4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
64 * dentry->d_inode->i_lock
67 * dcache_hash_bucket lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
73 * dentry->d_parent->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
81 int sysctl_vfs_cache_pressure __read_mostly
= 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
84 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
102 static unsigned int d_hash_mask __read_mostly
;
103 static unsigned int d_hash_shift __read_mostly
;
105 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
107 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
110 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
111 hash
= hash
+ (hash
>> D_HASHBITS
);
112 return dentry_hashtable
+ (hash
& D_HASHMASK
);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat
= {
120 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
127 for_each_possible_cpu(i
)
128 sum
+= per_cpu(nr_dentry
, i
);
129 return sum
< 0 ? 0 : sum
;
132 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
133 size_t *lenp
, loff_t
*ppos
)
135 dentry_stat
.nr_dentry
= get_nr_dentry();
136 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
146 #include <asm/word-at-a-time.h>
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
156 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
158 unsigned long a
,b
,mask
;
161 a
= *(unsigned long *)cs
;
162 b
= load_unaligned_zeropad(ct
);
163 if (tcount
< sizeof(unsigned long))
165 if (unlikely(a
!= b
))
167 cs
+= sizeof(unsigned long);
168 ct
+= sizeof(unsigned long);
169 tcount
-= sizeof(unsigned long);
173 mask
= ~(~0ul << tcount
*8);
174 return unlikely(!!((a
^ b
) & mask
));
179 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
193 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
195 const unsigned char *cs
;
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
212 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs
, ct
, tcount
);
217 static void __d_free(struct rcu_head
*head
)
219 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
221 WARN_ON(!hlist_unhashed(&dentry
->d_alias
));
222 if (dname_external(dentry
))
223 kfree(dentry
->d_name
.name
);
224 kmem_cache_free(dentry_cache
, dentry
);
230 static void d_free(struct dentry
*dentry
)
232 BUG_ON(dentry
->d_count
);
233 this_cpu_dec(nr_dentry
);
234 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
235 dentry
->d_op
->d_release(dentry
);
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
239 __d_free(&dentry
->d_u
.d_rcu
);
241 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
251 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
253 assert_spin_locked(&dentry
->d_lock
);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry
->d_seq
);
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
263 static void dentry_iput(struct dentry
* dentry
)
264 __releases(dentry
->d_lock
)
265 __releases(dentry
->d_inode
->i_lock
)
267 struct inode
*inode
= dentry
->d_inode
;
269 dentry
->d_inode
= NULL
;
270 hlist_del_init(&dentry
->d_alias
);
271 spin_unlock(&dentry
->d_lock
);
272 spin_unlock(&inode
->i_lock
);
274 fsnotify_inoderemove(inode
);
275 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
276 dentry
->d_op
->d_iput(dentry
, inode
);
280 spin_unlock(&dentry
->d_lock
);
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
288 static void dentry_unlink_inode(struct dentry
* dentry
)
289 __releases(dentry
->d_lock
)
290 __releases(dentry
->d_inode
->i_lock
)
292 struct inode
*inode
= dentry
->d_inode
;
293 dentry
->d_inode
= NULL
;
294 hlist_del_init(&dentry
->d_alias
);
295 dentry_rcuwalk_barrier(dentry
);
296 spin_unlock(&dentry
->d_lock
);
297 spin_unlock(&inode
->i_lock
);
299 fsnotify_inoderemove(inode
);
300 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
301 dentry
->d_op
->d_iput(dentry
, inode
);
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
309 static void dentry_lru_add(struct dentry
*dentry
)
311 if (list_empty(&dentry
->d_lru
)) {
312 spin_lock(&dcache_lru_lock
);
313 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
314 dentry
->d_sb
->s_nr_dentry_unused
++;
315 dentry_stat
.nr_unused
++;
316 spin_unlock(&dcache_lru_lock
);
320 static void __dentry_lru_del(struct dentry
*dentry
)
322 list_del_init(&dentry
->d_lru
);
323 dentry
->d_flags
&= ~DCACHE_SHRINK_LIST
;
324 dentry
->d_sb
->s_nr_dentry_unused
--;
325 dentry_stat
.nr_unused
--;
329 * Remove a dentry with references from the LRU.
331 static void dentry_lru_del(struct dentry
*dentry
)
333 if (!list_empty(&dentry
->d_lru
)) {
334 spin_lock(&dcache_lru_lock
);
335 __dentry_lru_del(dentry
);
336 spin_unlock(&dcache_lru_lock
);
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
345 static void dentry_lru_prune(struct dentry
*dentry
)
347 if (!list_empty(&dentry
->d_lru
)) {
348 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
349 dentry
->d_op
->d_prune(dentry
);
351 spin_lock(&dcache_lru_lock
);
352 __dentry_lru_del(dentry
);
353 spin_unlock(&dcache_lru_lock
);
357 static void dentry_lru_move_list(struct dentry
*dentry
, struct list_head
*list
)
359 spin_lock(&dcache_lru_lock
);
360 if (list_empty(&dentry
->d_lru
)) {
361 list_add_tail(&dentry
->d_lru
, list
);
362 dentry
->d_sb
->s_nr_dentry_unused
++;
363 dentry_stat
.nr_unused
++;
365 list_move_tail(&dentry
->d_lru
, list
);
367 spin_unlock(&dcache_lru_lock
);
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
373 * @parent: parent dentry
375 * The dentry must already be unhashed and removed from the LRU.
377 * If this is the root of the dentry tree, return NULL.
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
382 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
383 __releases(dentry
->d_lock
)
384 __releases(parent
->d_lock
)
385 __releases(dentry
->d_inode
->i_lock
)
387 list_del(&dentry
->d_u
.d_child
);
389 * Inform try_to_ascend() that we are no longer attached to the
392 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
394 spin_unlock(&parent
->d_lock
);
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
409 static void __d_shrink(struct dentry
*dentry
)
411 if (!d_unhashed(dentry
)) {
412 struct hlist_bl_head
*b
;
413 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
414 b
= &dentry
->d_sb
->s_anon
;
416 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
419 __hlist_bl_del(&dentry
->d_hash
);
420 dentry
->d_hash
.pprev
= NULL
;
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
438 * __d_drop requires dentry->d_lock.
440 void __d_drop(struct dentry
*dentry
)
442 if (!d_unhashed(dentry
)) {
444 dentry_rcuwalk_barrier(dentry
);
447 EXPORT_SYMBOL(__d_drop
);
449 void d_drop(struct dentry
*dentry
)
451 spin_lock(&dentry
->d_lock
);
453 spin_unlock(&dentry
->d_lock
);
455 EXPORT_SYMBOL(d_drop
);
458 * Finish off a dentry we've decided to kill.
459 * dentry->d_lock must be held, returns with it unlocked.
460 * If ref is non-zero, then decrement the refcount too.
461 * Returns dentry requiring refcount drop, or NULL if we're done.
463 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
464 __releases(dentry
->d_lock
)
467 struct dentry
*parent
;
469 inode
= dentry
->d_inode
;
470 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
472 spin_unlock(&dentry
->d_lock
);
474 return dentry
; /* try again with same dentry */
479 parent
= dentry
->d_parent
;
480 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
482 spin_unlock(&inode
->i_lock
);
489 * if dentry was on the d_lru list delete it from there.
490 * inform the fs via d_prune that this dentry is about to be
491 * unhashed and destroyed.
493 dentry_lru_prune(dentry
);
494 /* if it was on the hash then remove it */
496 return d_kill(dentry
, parent
);
502 * This is complicated by the fact that we do not want to put
503 * dentries that are no longer on any hash chain on the unused
504 * list: we'd much rather just get rid of them immediately.
506 * However, that implies that we have to traverse the dentry
507 * tree upwards to the parents which might _also_ now be
508 * scheduled for deletion (it may have been only waiting for
509 * its last child to go away).
511 * This tail recursion is done by hand as we don't want to depend
512 * on the compiler to always get this right (gcc generally doesn't).
513 * Real recursion would eat up our stack space.
517 * dput - release a dentry
518 * @dentry: dentry to release
520 * Release a dentry. This will drop the usage count and if appropriate
521 * call the dentry unlink method as well as removing it from the queues and
522 * releasing its resources. If the parent dentries were scheduled for release
523 * they too may now get deleted.
525 void dput(struct dentry
*dentry
)
531 if (dentry
->d_count
== 1)
533 spin_lock(&dentry
->d_lock
);
534 BUG_ON(!dentry
->d_count
);
535 if (dentry
->d_count
> 1) {
537 spin_unlock(&dentry
->d_lock
);
541 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
542 if (dentry
->d_op
->d_delete(dentry
))
546 /* Unreachable? Get rid of it */
547 if (d_unhashed(dentry
))
550 dentry
->d_flags
|= DCACHE_REFERENCED
;
551 dentry_lru_add(dentry
);
554 spin_unlock(&dentry
->d_lock
);
558 dentry
= dentry_kill(dentry
, 1);
565 * d_invalidate - invalidate a dentry
566 * @dentry: dentry to invalidate
568 * Try to invalidate the dentry if it turns out to be
569 * possible. If there are other dentries that can be
570 * reached through this one we can't delete it and we
571 * return -EBUSY. On success we return 0.
576 int d_invalidate(struct dentry
* dentry
)
579 * If it's already been dropped, return OK.
581 spin_lock(&dentry
->d_lock
);
582 if (d_unhashed(dentry
)) {
583 spin_unlock(&dentry
->d_lock
);
587 * Check whether to do a partial shrink_dcache
588 * to get rid of unused child entries.
590 if (!list_empty(&dentry
->d_subdirs
)) {
591 spin_unlock(&dentry
->d_lock
);
592 shrink_dcache_parent(dentry
);
593 spin_lock(&dentry
->d_lock
);
597 * Somebody else still using it?
599 * If it's a directory, we can't drop it
600 * for fear of somebody re-populating it
601 * with children (even though dropping it
602 * would make it unreachable from the root,
603 * we might still populate it if it was a
604 * working directory or similar).
605 * We also need to leave mountpoints alone,
608 if (dentry
->d_count
> 1 && dentry
->d_inode
) {
609 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
610 spin_unlock(&dentry
->d_lock
);
616 spin_unlock(&dentry
->d_lock
);
619 EXPORT_SYMBOL(d_invalidate
);
621 /* This must be called with d_lock held */
622 static inline void __dget_dlock(struct dentry
*dentry
)
627 static inline void __dget(struct dentry
*dentry
)
629 spin_lock(&dentry
->d_lock
);
630 __dget_dlock(dentry
);
631 spin_unlock(&dentry
->d_lock
);
634 struct dentry
*dget_parent(struct dentry
*dentry
)
640 * Don't need rcu_dereference because we re-check it was correct under
644 ret
= dentry
->d_parent
;
645 spin_lock(&ret
->d_lock
);
646 if (unlikely(ret
!= dentry
->d_parent
)) {
647 spin_unlock(&ret
->d_lock
);
652 BUG_ON(!ret
->d_count
);
654 spin_unlock(&ret
->d_lock
);
657 EXPORT_SYMBOL(dget_parent
);
660 * d_find_alias - grab a hashed alias of inode
661 * @inode: inode in question
662 * @want_discon: flag, used by d_splice_alias, to request
663 * that only a DISCONNECTED alias be returned.
665 * If inode has a hashed alias, or is a directory and has any alias,
666 * acquire the reference to alias and return it. Otherwise return NULL.
667 * Notice that if inode is a directory there can be only one alias and
668 * it can be unhashed only if it has no children, or if it is the root
671 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
672 * any other hashed alias over that one unless @want_discon is set,
673 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
675 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
677 struct dentry
*alias
, *discon_alias
;
681 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
682 spin_lock(&alias
->d_lock
);
683 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
684 if (IS_ROOT(alias
) &&
685 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
686 discon_alias
= alias
;
687 } else if (!want_discon
) {
689 spin_unlock(&alias
->d_lock
);
693 spin_unlock(&alias
->d_lock
);
696 alias
= discon_alias
;
697 spin_lock(&alias
->d_lock
);
698 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
699 if (IS_ROOT(alias
) &&
700 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
702 spin_unlock(&alias
->d_lock
);
706 spin_unlock(&alias
->d_lock
);
712 struct dentry
*d_find_alias(struct inode
*inode
)
714 struct dentry
*de
= NULL
;
716 if (!hlist_empty(&inode
->i_dentry
)) {
717 spin_lock(&inode
->i_lock
);
718 de
= __d_find_alias(inode
, 0);
719 spin_unlock(&inode
->i_lock
);
723 EXPORT_SYMBOL(d_find_alias
);
726 * Try to kill dentries associated with this inode.
727 * WARNING: you must own a reference to inode.
729 void d_prune_aliases(struct inode
*inode
)
731 struct dentry
*dentry
;
733 spin_lock(&inode
->i_lock
);
734 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
735 spin_lock(&dentry
->d_lock
);
736 if (!dentry
->d_count
) {
737 __dget_dlock(dentry
);
739 spin_unlock(&dentry
->d_lock
);
740 spin_unlock(&inode
->i_lock
);
744 spin_unlock(&dentry
->d_lock
);
746 spin_unlock(&inode
->i_lock
);
748 EXPORT_SYMBOL(d_prune_aliases
);
751 * Try to throw away a dentry - free the inode, dput the parent.
752 * Requires dentry->d_lock is held, and dentry->d_count == 0.
753 * Releases dentry->d_lock.
755 * This may fail if locks cannot be acquired no problem, just try again.
757 static void try_prune_one_dentry(struct dentry
*dentry
)
758 __releases(dentry
->d_lock
)
760 struct dentry
*parent
;
762 parent
= dentry_kill(dentry
, 0);
764 * If dentry_kill returns NULL, we have nothing more to do.
765 * if it returns the same dentry, trylocks failed. In either
766 * case, just loop again.
768 * Otherwise, we need to prune ancestors too. This is necessary
769 * to prevent quadratic behavior of shrink_dcache_parent(), but
770 * is also expected to be beneficial in reducing dentry cache
775 if (parent
== dentry
)
778 /* Prune ancestors. */
781 spin_lock(&dentry
->d_lock
);
782 if (dentry
->d_count
> 1) {
784 spin_unlock(&dentry
->d_lock
);
787 dentry
= dentry_kill(dentry
, 1);
791 static void shrink_dentry_list(struct list_head
*list
)
793 struct dentry
*dentry
;
797 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
798 if (&dentry
->d_lru
== list
)
800 spin_lock(&dentry
->d_lock
);
801 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
802 spin_unlock(&dentry
->d_lock
);
807 * We found an inuse dentry which was not removed from
808 * the LRU because of laziness during lookup. Do not free
809 * it - just keep it off the LRU list.
811 if (dentry
->d_count
) {
812 dentry_lru_del(dentry
);
813 spin_unlock(&dentry
->d_lock
);
819 try_prune_one_dentry(dentry
);
827 * prune_dcache_sb - shrink the dcache
829 * @count: number of entries to try to free
831 * Attempt to shrink the superblock dcache LRU by @count entries. This is
832 * done when we need more memory an called from the superblock shrinker
835 * This function may fail to free any resources if all the dentries are in
838 void prune_dcache_sb(struct super_block
*sb
, int count
)
840 struct dentry
*dentry
;
841 LIST_HEAD(referenced
);
845 spin_lock(&dcache_lru_lock
);
846 while (!list_empty(&sb
->s_dentry_lru
)) {
847 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
848 struct dentry
, d_lru
);
849 BUG_ON(dentry
->d_sb
!= sb
);
851 if (!spin_trylock(&dentry
->d_lock
)) {
852 spin_unlock(&dcache_lru_lock
);
857 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
858 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
859 list_move(&dentry
->d_lru
, &referenced
);
860 spin_unlock(&dentry
->d_lock
);
862 list_move_tail(&dentry
->d_lru
, &tmp
);
863 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
864 spin_unlock(&dentry
->d_lock
);
868 cond_resched_lock(&dcache_lru_lock
);
870 if (!list_empty(&referenced
))
871 list_splice(&referenced
, &sb
->s_dentry_lru
);
872 spin_unlock(&dcache_lru_lock
);
874 shrink_dentry_list(&tmp
);
878 * shrink_dcache_sb - shrink dcache for a superblock
881 * Shrink the dcache for the specified super block. This is used to free
882 * the dcache before unmounting a file system.
884 void shrink_dcache_sb(struct super_block
*sb
)
888 spin_lock(&dcache_lru_lock
);
889 while (!list_empty(&sb
->s_dentry_lru
)) {
890 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
891 spin_unlock(&dcache_lru_lock
);
892 shrink_dentry_list(&tmp
);
893 spin_lock(&dcache_lru_lock
);
895 spin_unlock(&dcache_lru_lock
);
897 EXPORT_SYMBOL(shrink_dcache_sb
);
900 * destroy a single subtree of dentries for unmount
901 * - see the comments on shrink_dcache_for_umount() for a description of the
904 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
906 struct dentry
*parent
;
908 BUG_ON(!IS_ROOT(dentry
));
911 /* descend to the first leaf in the current subtree */
912 while (!list_empty(&dentry
->d_subdirs
))
913 dentry
= list_entry(dentry
->d_subdirs
.next
,
914 struct dentry
, d_u
.d_child
);
916 /* consume the dentries from this leaf up through its parents
917 * until we find one with children or run out altogether */
922 * remove the dentry from the lru, and inform
923 * the fs that this dentry is about to be
924 * unhashed and destroyed.
926 dentry_lru_prune(dentry
);
929 if (dentry
->d_count
!= 0) {
931 "BUG: Dentry %p{i=%lx,n=%s}"
933 " [unmount of %s %s]\n",
936 dentry
->d_inode
->i_ino
: 0UL,
939 dentry
->d_sb
->s_type
->name
,
944 if (IS_ROOT(dentry
)) {
946 list_del(&dentry
->d_u
.d_child
);
948 parent
= dentry
->d_parent
;
950 list_del(&dentry
->d_u
.d_child
);
953 inode
= dentry
->d_inode
;
955 dentry
->d_inode
= NULL
;
956 hlist_del_init(&dentry
->d_alias
);
957 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
958 dentry
->d_op
->d_iput(dentry
, inode
);
965 /* finished when we fall off the top of the tree,
966 * otherwise we ascend to the parent and move to the
967 * next sibling if there is one */
971 } while (list_empty(&dentry
->d_subdirs
));
973 dentry
= list_entry(dentry
->d_subdirs
.next
,
974 struct dentry
, d_u
.d_child
);
979 * destroy the dentries attached to a superblock on unmounting
980 * - we don't need to use dentry->d_lock because:
981 * - the superblock is detached from all mountings and open files, so the
982 * dentry trees will not be rearranged by the VFS
983 * - s_umount is write-locked, so the memory pressure shrinker will ignore
984 * any dentries belonging to this superblock that it comes across
985 * - the filesystem itself is no longer permitted to rearrange the dentries
988 void shrink_dcache_for_umount(struct super_block
*sb
)
990 struct dentry
*dentry
;
992 if (down_read_trylock(&sb
->s_umount
))
998 shrink_dcache_for_umount_subtree(dentry
);
1000 while (!hlist_bl_empty(&sb
->s_anon
)) {
1001 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
1002 shrink_dcache_for_umount_subtree(dentry
);
1007 * This tries to ascend one level of parenthood, but
1008 * we can race with renaming, so we need to re-check
1009 * the parenthood after dropping the lock and check
1010 * that the sequence number still matches.
1012 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
1014 struct dentry
*new = old
->d_parent
;
1017 spin_unlock(&old
->d_lock
);
1018 spin_lock(&new->d_lock
);
1021 * might go back up the wrong parent if we have had a rename
1024 if (new != old
->d_parent
||
1025 (old
->d_flags
& DCACHE_DENTRY_KILLED
) ||
1026 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
1027 spin_unlock(&new->d_lock
);
1036 * Search for at least 1 mount point in the dentry's subdirs.
1037 * We descend to the next level whenever the d_subdirs
1038 * list is non-empty and continue searching.
1042 * have_submounts - check for mounts over a dentry
1043 * @parent: dentry to check.
1045 * Return true if the parent or its subdirectories contain
1048 int have_submounts(struct dentry
*parent
)
1050 struct dentry
*this_parent
;
1051 struct list_head
*next
;
1055 seq
= read_seqbegin(&rename_lock
);
1057 this_parent
= parent
;
1059 if (d_mountpoint(parent
))
1061 spin_lock(&this_parent
->d_lock
);
1063 next
= this_parent
->d_subdirs
.next
;
1065 while (next
!= &this_parent
->d_subdirs
) {
1066 struct list_head
*tmp
= next
;
1067 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1070 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1071 /* Have we found a mount point ? */
1072 if (d_mountpoint(dentry
)) {
1073 spin_unlock(&dentry
->d_lock
);
1074 spin_unlock(&this_parent
->d_lock
);
1077 if (!list_empty(&dentry
->d_subdirs
)) {
1078 spin_unlock(&this_parent
->d_lock
);
1079 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1080 this_parent
= dentry
;
1081 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1084 spin_unlock(&dentry
->d_lock
);
1087 * All done at this level ... ascend and resume the search.
1089 if (this_parent
!= parent
) {
1090 struct dentry
*child
= this_parent
;
1091 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1094 next
= child
->d_u
.d_child
.next
;
1097 spin_unlock(&this_parent
->d_lock
);
1098 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1101 write_sequnlock(&rename_lock
);
1102 return 0; /* No mount points found in tree */
1104 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1107 write_sequnlock(&rename_lock
);
1114 write_seqlock(&rename_lock
);
1117 EXPORT_SYMBOL(have_submounts
);
1120 * Search the dentry child list of the specified parent,
1121 * and move any unused dentries to the end of the unused
1122 * list for prune_dcache(). We descend to the next level
1123 * whenever the d_subdirs list is non-empty and continue
1126 * It returns zero iff there are no unused children,
1127 * otherwise it returns the number of children moved to
1128 * the end of the unused list. This may not be the total
1129 * number of unused children, because select_parent can
1130 * drop the lock and return early due to latency
1133 static int select_parent(struct dentry
*parent
, struct list_head
*dispose
)
1135 struct dentry
*this_parent
;
1136 struct list_head
*next
;
1141 seq
= read_seqbegin(&rename_lock
);
1143 this_parent
= parent
;
1144 spin_lock(&this_parent
->d_lock
);
1146 next
= this_parent
->d_subdirs
.next
;
1148 while (next
!= &this_parent
->d_subdirs
) {
1149 struct list_head
*tmp
= next
;
1150 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1153 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1156 * move only zero ref count dentries to the dispose list.
1158 * Those which are presently on the shrink list, being processed
1159 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1160 * loop in shrink_dcache_parent() might not make any progress
1163 if (dentry
->d_count
) {
1164 dentry_lru_del(dentry
);
1165 } else if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
1166 dentry_lru_move_list(dentry
, dispose
);
1167 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
1171 * We can return to the caller if we have found some (this
1172 * ensures forward progress). We'll be coming back to find
1175 if (found
&& need_resched()) {
1176 spin_unlock(&dentry
->d_lock
);
1181 * Descend a level if the d_subdirs list is non-empty.
1183 if (!list_empty(&dentry
->d_subdirs
)) {
1184 spin_unlock(&this_parent
->d_lock
);
1185 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1186 this_parent
= dentry
;
1187 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1191 spin_unlock(&dentry
->d_lock
);
1194 * All done at this level ... ascend and resume the search.
1196 if (this_parent
!= parent
) {
1197 struct dentry
*child
= this_parent
;
1198 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1201 next
= child
->d_u
.d_child
.next
;
1205 spin_unlock(&this_parent
->d_lock
);
1206 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1209 write_sequnlock(&rename_lock
);
1218 write_seqlock(&rename_lock
);
1223 * shrink_dcache_parent - prune dcache
1224 * @parent: parent of entries to prune
1226 * Prune the dcache to remove unused children of the parent dentry.
1228 void shrink_dcache_parent(struct dentry
* parent
)
1233 while ((found
= select_parent(parent
, &dispose
)) != 0)
1234 shrink_dentry_list(&dispose
);
1236 EXPORT_SYMBOL(shrink_dcache_parent
);
1239 * __d_alloc - allocate a dcache entry
1240 * @sb: filesystem it will belong to
1241 * @name: qstr of the name
1243 * Allocates a dentry. It returns %NULL if there is insufficient memory
1244 * available. On a success the dentry is returned. The name passed in is
1245 * copied and the copy passed in may be reused after this call.
1248 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1250 struct dentry
*dentry
;
1253 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1258 * We guarantee that the inline name is always NUL-terminated.
1259 * This way the memcpy() done by the name switching in rename
1260 * will still always have a NUL at the end, even if we might
1261 * be overwriting an internal NUL character
1263 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1264 if (name
->len
> DNAME_INLINE_LEN
-1) {
1265 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1267 kmem_cache_free(dentry_cache
, dentry
);
1271 dname
= dentry
->d_iname
;
1274 dentry
->d_name
.len
= name
->len
;
1275 dentry
->d_name
.hash
= name
->hash
;
1276 memcpy(dname
, name
->name
, name
->len
);
1277 dname
[name
->len
] = 0;
1279 /* Make sure we always see the terminating NUL character */
1281 dentry
->d_name
.name
= dname
;
1283 dentry
->d_count
= 1;
1284 dentry
->d_flags
= 0;
1285 spin_lock_init(&dentry
->d_lock
);
1286 seqcount_init(&dentry
->d_seq
);
1287 dentry
->d_inode
= NULL
;
1288 dentry
->d_parent
= dentry
;
1290 dentry
->d_op
= NULL
;
1291 dentry
->d_fsdata
= NULL
;
1292 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1293 INIT_LIST_HEAD(&dentry
->d_lru
);
1294 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1295 INIT_HLIST_NODE(&dentry
->d_alias
);
1296 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1297 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1299 this_cpu_inc(nr_dentry
);
1305 * d_alloc - allocate a dcache entry
1306 * @parent: parent of entry to allocate
1307 * @name: qstr of the name
1309 * Allocates a dentry. It returns %NULL if there is insufficient memory
1310 * available. On a success the dentry is returned. The name passed in is
1311 * copied and the copy passed in may be reused after this call.
1313 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1315 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1319 spin_lock(&parent
->d_lock
);
1321 * don't need child lock because it is not subject
1322 * to concurrency here
1324 __dget_dlock(parent
);
1325 dentry
->d_parent
= parent
;
1326 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1327 spin_unlock(&parent
->d_lock
);
1331 EXPORT_SYMBOL(d_alloc
);
1333 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1335 struct dentry
*dentry
= __d_alloc(sb
, name
);
1337 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1340 EXPORT_SYMBOL(d_alloc_pseudo
);
1342 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1347 q
.len
= strlen(name
);
1348 q
.hash
= full_name_hash(q
.name
, q
.len
);
1349 return d_alloc(parent
, &q
);
1351 EXPORT_SYMBOL(d_alloc_name
);
1353 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1355 WARN_ON_ONCE(dentry
->d_op
);
1356 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1358 DCACHE_OP_REVALIDATE
|
1359 DCACHE_OP_WEAK_REVALIDATE
|
1360 DCACHE_OP_DELETE
));
1365 dentry
->d_flags
|= DCACHE_OP_HASH
;
1367 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1368 if (op
->d_revalidate
)
1369 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1370 if (op
->d_weak_revalidate
)
1371 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1373 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1375 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1378 EXPORT_SYMBOL(d_set_d_op
);
1380 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1382 spin_lock(&dentry
->d_lock
);
1384 if (unlikely(IS_AUTOMOUNT(inode
)))
1385 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1386 hlist_add_head(&dentry
->d_alias
, &inode
->i_dentry
);
1388 dentry
->d_inode
= inode
;
1389 dentry_rcuwalk_barrier(dentry
);
1390 spin_unlock(&dentry
->d_lock
);
1391 fsnotify_d_instantiate(dentry
, inode
);
1395 * d_instantiate - fill in inode information for a dentry
1396 * @entry: dentry to complete
1397 * @inode: inode to attach to this dentry
1399 * Fill in inode information in the entry.
1401 * This turns negative dentries into productive full members
1404 * NOTE! This assumes that the inode count has been incremented
1405 * (or otherwise set) by the caller to indicate that it is now
1406 * in use by the dcache.
1409 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1411 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1413 spin_lock(&inode
->i_lock
);
1414 __d_instantiate(entry
, inode
);
1416 spin_unlock(&inode
->i_lock
);
1417 security_d_instantiate(entry
, inode
);
1419 EXPORT_SYMBOL(d_instantiate
);
1422 * d_instantiate_unique - instantiate a non-aliased dentry
1423 * @entry: dentry to instantiate
1424 * @inode: inode to attach to this dentry
1426 * Fill in inode information in the entry. On success, it returns NULL.
1427 * If an unhashed alias of "entry" already exists, then we return the
1428 * aliased dentry instead and drop one reference to inode.
1430 * Note that in order to avoid conflicts with rename() etc, the caller
1431 * had better be holding the parent directory semaphore.
1433 * This also assumes that the inode count has been incremented
1434 * (or otherwise set) by the caller to indicate that it is now
1435 * in use by the dcache.
1437 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1438 struct inode
*inode
)
1440 struct dentry
*alias
;
1441 int len
= entry
->d_name
.len
;
1442 const char *name
= entry
->d_name
.name
;
1443 unsigned int hash
= entry
->d_name
.hash
;
1446 __d_instantiate(entry
, NULL
);
1450 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1452 * Don't need alias->d_lock here, because aliases with
1453 * d_parent == entry->d_parent are not subject to name or
1454 * parent changes, because the parent inode i_mutex is held.
1456 if (alias
->d_name
.hash
!= hash
)
1458 if (alias
->d_parent
!= entry
->d_parent
)
1460 if (alias
->d_name
.len
!= len
)
1462 if (dentry_cmp(alias
, name
, len
))
1468 __d_instantiate(entry
, inode
);
1472 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1474 struct dentry
*result
;
1476 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1479 spin_lock(&inode
->i_lock
);
1480 result
= __d_instantiate_unique(entry
, inode
);
1482 spin_unlock(&inode
->i_lock
);
1485 security_d_instantiate(entry
, inode
);
1489 BUG_ON(!d_unhashed(result
));
1494 EXPORT_SYMBOL(d_instantiate_unique
);
1496 struct dentry
*d_make_root(struct inode
*root_inode
)
1498 struct dentry
*res
= NULL
;
1501 static const struct qstr name
= QSTR_INIT("/", 1);
1503 res
= __d_alloc(root_inode
->i_sb
, &name
);
1505 d_instantiate(res
, root_inode
);
1511 EXPORT_SYMBOL(d_make_root
);
1513 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1515 struct dentry
*alias
;
1517 if (hlist_empty(&inode
->i_dentry
))
1519 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_alias
);
1525 * d_find_any_alias - find any alias for a given inode
1526 * @inode: inode to find an alias for
1528 * If any aliases exist for the given inode, take and return a
1529 * reference for one of them. If no aliases exist, return %NULL.
1531 struct dentry
*d_find_any_alias(struct inode
*inode
)
1535 spin_lock(&inode
->i_lock
);
1536 de
= __d_find_any_alias(inode
);
1537 spin_unlock(&inode
->i_lock
);
1540 EXPORT_SYMBOL(d_find_any_alias
);
1543 * d_obtain_alias - find or allocate a dentry for a given inode
1544 * @inode: inode to allocate the dentry for
1546 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1547 * similar open by handle operations. The returned dentry may be anonymous,
1548 * or may have a full name (if the inode was already in the cache).
1550 * When called on a directory inode, we must ensure that the inode only ever
1551 * has one dentry. If a dentry is found, that is returned instead of
1552 * allocating a new one.
1554 * On successful return, the reference to the inode has been transferred
1555 * to the dentry. In case of an error the reference on the inode is released.
1556 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1557 * be passed in and will be the error will be propagate to the return value,
1558 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1560 struct dentry
*d_obtain_alias(struct inode
*inode
)
1562 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1567 return ERR_PTR(-ESTALE
);
1569 return ERR_CAST(inode
);
1571 res
= d_find_any_alias(inode
);
1575 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1577 res
= ERR_PTR(-ENOMEM
);
1581 spin_lock(&inode
->i_lock
);
1582 res
= __d_find_any_alias(inode
);
1584 spin_unlock(&inode
->i_lock
);
1589 /* attach a disconnected dentry */
1590 spin_lock(&tmp
->d_lock
);
1591 tmp
->d_inode
= inode
;
1592 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1593 hlist_add_head(&tmp
->d_alias
, &inode
->i_dentry
);
1594 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1595 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1596 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1597 spin_unlock(&tmp
->d_lock
);
1598 spin_unlock(&inode
->i_lock
);
1599 security_d_instantiate(tmp
, inode
);
1604 if (res
&& !IS_ERR(res
))
1605 security_d_instantiate(res
, inode
);
1609 EXPORT_SYMBOL(d_obtain_alias
);
1612 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1613 * @inode: the inode which may have a disconnected dentry
1614 * @dentry: a negative dentry which we want to point to the inode.
1616 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1617 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1618 * and return it, else simply d_add the inode to the dentry and return NULL.
1620 * This is needed in the lookup routine of any filesystem that is exportable
1621 * (via knfsd) so that we can build dcache paths to directories effectively.
1623 * If a dentry was found and moved, then it is returned. Otherwise NULL
1624 * is returned. This matches the expected return value of ->lookup.
1627 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1629 struct dentry
*new = NULL
;
1632 return ERR_CAST(inode
);
1634 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1635 spin_lock(&inode
->i_lock
);
1636 new = __d_find_alias(inode
, 1);
1638 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1639 spin_unlock(&inode
->i_lock
);
1640 security_d_instantiate(new, inode
);
1641 d_move(new, dentry
);
1644 /* already taking inode->i_lock, so d_add() by hand */
1645 __d_instantiate(dentry
, inode
);
1646 spin_unlock(&inode
->i_lock
);
1647 security_d_instantiate(dentry
, inode
);
1651 d_add(dentry
, inode
);
1654 EXPORT_SYMBOL(d_splice_alias
);
1657 * d_add_ci - lookup or allocate new dentry with case-exact name
1658 * @inode: the inode case-insensitive lookup has found
1659 * @dentry: the negative dentry that was passed to the parent's lookup func
1660 * @name: the case-exact name to be associated with the returned dentry
1662 * This is to avoid filling the dcache with case-insensitive names to the
1663 * same inode, only the actual correct case is stored in the dcache for
1664 * case-insensitive filesystems.
1666 * For a case-insensitive lookup match and if the the case-exact dentry
1667 * already exists in in the dcache, use it and return it.
1669 * If no entry exists with the exact case name, allocate new dentry with
1670 * the exact case, and return the spliced entry.
1672 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1675 struct dentry
*found
;
1679 * First check if a dentry matching the name already exists,
1680 * if not go ahead and create it now.
1682 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1683 if (unlikely(IS_ERR(found
)))
1686 new = d_alloc(dentry
->d_parent
, name
);
1688 found
= ERR_PTR(-ENOMEM
);
1692 found
= d_splice_alias(inode
, new);
1701 * If a matching dentry exists, and it's not negative use it.
1703 * Decrement the reference count to balance the iget() done
1706 if (found
->d_inode
) {
1707 if (unlikely(found
->d_inode
!= inode
)) {
1708 /* This can't happen because bad inodes are unhashed. */
1709 BUG_ON(!is_bad_inode(inode
));
1710 BUG_ON(!is_bad_inode(found
->d_inode
));
1717 * Negative dentry: instantiate it unless the inode is a directory and
1718 * already has a dentry.
1720 new = d_splice_alias(inode
, found
);
1731 EXPORT_SYMBOL(d_add_ci
);
1734 * Do the slow-case of the dentry name compare.
1736 * Unlike the dentry_cmp() function, we need to atomically
1737 * load the name, length and inode information, so that the
1738 * filesystem can rely on them, and can use the 'name' and
1739 * 'len' information without worrying about walking off the
1740 * end of memory etc.
1742 * Thus the read_seqcount_retry() and the "duplicate" info
1743 * in arguments (the low-level filesystem should not look
1744 * at the dentry inode or name contents directly, since
1745 * rename can change them while we're in RCU mode).
1747 enum slow_d_compare
{
1753 static noinline
enum slow_d_compare
slow_dentry_cmp(
1754 const struct dentry
*parent
,
1755 struct inode
*inode
,
1756 struct dentry
*dentry
,
1758 const struct qstr
*name
)
1760 int tlen
= dentry
->d_name
.len
;
1761 const char *tname
= dentry
->d_name
.name
;
1762 struct inode
*i
= dentry
->d_inode
;
1764 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
1766 return D_COMP_SEQRETRY
;
1768 if (parent
->d_op
->d_compare(parent
, inode
,
1771 return D_COMP_NOMATCH
;
1776 * __d_lookup_rcu - search for a dentry (racy, store-free)
1777 * @parent: parent dentry
1778 * @name: qstr of name we wish to find
1779 * @seqp: returns d_seq value at the point where the dentry was found
1780 * @inode: returns dentry->d_inode when the inode was found valid.
1781 * Returns: dentry, or NULL
1783 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1784 * resolution (store-free path walking) design described in
1785 * Documentation/filesystems/path-lookup.txt.
1787 * This is not to be used outside core vfs.
1789 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1790 * held, and rcu_read_lock held. The returned dentry must not be stored into
1791 * without taking d_lock and checking d_seq sequence count against @seq
1794 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1797 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1798 * the returned dentry, so long as its parent's seqlock is checked after the
1799 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1800 * is formed, giving integrity down the path walk.
1802 * NOTE! The caller *has* to check the resulting dentry against the sequence
1803 * number we've returned before using any of the resulting dentry state!
1805 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
1806 const struct qstr
*name
,
1807 unsigned *seqp
, struct inode
*inode
)
1809 u64 hashlen
= name
->hash_len
;
1810 const unsigned char *str
= name
->name
;
1811 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
1812 struct hlist_bl_node
*node
;
1813 struct dentry
*dentry
;
1816 * Note: There is significant duplication with __d_lookup_rcu which is
1817 * required to prevent single threaded performance regressions
1818 * especially on architectures where smp_rmb (in seqcounts) are costly.
1819 * Keep the two functions in sync.
1823 * The hash list is protected using RCU.
1825 * Carefully use d_seq when comparing a candidate dentry, to avoid
1826 * races with d_move().
1828 * It is possible that concurrent renames can mess up our list
1829 * walk here and result in missing our dentry, resulting in the
1830 * false-negative result. d_lookup() protects against concurrent
1831 * renames using rename_lock seqlock.
1833 * See Documentation/filesystems/path-lookup.txt for more details.
1835 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1840 * The dentry sequence count protects us from concurrent
1841 * renames, and thus protects inode, parent and name fields.
1843 * The caller must perform a seqcount check in order
1844 * to do anything useful with the returned dentry,
1845 * including using the 'd_inode' pointer.
1847 * NOTE! We do a "raw" seqcount_begin here. That means that
1848 * we don't wait for the sequence count to stabilize if it
1849 * is in the middle of a sequence change. If we do the slow
1850 * dentry compare, we will do seqretries until it is stable,
1851 * and if we end up with a successful lookup, we actually
1852 * want to exit RCU lookup anyway.
1854 seq
= raw_seqcount_begin(&dentry
->d_seq
);
1855 if (dentry
->d_parent
!= parent
)
1857 if (d_unhashed(dentry
))
1861 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
1862 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
1864 switch (slow_dentry_cmp(parent
, inode
, dentry
, seq
, name
)) {
1867 case D_COMP_NOMATCH
:
1874 if (dentry
->d_name
.hash_len
!= hashlen
)
1876 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
1883 * d_lookup - search for a dentry
1884 * @parent: parent dentry
1885 * @name: qstr of name we wish to find
1886 * Returns: dentry, or NULL
1888 * d_lookup searches the children of the parent dentry for the name in
1889 * question. If the dentry is found its reference count is incremented and the
1890 * dentry is returned. The caller must use dput to free the entry when it has
1891 * finished using it. %NULL is returned if the dentry does not exist.
1893 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
1895 struct dentry
*dentry
;
1899 seq
= read_seqbegin(&rename_lock
);
1900 dentry
= __d_lookup(parent
, name
);
1903 } while (read_seqretry(&rename_lock
, seq
));
1906 EXPORT_SYMBOL(d_lookup
);
1909 * __d_lookup - search for a dentry (racy)
1910 * @parent: parent dentry
1911 * @name: qstr of name we wish to find
1912 * Returns: dentry, or NULL
1914 * __d_lookup is like d_lookup, however it may (rarely) return a
1915 * false-negative result due to unrelated rename activity.
1917 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1918 * however it must be used carefully, eg. with a following d_lookup in
1919 * the case of failure.
1921 * __d_lookup callers must be commented.
1923 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
1925 unsigned int len
= name
->len
;
1926 unsigned int hash
= name
->hash
;
1927 const unsigned char *str
= name
->name
;
1928 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1929 struct hlist_bl_node
*node
;
1930 struct dentry
*found
= NULL
;
1931 struct dentry
*dentry
;
1934 * Note: There is significant duplication with __d_lookup_rcu which is
1935 * required to prevent single threaded performance regressions
1936 * especially on architectures where smp_rmb (in seqcounts) are costly.
1937 * Keep the two functions in sync.
1941 * The hash list is protected using RCU.
1943 * Take d_lock when comparing a candidate dentry, to avoid races
1946 * It is possible that concurrent renames can mess up our list
1947 * walk here and result in missing our dentry, resulting in the
1948 * false-negative result. d_lookup() protects against concurrent
1949 * renames using rename_lock seqlock.
1951 * See Documentation/filesystems/path-lookup.txt for more details.
1955 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1957 if (dentry
->d_name
.hash
!= hash
)
1960 spin_lock(&dentry
->d_lock
);
1961 if (dentry
->d_parent
!= parent
)
1963 if (d_unhashed(dentry
))
1967 * It is safe to compare names since d_move() cannot
1968 * change the qstr (protected by d_lock).
1970 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1971 int tlen
= dentry
->d_name
.len
;
1972 const char *tname
= dentry
->d_name
.name
;
1973 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1974 dentry
, dentry
->d_inode
,
1978 if (dentry
->d_name
.len
!= len
)
1980 if (dentry_cmp(dentry
, str
, len
))
1986 spin_unlock(&dentry
->d_lock
);
1989 spin_unlock(&dentry
->d_lock
);
1997 * d_hash_and_lookup - hash the qstr then search for a dentry
1998 * @dir: Directory to search in
1999 * @name: qstr of name we wish to find
2001 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2003 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2006 * Check for a fs-specific hash function. Note that we must
2007 * calculate the standard hash first, as the d_op->d_hash()
2008 * routine may choose to leave the hash value unchanged.
2010 name
->hash
= full_name_hash(name
->name
, name
->len
);
2011 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2012 int err
= dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
);
2013 if (unlikely(err
< 0))
2014 return ERR_PTR(err
);
2016 return d_lookup(dir
, name
);
2018 EXPORT_SYMBOL(d_hash_and_lookup
);
2021 * d_validate - verify dentry provided from insecure source (deprecated)
2022 * @dentry: The dentry alleged to be valid child of @dparent
2023 * @dparent: The parent dentry (known to be valid)
2025 * An insecure source has sent us a dentry, here we verify it and dget() it.
2026 * This is used by ncpfs in its readdir implementation.
2027 * Zero is returned in the dentry is invalid.
2029 * This function is slow for big directories, and deprecated, do not use it.
2031 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2033 struct dentry
*child
;
2035 spin_lock(&dparent
->d_lock
);
2036 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2037 if (dentry
== child
) {
2038 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2039 __dget_dlock(dentry
);
2040 spin_unlock(&dentry
->d_lock
);
2041 spin_unlock(&dparent
->d_lock
);
2045 spin_unlock(&dparent
->d_lock
);
2049 EXPORT_SYMBOL(d_validate
);
2052 * When a file is deleted, we have two options:
2053 * - turn this dentry into a negative dentry
2054 * - unhash this dentry and free it.
2056 * Usually, we want to just turn this into
2057 * a negative dentry, but if anybody else is
2058 * currently using the dentry or the inode
2059 * we can't do that and we fall back on removing
2060 * it from the hash queues and waiting for
2061 * it to be deleted later when it has no users
2065 * d_delete - delete a dentry
2066 * @dentry: The dentry to delete
2068 * Turn the dentry into a negative dentry if possible, otherwise
2069 * remove it from the hash queues so it can be deleted later
2072 void d_delete(struct dentry
* dentry
)
2074 struct inode
*inode
;
2077 * Are we the only user?
2080 spin_lock(&dentry
->d_lock
);
2081 inode
= dentry
->d_inode
;
2082 isdir
= S_ISDIR(inode
->i_mode
);
2083 if (dentry
->d_count
== 1) {
2084 if (!spin_trylock(&inode
->i_lock
)) {
2085 spin_unlock(&dentry
->d_lock
);
2089 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2090 dentry_unlink_inode(dentry
);
2091 fsnotify_nameremove(dentry
, isdir
);
2095 if (!d_unhashed(dentry
))
2098 spin_unlock(&dentry
->d_lock
);
2100 fsnotify_nameremove(dentry
, isdir
);
2102 EXPORT_SYMBOL(d_delete
);
2104 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2106 BUG_ON(!d_unhashed(entry
));
2108 entry
->d_flags
|= DCACHE_RCUACCESS
;
2109 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2113 static void _d_rehash(struct dentry
* entry
)
2115 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2119 * d_rehash - add an entry back to the hash
2120 * @entry: dentry to add to the hash
2122 * Adds a dentry to the hash according to its name.
2125 void d_rehash(struct dentry
* entry
)
2127 spin_lock(&entry
->d_lock
);
2129 spin_unlock(&entry
->d_lock
);
2131 EXPORT_SYMBOL(d_rehash
);
2134 * dentry_update_name_case - update case insensitive dentry with a new name
2135 * @dentry: dentry to be updated
2138 * Update a case insensitive dentry with new case of name.
2140 * dentry must have been returned by d_lookup with name @name. Old and new
2141 * name lengths must match (ie. no d_compare which allows mismatched name
2144 * Parent inode i_mutex must be held over d_lookup and into this call (to
2145 * keep renames and concurrent inserts, and readdir(2) away).
2147 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2149 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2150 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2152 spin_lock(&dentry
->d_lock
);
2153 write_seqcount_begin(&dentry
->d_seq
);
2154 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2155 write_seqcount_end(&dentry
->d_seq
);
2156 spin_unlock(&dentry
->d_lock
);
2158 EXPORT_SYMBOL(dentry_update_name_case
);
2160 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2162 if (dname_external(target
)) {
2163 if (dname_external(dentry
)) {
2165 * Both external: swap the pointers
2167 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2170 * dentry:internal, target:external. Steal target's
2171 * storage and make target internal.
2173 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2174 dentry
->d_name
.len
+ 1);
2175 dentry
->d_name
.name
= target
->d_name
.name
;
2176 target
->d_name
.name
= target
->d_iname
;
2179 if (dname_external(dentry
)) {
2181 * dentry:external, target:internal. Give dentry's
2182 * storage to target and make dentry internal
2184 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2185 target
->d_name
.len
+ 1);
2186 target
->d_name
.name
= dentry
->d_name
.name
;
2187 dentry
->d_name
.name
= dentry
->d_iname
;
2190 * Both are internal. Just copy target to dentry
2192 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2193 target
->d_name
.len
+ 1);
2194 dentry
->d_name
.len
= target
->d_name
.len
;
2198 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2201 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2204 * XXXX: do we really need to take target->d_lock?
2206 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2207 spin_lock(&target
->d_parent
->d_lock
);
2209 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2210 spin_lock(&dentry
->d_parent
->d_lock
);
2211 spin_lock_nested(&target
->d_parent
->d_lock
,
2212 DENTRY_D_LOCK_NESTED
);
2214 spin_lock(&target
->d_parent
->d_lock
);
2215 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2216 DENTRY_D_LOCK_NESTED
);
2219 if (target
< dentry
) {
2220 spin_lock_nested(&target
->d_lock
, 2);
2221 spin_lock_nested(&dentry
->d_lock
, 3);
2223 spin_lock_nested(&dentry
->d_lock
, 2);
2224 spin_lock_nested(&target
->d_lock
, 3);
2228 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2229 struct dentry
*target
)
2231 if (target
->d_parent
!= dentry
->d_parent
)
2232 spin_unlock(&dentry
->d_parent
->d_lock
);
2233 if (target
->d_parent
!= target
)
2234 spin_unlock(&target
->d_parent
->d_lock
);
2238 * When switching names, the actual string doesn't strictly have to
2239 * be preserved in the target - because we're dropping the target
2240 * anyway. As such, we can just do a simple memcpy() to copy over
2241 * the new name before we switch.
2243 * Note that we have to be a lot more careful about getting the hash
2244 * switched - we have to switch the hash value properly even if it
2245 * then no longer matches the actual (corrupted) string of the target.
2246 * The hash value has to match the hash queue that the dentry is on..
2249 * __d_move - move a dentry
2250 * @dentry: entry to move
2251 * @target: new dentry
2253 * Update the dcache to reflect the move of a file name. Negative
2254 * dcache entries should not be moved in this way. Caller must hold
2255 * rename_lock, the i_mutex of the source and target directories,
2256 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2258 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2260 if (!dentry
->d_inode
)
2261 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2263 BUG_ON(d_ancestor(dentry
, target
));
2264 BUG_ON(d_ancestor(target
, dentry
));
2266 dentry_lock_for_move(dentry
, target
);
2268 write_seqcount_begin(&dentry
->d_seq
);
2269 write_seqcount_begin(&target
->d_seq
);
2271 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2274 * Move the dentry to the target hash queue. Don't bother checking
2275 * for the same hash queue because of how unlikely it is.
2278 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2280 /* Unhash the target: dput() will then get rid of it */
2283 list_del(&dentry
->d_u
.d_child
);
2284 list_del(&target
->d_u
.d_child
);
2286 /* Switch the names.. */
2287 switch_names(dentry
, target
);
2288 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2290 /* ... and switch the parents */
2291 if (IS_ROOT(dentry
)) {
2292 dentry
->d_parent
= target
->d_parent
;
2293 target
->d_parent
= target
;
2294 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2296 swap(dentry
->d_parent
, target
->d_parent
);
2298 /* And add them back to the (new) parent lists */
2299 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2302 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2304 write_seqcount_end(&target
->d_seq
);
2305 write_seqcount_end(&dentry
->d_seq
);
2307 dentry_unlock_parents_for_move(dentry
, target
);
2308 spin_unlock(&target
->d_lock
);
2309 fsnotify_d_move(dentry
);
2310 spin_unlock(&dentry
->d_lock
);
2314 * d_move - move a dentry
2315 * @dentry: entry to move
2316 * @target: new dentry
2318 * Update the dcache to reflect the move of a file name. Negative
2319 * dcache entries should not be moved in this way. See the locking
2320 * requirements for __d_move.
2322 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2324 write_seqlock(&rename_lock
);
2325 __d_move(dentry
, target
);
2326 write_sequnlock(&rename_lock
);
2328 EXPORT_SYMBOL(d_move
);
2331 * d_ancestor - search for an ancestor
2332 * @p1: ancestor dentry
2335 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2336 * an ancestor of p2, else NULL.
2338 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2342 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2343 if (p
->d_parent
== p1
)
2350 * This helper attempts to cope with remotely renamed directories
2352 * It assumes that the caller is already holding
2353 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2355 * Note: If ever the locking in lock_rename() changes, then please
2356 * remember to update this too...
2358 static struct dentry
*__d_unalias(struct inode
*inode
,
2359 struct dentry
*dentry
, struct dentry
*alias
)
2361 struct mutex
*m1
= NULL
, *m2
= NULL
;
2362 struct dentry
*ret
= ERR_PTR(-EBUSY
);
2364 /* If alias and dentry share a parent, then no extra locks required */
2365 if (alias
->d_parent
== dentry
->d_parent
)
2368 /* See lock_rename() */
2369 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2371 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2372 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2374 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2376 if (likely(!d_mountpoint(alias
))) {
2377 __d_move(alias
, dentry
);
2381 spin_unlock(&inode
->i_lock
);
2390 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2391 * named dentry in place of the dentry to be replaced.
2392 * returns with anon->d_lock held!
2394 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2396 struct dentry
*dparent
;
2398 dentry_lock_for_move(anon
, dentry
);
2400 write_seqcount_begin(&dentry
->d_seq
);
2401 write_seqcount_begin(&anon
->d_seq
);
2403 dparent
= dentry
->d_parent
;
2405 switch_names(dentry
, anon
);
2406 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2408 dentry
->d_parent
= dentry
;
2409 list_del_init(&dentry
->d_u
.d_child
);
2410 anon
->d_parent
= dparent
;
2411 list_del(&anon
->d_u
.d_child
);
2412 list_add(&anon
->d_u
.d_child
, &dparent
->d_subdirs
);
2414 write_seqcount_end(&dentry
->d_seq
);
2415 write_seqcount_end(&anon
->d_seq
);
2417 dentry_unlock_parents_for_move(anon
, dentry
);
2418 spin_unlock(&dentry
->d_lock
);
2420 /* anon->d_lock still locked, returns locked */
2421 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2425 * d_materialise_unique - introduce an inode into the tree
2426 * @dentry: candidate dentry
2427 * @inode: inode to bind to the dentry, to which aliases may be attached
2429 * Introduces an dentry into the tree, substituting an extant disconnected
2430 * root directory alias in its place if there is one. Caller must hold the
2431 * i_mutex of the parent directory.
2433 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2435 struct dentry
*actual
;
2437 BUG_ON(!d_unhashed(dentry
));
2441 __d_instantiate(dentry
, NULL
);
2446 spin_lock(&inode
->i_lock
);
2448 if (S_ISDIR(inode
->i_mode
)) {
2449 struct dentry
*alias
;
2451 /* Does an aliased dentry already exist? */
2452 alias
= __d_find_alias(inode
, 0);
2455 write_seqlock(&rename_lock
);
2457 if (d_ancestor(alias
, dentry
)) {
2458 /* Check for loops */
2459 actual
= ERR_PTR(-ELOOP
);
2460 spin_unlock(&inode
->i_lock
);
2461 } else if (IS_ROOT(alias
)) {
2462 /* Is this an anonymous mountpoint that we
2463 * could splice into our tree? */
2464 __d_materialise_dentry(dentry
, alias
);
2465 write_sequnlock(&rename_lock
);
2469 /* Nope, but we must(!) avoid directory
2470 * aliasing. This drops inode->i_lock */
2471 actual
= __d_unalias(inode
, dentry
, alias
);
2473 write_sequnlock(&rename_lock
);
2474 if (IS_ERR(actual
)) {
2475 if (PTR_ERR(actual
) == -ELOOP
)
2476 pr_warn_ratelimited(
2477 "VFS: Lookup of '%s' in %s %s"
2478 " would have caused loop\n",
2479 dentry
->d_name
.name
,
2480 inode
->i_sb
->s_type
->name
,
2488 /* Add a unique reference */
2489 actual
= __d_instantiate_unique(dentry
, inode
);
2493 BUG_ON(!d_unhashed(actual
));
2495 spin_lock(&actual
->d_lock
);
2498 spin_unlock(&actual
->d_lock
);
2499 spin_unlock(&inode
->i_lock
);
2501 if (actual
== dentry
) {
2502 security_d_instantiate(dentry
, inode
);
2509 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2511 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2515 return -ENAMETOOLONG
;
2517 memcpy(*buffer
, str
, namelen
);
2521 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2523 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2527 * prepend_path - Prepend path string to a buffer
2528 * @path: the dentry/vfsmount to report
2529 * @root: root vfsmnt/dentry
2530 * @buffer: pointer to the end of the buffer
2531 * @buflen: pointer to buffer length
2533 * Caller holds the rename_lock.
2535 static int prepend_path(const struct path
*path
,
2536 const struct path
*root
,
2537 char **buffer
, int *buflen
)
2539 struct dentry
*dentry
= path
->dentry
;
2540 struct vfsmount
*vfsmnt
= path
->mnt
;
2541 struct mount
*mnt
= real_mount(vfsmnt
);
2545 br_read_lock(&vfsmount_lock
);
2546 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2547 struct dentry
* parent
;
2549 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2551 if (!mnt_has_parent(mnt
))
2553 dentry
= mnt
->mnt_mountpoint
;
2554 mnt
= mnt
->mnt_parent
;
2558 parent
= dentry
->d_parent
;
2560 spin_lock(&dentry
->d_lock
);
2561 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2562 spin_unlock(&dentry
->d_lock
);
2564 error
= prepend(buffer
, buflen
, "/", 1);
2572 if (!error
&& !slash
)
2573 error
= prepend(buffer
, buflen
, "/", 1);
2576 br_read_unlock(&vfsmount_lock
);
2581 * Filesystems needing to implement special "root names"
2582 * should do so with ->d_dname()
2584 if (IS_ROOT(dentry
) &&
2585 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2586 WARN(1, "Root dentry has weird name <%.*s>\n",
2587 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2590 error
= prepend(buffer
, buflen
, "/", 1);
2592 error
= is_mounted(vfsmnt
) ? 1 : 2;
2597 * __d_path - return the path of a dentry
2598 * @path: the dentry/vfsmount to report
2599 * @root: root vfsmnt/dentry
2600 * @buf: buffer to return value in
2601 * @buflen: buffer length
2603 * Convert a dentry into an ASCII path name.
2605 * Returns a pointer into the buffer or an error code if the
2606 * path was too long.
2608 * "buflen" should be positive.
2610 * If the path is not reachable from the supplied root, return %NULL.
2612 char *__d_path(const struct path
*path
,
2613 const struct path
*root
,
2614 char *buf
, int buflen
)
2616 char *res
= buf
+ buflen
;
2619 prepend(&res
, &buflen
, "\0", 1);
2620 write_seqlock(&rename_lock
);
2621 error
= prepend_path(path
, root
, &res
, &buflen
);
2622 write_sequnlock(&rename_lock
);
2625 return ERR_PTR(error
);
2631 char *d_absolute_path(const struct path
*path
,
2632 char *buf
, int buflen
)
2634 struct path root
= {};
2635 char *res
= buf
+ buflen
;
2638 prepend(&res
, &buflen
, "\0", 1);
2639 write_seqlock(&rename_lock
);
2640 error
= prepend_path(path
, &root
, &res
, &buflen
);
2641 write_sequnlock(&rename_lock
);
2646 return ERR_PTR(error
);
2651 * same as __d_path but appends "(deleted)" for unlinked files.
2653 static int path_with_deleted(const struct path
*path
,
2654 const struct path
*root
,
2655 char **buf
, int *buflen
)
2657 prepend(buf
, buflen
, "\0", 1);
2658 if (d_unlinked(path
->dentry
)) {
2659 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2664 return prepend_path(path
, root
, buf
, buflen
);
2667 static int prepend_unreachable(char **buffer
, int *buflen
)
2669 return prepend(buffer
, buflen
, "(unreachable)", 13);
2673 * d_path - return the path of a dentry
2674 * @path: path to report
2675 * @buf: buffer to return value in
2676 * @buflen: buffer length
2678 * Convert a dentry into an ASCII path name. If the entry has been deleted
2679 * the string " (deleted)" is appended. Note that this is ambiguous.
2681 * Returns a pointer into the buffer or an error code if the path was
2682 * too long. Note: Callers should use the returned pointer, not the passed
2683 * in buffer, to use the name! The implementation often starts at an offset
2684 * into the buffer, and may leave 0 bytes at the start.
2686 * "buflen" should be positive.
2688 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2690 char *res
= buf
+ buflen
;
2695 * We have various synthetic filesystems that never get mounted. On
2696 * these filesystems dentries are never used for lookup purposes, and
2697 * thus don't need to be hashed. They also don't need a name until a
2698 * user wants to identify the object in /proc/pid/fd/. The little hack
2699 * below allows us to generate a name for these objects on demand:
2701 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2702 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2704 get_fs_root(current
->fs
, &root
);
2705 write_seqlock(&rename_lock
);
2706 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2708 res
= ERR_PTR(error
);
2709 write_sequnlock(&rename_lock
);
2713 EXPORT_SYMBOL(d_path
);
2716 * Helper function for dentry_operations.d_dname() members
2718 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2719 const char *fmt
, ...)
2725 va_start(args
, fmt
);
2726 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2729 if (sz
> sizeof(temp
) || sz
> buflen
)
2730 return ERR_PTR(-ENAMETOOLONG
);
2732 buffer
+= buflen
- sz
;
2733 return memcpy(buffer
, temp
, sz
);
2737 * Write full pathname from the root of the filesystem into the buffer.
2739 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2741 char *end
= buf
+ buflen
;
2744 prepend(&end
, &buflen
, "\0", 1);
2751 while (!IS_ROOT(dentry
)) {
2752 struct dentry
*parent
= dentry
->d_parent
;
2756 spin_lock(&dentry
->d_lock
);
2757 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2758 spin_unlock(&dentry
->d_lock
);
2759 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2767 return ERR_PTR(-ENAMETOOLONG
);
2770 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2774 write_seqlock(&rename_lock
);
2775 retval
= __dentry_path(dentry
, buf
, buflen
);
2776 write_sequnlock(&rename_lock
);
2780 EXPORT_SYMBOL(dentry_path_raw
);
2782 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2787 write_seqlock(&rename_lock
);
2788 if (d_unlinked(dentry
)) {
2790 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2794 retval
= __dentry_path(dentry
, buf
, buflen
);
2795 write_sequnlock(&rename_lock
);
2796 if (!IS_ERR(retval
) && p
)
2797 *p
= '/'; /* restore '/' overriden with '\0' */
2800 return ERR_PTR(-ENAMETOOLONG
);
2804 * NOTE! The user-level library version returns a
2805 * character pointer. The kernel system call just
2806 * returns the length of the buffer filled (which
2807 * includes the ending '\0' character), or a negative
2808 * error value. So libc would do something like
2810 * char *getcwd(char * buf, size_t size)
2814 * retval = sys_getcwd(buf, size);
2821 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2824 struct path pwd
, root
;
2825 char *page
= (char *) __get_free_page(GFP_USER
);
2830 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2833 write_seqlock(&rename_lock
);
2834 if (!d_unlinked(pwd
.dentry
)) {
2836 char *cwd
= page
+ PAGE_SIZE
;
2837 int buflen
= PAGE_SIZE
;
2839 prepend(&cwd
, &buflen
, "\0", 1);
2840 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
2841 write_sequnlock(&rename_lock
);
2846 /* Unreachable from current root */
2848 error
= prepend_unreachable(&cwd
, &buflen
);
2854 len
= PAGE_SIZE
+ page
- cwd
;
2857 if (copy_to_user(buf
, cwd
, len
))
2861 write_sequnlock(&rename_lock
);
2867 free_page((unsigned long) page
);
2872 * Test whether new_dentry is a subdirectory of old_dentry.
2874 * Trivially implemented using the dcache structure
2878 * is_subdir - is new dentry a subdirectory of old_dentry
2879 * @new_dentry: new dentry
2880 * @old_dentry: old dentry
2882 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2883 * Returns 0 otherwise.
2884 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2887 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2892 if (new_dentry
== old_dentry
)
2896 /* for restarting inner loop in case of seq retry */
2897 seq
= read_seqbegin(&rename_lock
);
2899 * Need rcu_readlock to protect against the d_parent trashing
2903 if (d_ancestor(old_dentry
, new_dentry
))
2908 } while (read_seqretry(&rename_lock
, seq
));
2913 void d_genocide(struct dentry
*root
)
2915 struct dentry
*this_parent
;
2916 struct list_head
*next
;
2920 seq
= read_seqbegin(&rename_lock
);
2923 spin_lock(&this_parent
->d_lock
);
2925 next
= this_parent
->d_subdirs
.next
;
2927 while (next
!= &this_parent
->d_subdirs
) {
2928 struct list_head
*tmp
= next
;
2929 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2932 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2933 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2934 spin_unlock(&dentry
->d_lock
);
2937 if (!list_empty(&dentry
->d_subdirs
)) {
2938 spin_unlock(&this_parent
->d_lock
);
2939 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2940 this_parent
= dentry
;
2941 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2944 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2945 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2948 spin_unlock(&dentry
->d_lock
);
2950 if (this_parent
!= root
) {
2951 struct dentry
*child
= this_parent
;
2952 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2953 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2954 this_parent
->d_count
--;
2956 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2959 next
= child
->d_u
.d_child
.next
;
2962 spin_unlock(&this_parent
->d_lock
);
2963 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2966 write_sequnlock(&rename_lock
);
2973 write_seqlock(&rename_lock
);
2978 * find_inode_number - check for dentry with name
2979 * @dir: directory to check
2980 * @name: Name to find.
2982 * Check whether a dentry already exists for the given name,
2983 * and return the inode number if it has an inode. Otherwise
2986 * This routine is used to post-process directory listings for
2987 * filesystems using synthetic inode numbers, and is necessary
2988 * to keep getcwd() working.
2991 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2993 struct dentry
* dentry
;
2996 dentry
= d_hash_and_lookup(dir
, name
);
2997 if (!IS_ERR_OR_NULL(dentry
)) {
2998 if (dentry
->d_inode
)
2999 ino
= dentry
->d_inode
->i_ino
;
3004 EXPORT_SYMBOL(find_inode_number
);
3006 static __initdata
unsigned long dhash_entries
;
3007 static int __init
set_dhash_entries(char *str
)
3011 dhash_entries
= simple_strtoul(str
, &str
, 0);
3014 __setup("dhash_entries=", set_dhash_entries
);
3016 static void __init
dcache_init_early(void)
3020 /* If hashes are distributed across NUMA nodes, defer
3021 * hash allocation until vmalloc space is available.
3027 alloc_large_system_hash("Dentry cache",
3028 sizeof(struct hlist_bl_head
),
3037 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3038 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3041 static void __init
dcache_init(void)
3046 * A constructor could be added for stable state like the lists,
3047 * but it is probably not worth it because of the cache nature
3050 dentry_cache
= KMEM_CACHE(dentry
,
3051 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3053 /* Hash may have been set up in dcache_init_early */
3058 alloc_large_system_hash("Dentry cache",
3059 sizeof(struct hlist_bl_head
),
3068 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3069 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3072 /* SLAB cache for __getname() consumers */
3073 struct kmem_cache
*names_cachep __read_mostly
;
3074 EXPORT_SYMBOL(names_cachep
);
3076 EXPORT_SYMBOL(d_genocide
);
3078 void __init
vfs_caches_init_early(void)
3080 dcache_init_early();
3084 void __init
vfs_caches_init(unsigned long mempages
)
3086 unsigned long reserve
;
3088 /* Base hash sizes on available memory, with a reserve equal to
3089 150% of current kernel size */
3091 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3092 mempages
-= reserve
;
3094 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3095 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3099 files_init(mempages
);