4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/export.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
33 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
40 #define kenter(FMT, ...) \
41 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #define kenter(FMT, ...) \
48 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57 unsigned long max_mapnr
;
58 unsigned long num_physpages
;
59 unsigned long highest_memmap_pfn
;
60 struct percpu_counter vm_committed_as
;
61 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
62 int sysctl_overcommit_ratio
= 50; /* default is 50% */
63 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
64 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
65 int heap_stack_gap
= 0;
67 atomic_long_t mmap_pages_allocated
;
70 * The global memory commitment made in the system can be a metric
71 * that can be used to drive ballooning decisions when Linux is hosted
72 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
73 * balancing memory across competing virtual machines that are hosted.
74 * Several metrics drive this policy engine including the guest reported
77 unsigned long vm_memory_committed(void)
79 return percpu_counter_read_positive(&vm_committed_as
);
82 EXPORT_SYMBOL_GPL(vm_memory_committed
);
84 EXPORT_SYMBOL(mem_map
);
85 EXPORT_SYMBOL(num_physpages
);
87 /* list of mapped, potentially shareable regions */
88 static struct kmem_cache
*vm_region_jar
;
89 struct rb_root nommu_region_tree
= RB_ROOT
;
90 DECLARE_RWSEM(nommu_region_sem
);
92 const struct vm_operations_struct generic_file_vm_ops
= {
96 * Return the total memory allocated for this pointer, not
97 * just what the caller asked for.
99 * Doesn't have to be accurate, i.e. may have races.
101 unsigned int kobjsize(const void *objp
)
106 * If the object we have should not have ksize performed on it,
109 if (!objp
|| !virt_addr_valid(objp
))
112 page
= virt_to_head_page(objp
);
115 * If the allocator sets PageSlab, we know the pointer came from
122 * If it's not a compound page, see if we have a matching VMA
123 * region. This test is intentionally done in reverse order,
124 * so if there's no VMA, we still fall through and hand back
125 * PAGE_SIZE for 0-order pages.
127 if (!PageCompound(page
)) {
128 struct vm_area_struct
*vma
;
130 vma
= find_vma(current
->mm
, (unsigned long)objp
);
132 return vma
->vm_end
- vma
->vm_start
;
136 * The ksize() function is only guaranteed to work for pointers
137 * returned by kmalloc(). So handle arbitrary pointers here.
139 return PAGE_SIZE
<< compound_order(page
);
142 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
143 unsigned long start
, int nr_pages
, unsigned int foll_flags
,
144 struct page
**pages
, struct vm_area_struct
**vmas
,
147 struct vm_area_struct
*vma
;
148 unsigned long vm_flags
;
151 /* calculate required read or write permissions.
152 * If FOLL_FORCE is set, we only require the "MAY" flags.
154 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
155 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
156 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
157 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
159 for (i
= 0; i
< nr_pages
; i
++) {
160 vma
= find_vma(mm
, start
);
162 goto finish_or_fault
;
164 /* protect what we can, including chardevs */
165 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
166 !(vm_flags
& vma
->vm_flags
))
167 goto finish_or_fault
;
170 pages
[i
] = virt_to_page(start
);
172 page_cache_get(pages
[i
]);
176 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
182 return i
? : -EFAULT
;
186 * get a list of pages in an address range belonging to the specified process
187 * and indicate the VMA that covers each page
188 * - this is potentially dodgy as we may end incrementing the page count of a
189 * slab page or a secondary page from a compound page
190 * - don't permit access to VMAs that don't support it, such as I/O mappings
192 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
193 unsigned long start
, int nr_pages
, int write
, int force
,
194 struct page
**pages
, struct vm_area_struct
**vmas
)
203 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
206 EXPORT_SYMBOL(get_user_pages
);
209 * follow_pfn - look up PFN at a user virtual address
210 * @vma: memory mapping
211 * @address: user virtual address
212 * @pfn: location to store found PFN
214 * Only IO mappings and raw PFN mappings are allowed.
216 * Returns zero and the pfn at @pfn on success, -ve otherwise.
218 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
221 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
224 *pfn
= address
>> PAGE_SHIFT
;
227 EXPORT_SYMBOL(follow_pfn
);
229 DEFINE_RWLOCK(vmlist_lock
);
230 struct vm_struct
*vmlist
;
232 void vfree(const void *addr
)
236 EXPORT_SYMBOL(vfree
);
238 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
241 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
242 * returns only a logical address.
244 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
246 EXPORT_SYMBOL(__vmalloc
);
248 void *vmalloc_user(unsigned long size
)
252 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
255 struct vm_area_struct
*vma
;
257 down_write(¤t
->mm
->mmap_sem
);
258 vma
= find_vma(current
->mm
, (unsigned long)ret
);
260 vma
->vm_flags
|= VM_USERMAP
;
261 up_write(¤t
->mm
->mmap_sem
);
266 EXPORT_SYMBOL(vmalloc_user
);
268 struct page
*vmalloc_to_page(const void *addr
)
270 return virt_to_page(addr
);
272 EXPORT_SYMBOL(vmalloc_to_page
);
274 unsigned long vmalloc_to_pfn(const void *addr
)
276 return page_to_pfn(virt_to_page(addr
));
278 EXPORT_SYMBOL(vmalloc_to_pfn
);
280 long vread(char *buf
, char *addr
, unsigned long count
)
282 memcpy(buf
, addr
, count
);
286 long vwrite(char *buf
, char *addr
, unsigned long count
)
288 /* Don't allow overflow */
289 if ((unsigned long) addr
+ count
< count
)
290 count
= -(unsigned long) addr
;
292 memcpy(addr
, buf
, count
);
297 * vmalloc - allocate virtually continguos memory
299 * @size: allocation size
301 * Allocate enough pages to cover @size from the page level
302 * allocator and map them into continguos kernel virtual space.
304 * For tight control over page level allocator and protection flags
305 * use __vmalloc() instead.
307 void *vmalloc(unsigned long size
)
309 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
311 EXPORT_SYMBOL(vmalloc
);
314 * vzalloc - allocate virtually continguos memory with zero fill
316 * @size: allocation size
318 * Allocate enough pages to cover @size from the page level
319 * allocator and map them into continguos kernel virtual space.
320 * The memory allocated is set to zero.
322 * For tight control over page level allocator and protection flags
323 * use __vmalloc() instead.
325 void *vzalloc(unsigned long size
)
327 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
330 EXPORT_SYMBOL(vzalloc
);
333 * vmalloc_node - allocate memory on a specific node
334 * @size: allocation size
337 * Allocate enough pages to cover @size from the page level
338 * allocator and map them into contiguous kernel virtual space.
340 * For tight control over page level allocator and protection flags
341 * use __vmalloc() instead.
343 void *vmalloc_node(unsigned long size
, int node
)
345 return vmalloc(size
);
347 EXPORT_SYMBOL(vmalloc_node
);
350 * vzalloc_node - allocate memory on a specific node with zero fill
351 * @size: allocation size
354 * Allocate enough pages to cover @size from the page level
355 * allocator and map them into contiguous kernel virtual space.
356 * The memory allocated is set to zero.
358 * For tight control over page level allocator and protection flags
359 * use __vmalloc() instead.
361 void *vzalloc_node(unsigned long size
, int node
)
363 return vzalloc(size
);
365 EXPORT_SYMBOL(vzalloc_node
);
367 #ifndef PAGE_KERNEL_EXEC
368 # define PAGE_KERNEL_EXEC PAGE_KERNEL
372 * vmalloc_exec - allocate virtually contiguous, executable memory
373 * @size: allocation size
375 * Kernel-internal function to allocate enough pages to cover @size
376 * the page level allocator and map them into contiguous and
377 * executable kernel virtual space.
379 * For tight control over page level allocator and protection flags
380 * use __vmalloc() instead.
383 void *vmalloc_exec(unsigned long size
)
385 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
389 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
390 * @size: allocation size
392 * Allocate enough 32bit PA addressable pages to cover @size from the
393 * page level allocator and map them into continguos kernel virtual space.
395 void *vmalloc_32(unsigned long size
)
397 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
399 EXPORT_SYMBOL(vmalloc_32
);
402 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
403 * @size: allocation size
405 * The resulting memory area is 32bit addressable and zeroed so it can be
406 * mapped to userspace without leaking data.
408 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
409 * remap_vmalloc_range() are permissible.
411 void *vmalloc_32_user(unsigned long size
)
414 * We'll have to sort out the ZONE_DMA bits for 64-bit,
415 * but for now this can simply use vmalloc_user() directly.
417 return vmalloc_user(size
);
419 EXPORT_SYMBOL(vmalloc_32_user
);
421 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
428 void vunmap(const void *addr
)
432 EXPORT_SYMBOL(vunmap
);
434 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
439 EXPORT_SYMBOL(vm_map_ram
);
441 void vm_unmap_ram(const void *mem
, unsigned int count
)
445 EXPORT_SYMBOL(vm_unmap_ram
);
447 void vm_unmap_aliases(void)
450 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
453 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
456 void __attribute__((weak
)) vmalloc_sync_all(void)
461 * alloc_vm_area - allocate a range of kernel address space
462 * @size: size of the area
464 * Returns: NULL on failure, vm_struct on success
466 * This function reserves a range of kernel address space, and
467 * allocates pagetables to map that range. No actual mappings
468 * are created. If the kernel address space is not shared
469 * between processes, it syncs the pagetable across all
472 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
477 EXPORT_SYMBOL_GPL(alloc_vm_area
);
479 void free_vm_area(struct vm_struct
*area
)
483 EXPORT_SYMBOL_GPL(free_vm_area
);
485 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
490 EXPORT_SYMBOL(vm_insert_page
);
493 * sys_brk() for the most part doesn't need the global kernel
494 * lock, except when an application is doing something nasty
495 * like trying to un-brk an area that has already been mapped
496 * to a regular file. in this case, the unmapping will need
497 * to invoke file system routines that need the global lock.
499 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
501 struct mm_struct
*mm
= current
->mm
;
503 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
510 * Always allow shrinking brk
512 if (brk
<= mm
->brk
) {
518 * Ok, looks good - let it rip.
520 flush_icache_range(mm
->brk
, brk
);
521 return mm
->brk
= brk
;
525 * initialise the VMA and region record slabs
527 void __init
mmap_init(void)
531 ret
= percpu_counter_init(&vm_committed_as
, 0);
533 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
537 * validate the region tree
538 * - the caller must hold the region lock
540 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
541 static noinline
void validate_nommu_regions(void)
543 struct vm_region
*region
, *last
;
544 struct rb_node
*p
, *lastp
;
546 lastp
= rb_first(&nommu_region_tree
);
550 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
551 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
552 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
554 while ((p
= rb_next(lastp
))) {
555 region
= rb_entry(p
, struct vm_region
, vm_rb
);
556 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
558 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
559 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
560 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
566 static void validate_nommu_regions(void)
572 * add a region into the global tree
574 static void add_nommu_region(struct vm_region
*region
)
576 struct vm_region
*pregion
;
577 struct rb_node
**p
, *parent
;
579 validate_nommu_regions();
582 p
= &nommu_region_tree
.rb_node
;
585 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
586 if (region
->vm_start
< pregion
->vm_start
)
588 else if (region
->vm_start
> pregion
->vm_start
)
590 else if (pregion
== region
)
596 rb_link_node(®ion
->vm_rb
, parent
, p
);
597 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
599 validate_nommu_regions();
603 * delete a region from the global tree
605 static void delete_nommu_region(struct vm_region
*region
)
607 BUG_ON(!nommu_region_tree
.rb_node
);
609 validate_nommu_regions();
610 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
611 validate_nommu_regions();
615 * free a contiguous series of pages
617 static void free_page_series(unsigned long from
, unsigned long to
)
619 for (; from
< to
; from
+= PAGE_SIZE
) {
620 struct page
*page
= virt_to_page(from
);
622 kdebug("- free %lx", from
);
623 atomic_long_dec(&mmap_pages_allocated
);
624 if (page_count(page
) != 1)
625 kdebug("free page %p: refcount not one: %d",
626 page
, page_count(page
));
632 * release a reference to a region
633 * - the caller must hold the region semaphore for writing, which this releases
634 * - the region may not have been added to the tree yet, in which case vm_top
635 * will equal vm_start
637 static void __put_nommu_region(struct vm_region
*region
)
638 __releases(nommu_region_sem
)
640 kenter("%p{%d}", region
, region
->vm_usage
);
642 BUG_ON(!nommu_region_tree
.rb_node
);
644 if (--region
->vm_usage
== 0) {
645 if (region
->vm_top
> region
->vm_start
)
646 delete_nommu_region(region
);
647 up_write(&nommu_region_sem
);
650 fput(region
->vm_file
);
652 /* IO memory and memory shared directly out of the pagecache
653 * from ramfs/tmpfs mustn't be released here */
654 if (region
->vm_flags
& VM_MAPPED_COPY
) {
655 kdebug("free series");
656 free_page_series(region
->vm_start
, region
->vm_top
);
658 kmem_cache_free(vm_region_jar
, region
);
660 up_write(&nommu_region_sem
);
665 * release a reference to a region
667 static void put_nommu_region(struct vm_region
*region
)
669 down_write(&nommu_region_sem
);
670 __put_nommu_region(region
);
674 * update protection on a vma
676 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
679 struct mm_struct
*mm
= vma
->vm_mm
;
680 long start
= vma
->vm_start
& PAGE_MASK
;
681 while (start
< vma
->vm_end
) {
682 protect_page(mm
, start
, flags
);
685 update_protections(mm
);
690 * add a VMA into a process's mm_struct in the appropriate place in the list
691 * and tree and add to the address space's page tree also if not an anonymous
693 * - should be called with mm->mmap_sem held writelocked
695 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
697 struct vm_area_struct
*pvma
, *prev
;
698 struct address_space
*mapping
;
699 struct rb_node
**p
, *parent
, *rb_prev
;
703 BUG_ON(!vma
->vm_region
);
708 protect_vma(vma
, vma
->vm_flags
);
710 /* add the VMA to the mapping */
712 mapping
= vma
->vm_file
->f_mapping
;
714 mutex_lock(&mapping
->i_mmap_mutex
);
715 flush_dcache_mmap_lock(mapping
);
716 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
717 flush_dcache_mmap_unlock(mapping
);
718 mutex_unlock(&mapping
->i_mmap_mutex
);
721 /* add the VMA to the tree */
722 parent
= rb_prev
= NULL
;
723 p
= &mm
->mm_rb
.rb_node
;
726 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
728 /* sort by: start addr, end addr, VMA struct addr in that order
729 * (the latter is necessary as we may get identical VMAs) */
730 if (vma
->vm_start
< pvma
->vm_start
)
732 else if (vma
->vm_start
> pvma
->vm_start
) {
735 } else if (vma
->vm_end
< pvma
->vm_end
)
737 else if (vma
->vm_end
> pvma
->vm_end
) {
740 } else if (vma
< pvma
)
742 else if (vma
> pvma
) {
749 rb_link_node(&vma
->vm_rb
, parent
, p
);
750 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
752 /* add VMA to the VMA list also */
755 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
757 __vma_link_list(mm
, vma
, prev
, parent
);
761 * delete a VMA from its owning mm_struct and address space
763 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
765 struct address_space
*mapping
;
766 struct mm_struct
*mm
= vma
->vm_mm
;
773 if (mm
->mmap_cache
== vma
)
774 mm
->mmap_cache
= NULL
;
776 /* remove the VMA from the mapping */
778 mapping
= vma
->vm_file
->f_mapping
;
780 mutex_lock(&mapping
->i_mmap_mutex
);
781 flush_dcache_mmap_lock(mapping
);
782 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
783 flush_dcache_mmap_unlock(mapping
);
784 mutex_unlock(&mapping
->i_mmap_mutex
);
787 /* remove from the MM's tree and list */
788 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
791 vma
->vm_prev
->vm_next
= vma
->vm_next
;
793 mm
->mmap
= vma
->vm_next
;
796 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
800 * destroy a VMA record
802 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
805 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
806 vma
->vm_ops
->close(vma
);
809 put_nommu_region(vma
->vm_region
);
810 kmem_cache_free(vm_area_cachep
, vma
);
814 * look up the first VMA in which addr resides, NULL if none
815 * - should be called with mm->mmap_sem at least held readlocked
817 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
819 struct vm_area_struct
*vma
;
821 /* check the cache first */
822 vma
= mm
->mmap_cache
;
823 if (vma
&& vma
->vm_start
<= addr
&& vma
->vm_end
> addr
)
826 /* trawl the list (there may be multiple mappings in which addr
828 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
829 if (vma
->vm_start
> addr
)
831 if (vma
->vm_end
> addr
) {
832 mm
->mmap_cache
= vma
;
839 EXPORT_SYMBOL(find_vma
);
843 * - we don't extend stack VMAs under NOMMU conditions
845 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
847 return find_vma(mm
, addr
);
851 * expand a stack to a given address
852 * - not supported under NOMMU conditions
854 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
860 * look up the first VMA exactly that exactly matches addr
861 * - should be called with mm->mmap_sem at least held readlocked
863 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
867 struct vm_area_struct
*vma
;
868 unsigned long end
= addr
+ len
;
870 /* check the cache first */
871 vma
= mm
->mmap_cache
;
872 if (vma
&& vma
->vm_start
== addr
&& vma
->vm_end
== end
)
875 /* trawl the list (there may be multiple mappings in which addr
877 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
878 if (vma
->vm_start
< addr
)
880 if (vma
->vm_start
> addr
)
882 if (vma
->vm_end
== end
) {
883 mm
->mmap_cache
= vma
;
892 * determine whether a mapping should be permitted and, if so, what sort of
893 * mapping we're capable of supporting
895 static int validate_mmap_request(struct file
*file
,
901 unsigned long *_capabilities
)
903 unsigned long capabilities
, rlen
;
906 /* do the simple checks first */
907 if (flags
& MAP_FIXED
) {
909 "%d: Can't do fixed-address/overlay mmap of RAM\n",
914 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
915 (flags
& MAP_TYPE
) != MAP_SHARED
)
921 /* Careful about overflows.. */
922 rlen
= PAGE_ALIGN(len
);
923 if (!rlen
|| rlen
> TASK_SIZE
)
926 /* offset overflow? */
927 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
931 /* validate file mapping requests */
932 struct address_space
*mapping
;
934 /* files must support mmap */
935 if (!file
->f_op
|| !file
->f_op
->mmap
)
938 /* work out if what we've got could possibly be shared
939 * - we support chardevs that provide their own "memory"
940 * - we support files/blockdevs that are memory backed
942 mapping
= file
->f_mapping
;
944 mapping
= file
->f_path
.dentry
->d_inode
->i_mapping
;
947 if (mapping
&& mapping
->backing_dev_info
)
948 capabilities
= mapping
->backing_dev_info
->capabilities
;
951 /* no explicit capabilities set, so assume some
953 switch (file
->f_path
.dentry
->d_inode
->i_mode
& S_IFMT
) {
956 capabilities
= BDI_CAP_MAP_COPY
;
971 /* eliminate any capabilities that we can't support on this
973 if (!file
->f_op
->get_unmapped_area
)
974 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
975 if (!file
->f_op
->read
)
976 capabilities
&= ~BDI_CAP_MAP_COPY
;
978 /* The file shall have been opened with read permission. */
979 if (!(file
->f_mode
& FMODE_READ
))
982 if (flags
& MAP_SHARED
) {
983 /* do checks for writing, appending and locking */
984 if ((prot
& PROT_WRITE
) &&
985 !(file
->f_mode
& FMODE_WRITE
))
988 if (IS_APPEND(file
->f_path
.dentry
->d_inode
) &&
989 (file
->f_mode
& FMODE_WRITE
))
992 if (locks_verify_locked(file
->f_path
.dentry
->d_inode
))
995 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
998 /* we mustn't privatise shared mappings */
999 capabilities
&= ~BDI_CAP_MAP_COPY
;
1002 /* we're going to read the file into private memory we
1004 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1007 /* we don't permit a private writable mapping to be
1008 * shared with the backing device */
1009 if (prot
& PROT_WRITE
)
1010 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1013 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1014 if (((prot
& PROT_READ
) && !(capabilities
& BDI_CAP_READ_MAP
)) ||
1015 ((prot
& PROT_WRITE
) && !(capabilities
& BDI_CAP_WRITE_MAP
)) ||
1016 ((prot
& PROT_EXEC
) && !(capabilities
& BDI_CAP_EXEC_MAP
))
1018 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1019 if (flags
& MAP_SHARED
) {
1021 "MAP_SHARED not completely supported on !MMU\n");
1027 /* handle executable mappings and implied executable
1029 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1030 if (prot
& PROT_EXEC
)
1033 else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1034 /* handle implication of PROT_EXEC by PROT_READ */
1035 if (current
->personality
& READ_IMPLIES_EXEC
) {
1036 if (capabilities
& BDI_CAP_EXEC_MAP
)
1040 else if ((prot
& PROT_READ
) &&
1041 (prot
& PROT_EXEC
) &&
1042 !(capabilities
& BDI_CAP_EXEC_MAP
)
1044 /* backing file is not executable, try to copy */
1045 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1049 /* anonymous mappings are always memory backed and can be
1052 capabilities
= BDI_CAP_MAP_COPY
;
1054 /* handle PROT_EXEC implication by PROT_READ */
1055 if ((prot
& PROT_READ
) &&
1056 (current
->personality
& READ_IMPLIES_EXEC
))
1060 /* allow the security API to have its say */
1061 ret
= security_mmap_addr(addr
);
1066 *_capabilities
= capabilities
;
1071 * we've determined that we can make the mapping, now translate what we
1072 * now know into VMA flags
1074 static unsigned long determine_vm_flags(struct file
*file
,
1076 unsigned long flags
,
1077 unsigned long capabilities
)
1079 unsigned long vm_flags
;
1081 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1082 /* vm_flags |= mm->def_flags; */
1084 if (!(capabilities
& BDI_CAP_MAP_DIRECT
)) {
1085 /* attempt to share read-only copies of mapped file chunks */
1086 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1087 if (file
&& !(prot
& PROT_WRITE
))
1088 vm_flags
|= VM_MAYSHARE
;
1090 /* overlay a shareable mapping on the backing device or inode
1091 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1093 vm_flags
|= VM_MAYSHARE
| (capabilities
& BDI_CAP_VMFLAGS
);
1094 if (flags
& MAP_SHARED
)
1095 vm_flags
|= VM_SHARED
;
1098 /* refuse to let anyone share private mappings with this process if
1099 * it's being traced - otherwise breakpoints set in it may interfere
1100 * with another untraced process
1102 if ((flags
& MAP_PRIVATE
) && current
->ptrace
)
1103 vm_flags
&= ~VM_MAYSHARE
;
1109 * set up a shared mapping on a file (the driver or filesystem provides and
1112 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1116 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1118 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1124 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1125 * opposed to tried but failed) so we can only give a suitable error as
1126 * it's not possible to make a private copy if MAP_SHARED was given */
1131 * set up a private mapping or an anonymous shared mapping
1133 static int do_mmap_private(struct vm_area_struct
*vma
,
1134 struct vm_region
*region
,
1136 unsigned long capabilities
)
1139 unsigned long total
, point
, n
;
1143 /* invoke the file's mapping function so that it can keep track of
1144 * shared mappings on devices or memory
1145 * - VM_MAYSHARE will be set if it may attempt to share
1147 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1148 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1150 /* shouldn't return success if we're not sharing */
1151 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1152 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1158 /* getting an ENOSYS error indicates that direct mmap isn't
1159 * possible (as opposed to tried but failed) so we'll try to
1160 * make a private copy of the data and map that instead */
1164 /* allocate some memory to hold the mapping
1165 * - note that this may not return a page-aligned address if the object
1166 * we're allocating is smaller than a page
1168 order
= get_order(len
);
1169 kdebug("alloc order %d for %lx", order
, len
);
1171 pages
= alloc_pages(GFP_KERNEL
, order
);
1176 atomic_long_add(total
, &mmap_pages_allocated
);
1178 point
= len
>> PAGE_SHIFT
;
1180 /* we allocated a power-of-2 sized page set, so we may want to trim off
1182 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1183 while (total
> point
) {
1184 order
= ilog2(total
- point
);
1186 kdebug("shave %lu/%lu @%lu", n
, total
- point
, total
);
1187 atomic_long_sub(n
, &mmap_pages_allocated
);
1189 set_page_refcounted(pages
+ total
);
1190 __free_pages(pages
+ total
, order
);
1194 for (point
= 1; point
< total
; point
++)
1195 set_page_refcounted(&pages
[point
]);
1197 base
= page_address(pages
);
1198 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1199 region
->vm_start
= (unsigned long) base
;
1200 region
->vm_end
= region
->vm_start
+ len
;
1201 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1203 vma
->vm_start
= region
->vm_start
;
1204 vma
->vm_end
= region
->vm_start
+ len
;
1207 /* read the contents of a file into the copy */
1208 mm_segment_t old_fs
;
1211 fpos
= vma
->vm_pgoff
;
1212 fpos
<<= PAGE_SHIFT
;
1216 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, len
, &fpos
);
1222 /* clear the last little bit */
1224 memset(base
+ ret
, 0, len
- ret
);
1231 free_page_series(region
->vm_start
, region
->vm_top
);
1232 region
->vm_start
= vma
->vm_start
= 0;
1233 region
->vm_end
= vma
->vm_end
= 0;
1238 printk("Allocation of length %lu from process %d (%s) failed\n",
1239 len
, current
->pid
, current
->comm
);
1245 * handle mapping creation for uClinux
1247 unsigned long do_mmap_pgoff(struct file
*file
,
1251 unsigned long flags
,
1252 unsigned long pgoff
)
1254 struct vm_area_struct
*vma
;
1255 struct vm_region
*region
;
1257 unsigned long capabilities
, vm_flags
, result
;
1260 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1262 /* decide whether we should attempt the mapping, and if so what sort of
1264 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1267 kleave(" = %d [val]", ret
);
1271 /* we ignore the address hint */
1273 len
= PAGE_ALIGN(len
);
1275 /* we've determined that we can make the mapping, now translate what we
1276 * now know into VMA flags */
1277 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1279 /* we're going to need to record the mapping */
1280 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1282 goto error_getting_region
;
1284 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1286 goto error_getting_vma
;
1288 region
->vm_usage
= 1;
1289 region
->vm_flags
= vm_flags
;
1290 region
->vm_pgoff
= pgoff
;
1292 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1293 vma
->vm_flags
= vm_flags
;
1294 vma
->vm_pgoff
= pgoff
;
1297 region
->vm_file
= get_file(file
);
1298 vma
->vm_file
= get_file(file
);
1301 down_write(&nommu_region_sem
);
1303 /* if we want to share, we need to check for regions created by other
1304 * mmap() calls that overlap with our proposed mapping
1305 * - we can only share with a superset match on most regular files
1306 * - shared mappings on character devices and memory backed files are
1307 * permitted to overlap inexactly as far as we are concerned for in
1308 * these cases, sharing is handled in the driver or filesystem rather
1311 if (vm_flags
& VM_MAYSHARE
) {
1312 struct vm_region
*pregion
;
1313 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1315 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1316 pgend
= pgoff
+ pglen
;
1318 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1319 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1321 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1324 /* search for overlapping mappings on the same file */
1325 if (pregion
->vm_file
->f_path
.dentry
->d_inode
!=
1326 file
->f_path
.dentry
->d_inode
)
1329 if (pregion
->vm_pgoff
>= pgend
)
1332 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1333 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1334 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1335 if (pgoff
>= rpgend
)
1338 /* handle inexactly overlapping matches between
1340 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1341 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1342 /* new mapping is not a subset of the region */
1343 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1344 goto sharing_violation
;
1348 /* we've found a region we can share */
1349 pregion
->vm_usage
++;
1350 vma
->vm_region
= pregion
;
1351 start
= pregion
->vm_start
;
1352 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1353 vma
->vm_start
= start
;
1354 vma
->vm_end
= start
+ len
;
1356 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1357 kdebug("share copy");
1358 vma
->vm_flags
|= VM_MAPPED_COPY
;
1360 kdebug("share mmap");
1361 ret
= do_mmap_shared_file(vma
);
1363 vma
->vm_region
= NULL
;
1366 pregion
->vm_usage
--;
1368 goto error_just_free
;
1371 fput(region
->vm_file
);
1372 kmem_cache_free(vm_region_jar
, region
);
1378 /* obtain the address at which to make a shared mapping
1379 * - this is the hook for quasi-memory character devices to
1380 * tell us the location of a shared mapping
1382 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1383 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1385 if (IS_ERR_VALUE(addr
)) {
1388 goto error_just_free
;
1390 /* the driver refused to tell us where to site
1391 * the mapping so we'll have to attempt to copy
1394 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1395 goto error_just_free
;
1397 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1399 vma
->vm_start
= region
->vm_start
= addr
;
1400 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1405 vma
->vm_region
= region
;
1407 /* set up the mapping
1408 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1410 if (file
&& vma
->vm_flags
& VM_SHARED
)
1411 ret
= do_mmap_shared_file(vma
);
1413 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1415 goto error_just_free
;
1416 add_nommu_region(region
);
1418 /* clear anonymous mappings that don't ask for uninitialized data */
1419 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1420 memset((void *)region
->vm_start
, 0,
1421 region
->vm_end
- region
->vm_start
);
1423 /* okay... we have a mapping; now we have to register it */
1424 result
= vma
->vm_start
;
1426 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1429 add_vma_to_mm(current
->mm
, vma
);
1431 /* we flush the region from the icache only when the first executable
1432 * mapping of it is made */
1433 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1434 flush_icache_range(region
->vm_start
, region
->vm_end
);
1435 region
->vm_icache_flushed
= true;
1438 up_write(&nommu_region_sem
);
1440 kleave(" = %lx", result
);
1444 up_write(&nommu_region_sem
);
1446 if (region
->vm_file
)
1447 fput(region
->vm_file
);
1448 kmem_cache_free(vm_region_jar
, region
);
1451 kmem_cache_free(vm_area_cachep
, vma
);
1452 kleave(" = %d", ret
);
1456 up_write(&nommu_region_sem
);
1457 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1462 kmem_cache_free(vm_region_jar
, region
);
1463 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1464 " from process %d failed\n",
1469 error_getting_region
:
1470 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1471 " from process %d failed\n",
1477 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1478 unsigned long, prot
, unsigned long, flags
,
1479 unsigned long, fd
, unsigned long, pgoff
)
1481 struct file
*file
= NULL
;
1482 unsigned long retval
= -EBADF
;
1484 audit_mmap_fd(fd
, flags
);
1485 if (!(flags
& MAP_ANONYMOUS
)) {
1491 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1493 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1501 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1502 struct mmap_arg_struct
{
1506 unsigned long flags
;
1508 unsigned long offset
;
1511 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1513 struct mmap_arg_struct a
;
1515 if (copy_from_user(&a
, arg
, sizeof(a
)))
1517 if (a
.offset
& ~PAGE_MASK
)
1520 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1521 a
.offset
>> PAGE_SHIFT
);
1523 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1526 * split a vma into two pieces at address 'addr', a new vma is allocated either
1527 * for the first part or the tail.
1529 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1530 unsigned long addr
, int new_below
)
1532 struct vm_area_struct
*new;
1533 struct vm_region
*region
;
1534 unsigned long npages
;
1538 /* we're only permitted to split anonymous regions (these should have
1539 * only a single usage on the region) */
1543 if (mm
->map_count
>= sysctl_max_map_count
)
1546 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1550 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1552 kmem_cache_free(vm_region_jar
, region
);
1556 /* most fields are the same, copy all, and then fixup */
1558 *region
= *vma
->vm_region
;
1559 new->vm_region
= region
;
1561 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1564 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1566 region
->vm_start
= new->vm_start
= addr
;
1567 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1570 if (new->vm_ops
&& new->vm_ops
->open
)
1571 new->vm_ops
->open(new);
1573 delete_vma_from_mm(vma
);
1574 down_write(&nommu_region_sem
);
1575 delete_nommu_region(vma
->vm_region
);
1577 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1578 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1580 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1581 vma
->vm_region
->vm_top
= addr
;
1583 add_nommu_region(vma
->vm_region
);
1584 add_nommu_region(new->vm_region
);
1585 up_write(&nommu_region_sem
);
1586 add_vma_to_mm(mm
, vma
);
1587 add_vma_to_mm(mm
, new);
1592 * shrink a VMA by removing the specified chunk from either the beginning or
1595 static int shrink_vma(struct mm_struct
*mm
,
1596 struct vm_area_struct
*vma
,
1597 unsigned long from
, unsigned long to
)
1599 struct vm_region
*region
;
1603 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1605 delete_vma_from_mm(vma
);
1606 if (from
> vma
->vm_start
)
1610 add_vma_to_mm(mm
, vma
);
1612 /* cut the backing region down to size */
1613 region
= vma
->vm_region
;
1614 BUG_ON(region
->vm_usage
!= 1);
1616 down_write(&nommu_region_sem
);
1617 delete_nommu_region(region
);
1618 if (from
> region
->vm_start
) {
1619 to
= region
->vm_top
;
1620 region
->vm_top
= region
->vm_end
= from
;
1622 region
->vm_start
= to
;
1624 add_nommu_region(region
);
1625 up_write(&nommu_region_sem
);
1627 free_page_series(from
, to
);
1633 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1634 * VMA, though it need not cover the whole VMA
1636 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1638 struct vm_area_struct
*vma
;
1642 kenter(",%lx,%zx", start
, len
);
1644 len
= PAGE_ALIGN(len
);
1650 /* find the first potentially overlapping VMA */
1651 vma
= find_vma(mm
, start
);
1653 static int limit
= 0;
1656 "munmap of memory not mmapped by process %d"
1657 " (%s): 0x%lx-0x%lx\n",
1658 current
->pid
, current
->comm
,
1659 start
, start
+ len
- 1);
1665 /* we're allowed to split an anonymous VMA but not a file-backed one */
1668 if (start
> vma
->vm_start
) {
1669 kleave(" = -EINVAL [miss]");
1672 if (end
== vma
->vm_end
)
1673 goto erase_whole_vma
;
1676 kleave(" = -EINVAL [split file]");
1679 /* the chunk must be a subset of the VMA found */
1680 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1681 goto erase_whole_vma
;
1682 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1683 kleave(" = -EINVAL [superset]");
1686 if (start
& ~PAGE_MASK
) {
1687 kleave(" = -EINVAL [unaligned start]");
1690 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1691 kleave(" = -EINVAL [unaligned split]");
1694 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1695 ret
= split_vma(mm
, vma
, start
, 1);
1697 kleave(" = %d [split]", ret
);
1701 return shrink_vma(mm
, vma
, start
, end
);
1705 delete_vma_from_mm(vma
);
1706 delete_vma(mm
, vma
);
1710 EXPORT_SYMBOL(do_munmap
);
1712 int vm_munmap(unsigned long addr
, size_t len
)
1714 struct mm_struct
*mm
= current
->mm
;
1717 down_write(&mm
->mmap_sem
);
1718 ret
= do_munmap(mm
, addr
, len
);
1719 up_write(&mm
->mmap_sem
);
1722 EXPORT_SYMBOL(vm_munmap
);
1724 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1726 return vm_munmap(addr
, len
);
1730 * release all the mappings made in a process's VM space
1732 void exit_mmap(struct mm_struct
*mm
)
1734 struct vm_area_struct
*vma
;
1743 while ((vma
= mm
->mmap
)) {
1744 mm
->mmap
= vma
->vm_next
;
1745 delete_vma_from_mm(vma
);
1746 delete_vma(mm
, vma
);
1753 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
1759 * expand (or shrink) an existing mapping, potentially moving it at the same
1760 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1762 * under NOMMU conditions, we only permit changing a mapping's size, and only
1763 * as long as it stays within the region allocated by do_mmap_private() and the
1764 * block is not shareable
1766 * MREMAP_FIXED is not supported under NOMMU conditions
1768 unsigned long do_mremap(unsigned long addr
,
1769 unsigned long old_len
, unsigned long new_len
,
1770 unsigned long flags
, unsigned long new_addr
)
1772 struct vm_area_struct
*vma
;
1774 /* insanity checks first */
1775 old_len
= PAGE_ALIGN(old_len
);
1776 new_len
= PAGE_ALIGN(new_len
);
1777 if (old_len
== 0 || new_len
== 0)
1778 return (unsigned long) -EINVAL
;
1780 if (addr
& ~PAGE_MASK
)
1783 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1784 return (unsigned long) -EINVAL
;
1786 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1788 return (unsigned long) -EINVAL
;
1790 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1791 return (unsigned long) -EFAULT
;
1793 if (vma
->vm_flags
& VM_MAYSHARE
)
1794 return (unsigned long) -EPERM
;
1796 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1797 return (unsigned long) -ENOMEM
;
1799 /* all checks complete - do it */
1800 vma
->vm_end
= vma
->vm_start
+ new_len
;
1801 return vma
->vm_start
;
1803 EXPORT_SYMBOL(do_mremap
);
1805 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1806 unsigned long, new_len
, unsigned long, flags
,
1807 unsigned long, new_addr
)
1811 down_write(¤t
->mm
->mmap_sem
);
1812 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1813 up_write(¤t
->mm
->mmap_sem
);
1817 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1818 unsigned int foll_flags
)
1823 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1824 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1826 if (addr
!= (pfn
<< PAGE_SHIFT
))
1829 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1832 EXPORT_SYMBOL(remap_pfn_range
);
1834 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1835 unsigned long pgoff
)
1837 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1839 if (!(vma
->vm_flags
& VM_USERMAP
))
1842 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1843 vma
->vm_end
= vma
->vm_start
+ size
;
1847 EXPORT_SYMBOL(remap_vmalloc_range
);
1849 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1850 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1855 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1859 void unmap_mapping_range(struct address_space
*mapping
,
1860 loff_t
const holebegin
, loff_t
const holelen
,
1864 EXPORT_SYMBOL(unmap_mapping_range
);
1867 * Check that a process has enough memory to allocate a new virtual
1868 * mapping. 0 means there is enough memory for the allocation to
1869 * succeed and -ENOMEM implies there is not.
1871 * We currently support three overcommit policies, which are set via the
1872 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1874 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1875 * Additional code 2002 Jul 20 by Robert Love.
1877 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1879 * Note this is a helper function intended to be used by LSMs which
1880 * wish to use this logic.
1882 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1884 unsigned long free
, allowed
;
1886 vm_acct_memory(pages
);
1889 * Sometimes we want to use more memory than we have
1891 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1894 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1895 free
= global_page_state(NR_FREE_PAGES
);
1896 free
+= global_page_state(NR_FILE_PAGES
);
1899 * shmem pages shouldn't be counted as free in this
1900 * case, they can't be purged, only swapped out, and
1901 * that won't affect the overall amount of available
1902 * memory in the system.
1904 free
-= global_page_state(NR_SHMEM
);
1906 free
+= nr_swap_pages
;
1909 * Any slabs which are created with the
1910 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1911 * which are reclaimable, under pressure. The dentry
1912 * cache and most inode caches should fall into this
1914 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1917 * Leave reserved pages. The pages are not for anonymous pages.
1919 if (free
<= totalreserve_pages
)
1922 free
-= totalreserve_pages
;
1925 * Leave the last 3% for root
1936 allowed
= totalram_pages
* sysctl_overcommit_ratio
/ 100;
1938 * Leave the last 3% for root
1941 allowed
-= allowed
/ 32;
1942 allowed
+= total_swap_pages
;
1944 /* Don't let a single process grow too big:
1945 leave 3% of the size of this process for other processes */
1947 allowed
-= mm
->total_vm
/ 32;
1949 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1953 vm_unacct_memory(pages
);
1958 int in_gate_area_no_mm(unsigned long addr
)
1963 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1968 EXPORT_SYMBOL(filemap_fault
);
1970 int generic_file_remap_pages(struct vm_area_struct
*vma
, unsigned long addr
,
1971 unsigned long size
, pgoff_t pgoff
)
1976 EXPORT_SYMBOL(generic_file_remap_pages
);
1978 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
1979 unsigned long addr
, void *buf
, int len
, int write
)
1981 struct vm_area_struct
*vma
;
1983 down_read(&mm
->mmap_sem
);
1985 /* the access must start within one of the target process's mappings */
1986 vma
= find_vma(mm
, addr
);
1988 /* don't overrun this mapping */
1989 if (addr
+ len
>= vma
->vm_end
)
1990 len
= vma
->vm_end
- addr
;
1992 /* only read or write mappings where it is permitted */
1993 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
1994 copy_to_user_page(vma
, NULL
, addr
,
1995 (void *) addr
, buf
, len
);
1996 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
1997 copy_from_user_page(vma
, NULL
, addr
,
1998 buf
, (void *) addr
, len
);
2005 up_read(&mm
->mmap_sem
);
2011 * @access_remote_vm - access another process' address space
2012 * @mm: the mm_struct of the target address space
2013 * @addr: start address to access
2014 * @buf: source or destination buffer
2015 * @len: number of bytes to transfer
2016 * @write: whether the access is a write
2018 * The caller must hold a reference on @mm.
2020 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
2021 void *buf
, int len
, int write
)
2023 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
2027 * Access another process' address space.
2028 * - source/target buffer must be kernel space
2030 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2032 struct mm_struct
*mm
;
2034 if (addr
+ len
< addr
)
2037 mm
= get_task_mm(tsk
);
2041 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
2048 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2049 * @inode: The inode to check
2050 * @size: The current filesize of the inode
2051 * @newsize: The proposed filesize of the inode
2053 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2054 * make sure that that any outstanding VMAs aren't broken and then shrink the
2055 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2056 * automatically grant mappings that are too large.
2058 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
2061 struct vm_area_struct
*vma
;
2062 struct vm_region
*region
;
2064 size_t r_size
, r_top
;
2066 low
= newsize
>> PAGE_SHIFT
;
2067 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2069 down_write(&nommu_region_sem
);
2070 mutex_lock(&inode
->i_mapping
->i_mmap_mutex
);
2072 /* search for VMAs that fall within the dead zone */
2073 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, low
, high
) {
2074 /* found one - only interested if it's shared out of the page
2076 if (vma
->vm_flags
& VM_SHARED
) {
2077 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2078 up_write(&nommu_region_sem
);
2079 return -ETXTBSY
; /* not quite true, but near enough */
2083 /* reduce any regions that overlap the dead zone - if in existence,
2084 * these will be pointed to by VMAs that don't overlap the dead zone
2086 * we don't check for any regions that start beyond the EOF as there
2089 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
,
2091 if (!(vma
->vm_flags
& VM_SHARED
))
2094 region
= vma
->vm_region
;
2095 r_size
= region
->vm_top
- region
->vm_start
;
2096 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
2098 if (r_top
> newsize
) {
2099 region
->vm_top
-= r_top
- newsize
;
2100 if (region
->vm_end
> region
->vm_top
)
2101 region
->vm_end
= region
->vm_top
;
2105 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2106 up_write(&nommu_region_sem
);