4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
62 * dentry->d_inode->i_lock
65 * dcache_hash_bucket lock
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
71 * dentry->d_parent->d_lock
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
79 int sysctl_vfs_cache_pressure __read_mostly
= 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
82 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
83 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
85 EXPORT_SYMBOL(rename_lock
);
87 static struct kmem_cache
*dentry_cache __read_mostly
;
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(struct dentry
*parent
,
108 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
109 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
110 return dentry_hashtable
+ (hash
& D_HASHMASK
);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat
= {
118 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
125 for_each_possible_cpu(i
)
126 sum
+= per_cpu(nr_dentry
, i
);
127 return sum
< 0 ? 0 : sum
;
130 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
131 size_t *lenp
, loff_t
*ppos
)
133 dentry_stat
.nr_dentry
= get_nr_dentry();
134 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
138 static void __d_free(struct rcu_head
*head
)
140 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
142 WARN_ON(!list_empty(&dentry
->d_alias
));
143 if (dname_external(dentry
))
144 kfree(dentry
->d_name
.name
);
145 kmem_cache_free(dentry_cache
, dentry
);
151 static void d_free(struct dentry
*dentry
)
153 BUG_ON(dentry
->d_count
);
154 this_cpu_dec(nr_dentry
);
155 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
156 dentry
->d_op
->d_release(dentry
);
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
160 __d_free(&dentry
->d_u
.d_rcu
);
162 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
172 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
174 assert_spin_locked(&dentry
->d_lock
);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry
->d_seq
);
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
184 static void dentry_iput(struct dentry
* dentry
)
185 __releases(dentry
->d_lock
)
186 __releases(dentry
->d_inode
->i_lock
)
188 struct inode
*inode
= dentry
->d_inode
;
190 dentry
->d_inode
= NULL
;
191 list_del_init(&dentry
->d_alias
);
192 spin_unlock(&dentry
->d_lock
);
193 spin_unlock(&inode
->i_lock
);
195 fsnotify_inoderemove(inode
);
196 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
197 dentry
->d_op
->d_iput(dentry
, inode
);
201 spin_unlock(&dentry
->d_lock
);
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
209 static void dentry_unlink_inode(struct dentry
* dentry
)
210 __releases(dentry
->d_lock
)
211 __releases(dentry
->d_inode
->i_lock
)
213 struct inode
*inode
= dentry
->d_inode
;
214 dentry
->d_inode
= NULL
;
215 list_del_init(&dentry
->d_alias
);
216 dentry_rcuwalk_barrier(dentry
);
217 spin_unlock(&dentry
->d_lock
);
218 spin_unlock(&inode
->i_lock
);
220 fsnotify_inoderemove(inode
);
221 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
222 dentry
->d_op
->d_iput(dentry
, inode
);
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
230 static void dentry_lru_add(struct dentry
*dentry
)
232 if (list_empty(&dentry
->d_lru
)) {
233 spin_lock(&dcache_lru_lock
);
234 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
235 dentry
->d_sb
->s_nr_dentry_unused
++;
236 dentry_stat
.nr_unused
++;
237 spin_unlock(&dcache_lru_lock
);
241 static void __dentry_lru_del(struct dentry
*dentry
)
243 list_del_init(&dentry
->d_lru
);
244 dentry
->d_sb
->s_nr_dentry_unused
--;
245 dentry_stat
.nr_unused
--;
248 static void dentry_lru_del(struct dentry
*dentry
)
250 if (!list_empty(&dentry
->d_lru
)) {
251 spin_lock(&dcache_lru_lock
);
252 __dentry_lru_del(dentry
);
253 spin_unlock(&dcache_lru_lock
);
257 static void dentry_lru_move_tail(struct dentry
*dentry
)
259 spin_lock(&dcache_lru_lock
);
260 if (list_empty(&dentry
->d_lru
)) {
261 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
262 dentry
->d_sb
->s_nr_dentry_unused
++;
263 dentry_stat
.nr_unused
++;
265 list_move_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
267 spin_unlock(&dcache_lru_lock
);
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
273 * @parent: parent dentry
275 * The dentry must already be unhashed and removed from the LRU.
277 * If this is the root of the dentry tree, return NULL.
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
282 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
283 __releases(dentry
->d_lock
)
284 __releases(parent
->d_lock
)
285 __releases(dentry
->d_inode
->i_lock
)
287 list_del(&dentry
->d_u
.d_child
);
289 * Inform try_to_ascend() that we are no longer attached to the
292 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
294 spin_unlock(&parent
->d_lock
);
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
305 * Unhash a dentry without inserting an RCU walk barrier or checking that
306 * dentry->d_lock is locked. The caller must take care of that, if
309 static void __d_shrink(struct dentry
*dentry
)
311 if (!d_unhashed(dentry
)) {
312 struct hlist_bl_head
*b
;
313 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
314 b
= &dentry
->d_sb
->s_anon
;
316 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
319 __hlist_bl_del(&dentry
->d_hash
);
320 dentry
->d_hash
.pprev
= NULL
;
326 * d_drop - drop a dentry
327 * @dentry: dentry to drop
329 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
330 * be found through a VFS lookup any more. Note that this is different from
331 * deleting the dentry - d_delete will try to mark the dentry negative if
332 * possible, giving a successful _negative_ lookup, while d_drop will
333 * just make the cache lookup fail.
335 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
336 * reason (NFS timeouts or autofs deletes).
338 * __d_drop requires dentry->d_lock.
340 void __d_drop(struct dentry
*dentry
)
342 if (!d_unhashed(dentry
)) {
344 dentry_rcuwalk_barrier(dentry
);
347 EXPORT_SYMBOL(__d_drop
);
349 void d_drop(struct dentry
*dentry
)
351 spin_lock(&dentry
->d_lock
);
353 spin_unlock(&dentry
->d_lock
);
355 EXPORT_SYMBOL(d_drop
);
358 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
359 * @dentry: dentry to drop
361 * This is called when we do a lookup on a placeholder dentry that needed to be
362 * looked up. The dentry should have been hashed in order for it to be found by
363 * the lookup code, but now needs to be unhashed while we do the actual lookup
364 * and clear the DCACHE_NEED_LOOKUP flag.
366 void d_clear_need_lookup(struct dentry
*dentry
)
368 spin_lock(&dentry
->d_lock
);
370 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
371 spin_unlock(&dentry
->d_lock
);
373 EXPORT_SYMBOL(d_clear_need_lookup
);
376 * Finish off a dentry we've decided to kill.
377 * dentry->d_lock must be held, returns with it unlocked.
378 * If ref is non-zero, then decrement the refcount too.
379 * Returns dentry requiring refcount drop, or NULL if we're done.
381 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
382 __releases(dentry
->d_lock
)
385 struct dentry
*parent
;
387 inode
= dentry
->d_inode
;
388 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
390 spin_unlock(&dentry
->d_lock
);
392 return dentry
; /* try again with same dentry */
397 parent
= dentry
->d_parent
;
398 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
400 spin_unlock(&inode
->i_lock
);
406 /* if dentry was on the d_lru list delete it from there */
407 dentry_lru_del(dentry
);
408 /* if it was on the hash then remove it */
410 return d_kill(dentry
, parent
);
416 * This is complicated by the fact that we do not want to put
417 * dentries that are no longer on any hash chain on the unused
418 * list: we'd much rather just get rid of them immediately.
420 * However, that implies that we have to traverse the dentry
421 * tree upwards to the parents which might _also_ now be
422 * scheduled for deletion (it may have been only waiting for
423 * its last child to go away).
425 * This tail recursion is done by hand as we don't want to depend
426 * on the compiler to always get this right (gcc generally doesn't).
427 * Real recursion would eat up our stack space.
431 * dput - release a dentry
432 * @dentry: dentry to release
434 * Release a dentry. This will drop the usage count and if appropriate
435 * call the dentry unlink method as well as removing it from the queues and
436 * releasing its resources. If the parent dentries were scheduled for release
437 * they too may now get deleted.
439 void dput(struct dentry
*dentry
)
445 if (dentry
->d_count
== 1)
447 spin_lock(&dentry
->d_lock
);
448 BUG_ON(!dentry
->d_count
);
449 if (dentry
->d_count
> 1) {
451 spin_unlock(&dentry
->d_lock
);
455 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
456 if (dentry
->d_op
->d_delete(dentry
))
460 /* Unreachable? Get rid of it */
461 if (d_unhashed(dentry
))
465 * If this dentry needs lookup, don't set the referenced flag so that it
466 * is more likely to be cleaned up by the dcache shrinker in case of
469 if (!d_need_lookup(dentry
))
470 dentry
->d_flags
|= DCACHE_REFERENCED
;
471 dentry_lru_add(dentry
);
474 spin_unlock(&dentry
->d_lock
);
478 dentry
= dentry_kill(dentry
, 1);
485 * d_invalidate - invalidate a dentry
486 * @dentry: dentry to invalidate
488 * Try to invalidate the dentry if it turns out to be
489 * possible. If there are other dentries that can be
490 * reached through this one we can't delete it and we
491 * return -EBUSY. On success we return 0.
496 int d_invalidate(struct dentry
* dentry
)
499 * If it's already been dropped, return OK.
501 spin_lock(&dentry
->d_lock
);
502 if (d_unhashed(dentry
)) {
503 spin_unlock(&dentry
->d_lock
);
507 * Check whether to do a partial shrink_dcache
508 * to get rid of unused child entries.
510 if (!list_empty(&dentry
->d_subdirs
)) {
511 spin_unlock(&dentry
->d_lock
);
512 shrink_dcache_parent(dentry
);
513 spin_lock(&dentry
->d_lock
);
517 * Somebody else still using it?
519 * If it's a directory, we can't drop it
520 * for fear of somebody re-populating it
521 * with children (even though dropping it
522 * would make it unreachable from the root,
523 * we might still populate it if it was a
524 * working directory or similar).
526 if (dentry
->d_count
> 1) {
527 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
528 spin_unlock(&dentry
->d_lock
);
534 spin_unlock(&dentry
->d_lock
);
537 EXPORT_SYMBOL(d_invalidate
);
539 /* This must be called with d_lock held */
540 static inline void __dget_dlock(struct dentry
*dentry
)
545 static inline void __dget(struct dentry
*dentry
)
547 spin_lock(&dentry
->d_lock
);
548 __dget_dlock(dentry
);
549 spin_unlock(&dentry
->d_lock
);
552 struct dentry
*dget_parent(struct dentry
*dentry
)
558 * Don't need rcu_dereference because we re-check it was correct under
562 ret
= dentry
->d_parent
;
563 spin_lock(&ret
->d_lock
);
564 if (unlikely(ret
!= dentry
->d_parent
)) {
565 spin_unlock(&ret
->d_lock
);
570 BUG_ON(!ret
->d_count
);
572 spin_unlock(&ret
->d_lock
);
575 EXPORT_SYMBOL(dget_parent
);
578 * d_find_alias - grab a hashed alias of inode
579 * @inode: inode in question
580 * @want_discon: flag, used by d_splice_alias, to request
581 * that only a DISCONNECTED alias be returned.
583 * If inode has a hashed alias, or is a directory and has any alias,
584 * acquire the reference to alias and return it. Otherwise return NULL.
585 * Notice that if inode is a directory there can be only one alias and
586 * it can be unhashed only if it has no children, or if it is the root
589 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
590 * any other hashed alias over that one unless @want_discon is set,
591 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
593 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
595 struct dentry
*alias
, *discon_alias
;
599 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
600 spin_lock(&alias
->d_lock
);
601 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
602 if (IS_ROOT(alias
) &&
603 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
604 discon_alias
= alias
;
605 } else if (!want_discon
) {
607 spin_unlock(&alias
->d_lock
);
611 spin_unlock(&alias
->d_lock
);
614 alias
= discon_alias
;
615 spin_lock(&alias
->d_lock
);
616 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
617 if (IS_ROOT(alias
) &&
618 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
620 spin_unlock(&alias
->d_lock
);
624 spin_unlock(&alias
->d_lock
);
630 struct dentry
*d_find_alias(struct inode
*inode
)
632 struct dentry
*de
= NULL
;
634 if (!list_empty(&inode
->i_dentry
)) {
635 spin_lock(&inode
->i_lock
);
636 de
= __d_find_alias(inode
, 0);
637 spin_unlock(&inode
->i_lock
);
641 EXPORT_SYMBOL(d_find_alias
);
644 * Try to kill dentries associated with this inode.
645 * WARNING: you must own a reference to inode.
647 void d_prune_aliases(struct inode
*inode
)
649 struct dentry
*dentry
;
651 spin_lock(&inode
->i_lock
);
652 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
653 spin_lock(&dentry
->d_lock
);
654 if (!dentry
->d_count
) {
655 __dget_dlock(dentry
);
657 spin_unlock(&dentry
->d_lock
);
658 spin_unlock(&inode
->i_lock
);
662 spin_unlock(&dentry
->d_lock
);
664 spin_unlock(&inode
->i_lock
);
666 EXPORT_SYMBOL(d_prune_aliases
);
669 * Try to throw away a dentry - free the inode, dput the parent.
670 * Requires dentry->d_lock is held, and dentry->d_count == 0.
671 * Releases dentry->d_lock.
673 * This may fail if locks cannot be acquired no problem, just try again.
675 static void try_prune_one_dentry(struct dentry
*dentry
)
676 __releases(dentry
->d_lock
)
678 struct dentry
*parent
;
680 parent
= dentry_kill(dentry
, 0);
682 * If dentry_kill returns NULL, we have nothing more to do.
683 * if it returns the same dentry, trylocks failed. In either
684 * case, just loop again.
686 * Otherwise, we need to prune ancestors too. This is necessary
687 * to prevent quadratic behavior of shrink_dcache_parent(), but
688 * is also expected to be beneficial in reducing dentry cache
693 if (parent
== dentry
)
696 /* Prune ancestors. */
699 spin_lock(&dentry
->d_lock
);
700 if (dentry
->d_count
> 1) {
702 spin_unlock(&dentry
->d_lock
);
705 dentry
= dentry_kill(dentry
, 1);
709 static void shrink_dentry_list(struct list_head
*list
)
711 struct dentry
*dentry
;
715 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
716 if (&dentry
->d_lru
== list
)
718 spin_lock(&dentry
->d_lock
);
719 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
720 spin_unlock(&dentry
->d_lock
);
725 * We found an inuse dentry which was not removed from
726 * the LRU because of laziness during lookup. Do not free
727 * it - just keep it off the LRU list.
729 if (dentry
->d_count
) {
730 dentry_lru_del(dentry
);
731 spin_unlock(&dentry
->d_lock
);
737 try_prune_one_dentry(dentry
);
745 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
746 * @sb: superblock to shrink dentry LRU.
747 * @count: number of entries to prune
748 * @flags: flags to control the dentry processing
750 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
752 static void __shrink_dcache_sb(struct super_block
*sb
, int count
, int flags
)
754 struct dentry
*dentry
;
755 LIST_HEAD(referenced
);
759 spin_lock(&dcache_lru_lock
);
760 while (!list_empty(&sb
->s_dentry_lru
)) {
761 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
762 struct dentry
, d_lru
);
763 BUG_ON(dentry
->d_sb
!= sb
);
765 if (!spin_trylock(&dentry
->d_lock
)) {
766 spin_unlock(&dcache_lru_lock
);
772 * If we are honouring the DCACHE_REFERENCED flag and the
773 * dentry has this flag set, don't free it. Clear the flag
774 * and put it back on the LRU.
776 if (flags
& DCACHE_REFERENCED
&&
777 dentry
->d_flags
& DCACHE_REFERENCED
) {
778 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
779 list_move(&dentry
->d_lru
, &referenced
);
780 spin_unlock(&dentry
->d_lock
);
782 list_move_tail(&dentry
->d_lru
, &tmp
);
783 spin_unlock(&dentry
->d_lock
);
787 cond_resched_lock(&dcache_lru_lock
);
789 if (!list_empty(&referenced
))
790 list_splice(&referenced
, &sb
->s_dentry_lru
);
791 spin_unlock(&dcache_lru_lock
);
793 shrink_dentry_list(&tmp
);
797 * prune_dcache_sb - shrink the dcache
798 * @nr_to_scan: number of entries to try to free
800 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
801 * done when we need more memory an called from the superblock shrinker
804 * This function may fail to free any resources if all the dentries are in
807 void prune_dcache_sb(struct super_block
*sb
, int nr_to_scan
)
809 __shrink_dcache_sb(sb
, nr_to_scan
, DCACHE_REFERENCED
);
813 * shrink_dcache_sb - shrink dcache for a superblock
816 * Shrink the dcache for the specified super block. This is used to free
817 * the dcache before unmounting a file system.
819 void shrink_dcache_sb(struct super_block
*sb
)
823 spin_lock(&dcache_lru_lock
);
824 while (!list_empty(&sb
->s_dentry_lru
)) {
825 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
826 spin_unlock(&dcache_lru_lock
);
827 shrink_dentry_list(&tmp
);
828 spin_lock(&dcache_lru_lock
);
830 spin_unlock(&dcache_lru_lock
);
832 EXPORT_SYMBOL(shrink_dcache_sb
);
835 * destroy a single subtree of dentries for unmount
836 * - see the comments on shrink_dcache_for_umount() for a description of the
839 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
841 struct dentry
*parent
;
843 BUG_ON(!IS_ROOT(dentry
));
845 /* detach this root from the system */
846 dentry_lru_del(dentry
);
850 /* descend to the first leaf in the current subtree */
851 while (!list_empty(&dentry
->d_subdirs
)) {
854 /* this is a branch with children - detach all of them
855 * from the system in one go */
856 list_for_each_entry(loop
, &dentry
->d_subdirs
,
858 dentry_lru_del(loop
);
862 /* move to the first child */
863 dentry
= list_entry(dentry
->d_subdirs
.next
,
864 struct dentry
, d_u
.d_child
);
867 /* consume the dentries from this leaf up through its parents
868 * until we find one with children or run out altogether */
872 if (dentry
->d_count
!= 0) {
874 "BUG: Dentry %p{i=%lx,n=%s}"
876 " [unmount of %s %s]\n",
879 dentry
->d_inode
->i_ino
: 0UL,
882 dentry
->d_sb
->s_type
->name
,
887 if (IS_ROOT(dentry
)) {
889 list_del(&dentry
->d_u
.d_child
);
891 parent
= dentry
->d_parent
;
893 list_del(&dentry
->d_u
.d_child
);
896 inode
= dentry
->d_inode
;
898 dentry
->d_inode
= NULL
;
899 list_del_init(&dentry
->d_alias
);
900 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
901 dentry
->d_op
->d_iput(dentry
, inode
);
908 /* finished when we fall off the top of the tree,
909 * otherwise we ascend to the parent and move to the
910 * next sibling if there is one */
914 } while (list_empty(&dentry
->d_subdirs
));
916 dentry
= list_entry(dentry
->d_subdirs
.next
,
917 struct dentry
, d_u
.d_child
);
922 * destroy the dentries attached to a superblock on unmounting
923 * - we don't need to use dentry->d_lock because:
924 * - the superblock is detached from all mountings and open files, so the
925 * dentry trees will not be rearranged by the VFS
926 * - s_umount is write-locked, so the memory pressure shrinker will ignore
927 * any dentries belonging to this superblock that it comes across
928 * - the filesystem itself is no longer permitted to rearrange the dentries
931 void shrink_dcache_for_umount(struct super_block
*sb
)
933 struct dentry
*dentry
;
935 if (down_read_trylock(&sb
->s_umount
))
941 shrink_dcache_for_umount_subtree(dentry
);
943 while (!hlist_bl_empty(&sb
->s_anon
)) {
944 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
945 shrink_dcache_for_umount_subtree(dentry
);
950 * This tries to ascend one level of parenthood, but
951 * we can race with renaming, so we need to re-check
952 * the parenthood after dropping the lock and check
953 * that the sequence number still matches.
955 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
957 struct dentry
*new = old
->d_parent
;
960 spin_unlock(&old
->d_lock
);
961 spin_lock(&new->d_lock
);
964 * might go back up the wrong parent if we have had a rename
967 if (new != old
->d_parent
||
968 (old
->d_flags
& DCACHE_DISCONNECTED
) ||
969 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
970 spin_unlock(&new->d_lock
);
979 * Search for at least 1 mount point in the dentry's subdirs.
980 * We descend to the next level whenever the d_subdirs
981 * list is non-empty and continue searching.
985 * have_submounts - check for mounts over a dentry
986 * @parent: dentry to check.
988 * Return true if the parent or its subdirectories contain
991 int have_submounts(struct dentry
*parent
)
993 struct dentry
*this_parent
;
994 struct list_head
*next
;
998 seq
= read_seqbegin(&rename_lock
);
1000 this_parent
= parent
;
1002 if (d_mountpoint(parent
))
1004 spin_lock(&this_parent
->d_lock
);
1006 next
= this_parent
->d_subdirs
.next
;
1008 while (next
!= &this_parent
->d_subdirs
) {
1009 struct list_head
*tmp
= next
;
1010 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1013 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1014 /* Have we found a mount point ? */
1015 if (d_mountpoint(dentry
)) {
1016 spin_unlock(&dentry
->d_lock
);
1017 spin_unlock(&this_parent
->d_lock
);
1020 if (!list_empty(&dentry
->d_subdirs
)) {
1021 spin_unlock(&this_parent
->d_lock
);
1022 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1023 this_parent
= dentry
;
1024 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1027 spin_unlock(&dentry
->d_lock
);
1030 * All done at this level ... ascend and resume the search.
1032 if (this_parent
!= parent
) {
1033 struct dentry
*child
= this_parent
;
1034 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1037 next
= child
->d_u
.d_child
.next
;
1040 spin_unlock(&this_parent
->d_lock
);
1041 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1044 write_sequnlock(&rename_lock
);
1045 return 0; /* No mount points found in tree */
1047 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1050 write_sequnlock(&rename_lock
);
1055 write_seqlock(&rename_lock
);
1058 EXPORT_SYMBOL(have_submounts
);
1061 * Search the dentry child list for the specified parent,
1062 * and move any unused dentries to the end of the unused
1063 * list for prune_dcache(). We descend to the next level
1064 * whenever the d_subdirs list is non-empty and continue
1067 * It returns zero iff there are no unused children,
1068 * otherwise it returns the number of children moved to
1069 * the end of the unused list. This may not be the total
1070 * number of unused children, because select_parent can
1071 * drop the lock and return early due to latency
1074 static int select_parent(struct dentry
* parent
)
1076 struct dentry
*this_parent
;
1077 struct list_head
*next
;
1082 seq
= read_seqbegin(&rename_lock
);
1084 this_parent
= parent
;
1085 spin_lock(&this_parent
->d_lock
);
1087 next
= this_parent
->d_subdirs
.next
;
1089 while (next
!= &this_parent
->d_subdirs
) {
1090 struct list_head
*tmp
= next
;
1091 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1094 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1097 * move only zero ref count dentries to the end
1098 * of the unused list for prune_dcache
1100 if (!dentry
->d_count
) {
1101 dentry_lru_move_tail(dentry
);
1104 dentry_lru_del(dentry
);
1108 * We can return to the caller if we have found some (this
1109 * ensures forward progress). We'll be coming back to find
1112 if (found
&& need_resched()) {
1113 spin_unlock(&dentry
->d_lock
);
1118 * Descend a level if the d_subdirs list is non-empty.
1120 if (!list_empty(&dentry
->d_subdirs
)) {
1121 spin_unlock(&this_parent
->d_lock
);
1122 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1123 this_parent
= dentry
;
1124 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1128 spin_unlock(&dentry
->d_lock
);
1131 * All done at this level ... ascend and resume the search.
1133 if (this_parent
!= parent
) {
1134 struct dentry
*child
= this_parent
;
1135 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1138 next
= child
->d_u
.d_child
.next
;
1142 spin_unlock(&this_parent
->d_lock
);
1143 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1146 write_sequnlock(&rename_lock
);
1153 write_seqlock(&rename_lock
);
1158 * shrink_dcache_parent - prune dcache
1159 * @parent: parent of entries to prune
1161 * Prune the dcache to remove unused children of the parent dentry.
1164 void shrink_dcache_parent(struct dentry
* parent
)
1166 struct super_block
*sb
= parent
->d_sb
;
1169 while ((found
= select_parent(parent
)) != 0)
1170 __shrink_dcache_sb(sb
, found
, 0);
1172 EXPORT_SYMBOL(shrink_dcache_parent
);
1175 * __d_alloc - allocate a dcache entry
1176 * @sb: filesystem it will belong to
1177 * @name: qstr of the name
1179 * Allocates a dentry. It returns %NULL if there is insufficient memory
1180 * available. On a success the dentry is returned. The name passed in is
1181 * copied and the copy passed in may be reused after this call.
1184 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1186 struct dentry
*dentry
;
1189 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1193 if (name
->len
> DNAME_INLINE_LEN
-1) {
1194 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1196 kmem_cache_free(dentry_cache
, dentry
);
1200 dname
= dentry
->d_iname
;
1202 dentry
->d_name
.name
= dname
;
1204 dentry
->d_name
.len
= name
->len
;
1205 dentry
->d_name
.hash
= name
->hash
;
1206 memcpy(dname
, name
->name
, name
->len
);
1207 dname
[name
->len
] = 0;
1209 dentry
->d_count
= 1;
1210 dentry
->d_flags
= 0;
1211 spin_lock_init(&dentry
->d_lock
);
1212 seqcount_init(&dentry
->d_seq
);
1213 dentry
->d_inode
= NULL
;
1214 dentry
->d_parent
= dentry
;
1216 dentry
->d_op
= NULL
;
1217 dentry
->d_fsdata
= NULL
;
1218 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1219 INIT_LIST_HEAD(&dentry
->d_lru
);
1220 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1221 INIT_LIST_HEAD(&dentry
->d_alias
);
1222 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1223 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1225 this_cpu_inc(nr_dentry
);
1231 * d_alloc - allocate a dcache entry
1232 * @parent: parent of entry to allocate
1233 * @name: qstr of the name
1235 * Allocates a dentry. It returns %NULL if there is insufficient memory
1236 * available. On a success the dentry is returned. The name passed in is
1237 * copied and the copy passed in may be reused after this call.
1239 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1241 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1245 spin_lock(&parent
->d_lock
);
1247 * don't need child lock because it is not subject
1248 * to concurrency here
1250 __dget_dlock(parent
);
1251 dentry
->d_parent
= parent
;
1252 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1253 spin_unlock(&parent
->d_lock
);
1257 EXPORT_SYMBOL(d_alloc
);
1259 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1261 struct dentry
*dentry
= __d_alloc(sb
, name
);
1263 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1266 EXPORT_SYMBOL(d_alloc_pseudo
);
1268 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1273 q
.len
= strlen(name
);
1274 q
.hash
= full_name_hash(q
.name
, q
.len
);
1275 return d_alloc(parent
, &q
);
1277 EXPORT_SYMBOL(d_alloc_name
);
1279 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1281 WARN_ON_ONCE(dentry
->d_op
);
1282 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1284 DCACHE_OP_REVALIDATE
|
1285 DCACHE_OP_DELETE
));
1290 dentry
->d_flags
|= DCACHE_OP_HASH
;
1292 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1293 if (op
->d_revalidate
)
1294 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1296 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1299 EXPORT_SYMBOL(d_set_d_op
);
1301 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1303 spin_lock(&dentry
->d_lock
);
1305 if (unlikely(IS_AUTOMOUNT(inode
)))
1306 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1307 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1309 dentry
->d_inode
= inode
;
1310 dentry_rcuwalk_barrier(dentry
);
1311 spin_unlock(&dentry
->d_lock
);
1312 fsnotify_d_instantiate(dentry
, inode
);
1316 * d_instantiate - fill in inode information for a dentry
1317 * @entry: dentry to complete
1318 * @inode: inode to attach to this dentry
1320 * Fill in inode information in the entry.
1322 * This turns negative dentries into productive full members
1325 * NOTE! This assumes that the inode count has been incremented
1326 * (or otherwise set) by the caller to indicate that it is now
1327 * in use by the dcache.
1330 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1332 BUG_ON(!list_empty(&entry
->d_alias
));
1334 spin_lock(&inode
->i_lock
);
1335 __d_instantiate(entry
, inode
);
1337 spin_unlock(&inode
->i_lock
);
1338 security_d_instantiate(entry
, inode
);
1340 EXPORT_SYMBOL(d_instantiate
);
1343 * d_instantiate_unique - instantiate a non-aliased dentry
1344 * @entry: dentry to instantiate
1345 * @inode: inode to attach to this dentry
1347 * Fill in inode information in the entry. On success, it returns NULL.
1348 * If an unhashed alias of "entry" already exists, then we return the
1349 * aliased dentry instead and drop one reference to inode.
1351 * Note that in order to avoid conflicts with rename() etc, the caller
1352 * had better be holding the parent directory semaphore.
1354 * This also assumes that the inode count has been incremented
1355 * (or otherwise set) by the caller to indicate that it is now
1356 * in use by the dcache.
1358 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1359 struct inode
*inode
)
1361 struct dentry
*alias
;
1362 int len
= entry
->d_name
.len
;
1363 const char *name
= entry
->d_name
.name
;
1364 unsigned int hash
= entry
->d_name
.hash
;
1367 __d_instantiate(entry
, NULL
);
1371 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1372 struct qstr
*qstr
= &alias
->d_name
;
1375 * Don't need alias->d_lock here, because aliases with
1376 * d_parent == entry->d_parent are not subject to name or
1377 * parent changes, because the parent inode i_mutex is held.
1379 if (qstr
->hash
!= hash
)
1381 if (alias
->d_parent
!= entry
->d_parent
)
1383 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1389 __d_instantiate(entry
, inode
);
1393 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1395 struct dentry
*result
;
1397 BUG_ON(!list_empty(&entry
->d_alias
));
1400 spin_lock(&inode
->i_lock
);
1401 result
= __d_instantiate_unique(entry
, inode
);
1403 spin_unlock(&inode
->i_lock
);
1406 security_d_instantiate(entry
, inode
);
1410 BUG_ON(!d_unhashed(result
));
1415 EXPORT_SYMBOL(d_instantiate_unique
);
1418 * d_alloc_root - allocate root dentry
1419 * @root_inode: inode to allocate the root for
1421 * Allocate a root ("/") dentry for the inode given. The inode is
1422 * instantiated and returned. %NULL is returned if there is insufficient
1423 * memory or the inode passed is %NULL.
1426 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1428 struct dentry
*res
= NULL
;
1431 static const struct qstr name
= { .name
= "/", .len
= 1 };
1433 res
= __d_alloc(root_inode
->i_sb
, &name
);
1435 d_instantiate(res
, root_inode
);
1439 EXPORT_SYMBOL(d_alloc_root
);
1441 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1443 struct dentry
*alias
;
1445 if (list_empty(&inode
->i_dentry
))
1447 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_alias
);
1452 static struct dentry
* d_find_any_alias(struct inode
*inode
)
1456 spin_lock(&inode
->i_lock
);
1457 de
= __d_find_any_alias(inode
);
1458 spin_unlock(&inode
->i_lock
);
1464 * d_obtain_alias - find or allocate a dentry for a given inode
1465 * @inode: inode to allocate the dentry for
1467 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1468 * similar open by handle operations. The returned dentry may be anonymous,
1469 * or may have a full name (if the inode was already in the cache).
1471 * When called on a directory inode, we must ensure that the inode only ever
1472 * has one dentry. If a dentry is found, that is returned instead of
1473 * allocating a new one.
1475 * On successful return, the reference to the inode has been transferred
1476 * to the dentry. In case of an error the reference on the inode is released.
1477 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1478 * be passed in and will be the error will be propagate to the return value,
1479 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1481 struct dentry
*d_obtain_alias(struct inode
*inode
)
1483 static const struct qstr anonstring
= { .name
= "" };
1488 return ERR_PTR(-ESTALE
);
1490 return ERR_CAST(inode
);
1492 res
= d_find_any_alias(inode
);
1496 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1498 res
= ERR_PTR(-ENOMEM
);
1502 spin_lock(&inode
->i_lock
);
1503 res
= __d_find_any_alias(inode
);
1505 spin_unlock(&inode
->i_lock
);
1510 /* attach a disconnected dentry */
1511 spin_lock(&tmp
->d_lock
);
1512 tmp
->d_inode
= inode
;
1513 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1514 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1515 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1516 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1517 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1518 spin_unlock(&tmp
->d_lock
);
1519 spin_unlock(&inode
->i_lock
);
1520 security_d_instantiate(tmp
, inode
);
1525 if (res
&& !IS_ERR(res
))
1526 security_d_instantiate(res
, inode
);
1530 EXPORT_SYMBOL(d_obtain_alias
);
1533 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1534 * @inode: the inode which may have a disconnected dentry
1535 * @dentry: a negative dentry which we want to point to the inode.
1537 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1538 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1539 * and return it, else simply d_add the inode to the dentry and return NULL.
1541 * This is needed in the lookup routine of any filesystem that is exportable
1542 * (via knfsd) so that we can build dcache paths to directories effectively.
1544 * If a dentry was found and moved, then it is returned. Otherwise NULL
1545 * is returned. This matches the expected return value of ->lookup.
1548 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1550 struct dentry
*new = NULL
;
1553 return ERR_CAST(inode
);
1555 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1556 spin_lock(&inode
->i_lock
);
1557 new = __d_find_alias(inode
, 1);
1559 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1560 spin_unlock(&inode
->i_lock
);
1561 security_d_instantiate(new, inode
);
1562 d_move(new, dentry
);
1565 /* already taking inode->i_lock, so d_add() by hand */
1566 __d_instantiate(dentry
, inode
);
1567 spin_unlock(&inode
->i_lock
);
1568 security_d_instantiate(dentry
, inode
);
1572 d_add(dentry
, inode
);
1575 EXPORT_SYMBOL(d_splice_alias
);
1578 * d_add_ci - lookup or allocate new dentry with case-exact name
1579 * @inode: the inode case-insensitive lookup has found
1580 * @dentry: the negative dentry that was passed to the parent's lookup func
1581 * @name: the case-exact name to be associated with the returned dentry
1583 * This is to avoid filling the dcache with case-insensitive names to the
1584 * same inode, only the actual correct case is stored in the dcache for
1585 * case-insensitive filesystems.
1587 * For a case-insensitive lookup match and if the the case-exact dentry
1588 * already exists in in the dcache, use it and return it.
1590 * If no entry exists with the exact case name, allocate new dentry with
1591 * the exact case, and return the spliced entry.
1593 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1597 struct dentry
*found
;
1601 * First check if a dentry matching the name already exists,
1602 * if not go ahead and create it now.
1604 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1606 new = d_alloc(dentry
->d_parent
, name
);
1612 found
= d_splice_alias(inode
, new);
1621 * If a matching dentry exists, and it's not negative use it.
1623 * Decrement the reference count to balance the iget() done
1626 if (found
->d_inode
) {
1627 if (unlikely(found
->d_inode
!= inode
)) {
1628 /* This can't happen because bad inodes are unhashed. */
1629 BUG_ON(!is_bad_inode(inode
));
1630 BUG_ON(!is_bad_inode(found
->d_inode
));
1637 * We are going to instantiate this dentry, unhash it and clear the
1638 * lookup flag so we can do that.
1640 if (unlikely(d_need_lookup(found
)))
1641 d_clear_need_lookup(found
);
1644 * Negative dentry: instantiate it unless the inode is a directory and
1645 * already has a dentry.
1647 new = d_splice_alias(inode
, found
);
1656 return ERR_PTR(error
);
1658 EXPORT_SYMBOL(d_add_ci
);
1661 * __d_lookup_rcu - search for a dentry (racy, store-free)
1662 * @parent: parent dentry
1663 * @name: qstr of name we wish to find
1664 * @seq: returns d_seq value at the point where the dentry was found
1665 * @inode: returns dentry->d_inode when the inode was found valid.
1666 * Returns: dentry, or NULL
1668 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1669 * resolution (store-free path walking) design described in
1670 * Documentation/filesystems/path-lookup.txt.
1672 * This is not to be used outside core vfs.
1674 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1675 * held, and rcu_read_lock held. The returned dentry must not be stored into
1676 * without taking d_lock and checking d_seq sequence count against @seq
1679 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1682 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1683 * the returned dentry, so long as its parent's seqlock is checked after the
1684 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1685 * is formed, giving integrity down the path walk.
1687 struct dentry
*__d_lookup_rcu(struct dentry
*parent
, struct qstr
*name
,
1688 unsigned *seq
, struct inode
**inode
)
1690 unsigned int len
= name
->len
;
1691 unsigned int hash
= name
->hash
;
1692 const unsigned char *str
= name
->name
;
1693 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1694 struct hlist_bl_node
*node
;
1695 struct dentry
*dentry
;
1698 * Note: There is significant duplication with __d_lookup_rcu which is
1699 * required to prevent single threaded performance regressions
1700 * especially on architectures where smp_rmb (in seqcounts) are costly.
1701 * Keep the two functions in sync.
1705 * The hash list is protected using RCU.
1707 * Carefully use d_seq when comparing a candidate dentry, to avoid
1708 * races with d_move().
1710 * It is possible that concurrent renames can mess up our list
1711 * walk here and result in missing our dentry, resulting in the
1712 * false-negative result. d_lookup() protects against concurrent
1713 * renames using rename_lock seqlock.
1715 * See Documentation/filesystems/path-lookup.txt for more details.
1717 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1722 if (dentry
->d_name
.hash
!= hash
)
1726 *seq
= read_seqcount_begin(&dentry
->d_seq
);
1727 if (dentry
->d_parent
!= parent
)
1729 if (d_unhashed(dentry
))
1731 tlen
= dentry
->d_name
.len
;
1732 tname
= dentry
->d_name
.name
;
1733 i
= dentry
->d_inode
;
1736 * This seqcount check is required to ensure name and
1737 * len are loaded atomically, so as not to walk off the
1738 * edge of memory when walking. If we could load this
1739 * atomically some other way, we could drop this check.
1741 if (read_seqcount_retry(&dentry
->d_seq
, *seq
))
1743 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1744 if (parent
->d_op
->d_compare(parent
, *inode
,
1749 if (dentry_cmp(tname
, tlen
, str
, len
))
1753 * No extra seqcount check is required after the name
1754 * compare. The caller must perform a seqcount check in
1755 * order to do anything useful with the returned dentry
1765 * d_lookup - search for a dentry
1766 * @parent: parent dentry
1767 * @name: qstr of name we wish to find
1768 * Returns: dentry, or NULL
1770 * d_lookup searches the children of the parent dentry for the name in
1771 * question. If the dentry is found its reference count is incremented and the
1772 * dentry is returned. The caller must use dput to free the entry when it has
1773 * finished using it. %NULL is returned if the dentry does not exist.
1775 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1777 struct dentry
*dentry
;
1781 seq
= read_seqbegin(&rename_lock
);
1782 dentry
= __d_lookup(parent
, name
);
1785 } while (read_seqretry(&rename_lock
, seq
));
1788 EXPORT_SYMBOL(d_lookup
);
1791 * __d_lookup - search for a dentry (racy)
1792 * @parent: parent dentry
1793 * @name: qstr of name we wish to find
1794 * Returns: dentry, or NULL
1796 * __d_lookup is like d_lookup, however it may (rarely) return a
1797 * false-negative result due to unrelated rename activity.
1799 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1800 * however it must be used carefully, eg. with a following d_lookup in
1801 * the case of failure.
1803 * __d_lookup callers must be commented.
1805 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1807 unsigned int len
= name
->len
;
1808 unsigned int hash
= name
->hash
;
1809 const unsigned char *str
= name
->name
;
1810 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1811 struct hlist_bl_node
*node
;
1812 struct dentry
*found
= NULL
;
1813 struct dentry
*dentry
;
1816 * Note: There is significant duplication with __d_lookup_rcu which is
1817 * required to prevent single threaded performance regressions
1818 * especially on architectures where smp_rmb (in seqcounts) are costly.
1819 * Keep the two functions in sync.
1823 * The hash list is protected using RCU.
1825 * Take d_lock when comparing a candidate dentry, to avoid races
1828 * It is possible that concurrent renames can mess up our list
1829 * walk here and result in missing our dentry, resulting in the
1830 * false-negative result. d_lookup() protects against concurrent
1831 * renames using rename_lock seqlock.
1833 * See Documentation/filesystems/path-lookup.txt for more details.
1837 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1841 if (dentry
->d_name
.hash
!= hash
)
1844 spin_lock(&dentry
->d_lock
);
1845 if (dentry
->d_parent
!= parent
)
1847 if (d_unhashed(dentry
))
1851 * It is safe to compare names since d_move() cannot
1852 * change the qstr (protected by d_lock).
1854 tlen
= dentry
->d_name
.len
;
1855 tname
= dentry
->d_name
.name
;
1856 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1857 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1858 dentry
, dentry
->d_inode
,
1862 if (dentry_cmp(tname
, tlen
, str
, len
))
1868 spin_unlock(&dentry
->d_lock
);
1871 spin_unlock(&dentry
->d_lock
);
1879 * d_hash_and_lookup - hash the qstr then search for a dentry
1880 * @dir: Directory to search in
1881 * @name: qstr of name we wish to find
1883 * On hash failure or on lookup failure NULL is returned.
1885 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1887 struct dentry
*dentry
= NULL
;
1890 * Check for a fs-specific hash function. Note that we must
1891 * calculate the standard hash first, as the d_op->d_hash()
1892 * routine may choose to leave the hash value unchanged.
1894 name
->hash
= full_name_hash(name
->name
, name
->len
);
1895 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1896 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1899 dentry
= d_lookup(dir
, name
);
1905 * d_validate - verify dentry provided from insecure source (deprecated)
1906 * @dentry: The dentry alleged to be valid child of @dparent
1907 * @dparent: The parent dentry (known to be valid)
1909 * An insecure source has sent us a dentry, here we verify it and dget() it.
1910 * This is used by ncpfs in its readdir implementation.
1911 * Zero is returned in the dentry is invalid.
1913 * This function is slow for big directories, and deprecated, do not use it.
1915 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1917 struct dentry
*child
;
1919 spin_lock(&dparent
->d_lock
);
1920 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
1921 if (dentry
== child
) {
1922 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1923 __dget_dlock(dentry
);
1924 spin_unlock(&dentry
->d_lock
);
1925 spin_unlock(&dparent
->d_lock
);
1929 spin_unlock(&dparent
->d_lock
);
1933 EXPORT_SYMBOL(d_validate
);
1936 * When a file is deleted, we have two options:
1937 * - turn this dentry into a negative dentry
1938 * - unhash this dentry and free it.
1940 * Usually, we want to just turn this into
1941 * a negative dentry, but if anybody else is
1942 * currently using the dentry or the inode
1943 * we can't do that and we fall back on removing
1944 * it from the hash queues and waiting for
1945 * it to be deleted later when it has no users
1949 * d_delete - delete a dentry
1950 * @dentry: The dentry to delete
1952 * Turn the dentry into a negative dentry if possible, otherwise
1953 * remove it from the hash queues so it can be deleted later
1956 void d_delete(struct dentry
* dentry
)
1958 struct inode
*inode
;
1961 * Are we the only user?
1964 spin_lock(&dentry
->d_lock
);
1965 inode
= dentry
->d_inode
;
1966 isdir
= S_ISDIR(inode
->i_mode
);
1967 if (dentry
->d_count
== 1) {
1968 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
1969 spin_unlock(&dentry
->d_lock
);
1973 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
1974 dentry_unlink_inode(dentry
);
1975 fsnotify_nameremove(dentry
, isdir
);
1979 if (!d_unhashed(dentry
))
1982 spin_unlock(&dentry
->d_lock
);
1984 fsnotify_nameremove(dentry
, isdir
);
1986 EXPORT_SYMBOL(d_delete
);
1988 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
1990 BUG_ON(!d_unhashed(entry
));
1992 entry
->d_flags
|= DCACHE_RCUACCESS
;
1993 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
1997 static void _d_rehash(struct dentry
* entry
)
1999 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2003 * d_rehash - add an entry back to the hash
2004 * @entry: dentry to add to the hash
2006 * Adds a dentry to the hash according to its name.
2009 void d_rehash(struct dentry
* entry
)
2011 spin_lock(&entry
->d_lock
);
2013 spin_unlock(&entry
->d_lock
);
2015 EXPORT_SYMBOL(d_rehash
);
2018 * dentry_update_name_case - update case insensitive dentry with a new name
2019 * @dentry: dentry to be updated
2022 * Update a case insensitive dentry with new case of name.
2024 * dentry must have been returned by d_lookup with name @name. Old and new
2025 * name lengths must match (ie. no d_compare which allows mismatched name
2028 * Parent inode i_mutex must be held over d_lookup and into this call (to
2029 * keep renames and concurrent inserts, and readdir(2) away).
2031 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2033 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2034 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2036 spin_lock(&dentry
->d_lock
);
2037 write_seqcount_begin(&dentry
->d_seq
);
2038 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2039 write_seqcount_end(&dentry
->d_seq
);
2040 spin_unlock(&dentry
->d_lock
);
2042 EXPORT_SYMBOL(dentry_update_name_case
);
2044 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2046 if (dname_external(target
)) {
2047 if (dname_external(dentry
)) {
2049 * Both external: swap the pointers
2051 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2054 * dentry:internal, target:external. Steal target's
2055 * storage and make target internal.
2057 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2058 dentry
->d_name
.len
+ 1);
2059 dentry
->d_name
.name
= target
->d_name
.name
;
2060 target
->d_name
.name
= target
->d_iname
;
2063 if (dname_external(dentry
)) {
2065 * dentry:external, target:internal. Give dentry's
2066 * storage to target and make dentry internal
2068 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2069 target
->d_name
.len
+ 1);
2070 target
->d_name
.name
= dentry
->d_name
.name
;
2071 dentry
->d_name
.name
= dentry
->d_iname
;
2074 * Both are internal. Just copy target to dentry
2076 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2077 target
->d_name
.len
+ 1);
2078 dentry
->d_name
.len
= target
->d_name
.len
;
2082 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2085 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2088 * XXXX: do we really need to take target->d_lock?
2090 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2091 spin_lock(&target
->d_parent
->d_lock
);
2093 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2094 spin_lock(&dentry
->d_parent
->d_lock
);
2095 spin_lock_nested(&target
->d_parent
->d_lock
,
2096 DENTRY_D_LOCK_NESTED
);
2098 spin_lock(&target
->d_parent
->d_lock
);
2099 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2100 DENTRY_D_LOCK_NESTED
);
2103 if (target
< dentry
) {
2104 spin_lock_nested(&target
->d_lock
, 2);
2105 spin_lock_nested(&dentry
->d_lock
, 3);
2107 spin_lock_nested(&dentry
->d_lock
, 2);
2108 spin_lock_nested(&target
->d_lock
, 3);
2112 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2113 struct dentry
*target
)
2115 if (target
->d_parent
!= dentry
->d_parent
)
2116 spin_unlock(&dentry
->d_parent
->d_lock
);
2117 if (target
->d_parent
!= target
)
2118 spin_unlock(&target
->d_parent
->d_lock
);
2122 * When switching names, the actual string doesn't strictly have to
2123 * be preserved in the target - because we're dropping the target
2124 * anyway. As such, we can just do a simple memcpy() to copy over
2125 * the new name before we switch.
2127 * Note that we have to be a lot more careful about getting the hash
2128 * switched - we have to switch the hash value properly even if it
2129 * then no longer matches the actual (corrupted) string of the target.
2130 * The hash value has to match the hash queue that the dentry is on..
2133 * __d_move - move a dentry
2134 * @dentry: entry to move
2135 * @target: new dentry
2137 * Update the dcache to reflect the move of a file name. Negative
2138 * dcache entries should not be moved in this way. Caller must hold
2139 * rename_lock, the i_mutex of the source and target directories,
2140 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2142 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2144 if (!dentry
->d_inode
)
2145 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2147 BUG_ON(d_ancestor(dentry
, target
));
2148 BUG_ON(d_ancestor(target
, dentry
));
2150 dentry_lock_for_move(dentry
, target
);
2152 write_seqcount_begin(&dentry
->d_seq
);
2153 write_seqcount_begin(&target
->d_seq
);
2155 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2158 * Move the dentry to the target hash queue. Don't bother checking
2159 * for the same hash queue because of how unlikely it is.
2162 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2164 /* Unhash the target: dput() will then get rid of it */
2167 list_del(&dentry
->d_u
.d_child
);
2168 list_del(&target
->d_u
.d_child
);
2170 /* Switch the names.. */
2171 switch_names(dentry
, target
);
2172 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2174 /* ... and switch the parents */
2175 if (IS_ROOT(dentry
)) {
2176 dentry
->d_parent
= target
->d_parent
;
2177 target
->d_parent
= target
;
2178 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2180 swap(dentry
->d_parent
, target
->d_parent
);
2182 /* And add them back to the (new) parent lists */
2183 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2186 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2188 write_seqcount_end(&target
->d_seq
);
2189 write_seqcount_end(&dentry
->d_seq
);
2191 dentry_unlock_parents_for_move(dentry
, target
);
2192 spin_unlock(&target
->d_lock
);
2193 fsnotify_d_move(dentry
);
2194 spin_unlock(&dentry
->d_lock
);
2198 * d_move - move a dentry
2199 * @dentry: entry to move
2200 * @target: new dentry
2202 * Update the dcache to reflect the move of a file name. Negative
2203 * dcache entries should not be moved in this way. See the locking
2204 * requirements for __d_move.
2206 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2208 write_seqlock(&rename_lock
);
2209 __d_move(dentry
, target
);
2210 write_sequnlock(&rename_lock
);
2212 EXPORT_SYMBOL(d_move
);
2215 * d_ancestor - search for an ancestor
2216 * @p1: ancestor dentry
2219 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2220 * an ancestor of p2, else NULL.
2222 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2226 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2227 if (p
->d_parent
== p1
)
2234 * This helper attempts to cope with remotely renamed directories
2236 * It assumes that the caller is already holding
2237 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2239 * Note: If ever the locking in lock_rename() changes, then please
2240 * remember to update this too...
2242 static struct dentry
*__d_unalias(struct inode
*inode
,
2243 struct dentry
*dentry
, struct dentry
*alias
)
2245 struct mutex
*m1
= NULL
, *m2
= NULL
;
2248 /* If alias and dentry share a parent, then no extra locks required */
2249 if (alias
->d_parent
== dentry
->d_parent
)
2252 /* See lock_rename() */
2253 ret
= ERR_PTR(-EBUSY
);
2254 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2256 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2257 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2259 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2261 __d_move(alias
, dentry
);
2264 spin_unlock(&inode
->i_lock
);
2273 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2274 * named dentry in place of the dentry to be replaced.
2275 * returns with anon->d_lock held!
2277 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2279 struct dentry
*dparent
, *aparent
;
2281 dentry_lock_for_move(anon
, dentry
);
2283 write_seqcount_begin(&dentry
->d_seq
);
2284 write_seqcount_begin(&anon
->d_seq
);
2286 dparent
= dentry
->d_parent
;
2287 aparent
= anon
->d_parent
;
2289 switch_names(dentry
, anon
);
2290 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2292 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2293 list_del(&dentry
->d_u
.d_child
);
2294 if (!IS_ROOT(dentry
))
2295 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2297 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2299 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2300 list_del(&anon
->d_u
.d_child
);
2302 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2304 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2306 write_seqcount_end(&dentry
->d_seq
);
2307 write_seqcount_end(&anon
->d_seq
);
2309 dentry_unlock_parents_for_move(anon
, dentry
);
2310 spin_unlock(&dentry
->d_lock
);
2312 /* anon->d_lock still locked, returns locked */
2313 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2317 * d_materialise_unique - introduce an inode into the tree
2318 * @dentry: candidate dentry
2319 * @inode: inode to bind to the dentry, to which aliases may be attached
2321 * Introduces an dentry into the tree, substituting an extant disconnected
2322 * root directory alias in its place if there is one. Caller must hold the
2323 * i_mutex of the parent directory.
2325 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2327 struct dentry
*actual
;
2329 BUG_ON(!d_unhashed(dentry
));
2333 __d_instantiate(dentry
, NULL
);
2338 spin_lock(&inode
->i_lock
);
2340 if (S_ISDIR(inode
->i_mode
)) {
2341 struct dentry
*alias
;
2343 /* Does an aliased dentry already exist? */
2344 alias
= __d_find_alias(inode
, 0);
2347 write_seqlock(&rename_lock
);
2349 if (d_ancestor(alias
, dentry
)) {
2350 /* Check for loops */
2351 actual
= ERR_PTR(-ELOOP
);
2352 } else if (IS_ROOT(alias
)) {
2353 /* Is this an anonymous mountpoint that we
2354 * could splice into our tree? */
2355 __d_materialise_dentry(dentry
, alias
);
2356 write_sequnlock(&rename_lock
);
2360 /* Nope, but we must(!) avoid directory
2362 actual
= __d_unalias(inode
, dentry
, alias
);
2364 write_sequnlock(&rename_lock
);
2371 /* Add a unique reference */
2372 actual
= __d_instantiate_unique(dentry
, inode
);
2376 BUG_ON(!d_unhashed(actual
));
2378 spin_lock(&actual
->d_lock
);
2381 spin_unlock(&actual
->d_lock
);
2382 spin_unlock(&inode
->i_lock
);
2384 if (actual
== dentry
) {
2385 security_d_instantiate(dentry
, inode
);
2392 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2394 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2398 return -ENAMETOOLONG
;
2400 memcpy(*buffer
, str
, namelen
);
2404 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2406 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2410 * prepend_path - Prepend path string to a buffer
2411 * @path: the dentry/vfsmount to report
2412 * @root: root vfsmnt/dentry (may be modified by this function)
2413 * @buffer: pointer to the end of the buffer
2414 * @buflen: pointer to buffer length
2416 * Caller holds the rename_lock.
2418 * If path is not reachable from the supplied root, then the value of
2419 * root is changed (without modifying refcounts).
2421 static int prepend_path(const struct path
*path
, struct path
*root
,
2422 char **buffer
, int *buflen
)
2424 struct dentry
*dentry
= path
->dentry
;
2425 struct vfsmount
*vfsmnt
= path
->mnt
;
2429 br_read_lock(vfsmount_lock
);
2430 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2431 struct dentry
* parent
;
2433 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2435 if (vfsmnt
->mnt_parent
== vfsmnt
) {
2438 dentry
= vfsmnt
->mnt_mountpoint
;
2439 vfsmnt
= vfsmnt
->mnt_parent
;
2442 parent
= dentry
->d_parent
;
2444 spin_lock(&dentry
->d_lock
);
2445 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2446 spin_unlock(&dentry
->d_lock
);
2448 error
= prepend(buffer
, buflen
, "/", 1);
2457 if (!error
&& !slash
)
2458 error
= prepend(buffer
, buflen
, "/", 1);
2460 br_read_unlock(vfsmount_lock
);
2465 * Filesystems needing to implement special "root names"
2466 * should do so with ->d_dname()
2468 if (IS_ROOT(dentry
) &&
2469 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2470 WARN(1, "Root dentry has weird name <%.*s>\n",
2471 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2474 root
->dentry
= dentry
;
2479 * __d_path - return the path of a dentry
2480 * @path: the dentry/vfsmount to report
2481 * @root: root vfsmnt/dentry (may be modified by this function)
2482 * @buf: buffer to return value in
2483 * @buflen: buffer length
2485 * Convert a dentry into an ASCII path name.
2487 * Returns a pointer into the buffer or an error code if the
2488 * path was too long.
2490 * "buflen" should be positive.
2492 * If path is not reachable from the supplied root, then the value of
2493 * root is changed (without modifying refcounts).
2495 char *__d_path(const struct path
*path
, struct path
*root
,
2496 char *buf
, int buflen
)
2498 char *res
= buf
+ buflen
;
2501 prepend(&res
, &buflen
, "\0", 1);
2502 write_seqlock(&rename_lock
);
2503 error
= prepend_path(path
, root
, &res
, &buflen
);
2504 write_sequnlock(&rename_lock
);
2507 return ERR_PTR(error
);
2512 * same as __d_path but appends "(deleted)" for unlinked files.
2514 static int path_with_deleted(const struct path
*path
, struct path
*root
,
2515 char **buf
, int *buflen
)
2517 prepend(buf
, buflen
, "\0", 1);
2518 if (d_unlinked(path
->dentry
)) {
2519 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2524 return prepend_path(path
, root
, buf
, buflen
);
2527 static int prepend_unreachable(char **buffer
, int *buflen
)
2529 return prepend(buffer
, buflen
, "(unreachable)", 13);
2533 * d_path - return the path of a dentry
2534 * @path: path to report
2535 * @buf: buffer to return value in
2536 * @buflen: buffer length
2538 * Convert a dentry into an ASCII path name. If the entry has been deleted
2539 * the string " (deleted)" is appended. Note that this is ambiguous.
2541 * Returns a pointer into the buffer or an error code if the path was
2542 * too long. Note: Callers should use the returned pointer, not the passed
2543 * in buffer, to use the name! The implementation often starts at an offset
2544 * into the buffer, and may leave 0 bytes at the start.
2546 * "buflen" should be positive.
2548 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2550 char *res
= buf
+ buflen
;
2556 * We have various synthetic filesystems that never get mounted. On
2557 * these filesystems dentries are never used for lookup purposes, and
2558 * thus don't need to be hashed. They also don't need a name until a
2559 * user wants to identify the object in /proc/pid/fd/. The little hack
2560 * below allows us to generate a name for these objects on demand:
2562 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2563 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2565 get_fs_root(current
->fs
, &root
);
2566 write_seqlock(&rename_lock
);
2568 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2570 res
= ERR_PTR(error
);
2571 write_sequnlock(&rename_lock
);
2575 EXPORT_SYMBOL(d_path
);
2578 * d_path_with_unreachable - return the path of a dentry
2579 * @path: path to report
2580 * @buf: buffer to return value in
2581 * @buflen: buffer length
2583 * The difference from d_path() is that this prepends "(unreachable)"
2584 * to paths which are unreachable from the current process' root.
2586 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2588 char *res
= buf
+ buflen
;
2593 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2594 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2596 get_fs_root(current
->fs
, &root
);
2597 write_seqlock(&rename_lock
);
2599 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2600 if (!error
&& !path_equal(&tmp
, &root
))
2601 error
= prepend_unreachable(&res
, &buflen
);
2602 write_sequnlock(&rename_lock
);
2605 res
= ERR_PTR(error
);
2611 * Helper function for dentry_operations.d_dname() members
2613 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2614 const char *fmt
, ...)
2620 va_start(args
, fmt
);
2621 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2624 if (sz
> sizeof(temp
) || sz
> buflen
)
2625 return ERR_PTR(-ENAMETOOLONG
);
2627 buffer
+= buflen
- sz
;
2628 return memcpy(buffer
, temp
, sz
);
2632 * Write full pathname from the root of the filesystem into the buffer.
2634 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2636 char *end
= buf
+ buflen
;
2639 prepend(&end
, &buflen
, "\0", 1);
2646 while (!IS_ROOT(dentry
)) {
2647 struct dentry
*parent
= dentry
->d_parent
;
2651 spin_lock(&dentry
->d_lock
);
2652 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2653 spin_unlock(&dentry
->d_lock
);
2654 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2662 return ERR_PTR(-ENAMETOOLONG
);
2665 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2669 write_seqlock(&rename_lock
);
2670 retval
= __dentry_path(dentry
, buf
, buflen
);
2671 write_sequnlock(&rename_lock
);
2675 EXPORT_SYMBOL(dentry_path_raw
);
2677 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2682 write_seqlock(&rename_lock
);
2683 if (d_unlinked(dentry
)) {
2685 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2689 retval
= __dentry_path(dentry
, buf
, buflen
);
2690 write_sequnlock(&rename_lock
);
2691 if (!IS_ERR(retval
) && p
)
2692 *p
= '/'; /* restore '/' overriden with '\0' */
2695 return ERR_PTR(-ENAMETOOLONG
);
2699 * NOTE! The user-level library version returns a
2700 * character pointer. The kernel system call just
2701 * returns the length of the buffer filled (which
2702 * includes the ending '\0' character), or a negative
2703 * error value. So libc would do something like
2705 * char *getcwd(char * buf, size_t size)
2709 * retval = sys_getcwd(buf, size);
2716 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2719 struct path pwd
, root
;
2720 char *page
= (char *) __get_free_page(GFP_USER
);
2725 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2728 write_seqlock(&rename_lock
);
2729 if (!d_unlinked(pwd
.dentry
)) {
2731 struct path tmp
= root
;
2732 char *cwd
= page
+ PAGE_SIZE
;
2733 int buflen
= PAGE_SIZE
;
2735 prepend(&cwd
, &buflen
, "\0", 1);
2736 error
= prepend_path(&pwd
, &tmp
, &cwd
, &buflen
);
2737 write_sequnlock(&rename_lock
);
2742 /* Unreachable from current root */
2743 if (!path_equal(&tmp
, &root
)) {
2744 error
= prepend_unreachable(&cwd
, &buflen
);
2750 len
= PAGE_SIZE
+ page
- cwd
;
2753 if (copy_to_user(buf
, cwd
, len
))
2757 write_sequnlock(&rename_lock
);
2763 free_page((unsigned long) page
);
2768 * Test whether new_dentry is a subdirectory of old_dentry.
2770 * Trivially implemented using the dcache structure
2774 * is_subdir - is new dentry a subdirectory of old_dentry
2775 * @new_dentry: new dentry
2776 * @old_dentry: old dentry
2778 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2779 * Returns 0 otherwise.
2780 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2783 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2788 if (new_dentry
== old_dentry
)
2792 /* for restarting inner loop in case of seq retry */
2793 seq
= read_seqbegin(&rename_lock
);
2795 * Need rcu_readlock to protect against the d_parent trashing
2799 if (d_ancestor(old_dentry
, new_dentry
))
2804 } while (read_seqretry(&rename_lock
, seq
));
2809 int path_is_under(struct path
*path1
, struct path
*path2
)
2811 struct vfsmount
*mnt
= path1
->mnt
;
2812 struct dentry
*dentry
= path1
->dentry
;
2815 br_read_lock(vfsmount_lock
);
2816 if (mnt
!= path2
->mnt
) {
2818 if (mnt
->mnt_parent
== mnt
) {
2819 br_read_unlock(vfsmount_lock
);
2822 if (mnt
->mnt_parent
== path2
->mnt
)
2824 mnt
= mnt
->mnt_parent
;
2826 dentry
= mnt
->mnt_mountpoint
;
2828 res
= is_subdir(dentry
, path2
->dentry
);
2829 br_read_unlock(vfsmount_lock
);
2832 EXPORT_SYMBOL(path_is_under
);
2834 void d_genocide(struct dentry
*root
)
2836 struct dentry
*this_parent
;
2837 struct list_head
*next
;
2841 seq
= read_seqbegin(&rename_lock
);
2844 spin_lock(&this_parent
->d_lock
);
2846 next
= this_parent
->d_subdirs
.next
;
2848 while (next
!= &this_parent
->d_subdirs
) {
2849 struct list_head
*tmp
= next
;
2850 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2853 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2854 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2855 spin_unlock(&dentry
->d_lock
);
2858 if (!list_empty(&dentry
->d_subdirs
)) {
2859 spin_unlock(&this_parent
->d_lock
);
2860 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2861 this_parent
= dentry
;
2862 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2865 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2866 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2869 spin_unlock(&dentry
->d_lock
);
2871 if (this_parent
!= root
) {
2872 struct dentry
*child
= this_parent
;
2873 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2874 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2875 this_parent
->d_count
--;
2877 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2880 next
= child
->d_u
.d_child
.next
;
2883 spin_unlock(&this_parent
->d_lock
);
2884 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2887 write_sequnlock(&rename_lock
);
2892 write_seqlock(&rename_lock
);
2897 * find_inode_number - check for dentry with name
2898 * @dir: directory to check
2899 * @name: Name to find.
2901 * Check whether a dentry already exists for the given name,
2902 * and return the inode number if it has an inode. Otherwise
2905 * This routine is used to post-process directory listings for
2906 * filesystems using synthetic inode numbers, and is necessary
2907 * to keep getcwd() working.
2910 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2912 struct dentry
* dentry
;
2915 dentry
= d_hash_and_lookup(dir
, name
);
2917 if (dentry
->d_inode
)
2918 ino
= dentry
->d_inode
->i_ino
;
2923 EXPORT_SYMBOL(find_inode_number
);
2925 static __initdata
unsigned long dhash_entries
;
2926 static int __init
set_dhash_entries(char *str
)
2930 dhash_entries
= simple_strtoul(str
, &str
, 0);
2933 __setup("dhash_entries=", set_dhash_entries
);
2935 static void __init
dcache_init_early(void)
2939 /* If hashes are distributed across NUMA nodes, defer
2940 * hash allocation until vmalloc space is available.
2946 alloc_large_system_hash("Dentry cache",
2947 sizeof(struct hlist_bl_head
),
2955 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2956 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
2959 static void __init
dcache_init(void)
2964 * A constructor could be added for stable state like the lists,
2965 * but it is probably not worth it because of the cache nature
2968 dentry_cache
= KMEM_CACHE(dentry
,
2969 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
2971 /* Hash may have been set up in dcache_init_early */
2976 alloc_large_system_hash("Dentry cache",
2977 sizeof(struct hlist_bl_head
),
2985 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2986 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
2989 /* SLAB cache for __getname() consumers */
2990 struct kmem_cache
*names_cachep __read_mostly
;
2991 EXPORT_SYMBOL(names_cachep
);
2993 EXPORT_SYMBOL(d_genocide
);
2995 void __init
vfs_caches_init_early(void)
2997 dcache_init_early();
3001 void __init
vfs_caches_init(unsigned long mempages
)
3003 unsigned long reserve
;
3005 /* Base hash sizes on available memory, with a reserve equal to
3006 150% of current kernel size */
3008 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3009 mempages
-= reserve
;
3011 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3012 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3016 files_init(mempages
);