netdev: bfin_mac: clean up printk messages
[linux-2.6.git] / net / core / dev.c
blob3fe443be4b157560e78127568bdb90ee00b9f370
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
136 #include "net-sysfs.h"
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
212 static inline void rps_lock(struct softnet_data *sd)
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
219 static inline void rps_unlock(struct softnet_data *sd)
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
229 struct net *net = dev_net(dev);
231 ASSERT_RTNL();
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
245 static void unlist_netdevice(struct net_device *dev)
247 ASSERT_RTNL();
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
258 * Our notifier list
261 static RAW_NOTIFIER_HEAD(netdev_chain);
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
271 #ifdef CONFIG_LOCKDEP
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 int i;
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
329 int i;
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 int i;
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 #endif
355 /*******************************************************************************
357 Protocol management and registration routines
359 *******************************************************************************/
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
398 void dev_add_pack(struct packet_type *pt)
400 struct list_head *head = ptype_head(pt);
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
406 EXPORT_SYMBOL(dev_add_pack);
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
421 void __dev_remove_pack(struct packet_type *pt)
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
426 spin_lock(&ptype_lock);
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
439 EXPORT_SYMBOL(__dev_remove_pack);
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
453 void dev_remove_pack(struct packet_type *pt)
455 __dev_remove_pack(pt);
457 synchronize_net();
459 EXPORT_SYMBOL(dev_remove_pack);
461 /******************************************************************************
463 Device Boot-time Settings Routines
465 *******************************************************************************/
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 struct netdev_boot_setup *s;
482 int i;
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
506 int netdev_boot_setup_check(struct net_device *dev)
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
521 return 0;
523 EXPORT_SYMBOL(netdev_boot_setup_check);
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
536 unsigned long netdev_boot_base(const char *prefix, int unit)
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
542 sprintf(name, "%s%d", prefix, unit);
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
558 * Saves at boot time configured settings for any netdevice.
560 int __init netdev_boot_setup(char *str)
562 int ints[5];
563 struct ifmap map;
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
584 __setup("netdev=", netdev_boot_setup);
586 /*******************************************************************************
588 Device Interface Subroutines
590 *******************************************************************************/
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
614 return NULL;
616 EXPORT_SYMBOL(__dev_get_by_name);
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
640 return NULL;
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 struct net_device *dev;
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
667 EXPORT_SYMBOL(dev_get_by_name);
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
691 return NULL;
693 EXPORT_SYMBOL(__dev_get_by_index);
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
716 return NULL;
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 struct net_device *dev;
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
743 EXPORT_SYMBOL(dev_get_by_index);
746 * dev_getbyhwaddr_rcu - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold RCU
753 * The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
758 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
759 const char *ha)
761 struct net_device *dev;
763 for_each_netdev_rcu(net, dev)
764 if (dev->type == type &&
765 !memcmp(dev->dev_addr, ha, dev->addr_len))
766 return dev;
768 return NULL;
770 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
772 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 struct net_device *dev;
776 ASSERT_RTNL();
777 for_each_netdev(net, dev)
778 if (dev->type == type)
779 return dev;
781 return NULL;
783 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 struct net_device *dev, *ret = NULL;
789 rcu_read_lock();
790 for_each_netdev_rcu(net, dev)
791 if (dev->type == type) {
792 dev_hold(dev);
793 ret = dev;
794 break;
796 rcu_read_unlock();
797 return ret;
799 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802 * dev_get_by_flags_rcu - find any device with given flags
803 * @net: the applicable net namespace
804 * @if_flags: IFF_* values
805 * @mask: bitmask of bits in if_flags to check
807 * Search for any interface with the given flags. Returns NULL if a device
808 * is not found or a pointer to the device. Must be called inside
809 * rcu_read_lock(), and result refcount is unchanged.
812 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
813 unsigned short mask)
815 struct net_device *dev, *ret;
817 ret = NULL;
818 for_each_netdev_rcu(net, dev) {
819 if (((dev->flags ^ if_flags) & mask) == 0) {
820 ret = dev;
821 break;
824 return ret;
826 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829 * dev_valid_name - check if name is okay for network device
830 * @name: name string
832 * Network device names need to be valid file names to
833 * to allow sysfs to work. We also disallow any kind of
834 * whitespace.
836 int dev_valid_name(const char *name)
838 if (*name == '\0')
839 return 0;
840 if (strlen(name) >= IFNAMSIZ)
841 return 0;
842 if (!strcmp(name, ".") || !strcmp(name, ".."))
843 return 0;
845 while (*name) {
846 if (*name == '/' || isspace(*name))
847 return 0;
848 name++;
850 return 1;
852 EXPORT_SYMBOL(dev_valid_name);
855 * __dev_alloc_name - allocate a name for a device
856 * @net: network namespace to allocate the device name in
857 * @name: name format string
858 * @buf: scratch buffer and result name string
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
869 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 int i = 0;
872 const char *p;
873 const int max_netdevices = 8*PAGE_SIZE;
874 unsigned long *inuse;
875 struct net_device *d;
877 p = strnchr(name, IFNAMSIZ-1, '%');
878 if (p) {
880 * Verify the string as this thing may have come from
881 * the user. There must be either one "%d" and no other "%"
882 * characters.
884 if (p[1] != 'd' || strchr(p + 2, '%'))
885 return -EINVAL;
887 /* Use one page as a bit array of possible slots */
888 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
889 if (!inuse)
890 return -ENOMEM;
892 for_each_netdev(net, d) {
893 if (!sscanf(d->name, name, &i))
894 continue;
895 if (i < 0 || i >= max_netdevices)
896 continue;
898 /* avoid cases where sscanf is not exact inverse of printf */
899 snprintf(buf, IFNAMSIZ, name, i);
900 if (!strncmp(buf, d->name, IFNAMSIZ))
901 set_bit(i, inuse);
904 i = find_first_zero_bit(inuse, max_netdevices);
905 free_page((unsigned long) inuse);
908 if (buf != name)
909 snprintf(buf, IFNAMSIZ, name, i);
910 if (!__dev_get_by_name(net, buf))
911 return i;
913 /* It is possible to run out of possible slots
914 * when the name is long and there isn't enough space left
915 * for the digits, or if all bits are used.
917 return -ENFILE;
921 * dev_alloc_name - allocate a name for a device
922 * @dev: device
923 * @name: name format string
925 * Passed a format string - eg "lt%d" it will try and find a suitable
926 * id. It scans list of devices to build up a free map, then chooses
927 * the first empty slot. The caller must hold the dev_base or rtnl lock
928 * while allocating the name and adding the device in order to avoid
929 * duplicates.
930 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
931 * Returns the number of the unit assigned or a negative errno code.
934 int dev_alloc_name(struct net_device *dev, const char *name)
936 char buf[IFNAMSIZ];
937 struct net *net;
938 int ret;
940 BUG_ON(!dev_net(dev));
941 net = dev_net(dev);
942 ret = __dev_alloc_name(net, name, buf);
943 if (ret >= 0)
944 strlcpy(dev->name, buf, IFNAMSIZ);
945 return ret;
947 EXPORT_SYMBOL(dev_alloc_name);
949 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 struct net *net;
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
956 if (!dev_valid_name(name))
957 return -EINVAL;
959 if (fmt && strchr(name, '%'))
960 return dev_alloc_name(dev, name);
961 else if (__dev_get_by_name(net, name))
962 return -EEXIST;
963 else if (dev->name != name)
964 strlcpy(dev->name, name, IFNAMSIZ);
966 return 0;
970 * dev_change_name - change name of a device
971 * @dev: device
972 * @newname: name (or format string) must be at least IFNAMSIZ
974 * Change name of a device, can pass format strings "eth%d".
975 * for wildcarding.
977 int dev_change_name(struct net_device *dev, const char *newname)
979 char oldname[IFNAMSIZ];
980 int err = 0;
981 int ret;
982 struct net *net;
984 ASSERT_RTNL();
985 BUG_ON(!dev_net(dev));
987 net = dev_net(dev);
988 if (dev->flags & IFF_UP)
989 return -EBUSY;
991 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
992 return 0;
994 memcpy(oldname, dev->name, IFNAMSIZ);
996 err = dev_get_valid_name(dev, newname, 1);
997 if (err < 0)
998 return err;
1000 rollback:
1001 ret = device_rename(&dev->dev, dev->name);
1002 if (ret) {
1003 memcpy(dev->name, oldname, IFNAMSIZ);
1004 return ret;
1007 write_lock_bh(&dev_base_lock);
1008 hlist_del(&dev->name_hlist);
1009 write_unlock_bh(&dev_base_lock);
1011 synchronize_rcu();
1013 write_lock_bh(&dev_base_lock);
1014 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1015 write_unlock_bh(&dev_base_lock);
1017 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1018 ret = notifier_to_errno(ret);
1020 if (ret) {
1021 /* err >= 0 after dev_alloc_name() or stores the first errno */
1022 if (err >= 0) {
1023 err = ret;
1024 memcpy(dev->name, oldname, IFNAMSIZ);
1025 goto rollback;
1026 } else {
1027 printk(KERN_ERR
1028 "%s: name change rollback failed: %d.\n",
1029 dev->name, ret);
1033 return err;
1037 * dev_set_alias - change ifalias of a device
1038 * @dev: device
1039 * @alias: name up to IFALIASZ
1040 * @len: limit of bytes to copy from info
1042 * Set ifalias for a device,
1044 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 ASSERT_RTNL();
1048 if (len >= IFALIASZ)
1049 return -EINVAL;
1051 if (!len) {
1052 if (dev->ifalias) {
1053 kfree(dev->ifalias);
1054 dev->ifalias = NULL;
1056 return 0;
1059 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1060 if (!dev->ifalias)
1061 return -ENOMEM;
1063 strlcpy(dev->ifalias, alias, len+1);
1064 return len;
1069 * netdev_features_change - device changes features
1070 * @dev: device to cause notification
1072 * Called to indicate a device has changed features.
1074 void netdev_features_change(struct net_device *dev)
1076 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 EXPORT_SYMBOL(netdev_features_change);
1081 * netdev_state_change - device changes state
1082 * @dev: device to cause notification
1084 * Called to indicate a device has changed state. This function calls
1085 * the notifier chains for netdev_chain and sends a NEWLINK message
1086 * to the routing socket.
1088 void netdev_state_change(struct net_device *dev)
1090 if (dev->flags & IFF_UP) {
1091 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1092 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 EXPORT_SYMBOL(netdev_state_change);
1097 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 return call_netdevice_notifiers(event, dev);
1101 EXPORT_SYMBOL(netdev_bonding_change);
1104 * dev_load - load a network module
1105 * @net: the applicable net namespace
1106 * @name: name of interface
1108 * If a network interface is not present and the process has suitable
1109 * privileges this function loads the module. If module loading is not
1110 * available in this kernel then it becomes a nop.
1113 void dev_load(struct net *net, const char *name)
1115 struct net_device *dev;
1117 rcu_read_lock();
1118 dev = dev_get_by_name_rcu(net, name);
1119 rcu_read_unlock();
1121 if (!dev && capable(CAP_NET_ADMIN))
1122 request_module("%s", name);
1124 EXPORT_SYMBOL(dev_load);
1126 static int __dev_open(struct net_device *dev)
1128 const struct net_device_ops *ops = dev->netdev_ops;
1129 int ret;
1131 ASSERT_RTNL();
1134 * Is it even present?
1136 if (!netif_device_present(dev))
1137 return -ENODEV;
1139 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1140 ret = notifier_to_errno(ret);
1141 if (ret)
1142 return ret;
1145 * Call device private open method
1147 set_bit(__LINK_STATE_START, &dev->state);
1149 if (ops->ndo_validate_addr)
1150 ret = ops->ndo_validate_addr(dev);
1152 if (!ret && ops->ndo_open)
1153 ret = ops->ndo_open(dev);
1156 * If it went open OK then:
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1163 * Set the flags.
1165 dev->flags |= IFF_UP;
1168 * Enable NET_DMA
1170 net_dmaengine_get();
1173 * Initialize multicasting status
1175 dev_set_rx_mode(dev);
1178 * Wakeup transmit queue engine
1180 dev_activate(dev);
1183 return ret;
1187 * dev_open - prepare an interface for use.
1188 * @dev: device to open
1190 * Takes a device from down to up state. The device's private open
1191 * function is invoked and then the multicast lists are loaded. Finally
1192 * the device is moved into the up state and a %NETDEV_UP message is
1193 * sent to the netdev notifier chain.
1195 * Calling this function on an active interface is a nop. On a failure
1196 * a negative errno code is returned.
1198 int dev_open(struct net_device *dev)
1200 int ret;
1203 * Is it already up?
1205 if (dev->flags & IFF_UP)
1206 return 0;
1209 * Open device
1211 ret = __dev_open(dev);
1212 if (ret < 0)
1213 return ret;
1216 * ... and announce new interface.
1218 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1219 call_netdevice_notifiers(NETDEV_UP, dev);
1221 return ret;
1223 EXPORT_SYMBOL(dev_open);
1225 static int __dev_close_many(struct list_head *head)
1227 struct net_device *dev;
1229 ASSERT_RTNL();
1230 might_sleep();
1232 list_for_each_entry(dev, head, unreg_list) {
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1239 clear_bit(__LINK_STATE_START, &dev->state);
1241 /* Synchronize to scheduled poll. We cannot touch poll list, it
1242 * can be even on different cpu. So just clear netif_running().
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250 dev_deactivate_many(head);
1252 list_for_each_entry(dev, head, unreg_list) {
1253 const struct net_device_ops *ops = dev->netdev_ops;
1256 * Call the device specific close. This cannot fail.
1257 * Only if device is UP
1259 * We allow it to be called even after a DETACH hot-plug
1260 * event.
1262 if (ops->ndo_stop)
1263 ops->ndo_stop(dev);
1266 * Device is now down.
1269 dev->flags &= ~IFF_UP;
1272 * Shutdown NET_DMA
1274 net_dmaengine_put();
1277 return 0;
1280 static int __dev_close(struct net_device *dev)
1282 LIST_HEAD(single);
1284 list_add(&dev->unreg_list, &single);
1285 return __dev_close_many(&single);
1288 int dev_close_many(struct list_head *head)
1290 struct net_device *dev, *tmp;
1291 LIST_HEAD(tmp_list);
1293 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1294 if (!(dev->flags & IFF_UP))
1295 list_move(&dev->unreg_list, &tmp_list);
1297 __dev_close_many(head);
1300 * Tell people we are down
1302 list_for_each_entry(dev, head, unreg_list) {
1303 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1304 call_netdevice_notifiers(NETDEV_DOWN, dev);
1307 /* rollback_registered_many needs the complete original list */
1308 list_splice(&tmp_list, head);
1309 return 0;
1313 * dev_close - shutdown an interface.
1314 * @dev: device to shutdown
1316 * This function moves an active device into down state. A
1317 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1318 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1319 * chain.
1321 int dev_close(struct net_device *dev)
1323 LIST_HEAD(single);
1325 list_add(&dev->unreg_list, &single);
1326 dev_close_many(&single);
1328 return 0;
1330 EXPORT_SYMBOL(dev_close);
1334 * dev_disable_lro - disable Large Receive Offload on a device
1335 * @dev: device
1337 * Disable Large Receive Offload (LRO) on a net device. Must be
1338 * called under RTNL. This is needed if received packets may be
1339 * forwarded to another interface.
1341 void dev_disable_lro(struct net_device *dev)
1343 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1344 dev->ethtool_ops->set_flags) {
1345 u32 flags = dev->ethtool_ops->get_flags(dev);
1346 if (flags & ETH_FLAG_LRO) {
1347 flags &= ~ETH_FLAG_LRO;
1348 dev->ethtool_ops->set_flags(dev, flags);
1351 WARN_ON(dev->features & NETIF_F_LRO);
1353 EXPORT_SYMBOL(dev_disable_lro);
1356 static int dev_boot_phase = 1;
1359 * Device change register/unregister. These are not inline or static
1360 * as we export them to the world.
1364 * register_netdevice_notifier - register a network notifier block
1365 * @nb: notifier
1367 * Register a notifier to be called when network device events occur.
1368 * The notifier passed is linked into the kernel structures and must
1369 * not be reused until it has been unregistered. A negative errno code
1370 * is returned on a failure.
1372 * When registered all registration and up events are replayed
1373 * to the new notifier to allow device to have a race free
1374 * view of the network device list.
1377 int register_netdevice_notifier(struct notifier_block *nb)
1379 struct net_device *dev;
1380 struct net_device *last;
1381 struct net *net;
1382 int err;
1384 rtnl_lock();
1385 err = raw_notifier_chain_register(&netdev_chain, nb);
1386 if (err)
1387 goto unlock;
1388 if (dev_boot_phase)
1389 goto unlock;
1390 for_each_net(net) {
1391 for_each_netdev(net, dev) {
1392 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1393 err = notifier_to_errno(err);
1394 if (err)
1395 goto rollback;
1397 if (!(dev->flags & IFF_UP))
1398 continue;
1400 nb->notifier_call(nb, NETDEV_UP, dev);
1404 unlock:
1405 rtnl_unlock();
1406 return err;
1408 rollback:
1409 last = dev;
1410 for_each_net(net) {
1411 for_each_netdev(net, dev) {
1412 if (dev == last)
1413 break;
1415 if (dev->flags & IFF_UP) {
1416 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1417 nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1420 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1424 raw_notifier_chain_unregister(&netdev_chain, nb);
1425 goto unlock;
1427 EXPORT_SYMBOL(register_netdevice_notifier);
1430 * unregister_netdevice_notifier - unregister a network notifier block
1431 * @nb: notifier
1433 * Unregister a notifier previously registered by
1434 * register_netdevice_notifier(). The notifier is unlinked into the
1435 * kernel structures and may then be reused. A negative errno code
1436 * is returned on a failure.
1439 int unregister_netdevice_notifier(struct notifier_block *nb)
1441 int err;
1443 rtnl_lock();
1444 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1445 rtnl_unlock();
1446 return err;
1448 EXPORT_SYMBOL(unregister_netdevice_notifier);
1451 * call_netdevice_notifiers - call all network notifier blocks
1452 * @val: value passed unmodified to notifier function
1453 * @dev: net_device pointer passed unmodified to notifier function
1455 * Call all network notifier blocks. Parameters and return value
1456 * are as for raw_notifier_call_chain().
1459 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1461 ASSERT_RTNL();
1462 return raw_notifier_call_chain(&netdev_chain, val, dev);
1465 /* When > 0 there are consumers of rx skb time stamps */
1466 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1468 void net_enable_timestamp(void)
1470 atomic_inc(&netstamp_needed);
1472 EXPORT_SYMBOL(net_enable_timestamp);
1474 void net_disable_timestamp(void)
1476 atomic_dec(&netstamp_needed);
1478 EXPORT_SYMBOL(net_disable_timestamp);
1480 static inline void net_timestamp_set(struct sk_buff *skb)
1482 if (atomic_read(&netstamp_needed))
1483 __net_timestamp(skb);
1484 else
1485 skb->tstamp.tv64 = 0;
1488 static inline void net_timestamp_check(struct sk_buff *skb)
1490 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1491 __net_timestamp(skb);
1495 * dev_forward_skb - loopback an skb to another netif
1497 * @dev: destination network device
1498 * @skb: buffer to forward
1500 * return values:
1501 * NET_RX_SUCCESS (no congestion)
1502 * NET_RX_DROP (packet was dropped, but freed)
1504 * dev_forward_skb can be used for injecting an skb from the
1505 * start_xmit function of one device into the receive queue
1506 * of another device.
1508 * The receiving device may be in another namespace, so
1509 * we have to clear all information in the skb that could
1510 * impact namespace isolation.
1512 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1514 skb_orphan(skb);
1515 nf_reset(skb);
1517 if (unlikely(!(dev->flags & IFF_UP) ||
1518 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1519 atomic_long_inc(&dev->rx_dropped);
1520 kfree_skb(skb);
1521 return NET_RX_DROP;
1523 skb_set_dev(skb, dev);
1524 skb->tstamp.tv64 = 0;
1525 skb->pkt_type = PACKET_HOST;
1526 skb->protocol = eth_type_trans(skb, dev);
1527 return netif_rx(skb);
1529 EXPORT_SYMBOL_GPL(dev_forward_skb);
1531 static inline int deliver_skb(struct sk_buff *skb,
1532 struct packet_type *pt_prev,
1533 struct net_device *orig_dev)
1535 atomic_inc(&skb->users);
1536 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1540 * Support routine. Sends outgoing frames to any network
1541 * taps currently in use.
1544 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1546 struct packet_type *ptype;
1547 struct sk_buff *skb2 = NULL;
1548 struct packet_type *pt_prev = NULL;
1550 rcu_read_lock();
1551 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1552 /* Never send packets back to the socket
1553 * they originated from - MvS (miquels@drinkel.ow.org)
1555 if ((ptype->dev == dev || !ptype->dev) &&
1556 (ptype->af_packet_priv == NULL ||
1557 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1558 if (pt_prev) {
1559 deliver_skb(skb2, pt_prev, skb->dev);
1560 pt_prev = ptype;
1561 continue;
1564 skb2 = skb_clone(skb, GFP_ATOMIC);
1565 if (!skb2)
1566 break;
1568 net_timestamp_set(skb2);
1570 /* skb->nh should be correctly
1571 set by sender, so that the second statement is
1572 just protection against buggy protocols.
1574 skb_reset_mac_header(skb2);
1576 if (skb_network_header(skb2) < skb2->data ||
1577 skb2->network_header > skb2->tail) {
1578 if (net_ratelimit())
1579 printk(KERN_CRIT "protocol %04x is "
1580 "buggy, dev %s\n",
1581 ntohs(skb2->protocol),
1582 dev->name);
1583 skb_reset_network_header(skb2);
1586 skb2->transport_header = skb2->network_header;
1587 skb2->pkt_type = PACKET_OUTGOING;
1588 pt_prev = ptype;
1591 if (pt_prev)
1592 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1593 rcu_read_unlock();
1597 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1598 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1600 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1602 int rc;
1604 if (txq < 1 || txq > dev->num_tx_queues)
1605 return -EINVAL;
1607 if (dev->reg_state == NETREG_REGISTERED) {
1608 ASSERT_RTNL();
1610 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1611 txq);
1612 if (rc)
1613 return rc;
1615 if (txq < dev->real_num_tx_queues)
1616 qdisc_reset_all_tx_gt(dev, txq);
1619 dev->real_num_tx_queues = txq;
1620 return 0;
1622 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1624 #ifdef CONFIG_RPS
1626 * netif_set_real_num_rx_queues - set actual number of RX queues used
1627 * @dev: Network device
1628 * @rxq: Actual number of RX queues
1630 * This must be called either with the rtnl_lock held or before
1631 * registration of the net device. Returns 0 on success, or a
1632 * negative error code. If called before registration, it always
1633 * succeeds.
1635 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1637 int rc;
1639 if (rxq < 1 || rxq > dev->num_rx_queues)
1640 return -EINVAL;
1642 if (dev->reg_state == NETREG_REGISTERED) {
1643 ASSERT_RTNL();
1645 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1646 rxq);
1647 if (rc)
1648 return rc;
1651 dev->real_num_rx_queues = rxq;
1652 return 0;
1654 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1655 #endif
1657 static inline void __netif_reschedule(struct Qdisc *q)
1659 struct softnet_data *sd;
1660 unsigned long flags;
1662 local_irq_save(flags);
1663 sd = &__get_cpu_var(softnet_data);
1664 q->next_sched = NULL;
1665 *sd->output_queue_tailp = q;
1666 sd->output_queue_tailp = &q->next_sched;
1667 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1668 local_irq_restore(flags);
1671 void __netif_schedule(struct Qdisc *q)
1673 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1674 __netif_reschedule(q);
1676 EXPORT_SYMBOL(__netif_schedule);
1678 void dev_kfree_skb_irq(struct sk_buff *skb)
1680 if (atomic_dec_and_test(&skb->users)) {
1681 struct softnet_data *sd;
1682 unsigned long flags;
1684 local_irq_save(flags);
1685 sd = &__get_cpu_var(softnet_data);
1686 skb->next = sd->completion_queue;
1687 sd->completion_queue = skb;
1688 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1689 local_irq_restore(flags);
1692 EXPORT_SYMBOL(dev_kfree_skb_irq);
1694 void dev_kfree_skb_any(struct sk_buff *skb)
1696 if (in_irq() || irqs_disabled())
1697 dev_kfree_skb_irq(skb);
1698 else
1699 dev_kfree_skb(skb);
1701 EXPORT_SYMBOL(dev_kfree_skb_any);
1705 * netif_device_detach - mark device as removed
1706 * @dev: network device
1708 * Mark device as removed from system and therefore no longer available.
1710 void netif_device_detach(struct net_device *dev)
1712 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1713 netif_running(dev)) {
1714 netif_tx_stop_all_queues(dev);
1717 EXPORT_SYMBOL(netif_device_detach);
1720 * netif_device_attach - mark device as attached
1721 * @dev: network device
1723 * Mark device as attached from system and restart if needed.
1725 void netif_device_attach(struct net_device *dev)
1727 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1728 netif_running(dev)) {
1729 netif_tx_wake_all_queues(dev);
1730 __netdev_watchdog_up(dev);
1733 EXPORT_SYMBOL(netif_device_attach);
1736 * skb_dev_set -- assign a new device to a buffer
1737 * @skb: buffer for the new device
1738 * @dev: network device
1740 * If an skb is owned by a device already, we have to reset
1741 * all data private to the namespace a device belongs to
1742 * before assigning it a new device.
1744 #ifdef CONFIG_NET_NS
1745 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1747 skb_dst_drop(skb);
1748 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1749 secpath_reset(skb);
1750 nf_reset(skb);
1751 skb_init_secmark(skb);
1752 skb->mark = 0;
1753 skb->priority = 0;
1754 skb->nf_trace = 0;
1755 skb->ipvs_property = 0;
1756 #ifdef CONFIG_NET_SCHED
1757 skb->tc_index = 0;
1758 #endif
1760 skb->dev = dev;
1762 EXPORT_SYMBOL(skb_set_dev);
1763 #endif /* CONFIG_NET_NS */
1766 * Invalidate hardware checksum when packet is to be mangled, and
1767 * complete checksum manually on outgoing path.
1769 int skb_checksum_help(struct sk_buff *skb)
1771 __wsum csum;
1772 int ret = 0, offset;
1774 if (skb->ip_summed == CHECKSUM_COMPLETE)
1775 goto out_set_summed;
1777 if (unlikely(skb_shinfo(skb)->gso_size)) {
1778 /* Let GSO fix up the checksum. */
1779 goto out_set_summed;
1782 offset = skb_checksum_start_offset(skb);
1783 BUG_ON(offset >= skb_headlen(skb));
1784 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1786 offset += skb->csum_offset;
1787 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1789 if (skb_cloned(skb) &&
1790 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1791 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1792 if (ret)
1793 goto out;
1796 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1797 out_set_summed:
1798 skb->ip_summed = CHECKSUM_NONE;
1799 out:
1800 return ret;
1802 EXPORT_SYMBOL(skb_checksum_help);
1805 * skb_gso_segment - Perform segmentation on skb.
1806 * @skb: buffer to segment
1807 * @features: features for the output path (see dev->features)
1809 * This function segments the given skb and returns a list of segments.
1811 * It may return NULL if the skb requires no segmentation. This is
1812 * only possible when GSO is used for verifying header integrity.
1814 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1816 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1817 struct packet_type *ptype;
1818 __be16 type = skb->protocol;
1819 int vlan_depth = ETH_HLEN;
1820 int err;
1822 while (type == htons(ETH_P_8021Q)) {
1823 struct vlan_hdr *vh;
1825 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1826 return ERR_PTR(-EINVAL);
1828 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1829 type = vh->h_vlan_encapsulated_proto;
1830 vlan_depth += VLAN_HLEN;
1833 skb_reset_mac_header(skb);
1834 skb->mac_len = skb->network_header - skb->mac_header;
1835 __skb_pull(skb, skb->mac_len);
1837 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1838 struct net_device *dev = skb->dev;
1839 struct ethtool_drvinfo info = {};
1841 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1842 dev->ethtool_ops->get_drvinfo(dev, &info);
1844 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1845 info.driver, dev ? dev->features : 0L,
1846 skb->sk ? skb->sk->sk_route_caps : 0L,
1847 skb->len, skb->data_len, skb->ip_summed);
1849 if (skb_header_cloned(skb) &&
1850 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1851 return ERR_PTR(err);
1854 rcu_read_lock();
1855 list_for_each_entry_rcu(ptype,
1856 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1857 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1858 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1859 err = ptype->gso_send_check(skb);
1860 segs = ERR_PTR(err);
1861 if (err || skb_gso_ok(skb, features))
1862 break;
1863 __skb_push(skb, (skb->data -
1864 skb_network_header(skb)));
1866 segs = ptype->gso_segment(skb, features);
1867 break;
1870 rcu_read_unlock();
1872 __skb_push(skb, skb->data - skb_mac_header(skb));
1874 return segs;
1876 EXPORT_SYMBOL(skb_gso_segment);
1878 /* Take action when hardware reception checksum errors are detected. */
1879 #ifdef CONFIG_BUG
1880 void netdev_rx_csum_fault(struct net_device *dev)
1882 if (net_ratelimit()) {
1883 printk(KERN_ERR "%s: hw csum failure.\n",
1884 dev ? dev->name : "<unknown>");
1885 dump_stack();
1888 EXPORT_SYMBOL(netdev_rx_csum_fault);
1889 #endif
1891 /* Actually, we should eliminate this check as soon as we know, that:
1892 * 1. IOMMU is present and allows to map all the memory.
1893 * 2. No high memory really exists on this machine.
1896 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1898 #ifdef CONFIG_HIGHMEM
1899 int i;
1900 if (!(dev->features & NETIF_F_HIGHDMA)) {
1901 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1902 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1903 return 1;
1906 if (PCI_DMA_BUS_IS_PHYS) {
1907 struct device *pdev = dev->dev.parent;
1909 if (!pdev)
1910 return 0;
1911 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1912 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1913 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1914 return 1;
1917 #endif
1918 return 0;
1921 struct dev_gso_cb {
1922 void (*destructor)(struct sk_buff *skb);
1925 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1927 static void dev_gso_skb_destructor(struct sk_buff *skb)
1929 struct dev_gso_cb *cb;
1931 do {
1932 struct sk_buff *nskb = skb->next;
1934 skb->next = nskb->next;
1935 nskb->next = NULL;
1936 kfree_skb(nskb);
1937 } while (skb->next);
1939 cb = DEV_GSO_CB(skb);
1940 if (cb->destructor)
1941 cb->destructor(skb);
1945 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1946 * @skb: buffer to segment
1947 * @features: device features as applicable to this skb
1949 * This function segments the given skb and stores the list of segments
1950 * in skb->next.
1952 static int dev_gso_segment(struct sk_buff *skb, int features)
1954 struct sk_buff *segs;
1956 segs = skb_gso_segment(skb, features);
1958 /* Verifying header integrity only. */
1959 if (!segs)
1960 return 0;
1962 if (IS_ERR(segs))
1963 return PTR_ERR(segs);
1965 skb->next = segs;
1966 DEV_GSO_CB(skb)->destructor = skb->destructor;
1967 skb->destructor = dev_gso_skb_destructor;
1969 return 0;
1973 * Try to orphan skb early, right before transmission by the device.
1974 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1975 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1977 static inline void skb_orphan_try(struct sk_buff *skb)
1979 struct sock *sk = skb->sk;
1981 if (sk && !skb_shinfo(skb)->tx_flags) {
1982 /* skb_tx_hash() wont be able to get sk.
1983 * We copy sk_hash into skb->rxhash
1985 if (!skb->rxhash)
1986 skb->rxhash = sk->sk_hash;
1987 skb_orphan(skb);
1991 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1993 return ((features & NETIF_F_GEN_CSUM) ||
1994 ((features & NETIF_F_V4_CSUM) &&
1995 protocol == htons(ETH_P_IP)) ||
1996 ((features & NETIF_F_V6_CSUM) &&
1997 protocol == htons(ETH_P_IPV6)) ||
1998 ((features & NETIF_F_FCOE_CRC) &&
1999 protocol == htons(ETH_P_FCOE)));
2002 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features)
2004 if (!can_checksum_protocol(protocol, features)) {
2005 features &= ~NETIF_F_ALL_CSUM;
2006 features &= ~NETIF_F_SG;
2007 } else if (illegal_highdma(skb->dev, skb)) {
2008 features &= ~NETIF_F_SG;
2011 return features;
2014 int netif_skb_features(struct sk_buff *skb)
2016 __be16 protocol = skb->protocol;
2017 int features = skb->dev->features;
2019 if (protocol == htons(ETH_P_8021Q)) {
2020 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2021 protocol = veh->h_vlan_encapsulated_proto;
2022 } else if (!vlan_tx_tag_present(skb)) {
2023 return harmonize_features(skb, protocol, features);
2026 features &= skb->dev->vlan_features;
2028 if (protocol != htons(ETH_P_8021Q)) {
2029 return harmonize_features(skb, protocol, features);
2030 } else {
2031 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2032 NETIF_F_GEN_CSUM;
2033 return harmonize_features(skb, protocol, features);
2036 EXPORT_SYMBOL(netif_skb_features);
2039 * Returns true if either:
2040 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2041 * 2. skb is fragmented and the device does not support SG, or if
2042 * at least one of fragments is in highmem and device does not
2043 * support DMA from it.
2045 static inline int skb_needs_linearize(struct sk_buff *skb,
2046 int features)
2048 return skb_is_nonlinear(skb) &&
2049 ((skb_has_frag_list(skb) &&
2050 !(features & NETIF_F_FRAGLIST)) ||
2051 (skb_shinfo(skb)->nr_frags &&
2052 !(features & NETIF_F_SG)));
2055 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2056 struct netdev_queue *txq)
2058 const struct net_device_ops *ops = dev->netdev_ops;
2059 int rc = NETDEV_TX_OK;
2061 if (likely(!skb->next)) {
2062 int features;
2065 * If device doesnt need skb->dst, release it right now while
2066 * its hot in this cpu cache
2068 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2069 skb_dst_drop(skb);
2071 if (!list_empty(&ptype_all))
2072 dev_queue_xmit_nit(skb, dev);
2074 skb_orphan_try(skb);
2076 features = netif_skb_features(skb);
2078 if (vlan_tx_tag_present(skb) &&
2079 !(features & NETIF_F_HW_VLAN_TX)) {
2080 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2081 if (unlikely(!skb))
2082 goto out;
2084 skb->vlan_tci = 0;
2087 if (netif_needs_gso(skb, features)) {
2088 if (unlikely(dev_gso_segment(skb, features)))
2089 goto out_kfree_skb;
2090 if (skb->next)
2091 goto gso;
2092 } else {
2093 if (skb_needs_linearize(skb, features) &&
2094 __skb_linearize(skb))
2095 goto out_kfree_skb;
2097 /* If packet is not checksummed and device does not
2098 * support checksumming for this protocol, complete
2099 * checksumming here.
2101 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2102 skb_set_transport_header(skb,
2103 skb_checksum_start_offset(skb));
2104 if (!(features & NETIF_F_ALL_CSUM) &&
2105 skb_checksum_help(skb))
2106 goto out_kfree_skb;
2110 rc = ops->ndo_start_xmit(skb, dev);
2111 trace_net_dev_xmit(skb, rc);
2112 if (rc == NETDEV_TX_OK)
2113 txq_trans_update(txq);
2114 return rc;
2117 gso:
2118 do {
2119 struct sk_buff *nskb = skb->next;
2121 skb->next = nskb->next;
2122 nskb->next = NULL;
2125 * If device doesnt need nskb->dst, release it right now while
2126 * its hot in this cpu cache
2128 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2129 skb_dst_drop(nskb);
2131 rc = ops->ndo_start_xmit(nskb, dev);
2132 trace_net_dev_xmit(nskb, rc);
2133 if (unlikely(rc != NETDEV_TX_OK)) {
2134 if (rc & ~NETDEV_TX_MASK)
2135 goto out_kfree_gso_skb;
2136 nskb->next = skb->next;
2137 skb->next = nskb;
2138 return rc;
2140 txq_trans_update(txq);
2141 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2142 return NETDEV_TX_BUSY;
2143 } while (skb->next);
2145 out_kfree_gso_skb:
2146 if (likely(skb->next == NULL))
2147 skb->destructor = DEV_GSO_CB(skb)->destructor;
2148 out_kfree_skb:
2149 kfree_skb(skb);
2150 out:
2151 return rc;
2154 static u32 hashrnd __read_mostly;
2157 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2158 * to be used as a distribution range.
2160 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2161 unsigned int num_tx_queues)
2163 u32 hash;
2165 if (skb_rx_queue_recorded(skb)) {
2166 hash = skb_get_rx_queue(skb);
2167 while (unlikely(hash >= num_tx_queues))
2168 hash -= num_tx_queues;
2169 return hash;
2172 if (skb->sk && skb->sk->sk_hash)
2173 hash = skb->sk->sk_hash;
2174 else
2175 hash = (__force u16) skb->protocol ^ skb->rxhash;
2176 hash = jhash_1word(hash, hashrnd);
2178 return (u16) (((u64) hash * num_tx_queues) >> 32);
2180 EXPORT_SYMBOL(__skb_tx_hash);
2182 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2184 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2185 if (net_ratelimit()) {
2186 pr_warning("%s selects TX queue %d, but "
2187 "real number of TX queues is %d\n",
2188 dev->name, queue_index, dev->real_num_tx_queues);
2190 return 0;
2192 return queue_index;
2195 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2197 #ifdef CONFIG_XPS
2198 struct xps_dev_maps *dev_maps;
2199 struct xps_map *map;
2200 int queue_index = -1;
2202 rcu_read_lock();
2203 dev_maps = rcu_dereference(dev->xps_maps);
2204 if (dev_maps) {
2205 map = rcu_dereference(
2206 dev_maps->cpu_map[raw_smp_processor_id()]);
2207 if (map) {
2208 if (map->len == 1)
2209 queue_index = map->queues[0];
2210 else {
2211 u32 hash;
2212 if (skb->sk && skb->sk->sk_hash)
2213 hash = skb->sk->sk_hash;
2214 else
2215 hash = (__force u16) skb->protocol ^
2216 skb->rxhash;
2217 hash = jhash_1word(hash, hashrnd);
2218 queue_index = map->queues[
2219 ((u64)hash * map->len) >> 32];
2221 if (unlikely(queue_index >= dev->real_num_tx_queues))
2222 queue_index = -1;
2225 rcu_read_unlock();
2227 return queue_index;
2228 #else
2229 return -1;
2230 #endif
2233 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2234 struct sk_buff *skb)
2236 int queue_index;
2237 const struct net_device_ops *ops = dev->netdev_ops;
2239 if (dev->real_num_tx_queues == 1)
2240 queue_index = 0;
2241 else if (ops->ndo_select_queue) {
2242 queue_index = ops->ndo_select_queue(dev, skb);
2243 queue_index = dev_cap_txqueue(dev, queue_index);
2244 } else {
2245 struct sock *sk = skb->sk;
2246 queue_index = sk_tx_queue_get(sk);
2248 if (queue_index < 0 || skb->ooo_okay ||
2249 queue_index >= dev->real_num_tx_queues) {
2250 int old_index = queue_index;
2252 queue_index = get_xps_queue(dev, skb);
2253 if (queue_index < 0)
2254 queue_index = skb_tx_hash(dev, skb);
2256 if (queue_index != old_index && sk) {
2257 struct dst_entry *dst =
2258 rcu_dereference_check(sk->sk_dst_cache, 1);
2260 if (dst && skb_dst(skb) == dst)
2261 sk_tx_queue_set(sk, queue_index);
2266 skb_set_queue_mapping(skb, queue_index);
2267 return netdev_get_tx_queue(dev, queue_index);
2270 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2271 struct net_device *dev,
2272 struct netdev_queue *txq)
2274 spinlock_t *root_lock = qdisc_lock(q);
2275 bool contended = qdisc_is_running(q);
2276 int rc;
2279 * Heuristic to force contended enqueues to serialize on a
2280 * separate lock before trying to get qdisc main lock.
2281 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2282 * and dequeue packets faster.
2284 if (unlikely(contended))
2285 spin_lock(&q->busylock);
2287 spin_lock(root_lock);
2288 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2289 kfree_skb(skb);
2290 rc = NET_XMIT_DROP;
2291 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2292 qdisc_run_begin(q)) {
2294 * This is a work-conserving queue; there are no old skbs
2295 * waiting to be sent out; and the qdisc is not running -
2296 * xmit the skb directly.
2298 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2299 skb_dst_force(skb);
2300 __qdisc_update_bstats(q, skb->len);
2301 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2302 if (unlikely(contended)) {
2303 spin_unlock(&q->busylock);
2304 contended = false;
2306 __qdisc_run(q);
2307 } else
2308 qdisc_run_end(q);
2310 rc = NET_XMIT_SUCCESS;
2311 } else {
2312 skb_dst_force(skb);
2313 rc = qdisc_enqueue_root(skb, q);
2314 if (qdisc_run_begin(q)) {
2315 if (unlikely(contended)) {
2316 spin_unlock(&q->busylock);
2317 contended = false;
2319 __qdisc_run(q);
2322 spin_unlock(root_lock);
2323 if (unlikely(contended))
2324 spin_unlock(&q->busylock);
2325 return rc;
2328 static DEFINE_PER_CPU(int, xmit_recursion);
2329 #define RECURSION_LIMIT 10
2332 * dev_queue_xmit - transmit a buffer
2333 * @skb: buffer to transmit
2335 * Queue a buffer for transmission to a network device. The caller must
2336 * have set the device and priority and built the buffer before calling
2337 * this function. The function can be called from an interrupt.
2339 * A negative errno code is returned on a failure. A success does not
2340 * guarantee the frame will be transmitted as it may be dropped due
2341 * to congestion or traffic shaping.
2343 * -----------------------------------------------------------------------------------
2344 * I notice this method can also return errors from the queue disciplines,
2345 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2346 * be positive.
2348 * Regardless of the return value, the skb is consumed, so it is currently
2349 * difficult to retry a send to this method. (You can bump the ref count
2350 * before sending to hold a reference for retry if you are careful.)
2352 * When calling this method, interrupts MUST be enabled. This is because
2353 * the BH enable code must have IRQs enabled so that it will not deadlock.
2354 * --BLG
2356 int dev_queue_xmit(struct sk_buff *skb)
2358 struct net_device *dev = skb->dev;
2359 struct netdev_queue *txq;
2360 struct Qdisc *q;
2361 int rc = -ENOMEM;
2363 /* Disable soft irqs for various locks below. Also
2364 * stops preemption for RCU.
2366 rcu_read_lock_bh();
2368 txq = dev_pick_tx(dev, skb);
2369 q = rcu_dereference_bh(txq->qdisc);
2371 #ifdef CONFIG_NET_CLS_ACT
2372 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2373 #endif
2374 trace_net_dev_queue(skb);
2375 if (q->enqueue) {
2376 rc = __dev_xmit_skb(skb, q, dev, txq);
2377 goto out;
2380 /* The device has no queue. Common case for software devices:
2381 loopback, all the sorts of tunnels...
2383 Really, it is unlikely that netif_tx_lock protection is necessary
2384 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2385 counters.)
2386 However, it is possible, that they rely on protection
2387 made by us here.
2389 Check this and shot the lock. It is not prone from deadlocks.
2390 Either shot noqueue qdisc, it is even simpler 8)
2392 if (dev->flags & IFF_UP) {
2393 int cpu = smp_processor_id(); /* ok because BHs are off */
2395 if (txq->xmit_lock_owner != cpu) {
2397 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2398 goto recursion_alert;
2400 HARD_TX_LOCK(dev, txq, cpu);
2402 if (!netif_tx_queue_stopped(txq)) {
2403 __this_cpu_inc(xmit_recursion);
2404 rc = dev_hard_start_xmit(skb, dev, txq);
2405 __this_cpu_dec(xmit_recursion);
2406 if (dev_xmit_complete(rc)) {
2407 HARD_TX_UNLOCK(dev, txq);
2408 goto out;
2411 HARD_TX_UNLOCK(dev, txq);
2412 if (net_ratelimit())
2413 printk(KERN_CRIT "Virtual device %s asks to "
2414 "queue packet!\n", dev->name);
2415 } else {
2416 /* Recursion is detected! It is possible,
2417 * unfortunately
2419 recursion_alert:
2420 if (net_ratelimit())
2421 printk(KERN_CRIT "Dead loop on virtual device "
2422 "%s, fix it urgently!\n", dev->name);
2426 rc = -ENETDOWN;
2427 rcu_read_unlock_bh();
2429 kfree_skb(skb);
2430 return rc;
2431 out:
2432 rcu_read_unlock_bh();
2433 return rc;
2435 EXPORT_SYMBOL(dev_queue_xmit);
2438 /*=======================================================================
2439 Receiver routines
2440 =======================================================================*/
2442 int netdev_max_backlog __read_mostly = 1000;
2443 int netdev_tstamp_prequeue __read_mostly = 1;
2444 int netdev_budget __read_mostly = 300;
2445 int weight_p __read_mostly = 64; /* old backlog weight */
2447 /* Called with irq disabled */
2448 static inline void ____napi_schedule(struct softnet_data *sd,
2449 struct napi_struct *napi)
2451 list_add_tail(&napi->poll_list, &sd->poll_list);
2452 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2456 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2457 * and src/dst port numbers. Returns a non-zero hash number on success
2458 * and 0 on failure.
2460 __u32 __skb_get_rxhash(struct sk_buff *skb)
2462 int nhoff, hash = 0, poff;
2463 struct ipv6hdr *ip6;
2464 struct iphdr *ip;
2465 u8 ip_proto;
2466 u32 addr1, addr2, ihl;
2467 union {
2468 u32 v32;
2469 u16 v16[2];
2470 } ports;
2472 nhoff = skb_network_offset(skb);
2474 switch (skb->protocol) {
2475 case __constant_htons(ETH_P_IP):
2476 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2477 goto done;
2479 ip = (struct iphdr *) (skb->data + nhoff);
2480 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2481 ip_proto = 0;
2482 else
2483 ip_proto = ip->protocol;
2484 addr1 = (__force u32) ip->saddr;
2485 addr2 = (__force u32) ip->daddr;
2486 ihl = ip->ihl;
2487 break;
2488 case __constant_htons(ETH_P_IPV6):
2489 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2490 goto done;
2492 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2493 ip_proto = ip6->nexthdr;
2494 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2495 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2496 ihl = (40 >> 2);
2497 break;
2498 default:
2499 goto done;
2502 ports.v32 = 0;
2503 poff = proto_ports_offset(ip_proto);
2504 if (poff >= 0) {
2505 nhoff += ihl * 4 + poff;
2506 if (pskb_may_pull(skb, nhoff + 4)) {
2507 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2508 if (ports.v16[1] < ports.v16[0])
2509 swap(ports.v16[0], ports.v16[1]);
2513 /* get a consistent hash (same value on both flow directions) */
2514 if (addr2 < addr1)
2515 swap(addr1, addr2);
2517 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2518 if (!hash)
2519 hash = 1;
2521 done:
2522 return hash;
2524 EXPORT_SYMBOL(__skb_get_rxhash);
2526 #ifdef CONFIG_RPS
2528 /* One global table that all flow-based protocols share. */
2529 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2530 EXPORT_SYMBOL(rps_sock_flow_table);
2533 * get_rps_cpu is called from netif_receive_skb and returns the target
2534 * CPU from the RPS map of the receiving queue for a given skb.
2535 * rcu_read_lock must be held on entry.
2537 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2538 struct rps_dev_flow **rflowp)
2540 struct netdev_rx_queue *rxqueue;
2541 struct rps_map *map;
2542 struct rps_dev_flow_table *flow_table;
2543 struct rps_sock_flow_table *sock_flow_table;
2544 int cpu = -1;
2545 u16 tcpu;
2547 if (skb_rx_queue_recorded(skb)) {
2548 u16 index = skb_get_rx_queue(skb);
2549 if (unlikely(index >= dev->real_num_rx_queues)) {
2550 WARN_ONCE(dev->real_num_rx_queues > 1,
2551 "%s received packet on queue %u, but number "
2552 "of RX queues is %u\n",
2553 dev->name, index, dev->real_num_rx_queues);
2554 goto done;
2556 rxqueue = dev->_rx + index;
2557 } else
2558 rxqueue = dev->_rx;
2560 map = rcu_dereference(rxqueue->rps_map);
2561 if (map) {
2562 if (map->len == 1) {
2563 tcpu = map->cpus[0];
2564 if (cpu_online(tcpu))
2565 cpu = tcpu;
2566 goto done;
2568 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2569 goto done;
2572 skb_reset_network_header(skb);
2573 if (!skb_get_rxhash(skb))
2574 goto done;
2576 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2577 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2578 if (flow_table && sock_flow_table) {
2579 u16 next_cpu;
2580 struct rps_dev_flow *rflow;
2582 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2583 tcpu = rflow->cpu;
2585 next_cpu = sock_flow_table->ents[skb->rxhash &
2586 sock_flow_table->mask];
2589 * If the desired CPU (where last recvmsg was done) is
2590 * different from current CPU (one in the rx-queue flow
2591 * table entry), switch if one of the following holds:
2592 * - Current CPU is unset (equal to RPS_NO_CPU).
2593 * - Current CPU is offline.
2594 * - The current CPU's queue tail has advanced beyond the
2595 * last packet that was enqueued using this table entry.
2596 * This guarantees that all previous packets for the flow
2597 * have been dequeued, thus preserving in order delivery.
2599 if (unlikely(tcpu != next_cpu) &&
2600 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2601 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2602 rflow->last_qtail)) >= 0)) {
2603 tcpu = rflow->cpu = next_cpu;
2604 if (tcpu != RPS_NO_CPU)
2605 rflow->last_qtail = per_cpu(softnet_data,
2606 tcpu).input_queue_head;
2608 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2609 *rflowp = rflow;
2610 cpu = tcpu;
2611 goto done;
2615 if (map) {
2616 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2618 if (cpu_online(tcpu)) {
2619 cpu = tcpu;
2620 goto done;
2624 done:
2625 return cpu;
2628 /* Called from hardirq (IPI) context */
2629 static void rps_trigger_softirq(void *data)
2631 struct softnet_data *sd = data;
2633 ____napi_schedule(sd, &sd->backlog);
2634 sd->received_rps++;
2637 #endif /* CONFIG_RPS */
2640 * Check if this softnet_data structure is another cpu one
2641 * If yes, queue it to our IPI list and return 1
2642 * If no, return 0
2644 static int rps_ipi_queued(struct softnet_data *sd)
2646 #ifdef CONFIG_RPS
2647 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2649 if (sd != mysd) {
2650 sd->rps_ipi_next = mysd->rps_ipi_list;
2651 mysd->rps_ipi_list = sd;
2653 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2654 return 1;
2656 #endif /* CONFIG_RPS */
2657 return 0;
2661 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2662 * queue (may be a remote CPU queue).
2664 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2665 unsigned int *qtail)
2667 struct softnet_data *sd;
2668 unsigned long flags;
2670 sd = &per_cpu(softnet_data, cpu);
2672 local_irq_save(flags);
2674 rps_lock(sd);
2675 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2676 if (skb_queue_len(&sd->input_pkt_queue)) {
2677 enqueue:
2678 __skb_queue_tail(&sd->input_pkt_queue, skb);
2679 input_queue_tail_incr_save(sd, qtail);
2680 rps_unlock(sd);
2681 local_irq_restore(flags);
2682 return NET_RX_SUCCESS;
2685 /* Schedule NAPI for backlog device
2686 * We can use non atomic operation since we own the queue lock
2688 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2689 if (!rps_ipi_queued(sd))
2690 ____napi_schedule(sd, &sd->backlog);
2692 goto enqueue;
2695 sd->dropped++;
2696 rps_unlock(sd);
2698 local_irq_restore(flags);
2700 atomic_long_inc(&skb->dev->rx_dropped);
2701 kfree_skb(skb);
2702 return NET_RX_DROP;
2706 * netif_rx - post buffer to the network code
2707 * @skb: buffer to post
2709 * This function receives a packet from a device driver and queues it for
2710 * the upper (protocol) levels to process. It always succeeds. The buffer
2711 * may be dropped during processing for congestion control or by the
2712 * protocol layers.
2714 * return values:
2715 * NET_RX_SUCCESS (no congestion)
2716 * NET_RX_DROP (packet was dropped)
2720 int netif_rx(struct sk_buff *skb)
2722 int ret;
2724 /* if netpoll wants it, pretend we never saw it */
2725 if (netpoll_rx(skb))
2726 return NET_RX_DROP;
2728 if (netdev_tstamp_prequeue)
2729 net_timestamp_check(skb);
2731 trace_netif_rx(skb);
2732 #ifdef CONFIG_RPS
2734 struct rps_dev_flow voidflow, *rflow = &voidflow;
2735 int cpu;
2737 preempt_disable();
2738 rcu_read_lock();
2740 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2741 if (cpu < 0)
2742 cpu = smp_processor_id();
2744 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2746 rcu_read_unlock();
2747 preempt_enable();
2749 #else
2751 unsigned int qtail;
2752 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2753 put_cpu();
2755 #endif
2756 return ret;
2758 EXPORT_SYMBOL(netif_rx);
2760 int netif_rx_ni(struct sk_buff *skb)
2762 int err;
2764 preempt_disable();
2765 err = netif_rx(skb);
2766 if (local_softirq_pending())
2767 do_softirq();
2768 preempt_enable();
2770 return err;
2772 EXPORT_SYMBOL(netif_rx_ni);
2774 static void net_tx_action(struct softirq_action *h)
2776 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2778 if (sd->completion_queue) {
2779 struct sk_buff *clist;
2781 local_irq_disable();
2782 clist = sd->completion_queue;
2783 sd->completion_queue = NULL;
2784 local_irq_enable();
2786 while (clist) {
2787 struct sk_buff *skb = clist;
2788 clist = clist->next;
2790 WARN_ON(atomic_read(&skb->users));
2791 trace_kfree_skb(skb, net_tx_action);
2792 __kfree_skb(skb);
2796 if (sd->output_queue) {
2797 struct Qdisc *head;
2799 local_irq_disable();
2800 head = sd->output_queue;
2801 sd->output_queue = NULL;
2802 sd->output_queue_tailp = &sd->output_queue;
2803 local_irq_enable();
2805 while (head) {
2806 struct Qdisc *q = head;
2807 spinlock_t *root_lock;
2809 head = head->next_sched;
2811 root_lock = qdisc_lock(q);
2812 if (spin_trylock(root_lock)) {
2813 smp_mb__before_clear_bit();
2814 clear_bit(__QDISC_STATE_SCHED,
2815 &q->state);
2816 qdisc_run(q);
2817 spin_unlock(root_lock);
2818 } else {
2819 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2820 &q->state)) {
2821 __netif_reschedule(q);
2822 } else {
2823 smp_mb__before_clear_bit();
2824 clear_bit(__QDISC_STATE_SCHED,
2825 &q->state);
2832 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2833 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2834 /* This hook is defined here for ATM LANE */
2835 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2836 unsigned char *addr) __read_mostly;
2837 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2838 #endif
2840 #ifdef CONFIG_NET_CLS_ACT
2841 /* TODO: Maybe we should just force sch_ingress to be compiled in
2842 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2843 * a compare and 2 stores extra right now if we dont have it on
2844 * but have CONFIG_NET_CLS_ACT
2845 * NOTE: This doesnt stop any functionality; if you dont have
2846 * the ingress scheduler, you just cant add policies on ingress.
2849 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2851 struct net_device *dev = skb->dev;
2852 u32 ttl = G_TC_RTTL(skb->tc_verd);
2853 int result = TC_ACT_OK;
2854 struct Qdisc *q;
2856 if (unlikely(MAX_RED_LOOP < ttl++)) {
2857 if (net_ratelimit())
2858 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2859 skb->skb_iif, dev->ifindex);
2860 return TC_ACT_SHOT;
2863 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2864 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2866 q = rxq->qdisc;
2867 if (q != &noop_qdisc) {
2868 spin_lock(qdisc_lock(q));
2869 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2870 result = qdisc_enqueue_root(skb, q);
2871 spin_unlock(qdisc_lock(q));
2874 return result;
2877 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2878 struct packet_type **pt_prev,
2879 int *ret, struct net_device *orig_dev)
2881 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2883 if (!rxq || rxq->qdisc == &noop_qdisc)
2884 goto out;
2886 if (*pt_prev) {
2887 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2888 *pt_prev = NULL;
2891 switch (ing_filter(skb, rxq)) {
2892 case TC_ACT_SHOT:
2893 case TC_ACT_STOLEN:
2894 kfree_skb(skb);
2895 return NULL;
2898 out:
2899 skb->tc_verd = 0;
2900 return skb;
2902 #endif
2905 * netdev_rx_handler_register - register receive handler
2906 * @dev: device to register a handler for
2907 * @rx_handler: receive handler to register
2908 * @rx_handler_data: data pointer that is used by rx handler
2910 * Register a receive hander for a device. This handler will then be
2911 * called from __netif_receive_skb. A negative errno code is returned
2912 * on a failure.
2914 * The caller must hold the rtnl_mutex.
2916 int netdev_rx_handler_register(struct net_device *dev,
2917 rx_handler_func_t *rx_handler,
2918 void *rx_handler_data)
2920 ASSERT_RTNL();
2922 if (dev->rx_handler)
2923 return -EBUSY;
2925 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2926 rcu_assign_pointer(dev->rx_handler, rx_handler);
2928 return 0;
2930 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2933 * netdev_rx_handler_unregister - unregister receive handler
2934 * @dev: device to unregister a handler from
2936 * Unregister a receive hander from a device.
2938 * The caller must hold the rtnl_mutex.
2940 void netdev_rx_handler_unregister(struct net_device *dev)
2943 ASSERT_RTNL();
2944 rcu_assign_pointer(dev->rx_handler, NULL);
2945 rcu_assign_pointer(dev->rx_handler_data, NULL);
2947 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2949 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2950 struct net_device *master)
2952 if (skb->pkt_type == PACKET_HOST) {
2953 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2955 memcpy(dest, master->dev_addr, ETH_ALEN);
2959 /* On bonding slaves other than the currently active slave, suppress
2960 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2961 * ARP on active-backup slaves with arp_validate enabled.
2963 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2965 struct net_device *dev = skb->dev;
2967 if (master->priv_flags & IFF_MASTER_ARPMON)
2968 dev->last_rx = jiffies;
2970 if ((master->priv_flags & IFF_MASTER_ALB) &&
2971 (master->priv_flags & IFF_BRIDGE_PORT)) {
2972 /* Do address unmangle. The local destination address
2973 * will be always the one master has. Provides the right
2974 * functionality in a bridge.
2976 skb_bond_set_mac_by_master(skb, master);
2979 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2980 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2981 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2982 return 0;
2984 if (master->priv_flags & IFF_MASTER_ALB) {
2985 if (skb->pkt_type != PACKET_BROADCAST &&
2986 skb->pkt_type != PACKET_MULTICAST)
2987 return 0;
2989 if (master->priv_flags & IFF_MASTER_8023AD &&
2990 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2991 return 0;
2993 return 1;
2995 return 0;
2997 EXPORT_SYMBOL(__skb_bond_should_drop);
2999 static int __netif_receive_skb(struct sk_buff *skb)
3001 struct packet_type *ptype, *pt_prev;
3002 rx_handler_func_t *rx_handler;
3003 struct net_device *orig_dev;
3004 struct net_device *master;
3005 struct net_device *null_or_orig;
3006 struct net_device *orig_or_bond;
3007 int ret = NET_RX_DROP;
3008 __be16 type;
3010 if (!netdev_tstamp_prequeue)
3011 net_timestamp_check(skb);
3013 trace_netif_receive_skb(skb);
3015 /* if we've gotten here through NAPI, check netpoll */
3016 if (netpoll_receive_skb(skb))
3017 return NET_RX_DROP;
3019 if (!skb->skb_iif)
3020 skb->skb_iif = skb->dev->ifindex;
3023 * bonding note: skbs received on inactive slaves should only
3024 * be delivered to pkt handlers that are exact matches. Also
3025 * the deliver_no_wcard flag will be set. If packet handlers
3026 * are sensitive to duplicate packets these skbs will need to
3027 * be dropped at the handler.
3029 null_or_orig = NULL;
3030 orig_dev = skb->dev;
3031 master = ACCESS_ONCE(orig_dev->master);
3032 if (skb->deliver_no_wcard)
3033 null_or_orig = orig_dev;
3034 else if (master) {
3035 if (skb_bond_should_drop(skb, master)) {
3036 skb->deliver_no_wcard = 1;
3037 null_or_orig = orig_dev; /* deliver only exact match */
3038 } else
3039 skb->dev = master;
3042 __this_cpu_inc(softnet_data.processed);
3043 skb_reset_network_header(skb);
3044 skb_reset_transport_header(skb);
3045 skb->mac_len = skb->network_header - skb->mac_header;
3047 pt_prev = NULL;
3049 rcu_read_lock();
3051 #ifdef CONFIG_NET_CLS_ACT
3052 if (skb->tc_verd & TC_NCLS) {
3053 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3054 goto ncls;
3056 #endif
3058 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3059 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3060 ptype->dev == orig_dev) {
3061 if (pt_prev)
3062 ret = deliver_skb(skb, pt_prev, orig_dev);
3063 pt_prev = ptype;
3067 #ifdef CONFIG_NET_CLS_ACT
3068 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3069 if (!skb)
3070 goto out;
3071 ncls:
3072 #endif
3074 /* Handle special case of bridge or macvlan */
3075 rx_handler = rcu_dereference(skb->dev->rx_handler);
3076 if (rx_handler) {
3077 if (pt_prev) {
3078 ret = deliver_skb(skb, pt_prev, orig_dev);
3079 pt_prev = NULL;
3081 skb = rx_handler(skb);
3082 if (!skb)
3083 goto out;
3086 if (vlan_tx_tag_present(skb)) {
3087 if (pt_prev) {
3088 ret = deliver_skb(skb, pt_prev, orig_dev);
3089 pt_prev = NULL;
3091 if (vlan_hwaccel_do_receive(&skb)) {
3092 ret = __netif_receive_skb(skb);
3093 goto out;
3094 } else if (unlikely(!skb))
3095 goto out;
3099 * Make sure frames received on VLAN interfaces stacked on
3100 * bonding interfaces still make their way to any base bonding
3101 * device that may have registered for a specific ptype. The
3102 * handler may have to adjust skb->dev and orig_dev.
3104 orig_or_bond = orig_dev;
3105 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3106 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3107 orig_or_bond = vlan_dev_real_dev(skb->dev);
3110 type = skb->protocol;
3111 list_for_each_entry_rcu(ptype,
3112 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3113 if (ptype->type == type && (ptype->dev == null_or_orig ||
3114 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3115 ptype->dev == orig_or_bond)) {
3116 if (pt_prev)
3117 ret = deliver_skb(skb, pt_prev, orig_dev);
3118 pt_prev = ptype;
3122 if (pt_prev) {
3123 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3124 } else {
3125 atomic_long_inc(&skb->dev->rx_dropped);
3126 kfree_skb(skb);
3127 /* Jamal, now you will not able to escape explaining
3128 * me how you were going to use this. :-)
3130 ret = NET_RX_DROP;
3133 out:
3134 rcu_read_unlock();
3135 return ret;
3139 * netif_receive_skb - process receive buffer from network
3140 * @skb: buffer to process
3142 * netif_receive_skb() is the main receive data processing function.
3143 * It always succeeds. The buffer may be dropped during processing
3144 * for congestion control or by the protocol layers.
3146 * This function may only be called from softirq context and interrupts
3147 * should be enabled.
3149 * Return values (usually ignored):
3150 * NET_RX_SUCCESS: no congestion
3151 * NET_RX_DROP: packet was dropped
3153 int netif_receive_skb(struct sk_buff *skb)
3155 if (netdev_tstamp_prequeue)
3156 net_timestamp_check(skb);
3158 if (skb_defer_rx_timestamp(skb))
3159 return NET_RX_SUCCESS;
3161 #ifdef CONFIG_RPS
3163 struct rps_dev_flow voidflow, *rflow = &voidflow;
3164 int cpu, ret;
3166 rcu_read_lock();
3168 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3170 if (cpu >= 0) {
3171 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3172 rcu_read_unlock();
3173 } else {
3174 rcu_read_unlock();
3175 ret = __netif_receive_skb(skb);
3178 return ret;
3180 #else
3181 return __netif_receive_skb(skb);
3182 #endif
3184 EXPORT_SYMBOL(netif_receive_skb);
3186 /* Network device is going away, flush any packets still pending
3187 * Called with irqs disabled.
3189 static void flush_backlog(void *arg)
3191 struct net_device *dev = arg;
3192 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3193 struct sk_buff *skb, *tmp;
3195 rps_lock(sd);
3196 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3197 if (skb->dev == dev) {
3198 __skb_unlink(skb, &sd->input_pkt_queue);
3199 kfree_skb(skb);
3200 input_queue_head_incr(sd);
3203 rps_unlock(sd);
3205 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3206 if (skb->dev == dev) {
3207 __skb_unlink(skb, &sd->process_queue);
3208 kfree_skb(skb);
3209 input_queue_head_incr(sd);
3214 static int napi_gro_complete(struct sk_buff *skb)
3216 struct packet_type *ptype;
3217 __be16 type = skb->protocol;
3218 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3219 int err = -ENOENT;
3221 if (NAPI_GRO_CB(skb)->count == 1) {
3222 skb_shinfo(skb)->gso_size = 0;
3223 goto out;
3226 rcu_read_lock();
3227 list_for_each_entry_rcu(ptype, head, list) {
3228 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3229 continue;
3231 err = ptype->gro_complete(skb);
3232 break;
3234 rcu_read_unlock();
3236 if (err) {
3237 WARN_ON(&ptype->list == head);
3238 kfree_skb(skb);
3239 return NET_RX_SUCCESS;
3242 out:
3243 return netif_receive_skb(skb);
3246 inline void napi_gro_flush(struct napi_struct *napi)
3248 struct sk_buff *skb, *next;
3250 for (skb = napi->gro_list; skb; skb = next) {
3251 next = skb->next;
3252 skb->next = NULL;
3253 napi_gro_complete(skb);
3256 napi->gro_count = 0;
3257 napi->gro_list = NULL;
3259 EXPORT_SYMBOL(napi_gro_flush);
3261 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3263 struct sk_buff **pp = NULL;
3264 struct packet_type *ptype;
3265 __be16 type = skb->protocol;
3266 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3267 int same_flow;
3268 int mac_len;
3269 enum gro_result ret;
3271 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3272 goto normal;
3274 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3275 goto normal;
3277 rcu_read_lock();
3278 list_for_each_entry_rcu(ptype, head, list) {
3279 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3280 continue;
3282 skb_set_network_header(skb, skb_gro_offset(skb));
3283 mac_len = skb->network_header - skb->mac_header;
3284 skb->mac_len = mac_len;
3285 NAPI_GRO_CB(skb)->same_flow = 0;
3286 NAPI_GRO_CB(skb)->flush = 0;
3287 NAPI_GRO_CB(skb)->free = 0;
3289 pp = ptype->gro_receive(&napi->gro_list, skb);
3290 break;
3292 rcu_read_unlock();
3294 if (&ptype->list == head)
3295 goto normal;
3297 same_flow = NAPI_GRO_CB(skb)->same_flow;
3298 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3300 if (pp) {
3301 struct sk_buff *nskb = *pp;
3303 *pp = nskb->next;
3304 nskb->next = NULL;
3305 napi_gro_complete(nskb);
3306 napi->gro_count--;
3309 if (same_flow)
3310 goto ok;
3312 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3313 goto normal;
3315 napi->gro_count++;
3316 NAPI_GRO_CB(skb)->count = 1;
3317 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3318 skb->next = napi->gro_list;
3319 napi->gro_list = skb;
3320 ret = GRO_HELD;
3322 pull:
3323 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3324 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3326 BUG_ON(skb->end - skb->tail < grow);
3328 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3330 skb->tail += grow;
3331 skb->data_len -= grow;
3333 skb_shinfo(skb)->frags[0].page_offset += grow;
3334 skb_shinfo(skb)->frags[0].size -= grow;
3336 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3337 put_page(skb_shinfo(skb)->frags[0].page);
3338 memmove(skb_shinfo(skb)->frags,
3339 skb_shinfo(skb)->frags + 1,
3340 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3345 return ret;
3347 normal:
3348 ret = GRO_NORMAL;
3349 goto pull;
3351 EXPORT_SYMBOL(dev_gro_receive);
3353 static inline gro_result_t
3354 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3356 struct sk_buff *p;
3358 for (p = napi->gro_list; p; p = p->next) {
3359 unsigned long diffs;
3361 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3362 diffs |= p->vlan_tci ^ skb->vlan_tci;
3363 diffs |= compare_ether_header(skb_mac_header(p),
3364 skb_gro_mac_header(skb));
3365 NAPI_GRO_CB(p)->same_flow = !diffs;
3366 NAPI_GRO_CB(p)->flush = 0;
3369 return dev_gro_receive(napi, skb);
3372 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3374 switch (ret) {
3375 case GRO_NORMAL:
3376 if (netif_receive_skb(skb))
3377 ret = GRO_DROP;
3378 break;
3380 case GRO_DROP:
3381 case GRO_MERGED_FREE:
3382 kfree_skb(skb);
3383 break;
3385 case GRO_HELD:
3386 case GRO_MERGED:
3387 break;
3390 return ret;
3392 EXPORT_SYMBOL(napi_skb_finish);
3394 void skb_gro_reset_offset(struct sk_buff *skb)
3396 NAPI_GRO_CB(skb)->data_offset = 0;
3397 NAPI_GRO_CB(skb)->frag0 = NULL;
3398 NAPI_GRO_CB(skb)->frag0_len = 0;
3400 if (skb->mac_header == skb->tail &&
3401 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3402 NAPI_GRO_CB(skb)->frag0 =
3403 page_address(skb_shinfo(skb)->frags[0].page) +
3404 skb_shinfo(skb)->frags[0].page_offset;
3405 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3408 EXPORT_SYMBOL(skb_gro_reset_offset);
3410 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3412 skb_gro_reset_offset(skb);
3414 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3416 EXPORT_SYMBOL(napi_gro_receive);
3418 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3420 __skb_pull(skb, skb_headlen(skb));
3421 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3422 skb->vlan_tci = 0;
3424 napi->skb = skb;
3427 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3429 struct sk_buff *skb = napi->skb;
3431 if (!skb) {
3432 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3433 if (skb)
3434 napi->skb = skb;
3436 return skb;
3438 EXPORT_SYMBOL(napi_get_frags);
3440 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3441 gro_result_t ret)
3443 switch (ret) {
3444 case GRO_NORMAL:
3445 case GRO_HELD:
3446 skb->protocol = eth_type_trans(skb, skb->dev);
3448 if (ret == GRO_HELD)
3449 skb_gro_pull(skb, -ETH_HLEN);
3450 else if (netif_receive_skb(skb))
3451 ret = GRO_DROP;
3452 break;
3454 case GRO_DROP:
3455 case GRO_MERGED_FREE:
3456 napi_reuse_skb(napi, skb);
3457 break;
3459 case GRO_MERGED:
3460 break;
3463 return ret;
3465 EXPORT_SYMBOL(napi_frags_finish);
3467 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3469 struct sk_buff *skb = napi->skb;
3470 struct ethhdr *eth;
3471 unsigned int hlen;
3472 unsigned int off;
3474 napi->skb = NULL;
3476 skb_reset_mac_header(skb);
3477 skb_gro_reset_offset(skb);
3479 off = skb_gro_offset(skb);
3480 hlen = off + sizeof(*eth);
3481 eth = skb_gro_header_fast(skb, off);
3482 if (skb_gro_header_hard(skb, hlen)) {
3483 eth = skb_gro_header_slow(skb, hlen, off);
3484 if (unlikely(!eth)) {
3485 napi_reuse_skb(napi, skb);
3486 skb = NULL;
3487 goto out;
3491 skb_gro_pull(skb, sizeof(*eth));
3494 * This works because the only protocols we care about don't require
3495 * special handling. We'll fix it up properly at the end.
3497 skb->protocol = eth->h_proto;
3499 out:
3500 return skb;
3502 EXPORT_SYMBOL(napi_frags_skb);
3504 gro_result_t napi_gro_frags(struct napi_struct *napi)
3506 struct sk_buff *skb = napi_frags_skb(napi);
3508 if (!skb)
3509 return GRO_DROP;
3511 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3513 EXPORT_SYMBOL(napi_gro_frags);
3516 * net_rps_action sends any pending IPI's for rps.
3517 * Note: called with local irq disabled, but exits with local irq enabled.
3519 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3521 #ifdef CONFIG_RPS
3522 struct softnet_data *remsd = sd->rps_ipi_list;
3524 if (remsd) {
3525 sd->rps_ipi_list = NULL;
3527 local_irq_enable();
3529 /* Send pending IPI's to kick RPS processing on remote cpus. */
3530 while (remsd) {
3531 struct softnet_data *next = remsd->rps_ipi_next;
3533 if (cpu_online(remsd->cpu))
3534 __smp_call_function_single(remsd->cpu,
3535 &remsd->csd, 0);
3536 remsd = next;
3538 } else
3539 #endif
3540 local_irq_enable();
3543 static int process_backlog(struct napi_struct *napi, int quota)
3545 int work = 0;
3546 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3548 #ifdef CONFIG_RPS
3549 /* Check if we have pending ipi, its better to send them now,
3550 * not waiting net_rx_action() end.
3552 if (sd->rps_ipi_list) {
3553 local_irq_disable();
3554 net_rps_action_and_irq_enable(sd);
3556 #endif
3557 napi->weight = weight_p;
3558 local_irq_disable();
3559 while (work < quota) {
3560 struct sk_buff *skb;
3561 unsigned int qlen;
3563 while ((skb = __skb_dequeue(&sd->process_queue))) {
3564 local_irq_enable();
3565 __netif_receive_skb(skb);
3566 local_irq_disable();
3567 input_queue_head_incr(sd);
3568 if (++work >= quota) {
3569 local_irq_enable();
3570 return work;
3574 rps_lock(sd);
3575 qlen = skb_queue_len(&sd->input_pkt_queue);
3576 if (qlen)
3577 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3578 &sd->process_queue);
3580 if (qlen < quota - work) {
3582 * Inline a custom version of __napi_complete().
3583 * only current cpu owns and manipulates this napi,
3584 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3585 * we can use a plain write instead of clear_bit(),
3586 * and we dont need an smp_mb() memory barrier.
3588 list_del(&napi->poll_list);
3589 napi->state = 0;
3591 quota = work + qlen;
3593 rps_unlock(sd);
3595 local_irq_enable();
3597 return work;
3601 * __napi_schedule - schedule for receive
3602 * @n: entry to schedule
3604 * The entry's receive function will be scheduled to run
3606 void __napi_schedule(struct napi_struct *n)
3608 unsigned long flags;
3610 local_irq_save(flags);
3611 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3612 local_irq_restore(flags);
3614 EXPORT_SYMBOL(__napi_schedule);
3616 void __napi_complete(struct napi_struct *n)
3618 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3619 BUG_ON(n->gro_list);
3621 list_del(&n->poll_list);
3622 smp_mb__before_clear_bit();
3623 clear_bit(NAPI_STATE_SCHED, &n->state);
3625 EXPORT_SYMBOL(__napi_complete);
3627 void napi_complete(struct napi_struct *n)
3629 unsigned long flags;
3632 * don't let napi dequeue from the cpu poll list
3633 * just in case its running on a different cpu
3635 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3636 return;
3638 napi_gro_flush(n);
3639 local_irq_save(flags);
3640 __napi_complete(n);
3641 local_irq_restore(flags);
3643 EXPORT_SYMBOL(napi_complete);
3645 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3646 int (*poll)(struct napi_struct *, int), int weight)
3648 INIT_LIST_HEAD(&napi->poll_list);
3649 napi->gro_count = 0;
3650 napi->gro_list = NULL;
3651 napi->skb = NULL;
3652 napi->poll = poll;
3653 napi->weight = weight;
3654 list_add(&napi->dev_list, &dev->napi_list);
3655 napi->dev = dev;
3656 #ifdef CONFIG_NETPOLL
3657 spin_lock_init(&napi->poll_lock);
3658 napi->poll_owner = -1;
3659 #endif
3660 set_bit(NAPI_STATE_SCHED, &napi->state);
3662 EXPORT_SYMBOL(netif_napi_add);
3664 void netif_napi_del(struct napi_struct *napi)
3666 struct sk_buff *skb, *next;
3668 list_del_init(&napi->dev_list);
3669 napi_free_frags(napi);
3671 for (skb = napi->gro_list; skb; skb = next) {
3672 next = skb->next;
3673 skb->next = NULL;
3674 kfree_skb(skb);
3677 napi->gro_list = NULL;
3678 napi->gro_count = 0;
3680 EXPORT_SYMBOL(netif_napi_del);
3682 static void net_rx_action(struct softirq_action *h)
3684 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3685 unsigned long time_limit = jiffies + 2;
3686 int budget = netdev_budget;
3687 void *have;
3689 local_irq_disable();
3691 while (!list_empty(&sd->poll_list)) {
3692 struct napi_struct *n;
3693 int work, weight;
3695 /* If softirq window is exhuasted then punt.
3696 * Allow this to run for 2 jiffies since which will allow
3697 * an average latency of 1.5/HZ.
3699 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3700 goto softnet_break;
3702 local_irq_enable();
3704 /* Even though interrupts have been re-enabled, this
3705 * access is safe because interrupts can only add new
3706 * entries to the tail of this list, and only ->poll()
3707 * calls can remove this head entry from the list.
3709 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3711 have = netpoll_poll_lock(n);
3713 weight = n->weight;
3715 /* This NAPI_STATE_SCHED test is for avoiding a race
3716 * with netpoll's poll_napi(). Only the entity which
3717 * obtains the lock and sees NAPI_STATE_SCHED set will
3718 * actually make the ->poll() call. Therefore we avoid
3719 * accidently calling ->poll() when NAPI is not scheduled.
3721 work = 0;
3722 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3723 work = n->poll(n, weight);
3724 trace_napi_poll(n);
3727 WARN_ON_ONCE(work > weight);
3729 budget -= work;
3731 local_irq_disable();
3733 /* Drivers must not modify the NAPI state if they
3734 * consume the entire weight. In such cases this code
3735 * still "owns" the NAPI instance and therefore can
3736 * move the instance around on the list at-will.
3738 if (unlikely(work == weight)) {
3739 if (unlikely(napi_disable_pending(n))) {
3740 local_irq_enable();
3741 napi_complete(n);
3742 local_irq_disable();
3743 } else
3744 list_move_tail(&n->poll_list, &sd->poll_list);
3747 netpoll_poll_unlock(have);
3749 out:
3750 net_rps_action_and_irq_enable(sd);
3752 #ifdef CONFIG_NET_DMA
3754 * There may not be any more sk_buffs coming right now, so push
3755 * any pending DMA copies to hardware
3757 dma_issue_pending_all();
3758 #endif
3760 return;
3762 softnet_break:
3763 sd->time_squeeze++;
3764 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3765 goto out;
3768 static gifconf_func_t *gifconf_list[NPROTO];
3771 * register_gifconf - register a SIOCGIF handler
3772 * @family: Address family
3773 * @gifconf: Function handler
3775 * Register protocol dependent address dumping routines. The handler
3776 * that is passed must not be freed or reused until it has been replaced
3777 * by another handler.
3779 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3781 if (family >= NPROTO)
3782 return -EINVAL;
3783 gifconf_list[family] = gifconf;
3784 return 0;
3786 EXPORT_SYMBOL(register_gifconf);
3790 * Map an interface index to its name (SIOCGIFNAME)
3794 * We need this ioctl for efficient implementation of the
3795 * if_indextoname() function required by the IPv6 API. Without
3796 * it, we would have to search all the interfaces to find a
3797 * match. --pb
3800 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3802 struct net_device *dev;
3803 struct ifreq ifr;
3806 * Fetch the caller's info block.
3809 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3810 return -EFAULT;
3812 rcu_read_lock();
3813 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3814 if (!dev) {
3815 rcu_read_unlock();
3816 return -ENODEV;
3819 strcpy(ifr.ifr_name, dev->name);
3820 rcu_read_unlock();
3822 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3823 return -EFAULT;
3824 return 0;
3828 * Perform a SIOCGIFCONF call. This structure will change
3829 * size eventually, and there is nothing I can do about it.
3830 * Thus we will need a 'compatibility mode'.
3833 static int dev_ifconf(struct net *net, char __user *arg)
3835 struct ifconf ifc;
3836 struct net_device *dev;
3837 char __user *pos;
3838 int len;
3839 int total;
3840 int i;
3843 * Fetch the caller's info block.
3846 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3847 return -EFAULT;
3849 pos = ifc.ifc_buf;
3850 len = ifc.ifc_len;
3853 * Loop over the interfaces, and write an info block for each.
3856 total = 0;
3857 for_each_netdev(net, dev) {
3858 for (i = 0; i < NPROTO; i++) {
3859 if (gifconf_list[i]) {
3860 int done;
3861 if (!pos)
3862 done = gifconf_list[i](dev, NULL, 0);
3863 else
3864 done = gifconf_list[i](dev, pos + total,
3865 len - total);
3866 if (done < 0)
3867 return -EFAULT;
3868 total += done;
3874 * All done. Write the updated control block back to the caller.
3876 ifc.ifc_len = total;
3879 * Both BSD and Solaris return 0 here, so we do too.
3881 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3884 #ifdef CONFIG_PROC_FS
3886 * This is invoked by the /proc filesystem handler to display a device
3887 * in detail.
3889 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3890 __acquires(RCU)
3892 struct net *net = seq_file_net(seq);
3893 loff_t off;
3894 struct net_device *dev;
3896 rcu_read_lock();
3897 if (!*pos)
3898 return SEQ_START_TOKEN;
3900 off = 1;
3901 for_each_netdev_rcu(net, dev)
3902 if (off++ == *pos)
3903 return dev;
3905 return NULL;
3908 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3910 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3911 first_net_device(seq_file_net(seq)) :
3912 next_net_device((struct net_device *)v);
3914 ++*pos;
3915 return rcu_dereference(dev);
3918 void dev_seq_stop(struct seq_file *seq, void *v)
3919 __releases(RCU)
3921 rcu_read_unlock();
3924 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3926 struct rtnl_link_stats64 temp;
3927 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3929 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3930 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3931 dev->name, stats->rx_bytes, stats->rx_packets,
3932 stats->rx_errors,
3933 stats->rx_dropped + stats->rx_missed_errors,
3934 stats->rx_fifo_errors,
3935 stats->rx_length_errors + stats->rx_over_errors +
3936 stats->rx_crc_errors + stats->rx_frame_errors,
3937 stats->rx_compressed, stats->multicast,
3938 stats->tx_bytes, stats->tx_packets,
3939 stats->tx_errors, stats->tx_dropped,
3940 stats->tx_fifo_errors, stats->collisions,
3941 stats->tx_carrier_errors +
3942 stats->tx_aborted_errors +
3943 stats->tx_window_errors +
3944 stats->tx_heartbeat_errors,
3945 stats->tx_compressed);
3949 * Called from the PROCfs module. This now uses the new arbitrary sized
3950 * /proc/net interface to create /proc/net/dev
3952 static int dev_seq_show(struct seq_file *seq, void *v)
3954 if (v == SEQ_START_TOKEN)
3955 seq_puts(seq, "Inter-| Receive "
3956 " | Transmit\n"
3957 " face |bytes packets errs drop fifo frame "
3958 "compressed multicast|bytes packets errs "
3959 "drop fifo colls carrier compressed\n");
3960 else
3961 dev_seq_printf_stats(seq, v);
3962 return 0;
3965 static struct softnet_data *softnet_get_online(loff_t *pos)
3967 struct softnet_data *sd = NULL;
3969 while (*pos < nr_cpu_ids)
3970 if (cpu_online(*pos)) {
3971 sd = &per_cpu(softnet_data, *pos);
3972 break;
3973 } else
3974 ++*pos;
3975 return sd;
3978 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3980 return softnet_get_online(pos);
3983 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3985 ++*pos;
3986 return softnet_get_online(pos);
3989 static void softnet_seq_stop(struct seq_file *seq, void *v)
3993 static int softnet_seq_show(struct seq_file *seq, void *v)
3995 struct softnet_data *sd = v;
3997 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3998 sd->processed, sd->dropped, sd->time_squeeze, 0,
3999 0, 0, 0, 0, /* was fastroute */
4000 sd->cpu_collision, sd->received_rps);
4001 return 0;
4004 static const struct seq_operations dev_seq_ops = {
4005 .start = dev_seq_start,
4006 .next = dev_seq_next,
4007 .stop = dev_seq_stop,
4008 .show = dev_seq_show,
4011 static int dev_seq_open(struct inode *inode, struct file *file)
4013 return seq_open_net(inode, file, &dev_seq_ops,
4014 sizeof(struct seq_net_private));
4017 static const struct file_operations dev_seq_fops = {
4018 .owner = THIS_MODULE,
4019 .open = dev_seq_open,
4020 .read = seq_read,
4021 .llseek = seq_lseek,
4022 .release = seq_release_net,
4025 static const struct seq_operations softnet_seq_ops = {
4026 .start = softnet_seq_start,
4027 .next = softnet_seq_next,
4028 .stop = softnet_seq_stop,
4029 .show = softnet_seq_show,
4032 static int softnet_seq_open(struct inode *inode, struct file *file)
4034 return seq_open(file, &softnet_seq_ops);
4037 static const struct file_operations softnet_seq_fops = {
4038 .owner = THIS_MODULE,
4039 .open = softnet_seq_open,
4040 .read = seq_read,
4041 .llseek = seq_lseek,
4042 .release = seq_release,
4045 static void *ptype_get_idx(loff_t pos)
4047 struct packet_type *pt = NULL;
4048 loff_t i = 0;
4049 int t;
4051 list_for_each_entry_rcu(pt, &ptype_all, list) {
4052 if (i == pos)
4053 return pt;
4054 ++i;
4057 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4058 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4059 if (i == pos)
4060 return pt;
4061 ++i;
4064 return NULL;
4067 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4068 __acquires(RCU)
4070 rcu_read_lock();
4071 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4074 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4076 struct packet_type *pt;
4077 struct list_head *nxt;
4078 int hash;
4080 ++*pos;
4081 if (v == SEQ_START_TOKEN)
4082 return ptype_get_idx(0);
4084 pt = v;
4085 nxt = pt->list.next;
4086 if (pt->type == htons(ETH_P_ALL)) {
4087 if (nxt != &ptype_all)
4088 goto found;
4089 hash = 0;
4090 nxt = ptype_base[0].next;
4091 } else
4092 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4094 while (nxt == &ptype_base[hash]) {
4095 if (++hash >= PTYPE_HASH_SIZE)
4096 return NULL;
4097 nxt = ptype_base[hash].next;
4099 found:
4100 return list_entry(nxt, struct packet_type, list);
4103 static void ptype_seq_stop(struct seq_file *seq, void *v)
4104 __releases(RCU)
4106 rcu_read_unlock();
4109 static int ptype_seq_show(struct seq_file *seq, void *v)
4111 struct packet_type *pt = v;
4113 if (v == SEQ_START_TOKEN)
4114 seq_puts(seq, "Type Device Function\n");
4115 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4116 if (pt->type == htons(ETH_P_ALL))
4117 seq_puts(seq, "ALL ");
4118 else
4119 seq_printf(seq, "%04x", ntohs(pt->type));
4121 seq_printf(seq, " %-8s %pF\n",
4122 pt->dev ? pt->dev->name : "", pt->func);
4125 return 0;
4128 static const struct seq_operations ptype_seq_ops = {
4129 .start = ptype_seq_start,
4130 .next = ptype_seq_next,
4131 .stop = ptype_seq_stop,
4132 .show = ptype_seq_show,
4135 static int ptype_seq_open(struct inode *inode, struct file *file)
4137 return seq_open_net(inode, file, &ptype_seq_ops,
4138 sizeof(struct seq_net_private));
4141 static const struct file_operations ptype_seq_fops = {
4142 .owner = THIS_MODULE,
4143 .open = ptype_seq_open,
4144 .read = seq_read,
4145 .llseek = seq_lseek,
4146 .release = seq_release_net,
4150 static int __net_init dev_proc_net_init(struct net *net)
4152 int rc = -ENOMEM;
4154 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4155 goto out;
4156 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4157 goto out_dev;
4158 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4159 goto out_softnet;
4161 if (wext_proc_init(net))
4162 goto out_ptype;
4163 rc = 0;
4164 out:
4165 return rc;
4166 out_ptype:
4167 proc_net_remove(net, "ptype");
4168 out_softnet:
4169 proc_net_remove(net, "softnet_stat");
4170 out_dev:
4171 proc_net_remove(net, "dev");
4172 goto out;
4175 static void __net_exit dev_proc_net_exit(struct net *net)
4177 wext_proc_exit(net);
4179 proc_net_remove(net, "ptype");
4180 proc_net_remove(net, "softnet_stat");
4181 proc_net_remove(net, "dev");
4184 static struct pernet_operations __net_initdata dev_proc_ops = {
4185 .init = dev_proc_net_init,
4186 .exit = dev_proc_net_exit,
4189 static int __init dev_proc_init(void)
4191 return register_pernet_subsys(&dev_proc_ops);
4193 #else
4194 #define dev_proc_init() 0
4195 #endif /* CONFIG_PROC_FS */
4199 * netdev_set_master - set up master/slave pair
4200 * @slave: slave device
4201 * @master: new master device
4203 * Changes the master device of the slave. Pass %NULL to break the
4204 * bonding. The caller must hold the RTNL semaphore. On a failure
4205 * a negative errno code is returned. On success the reference counts
4206 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4207 * function returns zero.
4209 int netdev_set_master(struct net_device *slave, struct net_device *master)
4211 struct net_device *old = slave->master;
4213 ASSERT_RTNL();
4215 if (master) {
4216 if (old)
4217 return -EBUSY;
4218 dev_hold(master);
4221 slave->master = master;
4223 if (old) {
4224 synchronize_net();
4225 dev_put(old);
4227 if (master)
4228 slave->flags |= IFF_SLAVE;
4229 else
4230 slave->flags &= ~IFF_SLAVE;
4232 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4233 return 0;
4235 EXPORT_SYMBOL(netdev_set_master);
4237 static void dev_change_rx_flags(struct net_device *dev, int flags)
4239 const struct net_device_ops *ops = dev->netdev_ops;
4241 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4242 ops->ndo_change_rx_flags(dev, flags);
4245 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4247 unsigned short old_flags = dev->flags;
4248 uid_t uid;
4249 gid_t gid;
4251 ASSERT_RTNL();
4253 dev->flags |= IFF_PROMISC;
4254 dev->promiscuity += inc;
4255 if (dev->promiscuity == 0) {
4257 * Avoid overflow.
4258 * If inc causes overflow, untouch promisc and return error.
4260 if (inc < 0)
4261 dev->flags &= ~IFF_PROMISC;
4262 else {
4263 dev->promiscuity -= inc;
4264 printk(KERN_WARNING "%s: promiscuity touches roof, "
4265 "set promiscuity failed, promiscuity feature "
4266 "of device might be broken.\n", dev->name);
4267 return -EOVERFLOW;
4270 if (dev->flags != old_flags) {
4271 printk(KERN_INFO "device %s %s promiscuous mode\n",
4272 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4273 "left");
4274 if (audit_enabled) {
4275 current_uid_gid(&uid, &gid);
4276 audit_log(current->audit_context, GFP_ATOMIC,
4277 AUDIT_ANOM_PROMISCUOUS,
4278 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4279 dev->name, (dev->flags & IFF_PROMISC),
4280 (old_flags & IFF_PROMISC),
4281 audit_get_loginuid(current),
4282 uid, gid,
4283 audit_get_sessionid(current));
4286 dev_change_rx_flags(dev, IFF_PROMISC);
4288 return 0;
4292 * dev_set_promiscuity - update promiscuity count on a device
4293 * @dev: device
4294 * @inc: modifier
4296 * Add or remove promiscuity from a device. While the count in the device
4297 * remains above zero the interface remains promiscuous. Once it hits zero
4298 * the device reverts back to normal filtering operation. A negative inc
4299 * value is used to drop promiscuity on the device.
4300 * Return 0 if successful or a negative errno code on error.
4302 int dev_set_promiscuity(struct net_device *dev, int inc)
4304 unsigned short old_flags = dev->flags;
4305 int err;
4307 err = __dev_set_promiscuity(dev, inc);
4308 if (err < 0)
4309 return err;
4310 if (dev->flags != old_flags)
4311 dev_set_rx_mode(dev);
4312 return err;
4314 EXPORT_SYMBOL(dev_set_promiscuity);
4317 * dev_set_allmulti - update allmulti count on a device
4318 * @dev: device
4319 * @inc: modifier
4321 * Add or remove reception of all multicast frames to a device. While the
4322 * count in the device remains above zero the interface remains listening
4323 * to all interfaces. Once it hits zero the device reverts back to normal
4324 * filtering operation. A negative @inc value is used to drop the counter
4325 * when releasing a resource needing all multicasts.
4326 * Return 0 if successful or a negative errno code on error.
4329 int dev_set_allmulti(struct net_device *dev, int inc)
4331 unsigned short old_flags = dev->flags;
4333 ASSERT_RTNL();
4335 dev->flags |= IFF_ALLMULTI;
4336 dev->allmulti += inc;
4337 if (dev->allmulti == 0) {
4339 * Avoid overflow.
4340 * If inc causes overflow, untouch allmulti and return error.
4342 if (inc < 0)
4343 dev->flags &= ~IFF_ALLMULTI;
4344 else {
4345 dev->allmulti -= inc;
4346 printk(KERN_WARNING "%s: allmulti touches roof, "
4347 "set allmulti failed, allmulti feature of "
4348 "device might be broken.\n", dev->name);
4349 return -EOVERFLOW;
4352 if (dev->flags ^ old_flags) {
4353 dev_change_rx_flags(dev, IFF_ALLMULTI);
4354 dev_set_rx_mode(dev);
4356 return 0;
4358 EXPORT_SYMBOL(dev_set_allmulti);
4361 * Upload unicast and multicast address lists to device and
4362 * configure RX filtering. When the device doesn't support unicast
4363 * filtering it is put in promiscuous mode while unicast addresses
4364 * are present.
4366 void __dev_set_rx_mode(struct net_device *dev)
4368 const struct net_device_ops *ops = dev->netdev_ops;
4370 /* dev_open will call this function so the list will stay sane. */
4371 if (!(dev->flags&IFF_UP))
4372 return;
4374 if (!netif_device_present(dev))
4375 return;
4377 if (ops->ndo_set_rx_mode)
4378 ops->ndo_set_rx_mode(dev);
4379 else {
4380 /* Unicast addresses changes may only happen under the rtnl,
4381 * therefore calling __dev_set_promiscuity here is safe.
4383 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4384 __dev_set_promiscuity(dev, 1);
4385 dev->uc_promisc = 1;
4386 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4387 __dev_set_promiscuity(dev, -1);
4388 dev->uc_promisc = 0;
4391 if (ops->ndo_set_multicast_list)
4392 ops->ndo_set_multicast_list(dev);
4396 void dev_set_rx_mode(struct net_device *dev)
4398 netif_addr_lock_bh(dev);
4399 __dev_set_rx_mode(dev);
4400 netif_addr_unlock_bh(dev);
4404 * dev_get_flags - get flags reported to userspace
4405 * @dev: device
4407 * Get the combination of flag bits exported through APIs to userspace.
4409 unsigned dev_get_flags(const struct net_device *dev)
4411 unsigned flags;
4413 flags = (dev->flags & ~(IFF_PROMISC |
4414 IFF_ALLMULTI |
4415 IFF_RUNNING |
4416 IFF_LOWER_UP |
4417 IFF_DORMANT)) |
4418 (dev->gflags & (IFF_PROMISC |
4419 IFF_ALLMULTI));
4421 if (netif_running(dev)) {
4422 if (netif_oper_up(dev))
4423 flags |= IFF_RUNNING;
4424 if (netif_carrier_ok(dev))
4425 flags |= IFF_LOWER_UP;
4426 if (netif_dormant(dev))
4427 flags |= IFF_DORMANT;
4430 return flags;
4432 EXPORT_SYMBOL(dev_get_flags);
4434 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4436 int old_flags = dev->flags;
4437 int ret;
4439 ASSERT_RTNL();
4442 * Set the flags on our device.
4445 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4446 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4447 IFF_AUTOMEDIA)) |
4448 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4449 IFF_ALLMULTI));
4452 * Load in the correct multicast list now the flags have changed.
4455 if ((old_flags ^ flags) & IFF_MULTICAST)
4456 dev_change_rx_flags(dev, IFF_MULTICAST);
4458 dev_set_rx_mode(dev);
4461 * Have we downed the interface. We handle IFF_UP ourselves
4462 * according to user attempts to set it, rather than blindly
4463 * setting it.
4466 ret = 0;
4467 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4468 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4470 if (!ret)
4471 dev_set_rx_mode(dev);
4474 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4475 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4477 dev->gflags ^= IFF_PROMISC;
4478 dev_set_promiscuity(dev, inc);
4481 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4482 is important. Some (broken) drivers set IFF_PROMISC, when
4483 IFF_ALLMULTI is requested not asking us and not reporting.
4485 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4486 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4488 dev->gflags ^= IFF_ALLMULTI;
4489 dev_set_allmulti(dev, inc);
4492 return ret;
4495 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4497 unsigned int changes = dev->flags ^ old_flags;
4499 if (changes & IFF_UP) {
4500 if (dev->flags & IFF_UP)
4501 call_netdevice_notifiers(NETDEV_UP, dev);
4502 else
4503 call_netdevice_notifiers(NETDEV_DOWN, dev);
4506 if (dev->flags & IFF_UP &&
4507 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4508 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4512 * dev_change_flags - change device settings
4513 * @dev: device
4514 * @flags: device state flags
4516 * Change settings on device based state flags. The flags are
4517 * in the userspace exported format.
4519 int dev_change_flags(struct net_device *dev, unsigned flags)
4521 int ret, changes;
4522 int old_flags = dev->flags;
4524 ret = __dev_change_flags(dev, flags);
4525 if (ret < 0)
4526 return ret;
4528 changes = old_flags ^ dev->flags;
4529 if (changes)
4530 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4532 __dev_notify_flags(dev, old_flags);
4533 return ret;
4535 EXPORT_SYMBOL(dev_change_flags);
4538 * dev_set_mtu - Change maximum transfer unit
4539 * @dev: device
4540 * @new_mtu: new transfer unit
4542 * Change the maximum transfer size of the network device.
4544 int dev_set_mtu(struct net_device *dev, int new_mtu)
4546 const struct net_device_ops *ops = dev->netdev_ops;
4547 int err;
4549 if (new_mtu == dev->mtu)
4550 return 0;
4552 /* MTU must be positive. */
4553 if (new_mtu < 0)
4554 return -EINVAL;
4556 if (!netif_device_present(dev))
4557 return -ENODEV;
4559 err = 0;
4560 if (ops->ndo_change_mtu)
4561 err = ops->ndo_change_mtu(dev, new_mtu);
4562 else
4563 dev->mtu = new_mtu;
4565 if (!err && dev->flags & IFF_UP)
4566 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4567 return err;
4569 EXPORT_SYMBOL(dev_set_mtu);
4572 * dev_set_mac_address - Change Media Access Control Address
4573 * @dev: device
4574 * @sa: new address
4576 * Change the hardware (MAC) address of the device
4578 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4580 const struct net_device_ops *ops = dev->netdev_ops;
4581 int err;
4583 if (!ops->ndo_set_mac_address)
4584 return -EOPNOTSUPP;
4585 if (sa->sa_family != dev->type)
4586 return -EINVAL;
4587 if (!netif_device_present(dev))
4588 return -ENODEV;
4589 err = ops->ndo_set_mac_address(dev, sa);
4590 if (!err)
4591 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4592 return err;
4594 EXPORT_SYMBOL(dev_set_mac_address);
4597 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4599 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4601 int err;
4602 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4604 if (!dev)
4605 return -ENODEV;
4607 switch (cmd) {
4608 case SIOCGIFFLAGS: /* Get interface flags */
4609 ifr->ifr_flags = (short) dev_get_flags(dev);
4610 return 0;
4612 case SIOCGIFMETRIC: /* Get the metric on the interface
4613 (currently unused) */
4614 ifr->ifr_metric = 0;
4615 return 0;
4617 case SIOCGIFMTU: /* Get the MTU of a device */
4618 ifr->ifr_mtu = dev->mtu;
4619 return 0;
4621 case SIOCGIFHWADDR:
4622 if (!dev->addr_len)
4623 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4624 else
4625 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4626 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4627 ifr->ifr_hwaddr.sa_family = dev->type;
4628 return 0;
4630 case SIOCGIFSLAVE:
4631 err = -EINVAL;
4632 break;
4634 case SIOCGIFMAP:
4635 ifr->ifr_map.mem_start = dev->mem_start;
4636 ifr->ifr_map.mem_end = dev->mem_end;
4637 ifr->ifr_map.base_addr = dev->base_addr;
4638 ifr->ifr_map.irq = dev->irq;
4639 ifr->ifr_map.dma = dev->dma;
4640 ifr->ifr_map.port = dev->if_port;
4641 return 0;
4643 case SIOCGIFINDEX:
4644 ifr->ifr_ifindex = dev->ifindex;
4645 return 0;
4647 case SIOCGIFTXQLEN:
4648 ifr->ifr_qlen = dev->tx_queue_len;
4649 return 0;
4651 default:
4652 /* dev_ioctl() should ensure this case
4653 * is never reached
4655 WARN_ON(1);
4656 err = -EINVAL;
4657 break;
4660 return err;
4664 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4666 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4668 int err;
4669 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4670 const struct net_device_ops *ops;
4672 if (!dev)
4673 return -ENODEV;
4675 ops = dev->netdev_ops;
4677 switch (cmd) {
4678 case SIOCSIFFLAGS: /* Set interface flags */
4679 return dev_change_flags(dev, ifr->ifr_flags);
4681 case SIOCSIFMETRIC: /* Set the metric on the interface
4682 (currently unused) */
4683 return -EOPNOTSUPP;
4685 case SIOCSIFMTU: /* Set the MTU of a device */
4686 return dev_set_mtu(dev, ifr->ifr_mtu);
4688 case SIOCSIFHWADDR:
4689 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4691 case SIOCSIFHWBROADCAST:
4692 if (ifr->ifr_hwaddr.sa_family != dev->type)
4693 return -EINVAL;
4694 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4695 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4696 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4697 return 0;
4699 case SIOCSIFMAP:
4700 if (ops->ndo_set_config) {
4701 if (!netif_device_present(dev))
4702 return -ENODEV;
4703 return ops->ndo_set_config(dev, &ifr->ifr_map);
4705 return -EOPNOTSUPP;
4707 case SIOCADDMULTI:
4708 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4709 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4710 return -EINVAL;
4711 if (!netif_device_present(dev))
4712 return -ENODEV;
4713 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4715 case SIOCDELMULTI:
4716 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4717 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4718 return -EINVAL;
4719 if (!netif_device_present(dev))
4720 return -ENODEV;
4721 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4723 case SIOCSIFTXQLEN:
4724 if (ifr->ifr_qlen < 0)
4725 return -EINVAL;
4726 dev->tx_queue_len = ifr->ifr_qlen;
4727 return 0;
4729 case SIOCSIFNAME:
4730 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4731 return dev_change_name(dev, ifr->ifr_newname);
4734 * Unknown or private ioctl
4736 default:
4737 if ((cmd >= SIOCDEVPRIVATE &&
4738 cmd <= SIOCDEVPRIVATE + 15) ||
4739 cmd == SIOCBONDENSLAVE ||
4740 cmd == SIOCBONDRELEASE ||
4741 cmd == SIOCBONDSETHWADDR ||
4742 cmd == SIOCBONDSLAVEINFOQUERY ||
4743 cmd == SIOCBONDINFOQUERY ||
4744 cmd == SIOCBONDCHANGEACTIVE ||
4745 cmd == SIOCGMIIPHY ||
4746 cmd == SIOCGMIIREG ||
4747 cmd == SIOCSMIIREG ||
4748 cmd == SIOCBRADDIF ||
4749 cmd == SIOCBRDELIF ||
4750 cmd == SIOCSHWTSTAMP ||
4751 cmd == SIOCWANDEV) {
4752 err = -EOPNOTSUPP;
4753 if (ops->ndo_do_ioctl) {
4754 if (netif_device_present(dev))
4755 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4756 else
4757 err = -ENODEV;
4759 } else
4760 err = -EINVAL;
4763 return err;
4767 * This function handles all "interface"-type I/O control requests. The actual
4768 * 'doing' part of this is dev_ifsioc above.
4772 * dev_ioctl - network device ioctl
4773 * @net: the applicable net namespace
4774 * @cmd: command to issue
4775 * @arg: pointer to a struct ifreq in user space
4777 * Issue ioctl functions to devices. This is normally called by the
4778 * user space syscall interfaces but can sometimes be useful for
4779 * other purposes. The return value is the return from the syscall if
4780 * positive or a negative errno code on error.
4783 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4785 struct ifreq ifr;
4786 int ret;
4787 char *colon;
4789 /* One special case: SIOCGIFCONF takes ifconf argument
4790 and requires shared lock, because it sleeps writing
4791 to user space.
4794 if (cmd == SIOCGIFCONF) {
4795 rtnl_lock();
4796 ret = dev_ifconf(net, (char __user *) arg);
4797 rtnl_unlock();
4798 return ret;
4800 if (cmd == SIOCGIFNAME)
4801 return dev_ifname(net, (struct ifreq __user *)arg);
4803 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4804 return -EFAULT;
4806 ifr.ifr_name[IFNAMSIZ-1] = 0;
4808 colon = strchr(ifr.ifr_name, ':');
4809 if (colon)
4810 *colon = 0;
4813 * See which interface the caller is talking about.
4816 switch (cmd) {
4818 * These ioctl calls:
4819 * - can be done by all.
4820 * - atomic and do not require locking.
4821 * - return a value
4823 case SIOCGIFFLAGS:
4824 case SIOCGIFMETRIC:
4825 case SIOCGIFMTU:
4826 case SIOCGIFHWADDR:
4827 case SIOCGIFSLAVE:
4828 case SIOCGIFMAP:
4829 case SIOCGIFINDEX:
4830 case SIOCGIFTXQLEN:
4831 dev_load(net, ifr.ifr_name);
4832 rcu_read_lock();
4833 ret = dev_ifsioc_locked(net, &ifr, cmd);
4834 rcu_read_unlock();
4835 if (!ret) {
4836 if (colon)
4837 *colon = ':';
4838 if (copy_to_user(arg, &ifr,
4839 sizeof(struct ifreq)))
4840 ret = -EFAULT;
4842 return ret;
4844 case SIOCETHTOOL:
4845 dev_load(net, ifr.ifr_name);
4846 rtnl_lock();
4847 ret = dev_ethtool(net, &ifr);
4848 rtnl_unlock();
4849 if (!ret) {
4850 if (colon)
4851 *colon = ':';
4852 if (copy_to_user(arg, &ifr,
4853 sizeof(struct ifreq)))
4854 ret = -EFAULT;
4856 return ret;
4859 * These ioctl calls:
4860 * - require superuser power.
4861 * - require strict serialization.
4862 * - return a value
4864 case SIOCGMIIPHY:
4865 case SIOCGMIIREG:
4866 case SIOCSIFNAME:
4867 if (!capable(CAP_NET_ADMIN))
4868 return -EPERM;
4869 dev_load(net, ifr.ifr_name);
4870 rtnl_lock();
4871 ret = dev_ifsioc(net, &ifr, cmd);
4872 rtnl_unlock();
4873 if (!ret) {
4874 if (colon)
4875 *colon = ':';
4876 if (copy_to_user(arg, &ifr,
4877 sizeof(struct ifreq)))
4878 ret = -EFAULT;
4880 return ret;
4883 * These ioctl calls:
4884 * - require superuser power.
4885 * - require strict serialization.
4886 * - do not return a value
4888 case SIOCSIFFLAGS:
4889 case SIOCSIFMETRIC:
4890 case SIOCSIFMTU:
4891 case SIOCSIFMAP:
4892 case SIOCSIFHWADDR:
4893 case SIOCSIFSLAVE:
4894 case SIOCADDMULTI:
4895 case SIOCDELMULTI:
4896 case SIOCSIFHWBROADCAST:
4897 case SIOCSIFTXQLEN:
4898 case SIOCSMIIREG:
4899 case SIOCBONDENSLAVE:
4900 case SIOCBONDRELEASE:
4901 case SIOCBONDSETHWADDR:
4902 case SIOCBONDCHANGEACTIVE:
4903 case SIOCBRADDIF:
4904 case SIOCBRDELIF:
4905 case SIOCSHWTSTAMP:
4906 if (!capable(CAP_NET_ADMIN))
4907 return -EPERM;
4908 /* fall through */
4909 case SIOCBONDSLAVEINFOQUERY:
4910 case SIOCBONDINFOQUERY:
4911 dev_load(net, ifr.ifr_name);
4912 rtnl_lock();
4913 ret = dev_ifsioc(net, &ifr, cmd);
4914 rtnl_unlock();
4915 return ret;
4917 case SIOCGIFMEM:
4918 /* Get the per device memory space. We can add this but
4919 * currently do not support it */
4920 case SIOCSIFMEM:
4921 /* Set the per device memory buffer space.
4922 * Not applicable in our case */
4923 case SIOCSIFLINK:
4924 return -EINVAL;
4927 * Unknown or private ioctl.
4929 default:
4930 if (cmd == SIOCWANDEV ||
4931 (cmd >= SIOCDEVPRIVATE &&
4932 cmd <= SIOCDEVPRIVATE + 15)) {
4933 dev_load(net, ifr.ifr_name);
4934 rtnl_lock();
4935 ret = dev_ifsioc(net, &ifr, cmd);
4936 rtnl_unlock();
4937 if (!ret && copy_to_user(arg, &ifr,
4938 sizeof(struct ifreq)))
4939 ret = -EFAULT;
4940 return ret;
4942 /* Take care of Wireless Extensions */
4943 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4944 return wext_handle_ioctl(net, &ifr, cmd, arg);
4945 return -EINVAL;
4951 * dev_new_index - allocate an ifindex
4952 * @net: the applicable net namespace
4954 * Returns a suitable unique value for a new device interface
4955 * number. The caller must hold the rtnl semaphore or the
4956 * dev_base_lock to be sure it remains unique.
4958 static int dev_new_index(struct net *net)
4960 static int ifindex;
4961 for (;;) {
4962 if (++ifindex <= 0)
4963 ifindex = 1;
4964 if (!__dev_get_by_index(net, ifindex))
4965 return ifindex;
4969 /* Delayed registration/unregisteration */
4970 static LIST_HEAD(net_todo_list);
4972 static void net_set_todo(struct net_device *dev)
4974 list_add_tail(&dev->todo_list, &net_todo_list);
4977 static void rollback_registered_many(struct list_head *head)
4979 struct net_device *dev, *tmp;
4981 BUG_ON(dev_boot_phase);
4982 ASSERT_RTNL();
4984 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4985 /* Some devices call without registering
4986 * for initialization unwind. Remove those
4987 * devices and proceed with the remaining.
4989 if (dev->reg_state == NETREG_UNINITIALIZED) {
4990 pr_debug("unregister_netdevice: device %s/%p never "
4991 "was registered\n", dev->name, dev);
4993 WARN_ON(1);
4994 list_del(&dev->unreg_list);
4995 continue;
4998 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5001 /* If device is running, close it first. */
5002 dev_close_many(head);
5004 list_for_each_entry(dev, head, unreg_list) {
5005 /* And unlink it from device chain. */
5006 unlist_netdevice(dev);
5008 dev->reg_state = NETREG_UNREGISTERING;
5011 synchronize_net();
5013 list_for_each_entry(dev, head, unreg_list) {
5014 /* Shutdown queueing discipline. */
5015 dev_shutdown(dev);
5018 /* Notify protocols, that we are about to destroy
5019 this device. They should clean all the things.
5021 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5023 if (!dev->rtnl_link_ops ||
5024 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5025 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5028 * Flush the unicast and multicast chains
5030 dev_uc_flush(dev);
5031 dev_mc_flush(dev);
5033 if (dev->netdev_ops->ndo_uninit)
5034 dev->netdev_ops->ndo_uninit(dev);
5036 /* Notifier chain MUST detach us from master device. */
5037 WARN_ON(dev->master);
5039 /* Remove entries from kobject tree */
5040 netdev_unregister_kobject(dev);
5043 /* Process any work delayed until the end of the batch */
5044 dev = list_first_entry(head, struct net_device, unreg_list);
5045 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5047 rcu_barrier();
5049 list_for_each_entry(dev, head, unreg_list)
5050 dev_put(dev);
5053 static void rollback_registered(struct net_device *dev)
5055 LIST_HEAD(single);
5057 list_add(&dev->unreg_list, &single);
5058 rollback_registered_many(&single);
5061 unsigned long netdev_fix_features(unsigned long features, const char *name)
5063 /* Fix illegal SG+CSUM combinations. */
5064 if ((features & NETIF_F_SG) &&
5065 !(features & NETIF_F_ALL_CSUM)) {
5066 if (name)
5067 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5068 "checksum feature.\n", name);
5069 features &= ~NETIF_F_SG;
5072 /* TSO requires that SG is present as well. */
5073 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5074 if (name)
5075 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5076 "SG feature.\n", name);
5077 features &= ~NETIF_F_TSO;
5080 if (features & NETIF_F_UFO) {
5081 /* maybe split UFO into V4 and V6? */
5082 if (!((features & NETIF_F_GEN_CSUM) ||
5083 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5084 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5085 if (name)
5086 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5087 "since no checksum offload features.\n",
5088 name);
5089 features &= ~NETIF_F_UFO;
5092 if (!(features & NETIF_F_SG)) {
5093 if (name)
5094 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5095 "since no NETIF_F_SG feature.\n", name);
5096 features &= ~NETIF_F_UFO;
5100 return features;
5102 EXPORT_SYMBOL(netdev_fix_features);
5105 * netif_stacked_transfer_operstate - transfer operstate
5106 * @rootdev: the root or lower level device to transfer state from
5107 * @dev: the device to transfer operstate to
5109 * Transfer operational state from root to device. This is normally
5110 * called when a stacking relationship exists between the root
5111 * device and the device(a leaf device).
5113 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5114 struct net_device *dev)
5116 if (rootdev->operstate == IF_OPER_DORMANT)
5117 netif_dormant_on(dev);
5118 else
5119 netif_dormant_off(dev);
5121 if (netif_carrier_ok(rootdev)) {
5122 if (!netif_carrier_ok(dev))
5123 netif_carrier_on(dev);
5124 } else {
5125 if (netif_carrier_ok(dev))
5126 netif_carrier_off(dev);
5129 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5131 #ifdef CONFIG_RPS
5132 static int netif_alloc_rx_queues(struct net_device *dev)
5134 unsigned int i, count = dev->num_rx_queues;
5135 struct netdev_rx_queue *rx;
5137 BUG_ON(count < 1);
5139 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5140 if (!rx) {
5141 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5142 return -ENOMEM;
5144 dev->_rx = rx;
5146 for (i = 0; i < count; i++)
5147 rx[i].dev = dev;
5148 return 0;
5150 #endif
5152 static void netdev_init_one_queue(struct net_device *dev,
5153 struct netdev_queue *queue, void *_unused)
5155 /* Initialize queue lock */
5156 spin_lock_init(&queue->_xmit_lock);
5157 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5158 queue->xmit_lock_owner = -1;
5159 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5160 queue->dev = dev;
5163 static int netif_alloc_netdev_queues(struct net_device *dev)
5165 unsigned int count = dev->num_tx_queues;
5166 struct netdev_queue *tx;
5168 BUG_ON(count < 1);
5170 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5171 if (!tx) {
5172 pr_err("netdev: Unable to allocate %u tx queues.\n",
5173 count);
5174 return -ENOMEM;
5176 dev->_tx = tx;
5178 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5179 spin_lock_init(&dev->tx_global_lock);
5181 return 0;
5185 * register_netdevice - register a network device
5186 * @dev: device to register
5188 * Take a completed network device structure and add it to the kernel
5189 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5190 * chain. 0 is returned on success. A negative errno code is returned
5191 * on a failure to set up the device, or if the name is a duplicate.
5193 * Callers must hold the rtnl semaphore. You may want
5194 * register_netdev() instead of this.
5196 * BUGS:
5197 * The locking appears insufficient to guarantee two parallel registers
5198 * will not get the same name.
5201 int register_netdevice(struct net_device *dev)
5203 int ret;
5204 struct net *net = dev_net(dev);
5206 BUG_ON(dev_boot_phase);
5207 ASSERT_RTNL();
5209 might_sleep();
5211 /* When net_device's are persistent, this will be fatal. */
5212 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5213 BUG_ON(!net);
5215 spin_lock_init(&dev->addr_list_lock);
5216 netdev_set_addr_lockdep_class(dev);
5218 dev->iflink = -1;
5220 /* Init, if this function is available */
5221 if (dev->netdev_ops->ndo_init) {
5222 ret = dev->netdev_ops->ndo_init(dev);
5223 if (ret) {
5224 if (ret > 0)
5225 ret = -EIO;
5226 goto out;
5230 ret = dev_get_valid_name(dev, dev->name, 0);
5231 if (ret)
5232 goto err_uninit;
5234 dev->ifindex = dev_new_index(net);
5235 if (dev->iflink == -1)
5236 dev->iflink = dev->ifindex;
5238 /* Fix illegal checksum combinations */
5239 if ((dev->features & NETIF_F_HW_CSUM) &&
5240 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5241 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5242 dev->name);
5243 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5246 if ((dev->features & NETIF_F_NO_CSUM) &&
5247 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5248 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5249 dev->name);
5250 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5253 dev->features = netdev_fix_features(dev->features, dev->name);
5255 /* Enable software GSO if SG is supported. */
5256 if (dev->features & NETIF_F_SG)
5257 dev->features |= NETIF_F_GSO;
5259 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5260 * vlan_dev_init() will do the dev->features check, so these features
5261 * are enabled only if supported by underlying device.
5263 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5265 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5266 ret = notifier_to_errno(ret);
5267 if (ret)
5268 goto err_uninit;
5270 ret = netdev_register_kobject(dev);
5271 if (ret)
5272 goto err_uninit;
5273 dev->reg_state = NETREG_REGISTERED;
5276 * Default initial state at registry is that the
5277 * device is present.
5280 set_bit(__LINK_STATE_PRESENT, &dev->state);
5282 dev_init_scheduler(dev);
5283 dev_hold(dev);
5284 list_netdevice(dev);
5286 /* Notify protocols, that a new device appeared. */
5287 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5288 ret = notifier_to_errno(ret);
5289 if (ret) {
5290 rollback_registered(dev);
5291 dev->reg_state = NETREG_UNREGISTERED;
5294 * Prevent userspace races by waiting until the network
5295 * device is fully setup before sending notifications.
5297 if (!dev->rtnl_link_ops ||
5298 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5299 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5301 out:
5302 return ret;
5304 err_uninit:
5305 if (dev->netdev_ops->ndo_uninit)
5306 dev->netdev_ops->ndo_uninit(dev);
5307 goto out;
5309 EXPORT_SYMBOL(register_netdevice);
5312 * init_dummy_netdev - init a dummy network device for NAPI
5313 * @dev: device to init
5315 * This takes a network device structure and initialize the minimum
5316 * amount of fields so it can be used to schedule NAPI polls without
5317 * registering a full blown interface. This is to be used by drivers
5318 * that need to tie several hardware interfaces to a single NAPI
5319 * poll scheduler due to HW limitations.
5321 int init_dummy_netdev(struct net_device *dev)
5323 /* Clear everything. Note we don't initialize spinlocks
5324 * are they aren't supposed to be taken by any of the
5325 * NAPI code and this dummy netdev is supposed to be
5326 * only ever used for NAPI polls
5328 memset(dev, 0, sizeof(struct net_device));
5330 /* make sure we BUG if trying to hit standard
5331 * register/unregister code path
5333 dev->reg_state = NETREG_DUMMY;
5335 /* NAPI wants this */
5336 INIT_LIST_HEAD(&dev->napi_list);
5338 /* a dummy interface is started by default */
5339 set_bit(__LINK_STATE_PRESENT, &dev->state);
5340 set_bit(__LINK_STATE_START, &dev->state);
5342 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5343 * because users of this 'device' dont need to change
5344 * its refcount.
5347 return 0;
5349 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5353 * register_netdev - register a network device
5354 * @dev: device to register
5356 * Take a completed network device structure and add it to the kernel
5357 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5358 * chain. 0 is returned on success. A negative errno code is returned
5359 * on a failure to set up the device, or if the name is a duplicate.
5361 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5362 * and expands the device name if you passed a format string to
5363 * alloc_netdev.
5365 int register_netdev(struct net_device *dev)
5367 int err;
5369 rtnl_lock();
5372 * If the name is a format string the caller wants us to do a
5373 * name allocation.
5375 if (strchr(dev->name, '%')) {
5376 err = dev_alloc_name(dev, dev->name);
5377 if (err < 0)
5378 goto out;
5381 err = register_netdevice(dev);
5382 out:
5383 rtnl_unlock();
5384 return err;
5386 EXPORT_SYMBOL(register_netdev);
5388 int netdev_refcnt_read(const struct net_device *dev)
5390 int i, refcnt = 0;
5392 for_each_possible_cpu(i)
5393 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5394 return refcnt;
5396 EXPORT_SYMBOL(netdev_refcnt_read);
5399 * netdev_wait_allrefs - wait until all references are gone.
5401 * This is called when unregistering network devices.
5403 * Any protocol or device that holds a reference should register
5404 * for netdevice notification, and cleanup and put back the
5405 * reference if they receive an UNREGISTER event.
5406 * We can get stuck here if buggy protocols don't correctly
5407 * call dev_put.
5409 static void netdev_wait_allrefs(struct net_device *dev)
5411 unsigned long rebroadcast_time, warning_time;
5412 int refcnt;
5414 linkwatch_forget_dev(dev);
5416 rebroadcast_time = warning_time = jiffies;
5417 refcnt = netdev_refcnt_read(dev);
5419 while (refcnt != 0) {
5420 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5421 rtnl_lock();
5423 /* Rebroadcast unregister notification */
5424 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5425 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5426 * should have already handle it the first time */
5428 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5429 &dev->state)) {
5430 /* We must not have linkwatch events
5431 * pending on unregister. If this
5432 * happens, we simply run the queue
5433 * unscheduled, resulting in a noop
5434 * for this device.
5436 linkwatch_run_queue();
5439 __rtnl_unlock();
5441 rebroadcast_time = jiffies;
5444 msleep(250);
5446 refcnt = netdev_refcnt_read(dev);
5448 if (time_after(jiffies, warning_time + 10 * HZ)) {
5449 printk(KERN_EMERG "unregister_netdevice: "
5450 "waiting for %s to become free. Usage "
5451 "count = %d\n",
5452 dev->name, refcnt);
5453 warning_time = jiffies;
5458 /* The sequence is:
5460 * rtnl_lock();
5461 * ...
5462 * register_netdevice(x1);
5463 * register_netdevice(x2);
5464 * ...
5465 * unregister_netdevice(y1);
5466 * unregister_netdevice(y2);
5467 * ...
5468 * rtnl_unlock();
5469 * free_netdev(y1);
5470 * free_netdev(y2);
5472 * We are invoked by rtnl_unlock().
5473 * This allows us to deal with problems:
5474 * 1) We can delete sysfs objects which invoke hotplug
5475 * without deadlocking with linkwatch via keventd.
5476 * 2) Since we run with the RTNL semaphore not held, we can sleep
5477 * safely in order to wait for the netdev refcnt to drop to zero.
5479 * We must not return until all unregister events added during
5480 * the interval the lock was held have been completed.
5482 void netdev_run_todo(void)
5484 struct list_head list;
5486 /* Snapshot list, allow later requests */
5487 list_replace_init(&net_todo_list, &list);
5489 __rtnl_unlock();
5491 while (!list_empty(&list)) {
5492 struct net_device *dev
5493 = list_first_entry(&list, struct net_device, todo_list);
5494 list_del(&dev->todo_list);
5496 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5497 printk(KERN_ERR "network todo '%s' but state %d\n",
5498 dev->name, dev->reg_state);
5499 dump_stack();
5500 continue;
5503 dev->reg_state = NETREG_UNREGISTERED;
5505 on_each_cpu(flush_backlog, dev, 1);
5507 netdev_wait_allrefs(dev);
5509 /* paranoia */
5510 BUG_ON(netdev_refcnt_read(dev));
5511 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5512 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5513 WARN_ON(dev->dn_ptr);
5515 if (dev->destructor)
5516 dev->destructor(dev);
5518 /* Free network device */
5519 kobject_put(&dev->dev.kobj);
5524 * dev_txq_stats_fold - fold tx_queues stats
5525 * @dev: device to get statistics from
5526 * @stats: struct rtnl_link_stats64 to hold results
5528 void dev_txq_stats_fold(const struct net_device *dev,
5529 struct rtnl_link_stats64 *stats)
5531 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5532 unsigned int i;
5533 struct netdev_queue *txq;
5535 for (i = 0; i < dev->num_tx_queues; i++) {
5536 txq = netdev_get_tx_queue(dev, i);
5537 spin_lock_bh(&txq->_xmit_lock);
5538 tx_bytes += txq->tx_bytes;
5539 tx_packets += txq->tx_packets;
5540 tx_dropped += txq->tx_dropped;
5541 spin_unlock_bh(&txq->_xmit_lock);
5543 if (tx_bytes || tx_packets || tx_dropped) {
5544 stats->tx_bytes = tx_bytes;
5545 stats->tx_packets = tx_packets;
5546 stats->tx_dropped = tx_dropped;
5549 EXPORT_SYMBOL(dev_txq_stats_fold);
5551 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5552 * fields in the same order, with only the type differing.
5554 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5555 const struct net_device_stats *netdev_stats)
5557 #if BITS_PER_LONG == 64
5558 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5559 memcpy(stats64, netdev_stats, sizeof(*stats64));
5560 #else
5561 size_t i, n = sizeof(*stats64) / sizeof(u64);
5562 const unsigned long *src = (const unsigned long *)netdev_stats;
5563 u64 *dst = (u64 *)stats64;
5565 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5566 sizeof(*stats64) / sizeof(u64));
5567 for (i = 0; i < n; i++)
5568 dst[i] = src[i];
5569 #endif
5573 * dev_get_stats - get network device statistics
5574 * @dev: device to get statistics from
5575 * @storage: place to store stats
5577 * Get network statistics from device. Return @storage.
5578 * The device driver may provide its own method by setting
5579 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5580 * otherwise the internal statistics structure is used.
5582 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5583 struct rtnl_link_stats64 *storage)
5585 const struct net_device_ops *ops = dev->netdev_ops;
5587 if (ops->ndo_get_stats64) {
5588 memset(storage, 0, sizeof(*storage));
5589 ops->ndo_get_stats64(dev, storage);
5590 } else if (ops->ndo_get_stats) {
5591 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5592 } else {
5593 netdev_stats_to_stats64(storage, &dev->stats);
5594 dev_txq_stats_fold(dev, storage);
5596 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5597 return storage;
5599 EXPORT_SYMBOL(dev_get_stats);
5601 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5603 struct netdev_queue *queue = dev_ingress_queue(dev);
5605 #ifdef CONFIG_NET_CLS_ACT
5606 if (queue)
5607 return queue;
5608 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5609 if (!queue)
5610 return NULL;
5611 netdev_init_one_queue(dev, queue, NULL);
5612 queue->qdisc = &noop_qdisc;
5613 queue->qdisc_sleeping = &noop_qdisc;
5614 rcu_assign_pointer(dev->ingress_queue, queue);
5615 #endif
5616 return queue;
5620 * alloc_netdev_mq - allocate network device
5621 * @sizeof_priv: size of private data to allocate space for
5622 * @name: device name format string
5623 * @setup: callback to initialize device
5624 * @queue_count: the number of subqueues to allocate
5626 * Allocates a struct net_device with private data area for driver use
5627 * and performs basic initialization. Also allocates subquue structs
5628 * for each queue on the device at the end of the netdevice.
5630 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5631 void (*setup)(struct net_device *), unsigned int queue_count)
5633 struct net_device *dev;
5634 size_t alloc_size;
5635 struct net_device *p;
5637 BUG_ON(strlen(name) >= sizeof(dev->name));
5639 if (queue_count < 1) {
5640 pr_err("alloc_netdev: Unable to allocate device "
5641 "with zero queues.\n");
5642 return NULL;
5645 alloc_size = sizeof(struct net_device);
5646 if (sizeof_priv) {
5647 /* ensure 32-byte alignment of private area */
5648 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5649 alloc_size += sizeof_priv;
5651 /* ensure 32-byte alignment of whole construct */
5652 alloc_size += NETDEV_ALIGN - 1;
5654 p = kzalloc(alloc_size, GFP_KERNEL);
5655 if (!p) {
5656 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5657 return NULL;
5660 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5661 dev->padded = (char *)dev - (char *)p;
5663 dev->pcpu_refcnt = alloc_percpu(int);
5664 if (!dev->pcpu_refcnt)
5665 goto free_p;
5667 if (dev_addr_init(dev))
5668 goto free_pcpu;
5670 dev_mc_init(dev);
5671 dev_uc_init(dev);
5673 dev_net_set(dev, &init_net);
5675 dev->num_tx_queues = queue_count;
5676 dev->real_num_tx_queues = queue_count;
5677 if (netif_alloc_netdev_queues(dev))
5678 goto free_pcpu;
5680 #ifdef CONFIG_RPS
5681 dev->num_rx_queues = queue_count;
5682 dev->real_num_rx_queues = queue_count;
5683 if (netif_alloc_rx_queues(dev))
5684 goto free_pcpu;
5685 #endif
5687 dev->gso_max_size = GSO_MAX_SIZE;
5689 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5690 dev->ethtool_ntuple_list.count = 0;
5691 INIT_LIST_HEAD(&dev->napi_list);
5692 INIT_LIST_HEAD(&dev->unreg_list);
5693 INIT_LIST_HEAD(&dev->link_watch_list);
5694 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5695 setup(dev);
5696 strcpy(dev->name, name);
5697 return dev;
5699 free_pcpu:
5700 free_percpu(dev->pcpu_refcnt);
5701 kfree(dev->_tx);
5702 #ifdef CONFIG_RPS
5703 kfree(dev->_rx);
5704 #endif
5706 free_p:
5707 kfree(p);
5708 return NULL;
5710 EXPORT_SYMBOL(alloc_netdev_mq);
5713 * free_netdev - free network device
5714 * @dev: device
5716 * This function does the last stage of destroying an allocated device
5717 * interface. The reference to the device object is released.
5718 * If this is the last reference then it will be freed.
5720 void free_netdev(struct net_device *dev)
5722 struct napi_struct *p, *n;
5724 release_net(dev_net(dev));
5726 kfree(dev->_tx);
5727 #ifdef CONFIG_RPS
5728 kfree(dev->_rx);
5729 #endif
5731 kfree(rcu_dereference_raw(dev->ingress_queue));
5733 /* Flush device addresses */
5734 dev_addr_flush(dev);
5736 /* Clear ethtool n-tuple list */
5737 ethtool_ntuple_flush(dev);
5739 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5740 netif_napi_del(p);
5742 free_percpu(dev->pcpu_refcnt);
5743 dev->pcpu_refcnt = NULL;
5745 /* Compatibility with error handling in drivers */
5746 if (dev->reg_state == NETREG_UNINITIALIZED) {
5747 kfree((char *)dev - dev->padded);
5748 return;
5751 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5752 dev->reg_state = NETREG_RELEASED;
5754 /* will free via device release */
5755 put_device(&dev->dev);
5757 EXPORT_SYMBOL(free_netdev);
5760 * synchronize_net - Synchronize with packet receive processing
5762 * Wait for packets currently being received to be done.
5763 * Does not block later packets from starting.
5765 void synchronize_net(void)
5767 might_sleep();
5768 synchronize_rcu();
5770 EXPORT_SYMBOL(synchronize_net);
5773 * unregister_netdevice_queue - remove device from the kernel
5774 * @dev: device
5775 * @head: list
5777 * This function shuts down a device interface and removes it
5778 * from the kernel tables.
5779 * If head not NULL, device is queued to be unregistered later.
5781 * Callers must hold the rtnl semaphore. You may want
5782 * unregister_netdev() instead of this.
5785 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5787 ASSERT_RTNL();
5789 if (head) {
5790 list_move_tail(&dev->unreg_list, head);
5791 } else {
5792 rollback_registered(dev);
5793 /* Finish processing unregister after unlock */
5794 net_set_todo(dev);
5797 EXPORT_SYMBOL(unregister_netdevice_queue);
5800 * unregister_netdevice_many - unregister many devices
5801 * @head: list of devices
5803 void unregister_netdevice_many(struct list_head *head)
5805 struct net_device *dev;
5807 if (!list_empty(head)) {
5808 rollback_registered_many(head);
5809 list_for_each_entry(dev, head, unreg_list)
5810 net_set_todo(dev);
5813 EXPORT_SYMBOL(unregister_netdevice_many);
5816 * unregister_netdev - remove device from the kernel
5817 * @dev: device
5819 * This function shuts down a device interface and removes it
5820 * from the kernel tables.
5822 * This is just a wrapper for unregister_netdevice that takes
5823 * the rtnl semaphore. In general you want to use this and not
5824 * unregister_netdevice.
5826 void unregister_netdev(struct net_device *dev)
5828 rtnl_lock();
5829 unregister_netdevice(dev);
5830 rtnl_unlock();
5832 EXPORT_SYMBOL(unregister_netdev);
5835 * dev_change_net_namespace - move device to different nethost namespace
5836 * @dev: device
5837 * @net: network namespace
5838 * @pat: If not NULL name pattern to try if the current device name
5839 * is already taken in the destination network namespace.
5841 * This function shuts down a device interface and moves it
5842 * to a new network namespace. On success 0 is returned, on
5843 * a failure a netagive errno code is returned.
5845 * Callers must hold the rtnl semaphore.
5848 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5850 int err;
5852 ASSERT_RTNL();
5854 /* Don't allow namespace local devices to be moved. */
5855 err = -EINVAL;
5856 if (dev->features & NETIF_F_NETNS_LOCAL)
5857 goto out;
5859 /* Ensure the device has been registrered */
5860 err = -EINVAL;
5861 if (dev->reg_state != NETREG_REGISTERED)
5862 goto out;
5864 /* Get out if there is nothing todo */
5865 err = 0;
5866 if (net_eq(dev_net(dev), net))
5867 goto out;
5869 /* Pick the destination device name, and ensure
5870 * we can use it in the destination network namespace.
5872 err = -EEXIST;
5873 if (__dev_get_by_name(net, dev->name)) {
5874 /* We get here if we can't use the current device name */
5875 if (!pat)
5876 goto out;
5877 if (dev_get_valid_name(dev, pat, 1))
5878 goto out;
5882 * And now a mini version of register_netdevice unregister_netdevice.
5885 /* If device is running close it first. */
5886 dev_close(dev);
5888 /* And unlink it from device chain */
5889 err = -ENODEV;
5890 unlist_netdevice(dev);
5892 synchronize_net();
5894 /* Shutdown queueing discipline. */
5895 dev_shutdown(dev);
5897 /* Notify protocols, that we are about to destroy
5898 this device. They should clean all the things.
5900 Note that dev->reg_state stays at NETREG_REGISTERED.
5901 This is wanted because this way 8021q and macvlan know
5902 the device is just moving and can keep their slaves up.
5904 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5905 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5908 * Flush the unicast and multicast chains
5910 dev_uc_flush(dev);
5911 dev_mc_flush(dev);
5913 /* Actually switch the network namespace */
5914 dev_net_set(dev, net);
5916 /* If there is an ifindex conflict assign a new one */
5917 if (__dev_get_by_index(net, dev->ifindex)) {
5918 int iflink = (dev->iflink == dev->ifindex);
5919 dev->ifindex = dev_new_index(net);
5920 if (iflink)
5921 dev->iflink = dev->ifindex;
5924 /* Fixup kobjects */
5925 err = device_rename(&dev->dev, dev->name);
5926 WARN_ON(err);
5928 /* Add the device back in the hashes */
5929 list_netdevice(dev);
5931 /* Notify protocols, that a new device appeared. */
5932 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5935 * Prevent userspace races by waiting until the network
5936 * device is fully setup before sending notifications.
5938 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5940 synchronize_net();
5941 err = 0;
5942 out:
5943 return err;
5945 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5947 static int dev_cpu_callback(struct notifier_block *nfb,
5948 unsigned long action,
5949 void *ocpu)
5951 struct sk_buff **list_skb;
5952 struct sk_buff *skb;
5953 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5954 struct softnet_data *sd, *oldsd;
5956 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5957 return NOTIFY_OK;
5959 local_irq_disable();
5960 cpu = smp_processor_id();
5961 sd = &per_cpu(softnet_data, cpu);
5962 oldsd = &per_cpu(softnet_data, oldcpu);
5964 /* Find end of our completion_queue. */
5965 list_skb = &sd->completion_queue;
5966 while (*list_skb)
5967 list_skb = &(*list_skb)->next;
5968 /* Append completion queue from offline CPU. */
5969 *list_skb = oldsd->completion_queue;
5970 oldsd->completion_queue = NULL;
5972 /* Append output queue from offline CPU. */
5973 if (oldsd->output_queue) {
5974 *sd->output_queue_tailp = oldsd->output_queue;
5975 sd->output_queue_tailp = oldsd->output_queue_tailp;
5976 oldsd->output_queue = NULL;
5977 oldsd->output_queue_tailp = &oldsd->output_queue;
5980 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5981 local_irq_enable();
5983 /* Process offline CPU's input_pkt_queue */
5984 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5985 netif_rx(skb);
5986 input_queue_head_incr(oldsd);
5988 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5989 netif_rx(skb);
5990 input_queue_head_incr(oldsd);
5993 return NOTIFY_OK;
5998 * netdev_increment_features - increment feature set by one
5999 * @all: current feature set
6000 * @one: new feature set
6001 * @mask: mask feature set
6003 * Computes a new feature set after adding a device with feature set
6004 * @one to the master device with current feature set @all. Will not
6005 * enable anything that is off in @mask. Returns the new feature set.
6007 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6008 unsigned long mask)
6010 /* If device needs checksumming, downgrade to it. */
6011 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6012 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6013 else if (mask & NETIF_F_ALL_CSUM) {
6014 /* If one device supports v4/v6 checksumming, set for all. */
6015 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6016 !(all & NETIF_F_GEN_CSUM)) {
6017 all &= ~NETIF_F_ALL_CSUM;
6018 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6021 /* If one device supports hw checksumming, set for all. */
6022 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6023 all &= ~NETIF_F_ALL_CSUM;
6024 all |= NETIF_F_HW_CSUM;
6028 one |= NETIF_F_ALL_CSUM;
6030 one |= all & NETIF_F_ONE_FOR_ALL;
6031 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6032 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6034 return all;
6036 EXPORT_SYMBOL(netdev_increment_features);
6038 static struct hlist_head *netdev_create_hash(void)
6040 int i;
6041 struct hlist_head *hash;
6043 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6044 if (hash != NULL)
6045 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6046 INIT_HLIST_HEAD(&hash[i]);
6048 return hash;
6051 /* Initialize per network namespace state */
6052 static int __net_init netdev_init(struct net *net)
6054 INIT_LIST_HEAD(&net->dev_base_head);
6056 net->dev_name_head = netdev_create_hash();
6057 if (net->dev_name_head == NULL)
6058 goto err_name;
6060 net->dev_index_head = netdev_create_hash();
6061 if (net->dev_index_head == NULL)
6062 goto err_idx;
6064 return 0;
6066 err_idx:
6067 kfree(net->dev_name_head);
6068 err_name:
6069 return -ENOMEM;
6073 * netdev_drivername - network driver for the device
6074 * @dev: network device
6075 * @buffer: buffer for resulting name
6076 * @len: size of buffer
6078 * Determine network driver for device.
6080 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6082 const struct device_driver *driver;
6083 const struct device *parent;
6085 if (len <= 0 || !buffer)
6086 return buffer;
6087 buffer[0] = 0;
6089 parent = dev->dev.parent;
6091 if (!parent)
6092 return buffer;
6094 driver = parent->driver;
6095 if (driver && driver->name)
6096 strlcpy(buffer, driver->name, len);
6097 return buffer;
6100 static int __netdev_printk(const char *level, const struct net_device *dev,
6101 struct va_format *vaf)
6103 int r;
6105 if (dev && dev->dev.parent)
6106 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6107 netdev_name(dev), vaf);
6108 else if (dev)
6109 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6110 else
6111 r = printk("%s(NULL net_device): %pV", level, vaf);
6113 return r;
6116 int netdev_printk(const char *level, const struct net_device *dev,
6117 const char *format, ...)
6119 struct va_format vaf;
6120 va_list args;
6121 int r;
6123 va_start(args, format);
6125 vaf.fmt = format;
6126 vaf.va = &args;
6128 r = __netdev_printk(level, dev, &vaf);
6129 va_end(args);
6131 return r;
6133 EXPORT_SYMBOL(netdev_printk);
6135 #define define_netdev_printk_level(func, level) \
6136 int func(const struct net_device *dev, const char *fmt, ...) \
6138 int r; \
6139 struct va_format vaf; \
6140 va_list args; \
6142 va_start(args, fmt); \
6144 vaf.fmt = fmt; \
6145 vaf.va = &args; \
6147 r = __netdev_printk(level, dev, &vaf); \
6148 va_end(args); \
6150 return r; \
6152 EXPORT_SYMBOL(func);
6154 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6155 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6156 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6157 define_netdev_printk_level(netdev_err, KERN_ERR);
6158 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6159 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6160 define_netdev_printk_level(netdev_info, KERN_INFO);
6162 static void __net_exit netdev_exit(struct net *net)
6164 kfree(net->dev_name_head);
6165 kfree(net->dev_index_head);
6168 static struct pernet_operations __net_initdata netdev_net_ops = {
6169 .init = netdev_init,
6170 .exit = netdev_exit,
6173 static void __net_exit default_device_exit(struct net *net)
6175 struct net_device *dev, *aux;
6177 * Push all migratable network devices back to the
6178 * initial network namespace
6180 rtnl_lock();
6181 for_each_netdev_safe(net, dev, aux) {
6182 int err;
6183 char fb_name[IFNAMSIZ];
6185 /* Ignore unmoveable devices (i.e. loopback) */
6186 if (dev->features & NETIF_F_NETNS_LOCAL)
6187 continue;
6189 /* Leave virtual devices for the generic cleanup */
6190 if (dev->rtnl_link_ops)
6191 continue;
6193 /* Push remaing network devices to init_net */
6194 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6195 err = dev_change_net_namespace(dev, &init_net, fb_name);
6196 if (err) {
6197 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6198 __func__, dev->name, err);
6199 BUG();
6202 rtnl_unlock();
6205 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6207 /* At exit all network devices most be removed from a network
6208 * namespace. Do this in the reverse order of registeration.
6209 * Do this across as many network namespaces as possible to
6210 * improve batching efficiency.
6212 struct net_device *dev;
6213 struct net *net;
6214 LIST_HEAD(dev_kill_list);
6216 rtnl_lock();
6217 list_for_each_entry(net, net_list, exit_list) {
6218 for_each_netdev_reverse(net, dev) {
6219 if (dev->rtnl_link_ops)
6220 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6221 else
6222 unregister_netdevice_queue(dev, &dev_kill_list);
6225 unregister_netdevice_many(&dev_kill_list);
6226 rtnl_unlock();
6229 static struct pernet_operations __net_initdata default_device_ops = {
6230 .exit = default_device_exit,
6231 .exit_batch = default_device_exit_batch,
6235 * Initialize the DEV module. At boot time this walks the device list and
6236 * unhooks any devices that fail to initialise (normally hardware not
6237 * present) and leaves us with a valid list of present and active devices.
6242 * This is called single threaded during boot, so no need
6243 * to take the rtnl semaphore.
6245 static int __init net_dev_init(void)
6247 int i, rc = -ENOMEM;
6249 BUG_ON(!dev_boot_phase);
6251 if (dev_proc_init())
6252 goto out;
6254 if (netdev_kobject_init())
6255 goto out;
6257 INIT_LIST_HEAD(&ptype_all);
6258 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6259 INIT_LIST_HEAD(&ptype_base[i]);
6261 if (register_pernet_subsys(&netdev_net_ops))
6262 goto out;
6265 * Initialise the packet receive queues.
6268 for_each_possible_cpu(i) {
6269 struct softnet_data *sd = &per_cpu(softnet_data, i);
6271 memset(sd, 0, sizeof(*sd));
6272 skb_queue_head_init(&sd->input_pkt_queue);
6273 skb_queue_head_init(&sd->process_queue);
6274 sd->completion_queue = NULL;
6275 INIT_LIST_HEAD(&sd->poll_list);
6276 sd->output_queue = NULL;
6277 sd->output_queue_tailp = &sd->output_queue;
6278 #ifdef CONFIG_RPS
6279 sd->csd.func = rps_trigger_softirq;
6280 sd->csd.info = sd;
6281 sd->csd.flags = 0;
6282 sd->cpu = i;
6283 #endif
6285 sd->backlog.poll = process_backlog;
6286 sd->backlog.weight = weight_p;
6287 sd->backlog.gro_list = NULL;
6288 sd->backlog.gro_count = 0;
6291 dev_boot_phase = 0;
6293 /* The loopback device is special if any other network devices
6294 * is present in a network namespace the loopback device must
6295 * be present. Since we now dynamically allocate and free the
6296 * loopback device ensure this invariant is maintained by
6297 * keeping the loopback device as the first device on the
6298 * list of network devices. Ensuring the loopback devices
6299 * is the first device that appears and the last network device
6300 * that disappears.
6302 if (register_pernet_device(&loopback_net_ops))
6303 goto out;
6305 if (register_pernet_device(&default_device_ops))
6306 goto out;
6308 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6309 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6311 hotcpu_notifier(dev_cpu_callback, 0);
6312 dst_init();
6313 dev_mcast_init();
6314 rc = 0;
6315 out:
6316 return rc;
6319 subsys_initcall(net_dev_init);
6321 static int __init initialize_hashrnd(void)
6323 get_random_bytes(&hashrnd, sizeof(hashrnd));
6324 return 0;
6327 late_initcall_sync(initialize_hashrnd);