block mapping function */
81 dio_submit_t
*submit_io
; /* IO submition function */
83 loff_t logical_offset_in_bio
; /* current first logical block in bio */
84 sector_t final_block_in_bio
; /* current final block in bio + 1 */
85 sector_t next_block_for_io
; /* next block to be put under IO,
86 in dio_blocks units */
89 * Deferred addition of a page to the dio. These variables are
90 * private to dio_send_cur_page(), submit_page_section() and
93 struct page
*cur_page
; /* The page */
94 unsigned cur_page_offset
; /* Offset into it, in bytes */
95 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
96 sector_t cur_page_block
; /* Where it starts */
97 loff_t cur_page_fs_offset
; /* Offset in file */
100 * Page fetching state. These variables belong to dio_refill_pages().
102 int curr_page
; /* changes */
103 int total_pages
; /* doesn't change */
104 unsigned long curr_user_address
;/* changes */
107 * Page queue. These variables belong to dio_refill_pages() and
110 unsigned head
; /* next page to process */
111 unsigned tail
; /* last valid page + 1 */
114 /* dio_state communicated between submission path and end_io */
116 int flags
; /* doesn't change */
119 loff_t i_size
; /* i_size when submitted */
120 dio_iodone_t
*end_io
; /* IO completion function */
122 void *private; /* copy from map_bh.b_private */
124 /* BIO completion state */
125 spinlock_t bio_lock
; /* protects BIO fields below */
126 int page_errors
; /* errno from get_user_pages() */
127 int is_async
; /* is IO async ? */
128 int io_error
; /* IO error in completion path */
129 unsigned long refcount
; /* direct_io_worker() and bios */
130 struct bio
*bio_list
; /* singly linked via bi_private */
131 struct task_struct
*waiter
; /* waiting task (NULL if none) */
133 /* AIO related stuff */
134 struct kiocb
*iocb
; /* kiocb */
135 ssize_t result
; /* IO result */
138 * pages[] (and any fields placed after it) are not zeroed out at
139 * allocation time. Don't add new fields after pages[] unless you
140 * wish that they not be zeroed.
142 struct page
*pages
[DIO_PAGES
]; /* page buffer */
143 } ____cacheline_aligned_in_smp
;
145 static struct kmem_cache
*dio_cache __read_mostly
;
147 static void __inode_dio_wait(struct inode
*inode
)
149 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
150 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
153 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
154 if (atomic_read(&inode
->i_dio_count
))
156 } while (atomic_read(&inode
->i_dio_count
));
157 finish_wait(wq
, &q
.wait
);
161 * inode_dio_wait - wait for outstanding DIO requests to finish
162 * @inode: inode to wait for
164 * Waits for all pending direct I/O requests to finish so that we can
165 * proceed with a truncate or equivalent operation.
167 * Must be called under a lock that serializes taking new references
168 * to i_dio_count, usually by inode->i_mutex.
170 void inode_dio_wait(struct inode
*inode
)
172 if (atomic_read(&inode
->i_dio_count
))
173 __inode_dio_wait(inode
);
175 EXPORT_SYMBOL_GPL(inode_dio_wait
);
178 * inode_dio_done - signal finish of a direct I/O requests
179 * @inode: inode the direct I/O happens on
181 * This is called once we've finished processing a direct I/O request,
182 * and is used to wake up callers waiting for direct I/O to be quiesced.
184 void inode_dio_done(struct inode
*inode
)
186 if (atomic_dec_and_test(&inode
->i_dio_count
))
187 wake_up_bit(&inode
->i_state
, __I_DIO_WAKEUP
);
189 EXPORT_SYMBOL_GPL(inode_dio_done
);
192 * How many pages are in the queue?
194 static inline unsigned dio_pages_present(struct dio_submit
*sdio
)
196 return sdio
->tail
- sdio
->head
;
200 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
202 static inline int dio_refill_pages(struct dio
*dio
, struct dio_submit
*sdio
)
207 nr_pages
= min(sdio
->total_pages
- sdio
->curr_page
, DIO_PAGES
);
208 ret
= get_user_pages_fast(
209 sdio
->curr_user_address
, /* Where from? */
210 nr_pages
, /* How many pages? */
211 dio
->rw
== READ
, /* Write to memory? */
212 &dio
->pages
[0]); /* Put results here */
214 if (ret
< 0 && sdio
->blocks_available
&& (dio
->rw
& WRITE
)) {
215 struct page
*page
= ZERO_PAGE(0);
217 * A memory fault, but the filesystem has some outstanding
218 * mapped blocks. We need to use those blocks up to avoid
219 * leaking stale data in the file.
221 if (dio
->page_errors
== 0)
222 dio
->page_errors
= ret
;
223 page_cache_get(page
);
224 dio
->pages
[0] = page
;
232 sdio
->curr_user_address
+= ret
* PAGE_SIZE
;
233 sdio
->curr_page
+= ret
;
243 * Get another userspace page. Returns an ERR_PTR on error. Pages are
244 * buffered inside the dio so that we can call get_user_pages() against a
245 * decent number of pages, less frequently. To provide nicer use of the
248 static inline struct page
*dio_get_page(struct dio
*dio
,
249 struct dio_submit
*sdio
)
251 if (dio_pages_present(sdio
) == 0) {
254 ret
= dio_refill_pages(dio
, sdio
);
257 BUG_ON(dio_pages_present(sdio
) == 0);
259 return dio
->pages
[sdio
->head
++];
263 * dio_complete() - called when all DIO BIO I/O has been completed
264 * @offset: the byte offset in the file of the completed operation
266 * This releases locks as dictated by the locking type, lets interested parties
267 * know that a DIO operation has completed, and calculates the resulting return
268 * code for the operation.
270 * It lets the filesystem know if it registered an interest earlier via
271 * get_block. Pass the private field of the map buffer_head so that
272 * filesystems can use it to hold additional state between get_block calls and
275 static ssize_t
dio_complete(struct dio
*dio
, loff_t offset
, ssize_t ret
, bool is_async
)
277 ssize_t transferred
= 0;
280 * AIO submission can race with bio completion to get here while
281 * expecting to have the last io completed by bio completion.
282 * In that case -EIOCBQUEUED is in fact not an error we want
283 * to preserve through this call.
285 if (ret
== -EIOCBQUEUED
)
289 transferred
= dio
->result
;
291 /* Check for short read case */
292 if ((dio
->rw
== READ
) && ((offset
+ transferred
) > dio
->i_size
))
293 transferred
= dio
->i_size
- offset
;
297 ret
= dio
->page_errors
;
303 if (dio
->end_io
&& dio
->result
) {
304 dio
->end_io(dio
->iocb
, offset
, transferred
,
305 dio
->private, ret
, is_async
);
308 aio_complete(dio
->iocb
, ret
, 0);
309 inode_dio_done(dio
->inode
);
315 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
317 * Asynchronous IO callback.
319 static void dio_bio_end_aio(struct bio
*bio
, int error
)
321 struct dio
*dio
= bio
->bi_private
;
322 unsigned long remaining
;
325 /* cleanup the bio */
326 dio_bio_complete(dio
, bio
);
328 spin_lock_irqsave(&dio
->bio_lock
, flags
);
329 remaining
= --dio
->refcount
;
330 if (remaining
== 1 && dio
->waiter
)
331 wake_up_process(dio
->waiter
);
332 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
334 if (remaining
== 0) {
335 dio_complete(dio
, dio
->iocb
->ki_pos
, 0, true);
336 kmem_cache_free(dio_cache
, dio
);
341 * The BIO completion handler simply queues the BIO up for the process-context
344 * During I/O bi_private points at the dio. After I/O, bi_private is used to
345 * implement a singly-linked list of completed BIOs, at dio->bio_list.
347 static void dio_bio_end_io(struct bio
*bio
, int error
)
349 struct dio
*dio
= bio
->bi_private
;
352 spin_lock_irqsave(&dio
->bio_lock
, flags
);
353 bio
->bi_private
= dio
->bio_list
;
355 if (--dio
->refcount
== 1 && dio
->waiter
)
356 wake_up_process(dio
->waiter
);
357 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
361 * dio_end_io - handle the end io action for the given bio
362 * @bio: The direct io bio thats being completed
363 * @error: Error if there was one
365 * This is meant to be called by any filesystem that uses their own dio_submit_t
366 * so that the DIO specific endio actions are dealt with after the filesystem
367 * has done it's completion work.
369 void dio_end_io(struct bio
*bio
, int error
)
371 struct dio
*dio
= bio
->bi_private
;
374 dio_bio_end_aio(bio
, error
);
376 dio_bio_end_io(bio
, error
);
378 EXPORT_SYMBOL_GPL(dio_end_io
);
381 dio_bio_alloc(struct dio
*dio
, struct dio_submit
*sdio
,
382 struct block_device
*bdev
,
383 sector_t first_sector
, int nr_vecs
)
388 * bio_alloc() is guaranteed to return a bio when called with
389 * __GFP_WAIT and we request a valid number of vectors.
391 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
394 bio
->bi_sector
= first_sector
;
396 bio
->bi_end_io
= dio_bio_end_aio
;
398 bio
->bi_end_io
= dio_bio_end_io
;
401 sdio
->logical_offset_in_bio
= sdio
->cur_page_fs_offset
;
405 * In the AIO read case we speculatively dirty the pages before starting IO.
406 * During IO completion, any of these pages which happen to have been written
407 * back will be redirtied by bio_check_pages_dirty().
409 * bios hold a dio reference between submit_bio and ->end_io.
411 static inline void dio_bio_submit(struct dio
*dio
, struct dio_submit
*sdio
)
413 struct bio
*bio
= sdio
->bio
;
416 bio
->bi_private
= dio
;
418 spin_lock_irqsave(&dio
->bio_lock
, flags
);
420 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
422 if (dio
->is_async
&& dio
->rw
== READ
)
423 bio_set_pages_dirty(bio
);
426 sdio
->submit_io(dio
->rw
, bio
, dio
->inode
,
427 sdio
->logical_offset_in_bio
);
429 submit_bio(dio
->rw
, bio
);
433 sdio
->logical_offset_in_bio
= 0;
437 * Release any resources in case of a failure
439 static inline void dio_cleanup(struct dio
*dio
, struct dio_submit
*sdio
)
441 while (dio_pages_present(sdio
))
442 page_cache_release(dio_get_page(dio
, sdio
));
446 * Wait for the next BIO to complete. Remove it and return it. NULL is
447 * returned once all BIOs have been completed. This must only be called once
448 * all bios have been issued so that dio->refcount can only decrease. This
449 * requires that that the caller hold a reference on the dio.
451 static struct bio
*dio_await_one(struct dio
*dio
)
454 struct bio
*bio
= NULL
;
456 spin_lock_irqsave(&dio
->bio_lock
, flags
);
459 * Wait as long as the list is empty and there are bios in flight. bio
460 * completion drops the count, maybe adds to the list, and wakes while
461 * holding the bio_lock so we don't need set_current_state()'s barrier
462 * and can call it after testing our condition.
464 while (dio
->refcount
> 1 && dio
->bio_list
== NULL
) {
465 __set_current_state(TASK_UNINTERRUPTIBLE
);
466 dio
->waiter
= current
;
467 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
469 /* wake up sets us TASK_RUNNING */
470 spin_lock_irqsave(&dio
->bio_lock
, flags
);
475 dio
->bio_list
= bio
->bi_private
;
477 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
482 * Process one completed BIO. No locks are held.
484 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
486 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
487 struct bio_vec
*bvec
= bio
->bi_io_vec
;
491 dio
->io_error
= -EIO
;
493 if (dio
->is_async
&& dio
->rw
== READ
) {
494 bio_check_pages_dirty(bio
); /* transfers ownership */
496 for (page_no
= 0; page_no
< bio
->bi_vcnt
; page_no
++) {
497 struct page
*page
= bvec
[page_no
].bv_page
;
499 if (dio
->rw
== READ
&& !PageCompound(page
))
500 set_page_dirty_lock(page
);
501 page_cache_release(page
);
505 return uptodate
? 0 : -EIO
;
509 * Wait on and process all in-flight BIOs. This must only be called once
510 * all bios have been issued so that the refcount can only decrease.
511 * This just waits for all bios to make it through dio_bio_complete. IO
512 * errors are propagated through dio->io_error and should be propagated via
515 static void dio_await_completion(struct dio
*dio
)
519 bio
= dio_await_one(dio
);
521 dio_bio_complete(dio
, bio
);
526 * A really large O_DIRECT read or write can generate a lot of BIOs. So
527 * to keep the memory consumption sane we periodically reap any completed BIOs
528 * during the BIO generation phase.
530 * This also helps to limit the peak amount of pinned userspace memory.
532 static inline int dio_bio_reap(struct dio
*dio
, struct dio_submit
*sdio
)
536 if (sdio
->reap_counter
++ >= 64) {
537 while (dio
->bio_list
) {
542 spin_lock_irqsave(&dio
->bio_lock
, flags
);
544 dio
->bio_list
= bio
->bi_private
;
545 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
546 ret2
= dio_bio_complete(dio
, bio
);
550 sdio
->reap_counter
= 0;
556 * Call into the fs to map some more disk blocks. We record the current number
557 * of available blocks at sdio->blocks_available. These are in units of the
558 * fs blocksize, (1 << inode->i_blkbits).
560 * The fs is allowed to map lots of blocks at once. If it wants to do that,
561 * it uses the passed inode-relative block number as the file offset, as usual.
563 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
564 * has remaining to do. The fs should not map more than this number of blocks.
566 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
567 * indicate how much contiguous disk space has been made available at
570 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
571 * This isn't very efficient...
573 * In the case of filesystem holes: the fs may return an arbitrarily-large
574 * hole by returning an appropriate value in b_size and by clearing
575 * buffer_mapped(). However the direct-io code will only process holes one
576 * block at a time - it will repeatedly call get_block() as it walks the hole.
578 static int get_more_blocks(struct dio
*dio
, struct dio_submit
*sdio
,
579 struct buffer_head
*map_bh
)
582 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
583 unsigned long fs_count
; /* Number of filesystem-sized blocks */
584 unsigned long dio_count
;/* Number of dio_block-sized blocks */
585 unsigned long blkmask
;
589 * If there was a memory error and we've overwritten all the
590 * mapped blocks then we can now return that memory error
592 ret
= dio
->page_errors
;
594 BUG_ON(sdio
->block_in_file
>= sdio
->final_block_in_request
);
595 fs_startblk
= sdio
->block_in_file
>> sdio
->blkfactor
;
596 dio_count
= sdio
->final_block_in_request
- sdio
->block_in_file
;
597 fs_count
= dio_count
>> sdio
->blkfactor
;
598 blkmask
= (1 << sdio
->blkfactor
) - 1;
599 if (dio_count
& blkmask
)
603 map_bh
->b_size
= fs_count
<< dio
->inode
->i_blkbits
;
606 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
607 * forbid block creations: only overwrites are permitted.
608 * We will return early to the caller once we see an
609 * unmapped buffer head returned, and the caller will fall
610 * back to buffered I/O.
612 * Otherwise the decision is left to the get_blocks method,
613 * which may decide to handle it or also return an unmapped
616 create
= dio
->rw
& WRITE
;
617 if (dio
->flags
& DIO_SKIP_HOLES
) {
618 if (sdio
->block_in_file
< (i_size_read(dio
->inode
) >>
623 ret
= (*sdio
->get_block
)(dio
->inode
, fs_startblk
,
626 /* Store for completion */
627 dio
->private = map_bh
->b_private
;
633 * There is no bio. Make one now.
635 static inline int dio_new_bio(struct dio
*dio
, struct dio_submit
*sdio
,
636 sector_t start_sector
, struct buffer_head
*map_bh
)
641 ret
= dio_bio_reap(dio
, sdio
);
644 sector
= start_sector
<< (sdio
->blkbits
- 9);
645 nr_pages
= min(sdio
->pages_in_io
, bio_get_nr_vecs(map_bh
->b_bdev
));
646 nr_pages
= min(nr_pages
, BIO_MAX_PAGES
);
647 BUG_ON(nr_pages
<= 0);
648 dio_bio_alloc(dio
, sdio
, map_bh
->b_bdev
, sector
, nr_pages
);
655 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
656 * that was successful then update final_block_in_bio and take a ref against
657 * the just-added page.
659 * Return zero on success. Non-zero means the caller needs to start a new BIO.
661 static inline int dio_bio_add_page(struct dio_submit
*sdio
)
665 ret
= bio_add_page(sdio
->bio
, sdio
->cur_page
,
666 sdio
->cur_page_len
, sdio
->cur_page_offset
);
667 if (ret
== sdio
->cur_page_len
) {
669 * Decrement count only, if we are done with this page
671 if ((sdio
->cur_page_len
+ sdio
->cur_page_offset
) == PAGE_SIZE
)
673 page_cache_get(sdio
->cur_page
);
674 sdio
->final_block_in_bio
= sdio
->cur_page_block
+
675 (sdio
->cur_page_len
>> sdio
->blkbits
);
684 * Put cur_page under IO. The section of cur_page which is described by
685 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
686 * starts on-disk at cur_page_block.
688 * We take a ref against the page here (on behalf of its presence in the bio).
690 * The caller of this function is responsible for removing cur_page from the
691 * dio, and for dropping the refcount which came from that presence.
693 static inline int dio_send_cur_page(struct dio
*dio
, struct dio_submit
*sdio
,
694 struct buffer_head
*map_bh
)
699 loff_t cur_offset
= sdio
->cur_page_fs_offset
;
700 loff_t bio_next_offset
= sdio
->logical_offset_in_bio
+
704 * See whether this new request is contiguous with the old.
706 * Btrfs cannot handle having logically non-contiguous requests
707 * submitted. For example if you have
709 * Logical: [0-4095][HOLE][8192-12287]
710 * Physical: [0-4095] [4096-8191]
712 * We cannot submit those pages together as one BIO. So if our
713 * current logical offset in the file does not equal what would
714 * be the next logical offset in the bio, submit the bio we
717 if (sdio
->final_block_in_bio
!= sdio
->cur_page_block
||
718 cur_offset
!= bio_next_offset
)
719 dio_bio_submit(dio
, sdio
);
721 * Submit now if the underlying fs is about to perform a
724 else if (sdio
->boundary
)
725 dio_bio_submit(dio
, sdio
);
728 if (sdio
->bio
== NULL
) {
729 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
734 if (dio_bio_add_page(sdio
) != 0) {
735 dio_bio_submit(dio
, sdio
);
736 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
738 ret
= dio_bio_add_page(sdio
);
747 * An autonomous function to put a chunk of a page under deferred IO.
749 * The caller doesn't actually know (or care) whether this piece of page is in
750 * a BIO, or is under IO or whatever. We just take care of all possible
751 * situations here. The separation between the logic of do_direct_IO() and
752 * that of submit_page_section() is important for clarity. Please don't break.
754 * The chunk of page starts on-disk at blocknr.
756 * We perform deferred IO, by recording the last-submitted page inside our
757 * private part of the dio structure. If possible, we just expand the IO
758 * across that page here.
760 * If that doesn't work out then we put the old page into the bio and add this
761 * page to the dio instead.
764 submit_page_section(struct dio
*dio
, struct dio_submit
*sdio
, struct page
*page
,
765 unsigned offset
, unsigned len
, sector_t blocknr
,
766 struct buffer_head
*map_bh
)
770 if (dio
->rw
& WRITE
) {
772 * Read accounting is performed in submit_bio()
774 task_io_account_write(len
);
778 * Can we just grow the current page's presence in the dio?
780 if (sdio
->cur_page
== page
&&
781 sdio
->cur_page_offset
+ sdio
->cur_page_len
== offset
&&
782 sdio
->cur_page_block
+
783 (sdio
->cur_page_len
>> sdio
->blkbits
) == blocknr
) {
784 sdio
->cur_page_len
+= len
;
787 * If sdio->boundary then we want to schedule the IO now to
788 * avoid metadata seeks.
790 if (sdio
->boundary
) {
791 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
792 page_cache_release(sdio
->cur_page
);
793 sdio
->cur_page
= NULL
;
799 * If there's a deferred page already there then send it.
801 if (sdio
->cur_page
) {
802 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
803 page_cache_release(sdio
->cur_page
);
804 sdio
->cur_page
= NULL
;
809 page_cache_get(page
); /* It is in dio */
810 sdio
->cur_page
= page
;
811 sdio
->cur_page_offset
= offset
;
812 sdio
->cur_page_len
= len
;
813 sdio
->cur_page_block
= blocknr
;
814 sdio
->cur_page_fs_offset
= sdio
->block_in_file
<< sdio
->blkbits
;
820 * Clean any dirty buffers in the blockdev mapping which alias newly-created
821 * file blocks. Only called for S_ISREG files - blockdevs do not set
824 static void clean_blockdev_aliases(struct dio
*dio
, struct buffer_head
*map_bh
)
829 nblocks
= map_bh
->b_size
>> dio
->inode
->i_blkbits
;
831 for (i
= 0; i
< nblocks
; i
++) {
832 unmap_underlying_metadata(map_bh
->b_bdev
,
833 map_bh
->b_blocknr
+ i
);
838 * If we are not writing the entire block and get_block() allocated
839 * the block for us, we need to fill-in the unused portion of the
840 * block with zeros. This happens only if user-buffer, fileoffset or
841 * io length is not filesystem block-size multiple.
843 * `end' is zero if we're doing the start of the IO, 1 at the end of the
846 static inline void dio_zero_block(struct dio
*dio
, struct dio_submit
*sdio
,
847 int end
, struct buffer_head
*map_bh
)
849 unsigned dio_blocks_per_fs_block
;
850 unsigned this_chunk_blocks
; /* In dio_blocks */
851 unsigned this_chunk_bytes
;
854 sdio
->start_zero_done
= 1;
855 if (!sdio
->blkfactor
|| !buffer_new(map_bh
))
858 dio_blocks_per_fs_block
= 1 << sdio
->blkfactor
;
859 this_chunk_blocks
= sdio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
861 if (!this_chunk_blocks
)
865 * We need to zero out part of an fs block. It is either at the
866 * beginning or the end of the fs block.
869 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
871 this_chunk_bytes
= this_chunk_blocks
<< sdio
->blkbits
;
874 if (submit_page_section(dio
, sdio
, page
, 0, this_chunk_bytes
,
875 sdio
->next_block_for_io
, map_bh
))
878 sdio
->next_block_for_io
+= this_chunk_blocks
;
882 * Walk the user pages, and the file, mapping blocks to disk and generating
883 * a sequence of (page,offset,len,block) mappings. These mappings are injected
884 * into submit_page_section(), which takes care of the next stage of submission
886 * Direct IO against a blockdev is different from a file. Because we can
887 * happily perform page-sized but 512-byte aligned IOs. It is important that
888 * blockdev IO be able to have fine alignment and large sizes.
890 * So what we do is to permit the ->get_block function to populate bh.b_size
891 * with the size of IO which is permitted at this offset and this i_blkbits.
893 * For best results, the blockdev should be set up with 512-byte i_blkbits and
894 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
895 * fine alignment but still allows this function to work in PAGE_SIZE units.
897 static int do_direct_IO(struct dio
*dio
, struct dio_submit
*sdio
,
898 struct buffer_head
*map_bh
)
900 const unsigned blkbits
= sdio
->blkbits
;
901 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
903 unsigned block_in_page
;
906 /* The I/O can start at any block offset within the first page */
907 block_in_page
= sdio
->first_block_in_page
;
909 while (sdio
->block_in_file
< sdio
->final_block_in_request
) {
910 page
= dio_get_page(dio
, sdio
);
916 while (block_in_page
< blocks_per_page
) {
917 unsigned offset_in_page
= block_in_page
<< blkbits
;
918 unsigned this_chunk_bytes
; /* # of bytes mapped */
919 unsigned this_chunk_blocks
; /* # of blocks */
922 if (sdio
->blocks_available
== 0) {
924 * Need to go and map some more disk
926 unsigned long blkmask
;
927 unsigned long dio_remainder
;
929 ret
= get_more_blocks(dio
, sdio
, map_bh
);
931 page_cache_release(page
);
934 if (!buffer_mapped(map_bh
))
937 sdio
->blocks_available
=
938 map_bh
->b_size
>> sdio
->blkbits
;
939 sdio
->next_block_for_io
=
940 map_bh
->b_blocknr
<< sdio
->blkfactor
;
941 if (buffer_new(map_bh
))
942 clean_blockdev_aliases(dio
, map_bh
);
944 if (!sdio
->blkfactor
)
947 blkmask
= (1 << sdio
->blkfactor
) - 1;
948 dio_remainder
= (sdio
->block_in_file
& blkmask
);
951 * If we are at the start of IO and that IO
952 * starts partway into a fs-block,
953 * dio_remainder will be non-zero. If the IO
954 * is a read then we can simply advance the IO
955 * cursor to the first block which is to be
956 * read. But if the IO is a write and the
957 * block was newly allocated we cannot do that;
958 * the start of the fs block must be zeroed out
961 if (!buffer_new(map_bh
))
962 sdio
->next_block_for_io
+= dio_remainder
;
963 sdio
->blocks_available
-= dio_remainder
;
967 if (!buffer_mapped(map_bh
)) {
968 loff_t i_size_aligned
;
970 /* AKPM: eargh, -ENOTBLK is a hack */
971 if (dio
->rw
& WRITE
) {
972 page_cache_release(page
);
977 * Be sure to account for a partial block as the
978 * last block in the file
980 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
982 if (sdio
->block_in_file
>=
983 i_size_aligned
>> blkbits
) {
985 page_cache_release(page
);
988 zero_user(page
, block_in_page
<< blkbits
,
990 sdio
->block_in_file
++;
996 * If we're performing IO which has an alignment which
997 * is finer than the underlying fs, go check to see if
998 * we must zero out the start of this block.
1000 if (unlikely(sdio
->blkfactor
&& !sdio
->start_zero_done
))
1001 dio_zero_block(dio
, sdio
, 0, map_bh
);
1004 * Work out, in this_chunk_blocks, how much disk we
1005 * can add to this page
1007 this_chunk_blocks
= sdio
->blocks_available
;
1008 u
= (PAGE_SIZE
- offset_in_page
) >> blkbits
;
1009 if (this_chunk_blocks
> u
)
1010 this_chunk_blocks
= u
;
1011 u
= sdio
->final_block_in_request
- sdio
->block_in_file
;
1012 if (this_chunk_blocks
> u
)
1013 this_chunk_blocks
= u
;
1014 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
1015 BUG_ON(this_chunk_bytes
== 0);
1017 sdio
->boundary
= buffer_boundary(map_bh
);
1018 ret
= submit_page_section(dio
, sdio
, page
,
1021 sdio
->next_block_for_io
,
1024 page_cache_release(page
);
1027 sdio
->next_block_for_io
+= this_chunk_blocks
;
1029 sdio
->block_in_file
+= this_chunk_blocks
;
1030 block_in_page
+= this_chunk_blocks
;
1031 sdio
->blocks_available
-= this_chunk_blocks
;
1033 BUG_ON(sdio
->block_in_file
> sdio
->final_block_in_request
);
1034 if (sdio
->block_in_file
== sdio
->final_block_in_request
)
1038 /* Drop the ref which was taken in get_user_pages() */
1039 page_cache_release(page
);
1046 static inline int drop_refcount(struct dio
*dio
)
1049 unsigned long flags
;
1052 * Sync will always be dropping the final ref and completing the
1053 * operation. AIO can if it was a broken operation described above or
1054 * in fact if all the bios race to complete before we get here. In
1055 * that case dio_complete() translates the EIOCBQUEUED into the proper
1056 * return code that the caller will hand to aio_complete().
1058 * This is managed by the bio_lock instead of being an atomic_t so that
1059 * completion paths can drop their ref and use the remaining count to
1060 * decide to wake the submission path atomically.
1062 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1063 ret2
= --dio
->refcount
;
1064 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1069 * This is a library function for use by filesystem drivers.
1071 * The locking rules are governed by the flags parameter:
1072 * - if the flags value contains DIO_LOCKING we use a fancy locking
1073 * scheme for dumb filesystems.
1074 * For writes this function is called under i_mutex and returns with
1075 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1076 * taken and dropped again before returning.
1077 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1078 * internal locking but rather rely on the filesystem to synchronize
1079 * direct I/O reads/writes versus each other and truncate.
1081 * To help with locking against truncate we incremented the i_dio_count
1082 * counter before starting direct I/O, and decrement it once we are done.
1083 * Truncate can wait for it to reach zero to provide exclusion. It is
1084 * expected that filesystem provide exclusion between new direct I/O
1085 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1086 * but other filesystems need to take care of this on their own.
1088 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1089 * is always inlined. Otherwise gcc is unable to split the structure into
1090 * individual fields and will generate much worse code. This is important
1091 * for the whole file.
1094 __blockdev_direct_IO(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
1095 struct block_device
*bdev
, const struct iovec
*iov
, loff_t offset
,
1096 unsigned long nr_segs
, get_block_t get_block
, dio_iodone_t end_io
,
1097 dio_submit_t submit_io
, int flags
)
1102 unsigned blkbits
= inode
->i_blkbits
;
1103 unsigned bdev_blkbits
= 0;
1104 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1105 ssize_t retval
= -EINVAL
;
1106 loff_t end
= offset
;
1108 struct dio_submit sdio
= { 0, };
1109 unsigned long user_addr
;
1111 struct buffer_head map_bh
= { 0, };
1117 bdev_blkbits
= blksize_bits(bdev_logical_block_size(bdev
));
1119 if (offset
& blocksize_mask
) {
1121 blkbits
= bdev_blkbits
;
1122 blocksize_mask
= (1 << blkbits
) - 1;
1123 if (offset
& blocksize_mask
)
1127 /* Check the memory alignment. Blocks cannot straddle pages */
1128 for (seg
= 0; seg
< nr_segs
; seg
++) {
1129 addr
= (unsigned long)iov
[seg
].iov_base
;
1130 size
= iov
[seg
].iov_len
;
1132 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
)) {
1134 blkbits
= bdev_blkbits
;
1135 blocksize_mask
= (1 << blkbits
) - 1;
1136 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
1141 /* watch out for a 0 len io from a tricksy fs */
1142 if (rw
== READ
&& end
== offset
)
1145 dio
= kmem_cache_alloc(dio_cache
, GFP_KERNEL
);
1150 * Believe it or not, zeroing out the page array caused a .5%
1151 * performance regression in a database benchmark. So, we take
1152 * care to only zero out what's needed.
1154 memset(dio
, 0, offsetof(struct dio
, pages
));
1157 if (dio
->flags
& DIO_LOCKING
) {
1159 struct address_space
*mapping
=
1160 iocb
->ki_filp
->f_mapping
;
1162 /* will be released by direct_io_worker */
1163 mutex_lock(&inode
->i_mutex
);
1165 retval
= filemap_write_and_wait_range(mapping
, offset
,
1168 mutex_unlock(&inode
->i_mutex
);
1169 kmem_cache_free(dio_cache
, dio
);
1176 * Will be decremented at I/O completion time.
1178 atomic_inc(&inode
->i_dio_count
);
1181 * For file extending writes updating i_size before data
1182 * writeouts complete can expose uninitialized blocks. So
1183 * even for AIO, we need to wait for i/o to complete before
1184 * returning in this case.
1186 dio
->is_async
= !is_sync_kiocb(iocb
) && !((rw
& WRITE
) &&
1187 (end
> i_size_read(inode
)));
1193 sdio
.blkbits
= blkbits
;
1194 sdio
.blkfactor
= inode
->i_blkbits
- blkbits
;
1195 sdio
.block_in_file
= offset
>> blkbits
;
1197 sdio
.get_block
= get_block
;
1198 dio
->end_io
= end_io
;
1199 sdio
.submit_io
= submit_io
;
1200 sdio
.final_block_in_bio
= -1;
1201 sdio
.next_block_for_io
= -1;
1204 dio
->i_size
= i_size_read(inode
);
1206 spin_lock_init(&dio
->bio_lock
);
1210 * In case of non-aligned buffers, we may need 2 more
1211 * pages since we need to zero out first and last block.
1213 if (unlikely(sdio
.blkfactor
))
1214 sdio
.pages_in_io
= 2;
1216 for (seg
= 0; seg
< nr_segs
; seg
++) {
1217 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1219 ((user_addr
+ iov
[seg
].iov_len
+ PAGE_SIZE
-1) /
1220 PAGE_SIZE
- user_addr
/ PAGE_SIZE
);
1223 for (seg
= 0; seg
< nr_segs
; seg
++) {
1224 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1225 sdio
.size
+= bytes
= iov
[seg
].iov_len
;
1227 /* Index into the first page of the first block */
1228 sdio
.first_block_in_page
= (user_addr
& ~PAGE_MASK
) >> blkbits
;
1229 sdio
.final_block_in_request
= sdio
.block_in_file
+
1231 /* Page fetching state */
1236 sdio
.total_pages
= 0;
1237 if (user_addr
& (PAGE_SIZE
-1)) {
1239 bytes
-= PAGE_SIZE
- (user_addr
& (PAGE_SIZE
- 1));
1241 sdio
.total_pages
+= (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1242 sdio
.curr_user_address
= user_addr
;
1244 retval
= do_direct_IO(dio
, &sdio
, &map_bh
);
1246 dio
->result
+= iov
[seg
].iov_len
-
1247 ((sdio
.final_block_in_request
- sdio
.block_in_file
) <<
1251 dio_cleanup(dio
, &sdio
);
1254 } /* end iovec loop */
1256 if (retval
== -ENOTBLK
) {
1258 * The remaining part of the request will be
1259 * be handled by buffered I/O when we return
1264 * There may be some unwritten disk at the end of a part-written
1265 * fs-block-sized block. Go zero that now.
1267 dio_zero_block(dio
, &sdio
, 1, &map_bh
);
1269 if (sdio
.cur_page
) {
1272 ret2
= dio_send_cur_page(dio
, &sdio
, &map_bh
);
1275 page_cache_release(sdio
.cur_page
);
1276 sdio
.cur_page
= NULL
;
1279 dio_bio_submit(dio
, &sdio
);
1282 * It is possible that, we return short IO due to end of file.
1283 * In that case, we need to release all the pages we got hold on.
1285 dio_cleanup(dio
, &sdio
);
1288 * All block lookups have been performed. For READ requests
1289 * we can let i_mutex go now that its achieved its purpose
1290 * of protecting us from looking up uninitialized blocks.
1292 if (rw
== READ
&& (dio
->flags
& DIO_LOCKING
))
1293 mutex_unlock(&dio
->inode
->i_mutex
);
1296 * The only time we want to leave bios in flight is when a successful
1297 * partial aio read or full aio write have been setup. In that case
1298 * bio completion will call aio_complete. The only time it's safe to
1299 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1300 * This had *better* be the only place that raises -EIOCBQUEUED.
1302 BUG_ON(retval
== -EIOCBQUEUED
);
1303 if (dio
->is_async
&& retval
== 0 && dio
->result
&&
1304 ((rw
& READ
) || (dio
->result
== sdio
.size
)))
1305 retval
= -EIOCBQUEUED
;
1307 if (retval
!= -EIOCBQUEUED
)
1308 dio_await_completion(dio
);
1310 if (drop_refcount(dio
) == 0) {
1311 retval
= dio_complete(dio
, offset
, retval
, false);
1312 kmem_cache_free(dio_cache
, dio
);
1314 BUG_ON(retval
!= -EIOCBQUEUED
);
1319 EXPORT_SYMBOL(__blockdev_direct_IO
);
1321 static __init
int dio_init(void)
1323 dio_cache
= KMEM_CACHE(dio
, SLAB_PANIC
);
1326 module_init(dio_init
)