2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
32 * Inode locking rules:
34 * inode->i_lock protects:
35 * inode->i_state, inode->i_hash, __iget()
36 * inode->i_sb->s_inode_lru_lock protects:
37 * inode->i_sb->s_inode_lru, inode->i_lru
38 * inode_sb_list_lock protects:
39 * sb->s_inodes, inode->i_sb_list
40 * bdi->wb.list_lock protects:
41 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
42 * inode_hash_lock protects:
43 * inode_hashtable, inode->i_hash
49 * inode->i_sb->s_inode_lru_lock
62 static unsigned int i_hash_mask __read_mostly
;
63 static unsigned int i_hash_shift __read_mostly
;
64 static struct hlist_head
*inode_hashtable __read_mostly
;
65 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
67 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_sb_list_lock
);
70 * Empty aops. Can be used for the cases where the user does not
71 * define any of the address_space operations.
73 const struct address_space_operations empty_aops
= {
75 EXPORT_SYMBOL(empty_aops
);
78 * Statistics gathering..
80 struct inodes_stat_t inodes_stat
;
82 static DEFINE_PER_CPU(unsigned int, nr_inodes
);
83 static DEFINE_PER_CPU(unsigned int, nr_unused
);
85 static struct kmem_cache
*inode_cachep __read_mostly
;
87 static int get_nr_inodes(void)
91 for_each_possible_cpu(i
)
92 sum
+= per_cpu(nr_inodes
, i
);
93 return sum
< 0 ? 0 : sum
;
96 static inline int get_nr_inodes_unused(void)
100 for_each_possible_cpu(i
)
101 sum
+= per_cpu(nr_unused
, i
);
102 return sum
< 0 ? 0 : sum
;
105 int get_nr_dirty_inodes(void)
107 /* not actually dirty inodes, but a wild approximation */
108 int nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
109 return nr_dirty
> 0 ? nr_dirty
: 0;
113 * Handle nr_inode sysctl
116 int proc_nr_inodes(ctl_table
*table
, int write
,
117 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
119 inodes_stat
.nr_inodes
= get_nr_inodes();
120 inodes_stat
.nr_unused
= get_nr_inodes_unused();
121 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
126 * inode_init_always - perform inode structure intialisation
127 * @sb: superblock inode belongs to
128 * @inode: inode to initialise
130 * These are initializations that need to be done on every inode
131 * allocation as the fields are not initialised by slab allocation.
133 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
135 static const struct inode_operations empty_iops
;
136 static const struct file_operations empty_fops
;
137 struct address_space
*const mapping
= &inode
->i_data
;
140 inode
->i_blkbits
= sb
->s_blocksize_bits
;
142 atomic_set(&inode
->i_count
, 1);
143 inode
->i_op
= &empty_iops
;
144 inode
->i_fop
= &empty_fops
;
146 inode
->i_opflags
= 0;
149 atomic_set(&inode
->i_writecount
, 0);
153 inode
->i_generation
= 0;
155 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
157 inode
->i_pipe
= NULL
;
158 inode
->i_bdev
= NULL
;
159 inode
->i_cdev
= NULL
;
161 inode
->dirtied_when
= 0;
163 if (security_inode_alloc(inode
))
165 spin_lock_init(&inode
->i_lock
);
166 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
168 mutex_init(&inode
->i_mutex
);
169 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
171 atomic_set(&inode
->i_dio_count
, 0);
173 mapping
->a_ops
= &empty_aops
;
174 mapping
->host
= inode
;
176 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
177 mapping
->assoc_mapping
= NULL
;
178 mapping
->backing_dev_info
= &default_backing_dev_info
;
179 mapping
->writeback_index
= 0;
182 * If the block_device provides a backing_dev_info for client
183 * inodes then use that. Otherwise the inode share the bdev's
187 struct backing_dev_info
*bdi
;
189 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
190 mapping
->backing_dev_info
= bdi
;
192 inode
->i_private
= NULL
;
193 inode
->i_mapping
= mapping
;
194 #ifdef CONFIG_FS_POSIX_ACL
195 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
198 #ifdef CONFIG_FSNOTIFY
199 inode
->i_fsnotify_mask
= 0;
202 this_cpu_inc(nr_inodes
);
208 EXPORT_SYMBOL(inode_init_always
);
210 static struct inode
*alloc_inode(struct super_block
*sb
)
214 if (sb
->s_op
->alloc_inode
)
215 inode
= sb
->s_op
->alloc_inode(sb
);
217 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
222 if (unlikely(inode_init_always(sb
, inode
))) {
223 if (inode
->i_sb
->s_op
->destroy_inode
)
224 inode
->i_sb
->s_op
->destroy_inode(inode
);
226 kmem_cache_free(inode_cachep
, inode
);
233 void free_inode_nonrcu(struct inode
*inode
)
235 kmem_cache_free(inode_cachep
, inode
);
237 EXPORT_SYMBOL(free_inode_nonrcu
);
239 void __destroy_inode(struct inode
*inode
)
241 BUG_ON(inode_has_buffers(inode
));
242 security_inode_free(inode
);
243 fsnotify_inode_delete(inode
);
244 #ifdef CONFIG_FS_POSIX_ACL
245 if (inode
->i_acl
&& inode
->i_acl
!= ACL_NOT_CACHED
)
246 posix_acl_release(inode
->i_acl
);
247 if (inode
->i_default_acl
&& inode
->i_default_acl
!= ACL_NOT_CACHED
)
248 posix_acl_release(inode
->i_default_acl
);
250 this_cpu_dec(nr_inodes
);
252 EXPORT_SYMBOL(__destroy_inode
);
254 static void i_callback(struct rcu_head
*head
)
256 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
257 INIT_LIST_HEAD(&inode
->i_dentry
);
258 kmem_cache_free(inode_cachep
, inode
);
261 static void destroy_inode(struct inode
*inode
)
263 BUG_ON(!list_empty(&inode
->i_lru
));
264 __destroy_inode(inode
);
265 if (inode
->i_sb
->s_op
->destroy_inode
)
266 inode
->i_sb
->s_op
->destroy_inode(inode
);
268 call_rcu(&inode
->i_rcu
, i_callback
);
271 void address_space_init_once(struct address_space
*mapping
)
273 memset(mapping
, 0, sizeof(*mapping
));
274 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
);
275 spin_lock_init(&mapping
->tree_lock
);
276 mutex_init(&mapping
->i_mmap_mutex
);
277 INIT_LIST_HEAD(&mapping
->private_list
);
278 spin_lock_init(&mapping
->private_lock
);
279 INIT_RAW_PRIO_TREE_ROOT(&mapping
->i_mmap
);
280 INIT_LIST_HEAD(&mapping
->i_mmap_nonlinear
);
282 EXPORT_SYMBOL(address_space_init_once
);
285 * These are initializations that only need to be done
286 * once, because the fields are idempotent across use
287 * of the inode, so let the slab aware of that.
289 void inode_init_once(struct inode
*inode
)
291 memset(inode
, 0, sizeof(*inode
));
292 INIT_HLIST_NODE(&inode
->i_hash
);
293 INIT_LIST_HEAD(&inode
->i_dentry
);
294 INIT_LIST_HEAD(&inode
->i_devices
);
295 INIT_LIST_HEAD(&inode
->i_wb_list
);
296 INIT_LIST_HEAD(&inode
->i_lru
);
297 address_space_init_once(&inode
->i_data
);
298 i_size_ordered_init(inode
);
299 #ifdef CONFIG_FSNOTIFY
300 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
303 EXPORT_SYMBOL(inode_init_once
);
305 static void init_once(void *foo
)
307 struct inode
*inode
= (struct inode
*) foo
;
309 inode_init_once(inode
);
313 * inode->i_lock must be held
315 void __iget(struct inode
*inode
)
317 atomic_inc(&inode
->i_count
);
321 * get additional reference to inode; caller must already hold one.
323 void ihold(struct inode
*inode
)
325 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
327 EXPORT_SYMBOL(ihold
);
329 static void inode_lru_list_add(struct inode
*inode
)
331 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
332 if (list_empty(&inode
->i_lru
)) {
333 list_add(&inode
->i_lru
, &inode
->i_sb
->s_inode_lru
);
334 inode
->i_sb
->s_nr_inodes_unused
++;
335 this_cpu_inc(nr_unused
);
337 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
340 static void inode_lru_list_del(struct inode
*inode
)
342 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
343 if (!list_empty(&inode
->i_lru
)) {
344 list_del_init(&inode
->i_lru
);
345 inode
->i_sb
->s_nr_inodes_unused
--;
346 this_cpu_dec(nr_unused
);
348 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
352 * inode_sb_list_add - add inode to the superblock list of inodes
353 * @inode: inode to add
355 void inode_sb_list_add(struct inode
*inode
)
357 spin_lock(&inode_sb_list_lock
);
358 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
359 spin_unlock(&inode_sb_list_lock
);
361 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
363 static inline void inode_sb_list_del(struct inode
*inode
)
365 if (!list_empty(&inode
->i_sb_list
)) {
366 spin_lock(&inode_sb_list_lock
);
367 list_del_init(&inode
->i_sb_list
);
368 spin_unlock(&inode_sb_list_lock
);
372 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
376 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
378 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
379 return tmp
& i_hash_mask
;
383 * __insert_inode_hash - hash an inode
384 * @inode: unhashed inode
385 * @hashval: unsigned long value used to locate this object in the
388 * Add an inode to the inode hash for this superblock.
390 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
392 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
394 spin_lock(&inode_hash_lock
);
395 spin_lock(&inode
->i_lock
);
396 hlist_add_head(&inode
->i_hash
, b
);
397 spin_unlock(&inode
->i_lock
);
398 spin_unlock(&inode_hash_lock
);
400 EXPORT_SYMBOL(__insert_inode_hash
);
403 * __remove_inode_hash - remove an inode from the hash
404 * @inode: inode to unhash
406 * Remove an inode from the superblock.
408 void __remove_inode_hash(struct inode
*inode
)
410 spin_lock(&inode_hash_lock
);
411 spin_lock(&inode
->i_lock
);
412 hlist_del_init(&inode
->i_hash
);
413 spin_unlock(&inode
->i_lock
);
414 spin_unlock(&inode_hash_lock
);
416 EXPORT_SYMBOL(__remove_inode_hash
);
418 void end_writeback(struct inode
*inode
)
422 * We have to cycle tree_lock here because reclaim can be still in the
423 * process of removing the last page (in __delete_from_page_cache())
424 * and we must not free mapping under it.
426 spin_lock_irq(&inode
->i_data
.tree_lock
);
427 BUG_ON(inode
->i_data
.nrpages
);
428 spin_unlock_irq(&inode
->i_data
.tree_lock
);
429 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
430 BUG_ON(!(inode
->i_state
& I_FREEING
));
431 BUG_ON(inode
->i_state
& I_CLEAR
);
432 inode_sync_wait(inode
);
433 /* don't need i_lock here, no concurrent mods to i_state */
434 inode
->i_state
= I_FREEING
| I_CLEAR
;
436 EXPORT_SYMBOL(end_writeback
);
439 * Free the inode passed in, removing it from the lists it is still connected
440 * to. We remove any pages still attached to the inode and wait for any IO that
441 * is still in progress before finally destroying the inode.
443 * An inode must already be marked I_FREEING so that we avoid the inode being
444 * moved back onto lists if we race with other code that manipulates the lists
445 * (e.g. writeback_single_inode). The caller is responsible for setting this.
447 * An inode must already be removed from the LRU list before being evicted from
448 * the cache. This should occur atomically with setting the I_FREEING state
449 * flag, so no inodes here should ever be on the LRU when being evicted.
451 static void evict(struct inode
*inode
)
453 const struct super_operations
*op
= inode
->i_sb
->s_op
;
455 BUG_ON(!(inode
->i_state
& I_FREEING
));
456 BUG_ON(!list_empty(&inode
->i_lru
));
458 if (!list_empty(&inode
->i_wb_list
))
459 inode_wb_list_del(inode
);
461 inode_sb_list_del(inode
);
463 if (op
->evict_inode
) {
464 op
->evict_inode(inode
);
466 if (inode
->i_data
.nrpages
)
467 truncate_inode_pages(&inode
->i_data
, 0);
468 end_writeback(inode
);
470 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
472 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
475 remove_inode_hash(inode
);
477 spin_lock(&inode
->i_lock
);
478 wake_up_bit(&inode
->i_state
, __I_NEW
);
479 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
480 spin_unlock(&inode
->i_lock
);
482 destroy_inode(inode
);
486 * dispose_list - dispose of the contents of a local list
487 * @head: the head of the list to free
489 * Dispose-list gets a local list with local inodes in it, so it doesn't
490 * need to worry about list corruption and SMP locks.
492 static void dispose_list(struct list_head
*head
)
494 while (!list_empty(head
)) {
497 inode
= list_first_entry(head
, struct inode
, i_lru
);
498 list_del_init(&inode
->i_lru
);
505 * evict_inodes - evict all evictable inodes for a superblock
506 * @sb: superblock to operate on
508 * Make sure that no inodes with zero refcount are retained. This is
509 * called by superblock shutdown after having MS_ACTIVE flag removed,
510 * so any inode reaching zero refcount during or after that call will
511 * be immediately evicted.
513 void evict_inodes(struct super_block
*sb
)
515 struct inode
*inode
, *next
;
518 spin_lock(&inode_sb_list_lock
);
519 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
520 if (atomic_read(&inode
->i_count
))
523 spin_lock(&inode
->i_lock
);
524 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
525 spin_unlock(&inode
->i_lock
);
529 inode
->i_state
|= I_FREEING
;
530 inode_lru_list_del(inode
);
531 spin_unlock(&inode
->i_lock
);
532 list_add(&inode
->i_lru
, &dispose
);
534 spin_unlock(&inode_sb_list_lock
);
536 dispose_list(&dispose
);
540 * invalidate_inodes - attempt to free all inodes on a superblock
541 * @sb: superblock to operate on
542 * @kill_dirty: flag to guide handling of dirty inodes
544 * Attempts to free all inodes for a given superblock. If there were any
545 * busy inodes return a non-zero value, else zero.
546 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
549 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
552 struct inode
*inode
, *next
;
555 spin_lock(&inode_sb_list_lock
);
556 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
557 spin_lock(&inode
->i_lock
);
558 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
559 spin_unlock(&inode
->i_lock
);
562 if (inode
->i_state
& I_DIRTY
&& !kill_dirty
) {
563 spin_unlock(&inode
->i_lock
);
567 if (atomic_read(&inode
->i_count
)) {
568 spin_unlock(&inode
->i_lock
);
573 inode
->i_state
|= I_FREEING
;
574 inode_lru_list_del(inode
);
575 spin_unlock(&inode
->i_lock
);
576 list_add(&inode
->i_lru
, &dispose
);
578 spin_unlock(&inode_sb_list_lock
);
580 dispose_list(&dispose
);
585 static int can_unuse(struct inode
*inode
)
587 if (inode
->i_state
& ~I_REFERENCED
)
589 if (inode_has_buffers(inode
))
591 if (atomic_read(&inode
->i_count
))
593 if (inode
->i_data
.nrpages
)
599 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
600 * This is called from the superblock shrinker function with a number of inodes
601 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
602 * then are freed outside inode_lock by dispose_list().
604 * Any inodes which are pinned purely because of attached pagecache have their
605 * pagecache removed. If the inode has metadata buffers attached to
606 * mapping->private_list then try to remove them.
608 * If the inode has the I_REFERENCED flag set, then it means that it has been
609 * used recently - the flag is set in iput_final(). When we encounter such an
610 * inode, clear the flag and move it to the back of the LRU so it gets another
611 * pass through the LRU before it gets reclaimed. This is necessary because of
612 * the fact we are doing lazy LRU updates to minimise lock contention so the
613 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
614 * with this flag set because they are the inodes that are out of order.
616 void prune_icache_sb(struct super_block
*sb
, int nr_to_scan
)
620 unsigned long reap
= 0;
622 spin_lock(&sb
->s_inode_lru_lock
);
623 for (nr_scanned
= nr_to_scan
; nr_scanned
>= 0; nr_scanned
--) {
626 if (list_empty(&sb
->s_inode_lru
))
629 inode
= list_entry(sb
->s_inode_lru
.prev
, struct inode
, i_lru
);
632 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
633 * so use a trylock. If we fail to get the lock, just move the
634 * inode to the back of the list so we don't spin on it.
636 if (!spin_trylock(&inode
->i_lock
)) {
637 list_move(&inode
->i_lru
, &sb
->s_inode_lru
);
642 * Referenced or dirty inodes are still in use. Give them
643 * another pass through the LRU as we canot reclaim them now.
645 if (atomic_read(&inode
->i_count
) ||
646 (inode
->i_state
& ~I_REFERENCED
)) {
647 list_del_init(&inode
->i_lru
);
648 spin_unlock(&inode
->i_lock
);
649 sb
->s_nr_inodes_unused
--;
650 this_cpu_dec(nr_unused
);
654 /* recently referenced inodes get one more pass */
655 if (inode
->i_state
& I_REFERENCED
) {
656 inode
->i_state
&= ~I_REFERENCED
;
657 list_move(&inode
->i_lru
, &sb
->s_inode_lru
);
658 spin_unlock(&inode
->i_lock
);
661 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
663 spin_unlock(&inode
->i_lock
);
664 spin_unlock(&sb
->s_inode_lru_lock
);
665 if (remove_inode_buffers(inode
))
666 reap
+= invalidate_mapping_pages(&inode
->i_data
,
669 spin_lock(&sb
->s_inode_lru_lock
);
671 if (inode
!= list_entry(sb
->s_inode_lru
.next
,
672 struct inode
, i_lru
))
673 continue; /* wrong inode or list_empty */
674 /* avoid lock inversions with trylock */
675 if (!spin_trylock(&inode
->i_lock
))
677 if (!can_unuse(inode
)) {
678 spin_unlock(&inode
->i_lock
);
682 WARN_ON(inode
->i_state
& I_NEW
);
683 inode
->i_state
|= I_FREEING
;
684 spin_unlock(&inode
->i_lock
);
686 list_move(&inode
->i_lru
, &freeable
);
687 sb
->s_nr_inodes_unused
--;
688 this_cpu_dec(nr_unused
);
690 if (current_is_kswapd())
691 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
693 __count_vm_events(PGINODESTEAL
, reap
);
694 spin_unlock(&sb
->s_inode_lru_lock
);
696 dispose_list(&freeable
);
699 static void __wait_on_freeing_inode(struct inode
*inode
);
701 * Called with the inode lock held.
703 static struct inode
*find_inode(struct super_block
*sb
,
704 struct hlist_head
*head
,
705 int (*test
)(struct inode
*, void *),
708 struct hlist_node
*node
;
709 struct inode
*inode
= NULL
;
712 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
713 spin_lock(&inode
->i_lock
);
714 if (inode
->i_sb
!= sb
) {
715 spin_unlock(&inode
->i_lock
);
718 if (!test(inode
, data
)) {
719 spin_unlock(&inode
->i_lock
);
722 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
723 __wait_on_freeing_inode(inode
);
727 spin_unlock(&inode
->i_lock
);
734 * find_inode_fast is the fast path version of find_inode, see the comment at
735 * iget_locked for details.
737 static struct inode
*find_inode_fast(struct super_block
*sb
,
738 struct hlist_head
*head
, unsigned long ino
)
740 struct hlist_node
*node
;
741 struct inode
*inode
= NULL
;
744 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
745 spin_lock(&inode
->i_lock
);
746 if (inode
->i_ino
!= ino
) {
747 spin_unlock(&inode
->i_lock
);
750 if (inode
->i_sb
!= sb
) {
751 spin_unlock(&inode
->i_lock
);
754 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
755 __wait_on_freeing_inode(inode
);
759 spin_unlock(&inode
->i_lock
);
766 * Each cpu owns a range of LAST_INO_BATCH numbers.
767 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
768 * to renew the exhausted range.
770 * This does not significantly increase overflow rate because every CPU can
771 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
772 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
773 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
774 * overflow rate by 2x, which does not seem too significant.
776 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
777 * error if st_ino won't fit in target struct field. Use 32bit counter
778 * here to attempt to avoid that.
780 #define LAST_INO_BATCH 1024
781 static DEFINE_PER_CPU(unsigned int, last_ino
);
783 unsigned int get_next_ino(void)
785 unsigned int *p
= &get_cpu_var(last_ino
);
786 unsigned int res
= *p
;
789 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
790 static atomic_t shared_last_ino
;
791 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
793 res
= next
- LAST_INO_BATCH
;
798 put_cpu_var(last_ino
);
801 EXPORT_SYMBOL(get_next_ino
);
804 * new_inode_pseudo - obtain an inode
807 * Allocates a new inode for given superblock.
808 * Inode wont be chained in superblock s_inodes list
810 * - fs can't be unmount
811 * - quotas, fsnotify, writeback can't work
813 struct inode
*new_inode_pseudo(struct super_block
*sb
)
815 struct inode
*inode
= alloc_inode(sb
);
818 spin_lock(&inode
->i_lock
);
820 spin_unlock(&inode
->i_lock
);
821 INIT_LIST_HEAD(&inode
->i_sb_list
);
827 * new_inode - obtain an inode
830 * Allocates a new inode for given superblock. The default gfp_mask
831 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
832 * If HIGHMEM pages are unsuitable or it is known that pages allocated
833 * for the page cache are not reclaimable or migratable,
834 * mapping_set_gfp_mask() must be called with suitable flags on the
835 * newly created inode's mapping
838 struct inode
*new_inode(struct super_block
*sb
)
842 spin_lock_prefetch(&inode_sb_list_lock
);
844 inode
= new_inode_pseudo(sb
);
846 inode_sb_list_add(inode
);
849 EXPORT_SYMBOL(new_inode
);
851 #ifdef CONFIG_DEBUG_LOCK_ALLOC
852 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
854 if (S_ISDIR(inode
->i_mode
)) {
855 struct file_system_type
*type
= inode
->i_sb
->s_type
;
857 /* Set new key only if filesystem hasn't already changed it */
858 if (!lockdep_match_class(&inode
->i_mutex
,
859 &type
->i_mutex_key
)) {
861 * ensure nobody is actually holding i_mutex
863 mutex_destroy(&inode
->i_mutex
);
864 mutex_init(&inode
->i_mutex
);
865 lockdep_set_class(&inode
->i_mutex
,
866 &type
->i_mutex_dir_key
);
870 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
874 * unlock_new_inode - clear the I_NEW state and wake up any waiters
875 * @inode: new inode to unlock
877 * Called when the inode is fully initialised to clear the new state of the
878 * inode and wake up anyone waiting for the inode to finish initialisation.
880 void unlock_new_inode(struct inode
*inode
)
882 lockdep_annotate_inode_mutex_key(inode
);
883 spin_lock(&inode
->i_lock
);
884 WARN_ON(!(inode
->i_state
& I_NEW
));
885 inode
->i_state
&= ~I_NEW
;
886 wake_up_bit(&inode
->i_state
, __I_NEW
);
887 spin_unlock(&inode
->i_lock
);
889 EXPORT_SYMBOL(unlock_new_inode
);
892 * iget5_locked - obtain an inode from a mounted file system
893 * @sb: super block of file system
894 * @hashval: hash value (usually inode number) to get
895 * @test: callback used for comparisons between inodes
896 * @set: callback used to initialize a new struct inode
897 * @data: opaque data pointer to pass to @test and @set
899 * Search for the inode specified by @hashval and @data in the inode cache,
900 * and if present it is return it with an increased reference count. This is
901 * a generalized version of iget_locked() for file systems where the inode
902 * number is not sufficient for unique identification of an inode.
904 * If the inode is not in cache, allocate a new inode and return it locked,
905 * hashed, and with the I_NEW flag set. The file system gets to fill it in
906 * before unlocking it via unlock_new_inode().
908 * Note both @test and @set are called with the inode_hash_lock held, so can't
911 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
912 int (*test
)(struct inode
*, void *),
913 int (*set
)(struct inode
*, void *), void *data
)
915 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
918 spin_lock(&inode_hash_lock
);
919 inode
= find_inode(sb
, head
, test
, data
);
920 spin_unlock(&inode_hash_lock
);
923 wait_on_inode(inode
);
927 inode
= alloc_inode(sb
);
931 spin_lock(&inode_hash_lock
);
932 /* We released the lock, so.. */
933 old
= find_inode(sb
, head
, test
, data
);
935 if (set(inode
, data
))
938 spin_lock(&inode
->i_lock
);
939 inode
->i_state
= I_NEW
;
940 hlist_add_head(&inode
->i_hash
, head
);
941 spin_unlock(&inode
->i_lock
);
942 inode_sb_list_add(inode
);
943 spin_unlock(&inode_hash_lock
);
945 /* Return the locked inode with I_NEW set, the
946 * caller is responsible for filling in the contents
952 * Uhhuh, somebody else created the same inode under
953 * us. Use the old inode instead of the one we just
956 spin_unlock(&inode_hash_lock
);
957 destroy_inode(inode
);
959 wait_on_inode(inode
);
964 spin_unlock(&inode_hash_lock
);
965 destroy_inode(inode
);
968 EXPORT_SYMBOL(iget5_locked
);
971 * iget_locked - obtain an inode from a mounted file system
972 * @sb: super block of file system
973 * @ino: inode number to get
975 * Search for the inode specified by @ino in the inode cache and if present
976 * return it with an increased reference count. This is for file systems
977 * where the inode number is sufficient for unique identification of an inode.
979 * If the inode is not in cache, allocate a new inode and return it locked,
980 * hashed, and with the I_NEW flag set. The file system gets to fill it in
981 * before unlocking it via unlock_new_inode().
983 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
985 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
988 spin_lock(&inode_hash_lock
);
989 inode
= find_inode_fast(sb
, head
, ino
);
990 spin_unlock(&inode_hash_lock
);
992 wait_on_inode(inode
);
996 inode
= alloc_inode(sb
);
1000 spin_lock(&inode_hash_lock
);
1001 /* We released the lock, so.. */
1002 old
= find_inode_fast(sb
, head
, ino
);
1005 spin_lock(&inode
->i_lock
);
1006 inode
->i_state
= I_NEW
;
1007 hlist_add_head(&inode
->i_hash
, head
);
1008 spin_unlock(&inode
->i_lock
);
1009 inode_sb_list_add(inode
);
1010 spin_unlock(&inode_hash_lock
);
1012 /* Return the locked inode with I_NEW set, the
1013 * caller is responsible for filling in the contents
1019 * Uhhuh, somebody else created the same inode under
1020 * us. Use the old inode instead of the one we just
1023 spin_unlock(&inode_hash_lock
);
1024 destroy_inode(inode
);
1026 wait_on_inode(inode
);
1030 EXPORT_SYMBOL(iget_locked
);
1033 * search the inode cache for a matching inode number.
1034 * If we find one, then the inode number we are trying to
1035 * allocate is not unique and so we should not use it.
1037 * Returns 1 if the inode number is unique, 0 if it is not.
1039 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1041 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1042 struct hlist_node
*node
;
1043 struct inode
*inode
;
1045 spin_lock(&inode_hash_lock
);
1046 hlist_for_each_entry(inode
, node
, b
, i_hash
) {
1047 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1048 spin_unlock(&inode_hash_lock
);
1052 spin_unlock(&inode_hash_lock
);
1058 * iunique - get a unique inode number
1060 * @max_reserved: highest reserved inode number
1062 * Obtain an inode number that is unique on the system for a given
1063 * superblock. This is used by file systems that have no natural
1064 * permanent inode numbering system. An inode number is returned that
1065 * is higher than the reserved limit but unique.
1068 * With a large number of inodes live on the file system this function
1069 * currently becomes quite slow.
1071 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1074 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1075 * error if st_ino won't fit in target struct field. Use 32bit counter
1076 * here to attempt to avoid that.
1078 static DEFINE_SPINLOCK(iunique_lock
);
1079 static unsigned int counter
;
1082 spin_lock(&iunique_lock
);
1084 if (counter
<= max_reserved
)
1085 counter
= max_reserved
+ 1;
1087 } while (!test_inode_iunique(sb
, res
));
1088 spin_unlock(&iunique_lock
);
1092 EXPORT_SYMBOL(iunique
);
1094 struct inode
*igrab(struct inode
*inode
)
1096 spin_lock(&inode
->i_lock
);
1097 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1099 spin_unlock(&inode
->i_lock
);
1101 spin_unlock(&inode
->i_lock
);
1103 * Handle the case where s_op->clear_inode is not been
1104 * called yet, and somebody is calling igrab
1105 * while the inode is getting freed.
1111 EXPORT_SYMBOL(igrab
);
1114 * ilookup5_nowait - search for an inode in the inode cache
1115 * @sb: super block of file system to search
1116 * @hashval: hash value (usually inode number) to search for
1117 * @test: callback used for comparisons between inodes
1118 * @data: opaque data pointer to pass to @test
1120 * Search for the inode specified by @hashval and @data in the inode cache.
1121 * If the inode is in the cache, the inode is returned with an incremented
1124 * Note: I_NEW is not waited upon so you have to be very careful what you do
1125 * with the returned inode. You probably should be using ilookup5() instead.
1127 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1129 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1130 int (*test
)(struct inode
*, void *), void *data
)
1132 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1133 struct inode
*inode
;
1135 spin_lock(&inode_hash_lock
);
1136 inode
= find_inode(sb
, head
, test
, data
);
1137 spin_unlock(&inode_hash_lock
);
1141 EXPORT_SYMBOL(ilookup5_nowait
);
1144 * ilookup5 - search for an inode in the inode cache
1145 * @sb: super block of file system to search
1146 * @hashval: hash value (usually inode number) to search for
1147 * @test: callback used for comparisons between inodes
1148 * @data: opaque data pointer to pass to @test
1150 * Search for the inode specified by @hashval and @data in the inode cache,
1151 * and if the inode is in the cache, return the inode with an incremented
1152 * reference count. Waits on I_NEW before returning the inode.
1153 * returned with an incremented reference count.
1155 * This is a generalized version of ilookup() for file systems where the
1156 * inode number is not sufficient for unique identification of an inode.
1158 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1160 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1161 int (*test
)(struct inode
*, void *), void *data
)
1163 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1166 wait_on_inode(inode
);
1169 EXPORT_SYMBOL(ilookup5
);
1172 * ilookup - search for an inode in the inode cache
1173 * @sb: super block of file system to search
1174 * @ino: inode number to search for
1176 * Search for the inode @ino in the inode cache, and if the inode is in the
1177 * cache, the inode is returned with an incremented reference count.
1179 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1181 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1182 struct inode
*inode
;
1184 spin_lock(&inode_hash_lock
);
1185 inode
= find_inode_fast(sb
, head
, ino
);
1186 spin_unlock(&inode_hash_lock
);
1189 wait_on_inode(inode
);
1192 EXPORT_SYMBOL(ilookup
);
1194 int insert_inode_locked(struct inode
*inode
)
1196 struct super_block
*sb
= inode
->i_sb
;
1197 ino_t ino
= inode
->i_ino
;
1198 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1201 struct hlist_node
*node
;
1202 struct inode
*old
= NULL
;
1203 spin_lock(&inode_hash_lock
);
1204 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1205 if (old
->i_ino
!= ino
)
1207 if (old
->i_sb
!= sb
)
1209 spin_lock(&old
->i_lock
);
1210 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1211 spin_unlock(&old
->i_lock
);
1216 if (likely(!node
)) {
1217 spin_lock(&inode
->i_lock
);
1218 inode
->i_state
|= I_NEW
;
1219 hlist_add_head(&inode
->i_hash
, head
);
1220 spin_unlock(&inode
->i_lock
);
1221 spin_unlock(&inode_hash_lock
);
1225 spin_unlock(&old
->i_lock
);
1226 spin_unlock(&inode_hash_lock
);
1228 if (unlikely(!inode_unhashed(old
))) {
1235 EXPORT_SYMBOL(insert_inode_locked
);
1237 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1238 int (*test
)(struct inode
*, void *), void *data
)
1240 struct super_block
*sb
= inode
->i_sb
;
1241 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1244 struct hlist_node
*node
;
1245 struct inode
*old
= NULL
;
1247 spin_lock(&inode_hash_lock
);
1248 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1249 if (old
->i_sb
!= sb
)
1251 if (!test(old
, data
))
1253 spin_lock(&old
->i_lock
);
1254 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1255 spin_unlock(&old
->i_lock
);
1260 if (likely(!node
)) {
1261 spin_lock(&inode
->i_lock
);
1262 inode
->i_state
|= I_NEW
;
1263 hlist_add_head(&inode
->i_hash
, head
);
1264 spin_unlock(&inode
->i_lock
);
1265 spin_unlock(&inode_hash_lock
);
1269 spin_unlock(&old
->i_lock
);
1270 spin_unlock(&inode_hash_lock
);
1272 if (unlikely(!inode_unhashed(old
))) {
1279 EXPORT_SYMBOL(insert_inode_locked4
);
1282 int generic_delete_inode(struct inode
*inode
)
1286 EXPORT_SYMBOL(generic_delete_inode
);
1289 * Normal UNIX filesystem behaviour: delete the
1290 * inode when the usage count drops to zero, and
1293 int generic_drop_inode(struct inode
*inode
)
1295 return !inode
->i_nlink
|| inode_unhashed(inode
);
1297 EXPORT_SYMBOL_GPL(generic_drop_inode
);
1300 * Called when we're dropping the last reference
1303 * Call the FS "drop_inode()" function, defaulting to
1304 * the legacy UNIX filesystem behaviour. If it tells
1305 * us to evict inode, do so. Otherwise, retain inode
1306 * in cache if fs is alive, sync and evict if fs is
1309 static void iput_final(struct inode
*inode
)
1311 struct super_block
*sb
= inode
->i_sb
;
1312 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1315 WARN_ON(inode
->i_state
& I_NEW
);
1318 drop
= op
->drop_inode(inode
);
1320 drop
= generic_drop_inode(inode
);
1322 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1323 inode
->i_state
|= I_REFERENCED
;
1324 if (!(inode
->i_state
& (I_DIRTY
|I_SYNC
)))
1325 inode_lru_list_add(inode
);
1326 spin_unlock(&inode
->i_lock
);
1331 inode
->i_state
|= I_WILL_FREE
;
1332 spin_unlock(&inode
->i_lock
);
1333 write_inode_now(inode
, 1);
1334 spin_lock(&inode
->i_lock
);
1335 WARN_ON(inode
->i_state
& I_NEW
);
1336 inode
->i_state
&= ~I_WILL_FREE
;
1339 inode
->i_state
|= I_FREEING
;
1340 if (!list_empty(&inode
->i_lru
))
1341 inode_lru_list_del(inode
);
1342 spin_unlock(&inode
->i_lock
);
1348 * iput - put an inode
1349 * @inode: inode to put
1351 * Puts an inode, dropping its usage count. If the inode use count hits
1352 * zero, the inode is then freed and may also be destroyed.
1354 * Consequently, iput() can sleep.
1356 void iput(struct inode
*inode
)
1359 BUG_ON(inode
->i_state
& I_CLEAR
);
1361 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
))
1365 EXPORT_SYMBOL(iput
);
1368 * bmap - find a block number in a file
1369 * @inode: inode of file
1370 * @block: block to find
1372 * Returns the block number on the device holding the inode that
1373 * is the disk block number for the block of the file requested.
1374 * That is, asked for block 4 of inode 1 the function will return the
1375 * disk block relative to the disk start that holds that block of the
1378 sector_t
bmap(struct inode
*inode
, sector_t block
)
1381 if (inode
->i_mapping
->a_ops
->bmap
)
1382 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1385 EXPORT_SYMBOL(bmap
);
1388 * With relative atime, only update atime if the previous atime is
1389 * earlier than either the ctime or mtime or if at least a day has
1390 * passed since the last atime update.
1392 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1393 struct timespec now
)
1396 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1399 * Is mtime younger than atime? If yes, update atime:
1401 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1404 * Is ctime younger than atime? If yes, update atime:
1406 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1410 * Is the previous atime value older than a day? If yes,
1413 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1416 * Good, we can skip the atime update:
1422 * touch_atime - update the access time
1423 * @mnt: mount the inode is accessed on
1424 * @dentry: dentry accessed
1426 * Update the accessed time on an inode and mark it for writeback.
1427 * This function automatically handles read only file systems and media,
1428 * as well as the "noatime" flag and inode specific "noatime" markers.
1430 void touch_atime(struct vfsmount
*mnt
, struct dentry
*dentry
)
1432 struct inode
*inode
= dentry
->d_inode
;
1433 struct timespec now
;
1435 if (inode
->i_flags
& S_NOATIME
)
1437 if (IS_NOATIME(inode
))
1439 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1442 if (mnt
->mnt_flags
& MNT_NOATIME
)
1444 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1447 now
= current_fs_time(inode
->i_sb
);
1449 if (!relatime_need_update(mnt
, inode
, now
))
1452 if (timespec_equal(&inode
->i_atime
, &now
))
1455 if (mnt_want_write(mnt
))
1458 inode
->i_atime
= now
;
1459 mark_inode_dirty_sync(inode
);
1460 mnt_drop_write(mnt
);
1462 EXPORT_SYMBOL(touch_atime
);
1465 * file_update_time - update mtime and ctime time
1466 * @file: file accessed
1468 * Update the mtime and ctime members of an inode and mark the inode
1469 * for writeback. Note that this function is meant exclusively for
1470 * usage in the file write path of filesystems, and filesystems may
1471 * choose to explicitly ignore update via this function with the
1472 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1473 * timestamps are handled by the server.
1476 void file_update_time(struct file
*file
)
1478 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1479 struct timespec now
;
1480 enum { S_MTIME
= 1, S_CTIME
= 2, S_VERSION
= 4 } sync_it
= 0;
1482 /* First try to exhaust all avenues to not sync */
1483 if (IS_NOCMTIME(inode
))
1486 now
= current_fs_time(inode
->i_sb
);
1487 if (!timespec_equal(&inode
->i_mtime
, &now
))
1490 if (!timespec_equal(&inode
->i_ctime
, &now
))
1493 if (IS_I_VERSION(inode
))
1494 sync_it
|= S_VERSION
;
1499 /* Finally allowed to write? Takes lock. */
1500 if (mnt_want_write_file(file
))
1503 /* Only change inode inside the lock region */
1504 if (sync_it
& S_VERSION
)
1505 inode_inc_iversion(inode
);
1506 if (sync_it
& S_CTIME
)
1507 inode
->i_ctime
= now
;
1508 if (sync_it
& S_MTIME
)
1509 inode
->i_mtime
= now
;
1510 mark_inode_dirty_sync(inode
);
1511 mnt_drop_write(file
->f_path
.mnt
);
1513 EXPORT_SYMBOL(file_update_time
);
1515 int inode_needs_sync(struct inode
*inode
)
1519 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1523 EXPORT_SYMBOL(inode_needs_sync
);
1525 int inode_wait(void *word
)
1530 EXPORT_SYMBOL(inode_wait
);
1533 * If we try to find an inode in the inode hash while it is being
1534 * deleted, we have to wait until the filesystem completes its
1535 * deletion before reporting that it isn't found. This function waits
1536 * until the deletion _might_ have completed. Callers are responsible
1537 * to recheck inode state.
1539 * It doesn't matter if I_NEW is not set initially, a call to
1540 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1543 static void __wait_on_freeing_inode(struct inode
*inode
)
1545 wait_queue_head_t
*wq
;
1546 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1547 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1548 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1549 spin_unlock(&inode
->i_lock
);
1550 spin_unlock(&inode_hash_lock
);
1552 finish_wait(wq
, &wait
.wait
);
1553 spin_lock(&inode_hash_lock
);
1556 static __initdata
unsigned long ihash_entries
;
1557 static int __init
set_ihash_entries(char *str
)
1561 ihash_entries
= simple_strtoul(str
, &str
, 0);
1564 __setup("ihash_entries=", set_ihash_entries
);
1567 * Initialize the waitqueues and inode hash table.
1569 void __init
inode_init_early(void)
1573 /* If hashes are distributed across NUMA nodes, defer
1574 * hash allocation until vmalloc space is available.
1580 alloc_large_system_hash("Inode-cache",
1581 sizeof(struct hlist_head
),
1589 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1590 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1593 void __init
inode_init(void)
1597 /* inode slab cache */
1598 inode_cachep
= kmem_cache_create("inode_cache",
1599 sizeof(struct inode
),
1601 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1605 /* Hash may have been set up in inode_init_early */
1610 alloc_large_system_hash("Inode-cache",
1611 sizeof(struct hlist_head
),
1619 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1620 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1623 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1625 inode
->i_mode
= mode
;
1626 if (S_ISCHR(mode
)) {
1627 inode
->i_fop
= &def_chr_fops
;
1628 inode
->i_rdev
= rdev
;
1629 } else if (S_ISBLK(mode
)) {
1630 inode
->i_fop
= &def_blk_fops
;
1631 inode
->i_rdev
= rdev
;
1632 } else if (S_ISFIFO(mode
))
1633 inode
->i_fop
= &def_fifo_fops
;
1634 else if (S_ISSOCK(mode
))
1635 inode
->i_fop
= &bad_sock_fops
;
1637 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1638 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1641 EXPORT_SYMBOL(init_special_inode
);
1644 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1646 * @dir: Directory inode
1647 * @mode: mode of the new inode
1649 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1652 inode
->i_uid
= current_fsuid();
1653 if (dir
&& dir
->i_mode
& S_ISGID
) {
1654 inode
->i_gid
= dir
->i_gid
;
1658 inode
->i_gid
= current_fsgid();
1659 inode
->i_mode
= mode
;
1661 EXPORT_SYMBOL(inode_init_owner
);
1664 * inode_owner_or_capable - check current task permissions to inode
1665 * @inode: inode being checked
1667 * Return true if current either has CAP_FOWNER to the inode, or
1670 bool inode_owner_or_capable(const struct inode
*inode
)
1672 struct user_namespace
*ns
= inode_userns(inode
);
1674 if (current_user_ns() == ns
&& current_fsuid() == inode
->i_uid
)
1676 if (ns_capable(ns
, CAP_FOWNER
))
1680 EXPORT_SYMBOL(inode_owner_or_capable
);