ocfs2: Avoid livelock in ocfs2_readpage()
[linux-2.6.git] / fs / ocfs2 / aops.c
blobba3ca1e63b51bebc30938276462354b2a8cd6e49
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #include <cluster/masklog.h>
34 #include "ocfs2.h"
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
79 fe = (struct ocfs2_dinode *) bh->b_data;
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr, KM_USER0);
114 set_buffer_uptodate(bh_result);
116 brelse(buffer_cache_bh);
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
122 err = 0;
124 bail:
125 brelse(bh);
127 return err;
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
161 if (max_blocks < count)
162 count = max_blocks;
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
185 bh_result->b_size = count << inode->i_blkbits;
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
208 bail:
209 if (err < 0)
210 err = -EIO;
212 return err;
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
228 size = i_size_read(inode);
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
247 SetPageUptodate(page);
249 return 0;
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 int ret;
255 struct buffer_head *di_bh = NULL;
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 unlock_page(page);
270 brelse(di_bh);
271 return ret;
274 static int ocfs2_readpage(struct file *file, struct page *page)
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
294 * Unlock the page and cycle ip_alloc_sem so that we don't
295 * busyloop waiting for ip_alloc_sem to unlock
297 ret = AOP_TRUNCATED_PAGE;
298 unlock_page(page);
299 unlock = 0;
300 down_read(&oi->ip_alloc_sem);
301 up_read(&oi->ip_alloc_sem);
302 goto out_inode_unlock;
306 * i_size might have just been updated as we grabed the meta lock. We
307 * might now be discovering a truncate that hit on another node.
308 * block_read_full_page->get_block freaks out if it is asked to read
309 * beyond the end of a file, so we check here. Callers
310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311 * and notice that the page they just read isn't needed.
313 * XXX sys_readahead() seems to get that wrong?
315 if (start >= i_size_read(inode)) {
316 zero_user(page, 0, PAGE_SIZE);
317 SetPageUptodate(page);
318 ret = 0;
319 goto out_alloc;
322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 ret = ocfs2_readpage_inline(inode, page);
324 else
325 ret = block_read_full_page(page, ocfs2_get_block);
326 unlock = 0;
328 out_alloc:
329 up_read(&OCFS2_I(inode)->ip_alloc_sem);
330 out_inode_unlock:
331 ocfs2_inode_unlock(inode, 0);
332 out:
333 if (unlock)
334 unlock_page(page);
335 return ret;
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 struct list_head *pages, unsigned nr_pages)
350 int ret, err = -EIO;
351 struct inode *inode = mapping->host;
352 struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 loff_t start;
354 struct page *last;
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return err;
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 ocfs2_inode_unlock(inode, 0);
366 return err;
370 * Don't bother with inline-data. There isn't anything
371 * to read-ahead in that case anyway...
373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 goto out_unlock;
377 * Check whether a remote node truncated this file - we just
378 * drop out in that case as it's not worth handling here.
380 last = list_entry(pages->prev, struct page, lru);
381 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 if (start >= i_size_read(inode))
383 goto out_unlock;
385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
387 out_unlock:
388 up_read(&oi->ip_alloc_sem);
389 ocfs2_inode_unlock(inode, 0);
391 return err;
394 /* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing. It can't block on any cluster locks
401 * to during block mapping. It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
407 trace_ocfs2_writepage(
408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 page->index);
411 return block_write_full_page(page, ocfs2_get_block, wbc);
414 /* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
418 int walk_page_buffers( handle_t *handle,
419 struct buffer_head *head,
420 unsigned from,
421 unsigned to,
422 int *partial,
423 int (*fn)( handle_t *handle,
424 struct buffer_head *bh))
426 struct buffer_head *bh;
427 unsigned block_start, block_end;
428 unsigned blocksize = head->b_size;
429 int err, ret = 0;
430 struct buffer_head *next;
432 for ( bh = head, block_start = 0;
433 ret == 0 && (bh != head || !block_start);
434 block_start = block_end, bh = next)
436 next = bh->b_this_page;
437 block_end = block_start + blocksize;
438 if (block_end <= from || block_start >= to) {
439 if (partial && !buffer_uptodate(bh))
440 *partial = 1;
441 continue;
443 err = (*fn)(handle, bh);
444 if (!ret)
445 ret = err;
447 return ret;
450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
452 sector_t status;
453 u64 p_blkno = 0;
454 int err = 0;
455 struct inode *inode = mapping->host;
457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 (unsigned long long)block);
460 /* We don't need to lock journal system files, since they aren't
461 * accessed concurrently from multiple nodes.
463 if (!INODE_JOURNAL(inode)) {
464 err = ocfs2_inode_lock(inode, NULL, 0);
465 if (err) {
466 if (err != -ENOENT)
467 mlog_errno(err);
468 goto bail;
470 down_read(&OCFS2_I(inode)->ip_alloc_sem);
473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 NULL);
477 if (!INODE_JOURNAL(inode)) {
478 up_read(&OCFS2_I(inode)->ip_alloc_sem);
479 ocfs2_inode_unlock(inode, 0);
482 if (err) {
483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 (unsigned long long)block);
485 mlog_errno(err);
486 goto bail;
489 bail:
490 status = err ? 0 : p_blkno;
492 return status;
496 * TODO: Make this into a generic get_blocks function.
498 * From do_direct_io in direct-io.c:
499 * "So what we do is to permit the ->get_blocks function to populate
500 * bh.b_size with the size of IO which is permitted at this offset and
501 * this i_blkbits."
503 * This function is called directly from get_more_blocks in direct-io.c.
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * fs_count, map_bh, dio->rw == WRITE);
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512 struct buffer_head *bh_result, int create)
514 int ret;
515 u64 p_blkno, inode_blocks, contig_blocks;
516 unsigned int ext_flags;
517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
520 /* This function won't even be called if the request isn't all
521 * nicely aligned and of the right size, so there's no need
522 * for us to check any of that. */
524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
526 /* This figures out the size of the next contiguous block, and
527 * our logical offset */
528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529 &contig_blocks, &ext_flags);
530 if (ret) {
531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 (unsigned long long)iblock);
533 ret = -EIO;
534 goto bail;
537 /* We should already CoW the refcounted extent in case of create. */
538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
541 * get_more_blocks() expects us to describe a hole by clearing
542 * the mapped bit on bh_result().
544 * Consider an unwritten extent as a hole.
546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547 map_bh(bh_result, inode->i_sb, p_blkno);
548 else
549 clear_buffer_mapped(bh_result);
551 /* make sure we don't map more than max_blocks blocks here as
552 that's all the kernel will handle at this point. */
553 if (max_blocks < contig_blocks)
554 contig_blocks = max_blocks;
555 bh_result->b_size = contig_blocks << blocksize_bits;
556 bail:
557 return ret;
561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
562 * particularly interested in the aio/dio case. Like the core uses
563 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
564 * truncation on another.
566 static void ocfs2_dio_end_io(struct kiocb *iocb,
567 loff_t offset,
568 ssize_t bytes,
569 void *private,
570 int ret,
571 bool is_async)
573 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
574 int level;
575 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
577 /* this io's submitter should not have unlocked this before we could */
578 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
580 if (ocfs2_iocb_is_sem_locked(iocb)) {
581 up_read(&inode->i_alloc_sem);
582 ocfs2_iocb_clear_sem_locked(iocb);
585 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
586 ocfs2_iocb_clear_unaligned_aio(iocb);
588 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
589 waitqueue_active(wq)) {
590 wake_up_all(wq);
594 ocfs2_iocb_clear_rw_locked(iocb);
596 level = ocfs2_iocb_rw_locked_level(iocb);
597 ocfs2_rw_unlock(inode, level);
599 if (is_async)
600 aio_complete(iocb, ret, 0);
604 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
605 * from ext3. PageChecked() bits have been removed as OCFS2 does not
606 * do journalled data.
608 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
610 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
612 jbd2_journal_invalidatepage(journal, page, offset);
615 static int ocfs2_releasepage(struct page *page, gfp_t wait)
617 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
619 if (!page_has_buffers(page))
620 return 0;
621 return jbd2_journal_try_to_free_buffers(journal, page, wait);
624 static ssize_t ocfs2_direct_IO(int rw,
625 struct kiocb *iocb,
626 const struct iovec *iov,
627 loff_t offset,
628 unsigned long nr_segs)
630 struct file *file = iocb->ki_filp;
631 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
634 * Fallback to buffered I/O if we see an inode without
635 * extents.
637 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
638 return 0;
640 /* Fallback to buffered I/O if we are appending. */
641 if (i_size_read(inode) <= offset)
642 return 0;
644 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
645 iov, offset, nr_segs,
646 ocfs2_direct_IO_get_blocks,
647 ocfs2_dio_end_io, NULL, 0);
650 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
651 u32 cpos,
652 unsigned int *start,
653 unsigned int *end)
655 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
657 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
658 unsigned int cpp;
660 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
662 cluster_start = cpos % cpp;
663 cluster_start = cluster_start << osb->s_clustersize_bits;
665 cluster_end = cluster_start + osb->s_clustersize;
668 BUG_ON(cluster_start > PAGE_SIZE);
669 BUG_ON(cluster_end > PAGE_SIZE);
671 if (start)
672 *start = cluster_start;
673 if (end)
674 *end = cluster_end;
678 * 'from' and 'to' are the region in the page to avoid zeroing.
680 * If pagesize > clustersize, this function will avoid zeroing outside
681 * of the cluster boundary.
683 * from == to == 0 is code for "zero the entire cluster region"
685 static void ocfs2_clear_page_regions(struct page *page,
686 struct ocfs2_super *osb, u32 cpos,
687 unsigned from, unsigned to)
689 void *kaddr;
690 unsigned int cluster_start, cluster_end;
692 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
694 kaddr = kmap_atomic(page, KM_USER0);
696 if (from || to) {
697 if (from > cluster_start)
698 memset(kaddr + cluster_start, 0, from - cluster_start);
699 if (to < cluster_end)
700 memset(kaddr + to, 0, cluster_end - to);
701 } else {
702 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
705 kunmap_atomic(kaddr, KM_USER0);
709 * Nonsparse file systems fully allocate before we get to the write
710 * code. This prevents ocfs2_write() from tagging the write as an
711 * allocating one, which means ocfs2_map_page_blocks() might try to
712 * read-in the blocks at the tail of our file. Avoid reading them by
713 * testing i_size against each block offset.
715 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
716 unsigned int block_start)
718 u64 offset = page_offset(page) + block_start;
720 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
721 return 1;
723 if (i_size_read(inode) > offset)
724 return 1;
726 return 0;
730 * Some of this taken from __block_write_begin(). We already have our
731 * mapping by now though, and the entire write will be allocating or
732 * it won't, so not much need to use BH_New.
734 * This will also skip zeroing, which is handled externally.
736 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
737 struct inode *inode, unsigned int from,
738 unsigned int to, int new)
740 int ret = 0;
741 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
742 unsigned int block_end, block_start;
743 unsigned int bsize = 1 << inode->i_blkbits;
745 if (!page_has_buffers(page))
746 create_empty_buffers(page, bsize, 0);
748 head = page_buffers(page);
749 for (bh = head, block_start = 0; bh != head || !block_start;
750 bh = bh->b_this_page, block_start += bsize) {
751 block_end = block_start + bsize;
753 clear_buffer_new(bh);
756 * Ignore blocks outside of our i/o range -
757 * they may belong to unallocated clusters.
759 if (block_start >= to || block_end <= from) {
760 if (PageUptodate(page))
761 set_buffer_uptodate(bh);
762 continue;
766 * For an allocating write with cluster size >= page
767 * size, we always write the entire page.
769 if (new)
770 set_buffer_new(bh);
772 if (!buffer_mapped(bh)) {
773 map_bh(bh, inode->i_sb, *p_blkno);
774 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
777 if (PageUptodate(page)) {
778 if (!buffer_uptodate(bh))
779 set_buffer_uptodate(bh);
780 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
781 !buffer_new(bh) &&
782 ocfs2_should_read_blk(inode, page, block_start) &&
783 (block_start < from || block_end > to)) {
784 ll_rw_block(READ, 1, &bh);
785 *wait_bh++=bh;
788 *p_blkno = *p_blkno + 1;
792 * If we issued read requests - let them complete.
794 while(wait_bh > wait) {
795 wait_on_buffer(*--wait_bh);
796 if (!buffer_uptodate(*wait_bh))
797 ret = -EIO;
800 if (ret == 0 || !new)
801 return ret;
804 * If we get -EIO above, zero out any newly allocated blocks
805 * to avoid exposing stale data.
807 bh = head;
808 block_start = 0;
809 do {
810 block_end = block_start + bsize;
811 if (block_end <= from)
812 goto next_bh;
813 if (block_start >= to)
814 break;
816 zero_user(page, block_start, bh->b_size);
817 set_buffer_uptodate(bh);
818 mark_buffer_dirty(bh);
820 next_bh:
821 block_start = block_end;
822 bh = bh->b_this_page;
823 } while (bh != head);
825 return ret;
828 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
829 #define OCFS2_MAX_CTXT_PAGES 1
830 #else
831 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
832 #endif
834 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
837 * Describe the state of a single cluster to be written to.
839 struct ocfs2_write_cluster_desc {
840 u32 c_cpos;
841 u32 c_phys;
843 * Give this a unique field because c_phys eventually gets
844 * filled.
846 unsigned c_new;
847 unsigned c_unwritten;
848 unsigned c_needs_zero;
851 struct ocfs2_write_ctxt {
852 /* Logical cluster position / len of write */
853 u32 w_cpos;
854 u32 w_clen;
856 /* First cluster allocated in a nonsparse extend */
857 u32 w_first_new_cpos;
859 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
862 * This is true if page_size > cluster_size.
864 * It triggers a set of special cases during write which might
865 * have to deal with allocating writes to partial pages.
867 unsigned int w_large_pages;
870 * Pages involved in this write.
872 * w_target_page is the page being written to by the user.
874 * w_pages is an array of pages which always contains
875 * w_target_page, and in the case of an allocating write with
876 * page_size < cluster size, it will contain zero'd and mapped
877 * pages adjacent to w_target_page which need to be written
878 * out in so that future reads from that region will get
879 * zero's.
881 unsigned int w_num_pages;
882 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
883 struct page *w_target_page;
886 * ocfs2_write_end() uses this to know what the real range to
887 * write in the target should be.
889 unsigned int w_target_from;
890 unsigned int w_target_to;
893 * We could use journal_current_handle() but this is cleaner,
894 * IMHO -Mark
896 handle_t *w_handle;
898 struct buffer_head *w_di_bh;
900 struct ocfs2_cached_dealloc_ctxt w_dealloc;
903 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
905 int i;
907 for(i = 0; i < num_pages; i++) {
908 if (pages[i]) {
909 unlock_page(pages[i]);
910 mark_page_accessed(pages[i]);
911 page_cache_release(pages[i]);
916 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
918 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
920 brelse(wc->w_di_bh);
921 kfree(wc);
924 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
925 struct ocfs2_super *osb, loff_t pos,
926 unsigned len, struct buffer_head *di_bh)
928 u32 cend;
929 struct ocfs2_write_ctxt *wc;
931 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
932 if (!wc)
933 return -ENOMEM;
935 wc->w_cpos = pos >> osb->s_clustersize_bits;
936 wc->w_first_new_cpos = UINT_MAX;
937 cend = (pos + len - 1) >> osb->s_clustersize_bits;
938 wc->w_clen = cend - wc->w_cpos + 1;
939 get_bh(di_bh);
940 wc->w_di_bh = di_bh;
942 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
943 wc->w_large_pages = 1;
944 else
945 wc->w_large_pages = 0;
947 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
949 *wcp = wc;
951 return 0;
955 * If a page has any new buffers, zero them out here, and mark them uptodate
956 * and dirty so they'll be written out (in order to prevent uninitialised
957 * block data from leaking). And clear the new bit.
959 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
961 unsigned int block_start, block_end;
962 struct buffer_head *head, *bh;
964 BUG_ON(!PageLocked(page));
965 if (!page_has_buffers(page))
966 return;
968 bh = head = page_buffers(page);
969 block_start = 0;
970 do {
971 block_end = block_start + bh->b_size;
973 if (buffer_new(bh)) {
974 if (block_end > from && block_start < to) {
975 if (!PageUptodate(page)) {
976 unsigned start, end;
978 start = max(from, block_start);
979 end = min(to, block_end);
981 zero_user_segment(page, start, end);
982 set_buffer_uptodate(bh);
985 clear_buffer_new(bh);
986 mark_buffer_dirty(bh);
990 block_start = block_end;
991 bh = bh->b_this_page;
992 } while (bh != head);
996 * Only called when we have a failure during allocating write to write
997 * zero's to the newly allocated region.
999 static void ocfs2_write_failure(struct inode *inode,
1000 struct ocfs2_write_ctxt *wc,
1001 loff_t user_pos, unsigned user_len)
1003 int i;
1004 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1005 to = user_pos + user_len;
1006 struct page *tmppage;
1008 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1010 for(i = 0; i < wc->w_num_pages; i++) {
1011 tmppage = wc->w_pages[i];
1013 if (page_has_buffers(tmppage)) {
1014 if (ocfs2_should_order_data(inode))
1015 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1017 block_commit_write(tmppage, from, to);
1022 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1023 struct ocfs2_write_ctxt *wc,
1024 struct page *page, u32 cpos,
1025 loff_t user_pos, unsigned user_len,
1026 int new)
1028 int ret;
1029 unsigned int map_from = 0, map_to = 0;
1030 unsigned int cluster_start, cluster_end;
1031 unsigned int user_data_from = 0, user_data_to = 0;
1033 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1034 &cluster_start, &cluster_end);
1036 /* treat the write as new if the a hole/lseek spanned across
1037 * the page boundary.
1039 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1040 (page_offset(page) <= user_pos));
1042 if (page == wc->w_target_page) {
1043 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1044 map_to = map_from + user_len;
1046 if (new)
1047 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1048 cluster_start, cluster_end,
1049 new);
1050 else
1051 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1052 map_from, map_to, new);
1053 if (ret) {
1054 mlog_errno(ret);
1055 goto out;
1058 user_data_from = map_from;
1059 user_data_to = map_to;
1060 if (new) {
1061 map_from = cluster_start;
1062 map_to = cluster_end;
1064 } else {
1066 * If we haven't allocated the new page yet, we
1067 * shouldn't be writing it out without copying user
1068 * data. This is likely a math error from the caller.
1070 BUG_ON(!new);
1072 map_from = cluster_start;
1073 map_to = cluster_end;
1075 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1076 cluster_start, cluster_end, new);
1077 if (ret) {
1078 mlog_errno(ret);
1079 goto out;
1084 * Parts of newly allocated pages need to be zero'd.
1086 * Above, we have also rewritten 'to' and 'from' - as far as
1087 * the rest of the function is concerned, the entire cluster
1088 * range inside of a page needs to be written.
1090 * We can skip this if the page is up to date - it's already
1091 * been zero'd from being read in as a hole.
1093 if (new && !PageUptodate(page))
1094 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1095 cpos, user_data_from, user_data_to);
1097 flush_dcache_page(page);
1099 out:
1100 return ret;
1104 * This function will only grab one clusters worth of pages.
1106 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1107 struct ocfs2_write_ctxt *wc,
1108 u32 cpos, loff_t user_pos,
1109 unsigned user_len, int new,
1110 struct page *mmap_page)
1112 int ret = 0, i;
1113 unsigned long start, target_index, end_index, index;
1114 struct inode *inode = mapping->host;
1115 loff_t last_byte;
1117 target_index = user_pos >> PAGE_CACHE_SHIFT;
1120 * Figure out how many pages we'll be manipulating here. For
1121 * non allocating write, we just change the one
1122 * page. Otherwise, we'll need a whole clusters worth. If we're
1123 * writing past i_size, we only need enough pages to cover the
1124 * last page of the write.
1126 if (new) {
1127 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1128 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1130 * We need the index *past* the last page we could possibly
1131 * touch. This is the page past the end of the write or
1132 * i_size, whichever is greater.
1134 last_byte = max(user_pos + user_len, i_size_read(inode));
1135 BUG_ON(last_byte < 1);
1136 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1137 if ((start + wc->w_num_pages) > end_index)
1138 wc->w_num_pages = end_index - start;
1139 } else {
1140 wc->w_num_pages = 1;
1141 start = target_index;
1144 for(i = 0; i < wc->w_num_pages; i++) {
1145 index = start + i;
1147 if (index == target_index && mmap_page) {
1149 * ocfs2_pagemkwrite() is a little different
1150 * and wants us to directly use the page
1151 * passed in.
1153 lock_page(mmap_page);
1155 if (mmap_page->mapping != mapping) {
1156 unlock_page(mmap_page);
1158 * Sanity check - the locking in
1159 * ocfs2_pagemkwrite() should ensure
1160 * that this code doesn't trigger.
1162 ret = -EINVAL;
1163 mlog_errno(ret);
1164 goto out;
1167 page_cache_get(mmap_page);
1168 wc->w_pages[i] = mmap_page;
1169 } else {
1170 wc->w_pages[i] = find_or_create_page(mapping, index,
1171 GFP_NOFS);
1172 if (!wc->w_pages[i]) {
1173 ret = -ENOMEM;
1174 mlog_errno(ret);
1175 goto out;
1179 if (index == target_index)
1180 wc->w_target_page = wc->w_pages[i];
1182 out:
1183 return ret;
1187 * Prepare a single cluster for write one cluster into the file.
1189 static int ocfs2_write_cluster(struct address_space *mapping,
1190 u32 phys, unsigned int unwritten,
1191 unsigned int should_zero,
1192 struct ocfs2_alloc_context *data_ac,
1193 struct ocfs2_alloc_context *meta_ac,
1194 struct ocfs2_write_ctxt *wc, u32 cpos,
1195 loff_t user_pos, unsigned user_len)
1197 int ret, i, new;
1198 u64 v_blkno, p_blkno;
1199 struct inode *inode = mapping->host;
1200 struct ocfs2_extent_tree et;
1202 new = phys == 0 ? 1 : 0;
1203 if (new) {
1204 u32 tmp_pos;
1207 * This is safe to call with the page locks - it won't take
1208 * any additional semaphores or cluster locks.
1210 tmp_pos = cpos;
1211 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1212 &tmp_pos, 1, 0, wc->w_di_bh,
1213 wc->w_handle, data_ac,
1214 meta_ac, NULL);
1216 * This shouldn't happen because we must have already
1217 * calculated the correct meta data allocation required. The
1218 * internal tree allocation code should know how to increase
1219 * transaction credits itself.
1221 * If need be, we could handle -EAGAIN for a
1222 * RESTART_TRANS here.
1224 mlog_bug_on_msg(ret == -EAGAIN,
1225 "Inode %llu: EAGAIN return during allocation.\n",
1226 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1227 if (ret < 0) {
1228 mlog_errno(ret);
1229 goto out;
1231 } else if (unwritten) {
1232 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1233 wc->w_di_bh);
1234 ret = ocfs2_mark_extent_written(inode, &et,
1235 wc->w_handle, cpos, 1, phys,
1236 meta_ac, &wc->w_dealloc);
1237 if (ret < 0) {
1238 mlog_errno(ret);
1239 goto out;
1243 if (should_zero)
1244 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1245 else
1246 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1249 * The only reason this should fail is due to an inability to
1250 * find the extent added.
1252 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1253 NULL);
1254 if (ret < 0) {
1255 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1256 "at logical block %llu",
1257 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1258 (unsigned long long)v_blkno);
1259 goto out;
1262 BUG_ON(p_blkno == 0);
1264 for(i = 0; i < wc->w_num_pages; i++) {
1265 int tmpret;
1267 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1268 wc->w_pages[i], cpos,
1269 user_pos, user_len,
1270 should_zero);
1271 if (tmpret) {
1272 mlog_errno(tmpret);
1273 if (ret == 0)
1274 ret = tmpret;
1279 * We only have cleanup to do in case of allocating write.
1281 if (ret && new)
1282 ocfs2_write_failure(inode, wc, user_pos, user_len);
1284 out:
1286 return ret;
1289 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1290 struct ocfs2_alloc_context *data_ac,
1291 struct ocfs2_alloc_context *meta_ac,
1292 struct ocfs2_write_ctxt *wc,
1293 loff_t pos, unsigned len)
1295 int ret, i;
1296 loff_t cluster_off;
1297 unsigned int local_len = len;
1298 struct ocfs2_write_cluster_desc *desc;
1299 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1301 for (i = 0; i < wc->w_clen; i++) {
1302 desc = &wc->w_desc[i];
1305 * We have to make sure that the total write passed in
1306 * doesn't extend past a single cluster.
1308 local_len = len;
1309 cluster_off = pos & (osb->s_clustersize - 1);
1310 if ((cluster_off + local_len) > osb->s_clustersize)
1311 local_len = osb->s_clustersize - cluster_off;
1313 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1314 desc->c_unwritten,
1315 desc->c_needs_zero,
1316 data_ac, meta_ac,
1317 wc, desc->c_cpos, pos, local_len);
1318 if (ret) {
1319 mlog_errno(ret);
1320 goto out;
1323 len -= local_len;
1324 pos += local_len;
1327 ret = 0;
1328 out:
1329 return ret;
1333 * ocfs2_write_end() wants to know which parts of the target page it
1334 * should complete the write on. It's easiest to compute them ahead of
1335 * time when a more complete view of the write is available.
1337 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1338 struct ocfs2_write_ctxt *wc,
1339 loff_t pos, unsigned len, int alloc)
1341 struct ocfs2_write_cluster_desc *desc;
1343 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1344 wc->w_target_to = wc->w_target_from + len;
1346 if (alloc == 0)
1347 return;
1350 * Allocating write - we may have different boundaries based
1351 * on page size and cluster size.
1353 * NOTE: We can no longer compute one value from the other as
1354 * the actual write length and user provided length may be
1355 * different.
1358 if (wc->w_large_pages) {
1360 * We only care about the 1st and last cluster within
1361 * our range and whether they should be zero'd or not. Either
1362 * value may be extended out to the start/end of a
1363 * newly allocated cluster.
1365 desc = &wc->w_desc[0];
1366 if (desc->c_needs_zero)
1367 ocfs2_figure_cluster_boundaries(osb,
1368 desc->c_cpos,
1369 &wc->w_target_from,
1370 NULL);
1372 desc = &wc->w_desc[wc->w_clen - 1];
1373 if (desc->c_needs_zero)
1374 ocfs2_figure_cluster_boundaries(osb,
1375 desc->c_cpos,
1376 NULL,
1377 &wc->w_target_to);
1378 } else {
1379 wc->w_target_from = 0;
1380 wc->w_target_to = PAGE_CACHE_SIZE;
1385 * Populate each single-cluster write descriptor in the write context
1386 * with information about the i/o to be done.
1388 * Returns the number of clusters that will have to be allocated, as
1389 * well as a worst case estimate of the number of extent records that
1390 * would have to be created during a write to an unwritten region.
1392 static int ocfs2_populate_write_desc(struct inode *inode,
1393 struct ocfs2_write_ctxt *wc,
1394 unsigned int *clusters_to_alloc,
1395 unsigned int *extents_to_split)
1397 int ret;
1398 struct ocfs2_write_cluster_desc *desc;
1399 unsigned int num_clusters = 0;
1400 unsigned int ext_flags = 0;
1401 u32 phys = 0;
1402 int i;
1404 *clusters_to_alloc = 0;
1405 *extents_to_split = 0;
1407 for (i = 0; i < wc->w_clen; i++) {
1408 desc = &wc->w_desc[i];
1409 desc->c_cpos = wc->w_cpos + i;
1411 if (num_clusters == 0) {
1413 * Need to look up the next extent record.
1415 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1416 &num_clusters, &ext_flags);
1417 if (ret) {
1418 mlog_errno(ret);
1419 goto out;
1422 /* We should already CoW the refcountd extent. */
1423 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1426 * Assume worst case - that we're writing in
1427 * the middle of the extent.
1429 * We can assume that the write proceeds from
1430 * left to right, in which case the extent
1431 * insert code is smart enough to coalesce the
1432 * next splits into the previous records created.
1434 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1435 *extents_to_split = *extents_to_split + 2;
1436 } else if (phys) {
1438 * Only increment phys if it doesn't describe
1439 * a hole.
1441 phys++;
1445 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1446 * file that got extended. w_first_new_cpos tells us
1447 * where the newly allocated clusters are so we can
1448 * zero them.
1450 if (desc->c_cpos >= wc->w_first_new_cpos) {
1451 BUG_ON(phys == 0);
1452 desc->c_needs_zero = 1;
1455 desc->c_phys = phys;
1456 if (phys == 0) {
1457 desc->c_new = 1;
1458 desc->c_needs_zero = 1;
1459 *clusters_to_alloc = *clusters_to_alloc + 1;
1462 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1463 desc->c_unwritten = 1;
1464 desc->c_needs_zero = 1;
1467 num_clusters--;
1470 ret = 0;
1471 out:
1472 return ret;
1475 static int ocfs2_write_begin_inline(struct address_space *mapping,
1476 struct inode *inode,
1477 struct ocfs2_write_ctxt *wc)
1479 int ret;
1480 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1481 struct page *page;
1482 handle_t *handle;
1483 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1485 page = find_or_create_page(mapping, 0, GFP_NOFS);
1486 if (!page) {
1487 ret = -ENOMEM;
1488 mlog_errno(ret);
1489 goto out;
1492 * If we don't set w_num_pages then this page won't get unlocked
1493 * and freed on cleanup of the write context.
1495 wc->w_pages[0] = wc->w_target_page = page;
1496 wc->w_num_pages = 1;
1498 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1499 if (IS_ERR(handle)) {
1500 ret = PTR_ERR(handle);
1501 mlog_errno(ret);
1502 goto out;
1505 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1506 OCFS2_JOURNAL_ACCESS_WRITE);
1507 if (ret) {
1508 ocfs2_commit_trans(osb, handle);
1510 mlog_errno(ret);
1511 goto out;
1514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515 ocfs2_set_inode_data_inline(inode, di);
1517 if (!PageUptodate(page)) {
1518 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519 if (ret) {
1520 ocfs2_commit_trans(osb, handle);
1522 goto out;
1526 wc->w_handle = handle;
1527 out:
1528 return ret;
1531 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1533 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1535 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1536 return 1;
1537 return 0;
1540 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541 struct inode *inode, loff_t pos,
1542 unsigned len, struct page *mmap_page,
1543 struct ocfs2_write_ctxt *wc)
1545 int ret, written = 0;
1546 loff_t end = pos + len;
1547 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1548 struct ocfs2_dinode *di = NULL;
1550 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551 len, (unsigned long long)pos,
1552 oi->ip_dyn_features);
1555 * Handle inodes which already have inline data 1st.
1557 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558 if (mmap_page == NULL &&
1559 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560 goto do_inline_write;
1563 * The write won't fit - we have to give this inode an
1564 * inline extent list now.
1566 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567 if (ret)
1568 mlog_errno(ret);
1569 goto out;
1573 * Check whether the inode can accept inline data.
1575 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576 return 0;
1579 * Check whether the write can fit.
1581 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582 if (mmap_page ||
1583 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1584 return 0;
1586 do_inline_write:
1587 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588 if (ret) {
1589 mlog_errno(ret);
1590 goto out;
1594 * This signals to the caller that the data can be written
1595 * inline.
1597 written = 1;
1598 out:
1599 return written ? written : ret;
1603 * This function only does anything for file systems which can't
1604 * handle sparse files.
1606 * What we want to do here is fill in any hole between the current end
1607 * of allocation and the end of our write. That way the rest of the
1608 * write path can treat it as an non-allocating write, which has no
1609 * special case code for sparse/nonsparse files.
1611 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612 struct buffer_head *di_bh,
1613 loff_t pos, unsigned len,
1614 struct ocfs2_write_ctxt *wc)
1616 int ret;
1617 loff_t newsize = pos + len;
1619 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1621 if (newsize <= i_size_read(inode))
1622 return 0;
1624 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1625 if (ret)
1626 mlog_errno(ret);
1628 wc->w_first_new_cpos =
1629 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1631 return ret;
1634 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1635 loff_t pos)
1637 int ret = 0;
1639 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1640 if (pos > i_size_read(inode))
1641 ret = ocfs2_zero_extend(inode, di_bh, pos);
1643 return ret;
1647 * Try to flush truncate logs if we can free enough clusters from it.
1648 * As for return value, "< 0" means error, "0" no space and "1" means
1649 * we have freed enough spaces and let the caller try to allocate again.
1651 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1652 unsigned int needed)
1654 tid_t target;
1655 int ret = 0;
1656 unsigned int truncated_clusters;
1658 mutex_lock(&osb->osb_tl_inode->i_mutex);
1659 truncated_clusters = osb->truncated_clusters;
1660 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1663 * Check whether we can succeed in allocating if we free
1664 * the truncate log.
1666 if (truncated_clusters < needed)
1667 goto out;
1669 ret = ocfs2_flush_truncate_log(osb);
1670 if (ret) {
1671 mlog_errno(ret);
1672 goto out;
1675 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1676 jbd2_log_wait_commit(osb->journal->j_journal, target);
1677 ret = 1;
1679 out:
1680 return ret;
1683 int ocfs2_write_begin_nolock(struct file *filp,
1684 struct address_space *mapping,
1685 loff_t pos, unsigned len, unsigned flags,
1686 struct page **pagep, void **fsdata,
1687 struct buffer_head *di_bh, struct page *mmap_page)
1689 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1690 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1691 struct ocfs2_write_ctxt *wc;
1692 struct inode *inode = mapping->host;
1693 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1694 struct ocfs2_dinode *di;
1695 struct ocfs2_alloc_context *data_ac = NULL;
1696 struct ocfs2_alloc_context *meta_ac = NULL;
1697 handle_t *handle;
1698 struct ocfs2_extent_tree et;
1699 int try_free = 1, ret1;
1701 try_again:
1702 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1703 if (ret) {
1704 mlog_errno(ret);
1705 return ret;
1708 if (ocfs2_supports_inline_data(osb)) {
1709 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1710 mmap_page, wc);
1711 if (ret == 1) {
1712 ret = 0;
1713 goto success;
1715 if (ret < 0) {
1716 mlog_errno(ret);
1717 goto out;
1721 if (ocfs2_sparse_alloc(osb))
1722 ret = ocfs2_zero_tail(inode, di_bh, pos);
1723 else
1724 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1725 wc);
1726 if (ret) {
1727 mlog_errno(ret);
1728 goto out;
1731 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1732 if (ret < 0) {
1733 mlog_errno(ret);
1734 goto out;
1735 } else if (ret == 1) {
1736 clusters_need = wc->w_clen;
1737 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1738 wc->w_cpos, wc->w_clen, UINT_MAX);
1739 if (ret) {
1740 mlog_errno(ret);
1741 goto out;
1745 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1746 &extents_to_split);
1747 if (ret) {
1748 mlog_errno(ret);
1749 goto out;
1751 clusters_need += clusters_to_alloc;
1753 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1755 trace_ocfs2_write_begin_nolock(
1756 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1757 (long long)i_size_read(inode),
1758 le32_to_cpu(di->i_clusters),
1759 pos, len, flags, mmap_page,
1760 clusters_to_alloc, extents_to_split);
1763 * We set w_target_from, w_target_to here so that
1764 * ocfs2_write_end() knows which range in the target page to
1765 * write out. An allocation requires that we write the entire
1766 * cluster range.
1768 if (clusters_to_alloc || extents_to_split) {
1770 * XXX: We are stretching the limits of
1771 * ocfs2_lock_allocators(). It greatly over-estimates
1772 * the work to be done.
1774 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1775 wc->w_di_bh);
1776 ret = ocfs2_lock_allocators(inode, &et,
1777 clusters_to_alloc, extents_to_split,
1778 &data_ac, &meta_ac);
1779 if (ret) {
1780 mlog_errno(ret);
1781 goto out;
1784 if (data_ac)
1785 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1787 credits = ocfs2_calc_extend_credits(inode->i_sb,
1788 &di->id2.i_list,
1789 clusters_to_alloc);
1794 * We have to zero sparse allocated clusters, unwritten extent clusters,
1795 * and non-sparse clusters we just extended. For non-sparse writes,
1796 * we know zeros will only be needed in the first and/or last cluster.
1798 if (clusters_to_alloc || extents_to_split ||
1799 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1800 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1801 cluster_of_pages = 1;
1802 else
1803 cluster_of_pages = 0;
1805 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1807 handle = ocfs2_start_trans(osb, credits);
1808 if (IS_ERR(handle)) {
1809 ret = PTR_ERR(handle);
1810 mlog_errno(ret);
1811 goto out;
1814 wc->w_handle = handle;
1816 if (clusters_to_alloc) {
1817 ret = dquot_alloc_space_nodirty(inode,
1818 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1819 if (ret)
1820 goto out_commit;
1823 * We don't want this to fail in ocfs2_write_end(), so do it
1824 * here.
1826 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1827 OCFS2_JOURNAL_ACCESS_WRITE);
1828 if (ret) {
1829 mlog_errno(ret);
1830 goto out_quota;
1834 * Fill our page array first. That way we've grabbed enough so
1835 * that we can zero and flush if we error after adding the
1836 * extent.
1838 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1839 cluster_of_pages, mmap_page);
1840 if (ret) {
1841 mlog_errno(ret);
1842 goto out_quota;
1845 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1846 len);
1847 if (ret) {
1848 mlog_errno(ret);
1849 goto out_quota;
1852 if (data_ac)
1853 ocfs2_free_alloc_context(data_ac);
1854 if (meta_ac)
1855 ocfs2_free_alloc_context(meta_ac);
1857 success:
1858 *pagep = wc->w_target_page;
1859 *fsdata = wc;
1860 return 0;
1861 out_quota:
1862 if (clusters_to_alloc)
1863 dquot_free_space(inode,
1864 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1865 out_commit:
1866 ocfs2_commit_trans(osb, handle);
1868 out:
1869 ocfs2_free_write_ctxt(wc);
1871 if (data_ac)
1872 ocfs2_free_alloc_context(data_ac);
1873 if (meta_ac)
1874 ocfs2_free_alloc_context(meta_ac);
1876 if (ret == -ENOSPC && try_free) {
1878 * Try to free some truncate log so that we can have enough
1879 * clusters to allocate.
1881 try_free = 0;
1883 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1884 if (ret1 == 1)
1885 goto try_again;
1887 if (ret1 < 0)
1888 mlog_errno(ret1);
1891 return ret;
1894 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1895 loff_t pos, unsigned len, unsigned flags,
1896 struct page **pagep, void **fsdata)
1898 int ret;
1899 struct buffer_head *di_bh = NULL;
1900 struct inode *inode = mapping->host;
1902 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1903 if (ret) {
1904 mlog_errno(ret);
1905 return ret;
1909 * Take alloc sem here to prevent concurrent lookups. That way
1910 * the mapping, zeroing and tree manipulation within
1911 * ocfs2_write() will be safe against ->readpage(). This
1912 * should also serve to lock out allocation from a shared
1913 * writeable region.
1915 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1917 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1918 fsdata, di_bh, NULL);
1919 if (ret) {
1920 mlog_errno(ret);
1921 goto out_fail;
1924 brelse(di_bh);
1926 return 0;
1928 out_fail:
1929 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1931 brelse(di_bh);
1932 ocfs2_inode_unlock(inode, 1);
1934 return ret;
1937 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1938 unsigned len, unsigned *copied,
1939 struct ocfs2_dinode *di,
1940 struct ocfs2_write_ctxt *wc)
1942 void *kaddr;
1944 if (unlikely(*copied < len)) {
1945 if (!PageUptodate(wc->w_target_page)) {
1946 *copied = 0;
1947 return;
1951 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1952 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1953 kunmap_atomic(kaddr, KM_USER0);
1955 trace_ocfs2_write_end_inline(
1956 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1957 (unsigned long long)pos, *copied,
1958 le16_to_cpu(di->id2.i_data.id_count),
1959 le16_to_cpu(di->i_dyn_features));
1962 int ocfs2_write_end_nolock(struct address_space *mapping,
1963 loff_t pos, unsigned len, unsigned copied,
1964 struct page *page, void *fsdata)
1966 int i;
1967 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1968 struct inode *inode = mapping->host;
1969 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1970 struct ocfs2_write_ctxt *wc = fsdata;
1971 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1972 handle_t *handle = wc->w_handle;
1973 struct page *tmppage;
1975 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1976 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1977 goto out_write_size;
1980 if (unlikely(copied < len)) {
1981 if (!PageUptodate(wc->w_target_page))
1982 copied = 0;
1984 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1985 start+len);
1987 flush_dcache_page(wc->w_target_page);
1989 for(i = 0; i < wc->w_num_pages; i++) {
1990 tmppage = wc->w_pages[i];
1992 if (tmppage == wc->w_target_page) {
1993 from = wc->w_target_from;
1994 to = wc->w_target_to;
1996 BUG_ON(from > PAGE_CACHE_SIZE ||
1997 to > PAGE_CACHE_SIZE ||
1998 to < from);
1999 } else {
2001 * Pages adjacent to the target (if any) imply
2002 * a hole-filling write in which case we want
2003 * to flush their entire range.
2005 from = 0;
2006 to = PAGE_CACHE_SIZE;
2009 if (page_has_buffers(tmppage)) {
2010 if (ocfs2_should_order_data(inode))
2011 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2012 block_commit_write(tmppage, from, to);
2016 out_write_size:
2017 pos += copied;
2018 if (pos > inode->i_size) {
2019 i_size_write(inode, pos);
2020 mark_inode_dirty(inode);
2022 inode->i_blocks = ocfs2_inode_sector_count(inode);
2023 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2024 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2025 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2026 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2027 ocfs2_journal_dirty(handle, wc->w_di_bh);
2029 ocfs2_commit_trans(osb, handle);
2031 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2033 ocfs2_free_write_ctxt(wc);
2035 return copied;
2038 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2039 loff_t pos, unsigned len, unsigned copied,
2040 struct page *page, void *fsdata)
2042 int ret;
2043 struct inode *inode = mapping->host;
2045 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2047 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2048 ocfs2_inode_unlock(inode, 1);
2050 return ret;
2053 const struct address_space_operations ocfs2_aops = {
2054 .readpage = ocfs2_readpage,
2055 .readpages = ocfs2_readpages,
2056 .writepage = ocfs2_writepage,
2057 .write_begin = ocfs2_write_begin,
2058 .write_end = ocfs2_write_end,
2059 .bmap = ocfs2_bmap,
2060 .direct_IO = ocfs2_direct_IO,
2061 .invalidatepage = ocfs2_invalidatepage,
2062 .releasepage = ocfs2_releasepage,
2063 .migratepage = buffer_migrate_page,
2064 .is_partially_uptodate = block_is_partially_uptodate,
2065 .error_remove_page = generic_error_remove_page,