perf: Unified API to record selective sets of arch registers
[linux-2.6.git] / include / linux / skbuff.h
blob7632c87da2c9fd66eab61b6c7415d5669b7aeefd
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X) \
45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) + \
53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
56 /* A. Checksumming of received packets by device.
58 * NONE: device failed to checksum this packet.
59 * skb->csum is undefined.
61 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
62 * skb->csum is undefined.
63 * It is bad option, but, unfortunately, many of vendors do this.
64 * Apparently with secret goal to sell you new device, when you
65 * will add new protocol to your host. F.e. IPv6. 8)
67 * COMPLETE: the most generic way. Device supplied checksum of _all_
68 * the packet as seen by netif_rx in skb->csum.
69 * NOTE: Even if device supports only some protocols, but
70 * is able to produce some skb->csum, it MUST use COMPLETE,
71 * not UNNECESSARY.
73 * PARTIAL: identical to the case for output below. This may occur
74 * on a packet received directly from another Linux OS, e.g.,
75 * a virtualised Linux kernel on the same host. The packet can
76 * be treated in the same way as UNNECESSARY except that on
77 * output (i.e., forwarding) the checksum must be filled in
78 * by the OS or the hardware.
80 * B. Checksumming on output.
82 * NONE: skb is checksummed by protocol or csum is not required.
84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
85 * from skb->csum_start to the end and to record the checksum
86 * at skb->csum_start + skb->csum_offset.
88 * Device must show its capabilities in dev->features, set
89 * at device setup time.
90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
91 * everything.
92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93 * TCP/UDP over IPv4. Sigh. Vendors like this
94 * way by an unknown reason. Though, see comment above
95 * about CHECKSUM_UNNECESSARY. 8)
96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99 * that do not want net to perform the checksum calculation should use
100 * this flag in their outgoing skbs.
101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
102 * offload. Correspondingly, the FCoE protocol driver
103 * stack should use CHECKSUM_UNNECESSARY.
105 * Any questions? No questions, good. --ANK
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 atomic_t use;
116 #endif
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 atomic_t use;
121 unsigned int mask;
122 struct net_device *physindev;
123 struct net_device *physoutdev;
124 unsigned long data[32 / sizeof(unsigned long)];
126 #endif
128 struct sk_buff_head {
129 /* These two members must be first. */
130 struct sk_buff *next;
131 struct sk_buff *prev;
133 __u32 qlen;
134 spinlock_t lock;
137 struct sk_buff;
139 /* To allow 64K frame to be packed as single skb without frag_list we
140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141 * buffers which do not start on a page boundary.
143 * Since GRO uses frags we allocate at least 16 regardless of page
144 * size.
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
152 typedef struct skb_frag_struct skb_frag_t;
154 struct skb_frag_struct {
155 struct {
156 struct page *p;
157 } page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 __u32 page_offset;
160 __u32 size;
161 #else
162 __u16 page_offset;
163 __u16 size;
164 #endif
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
169 return frag->size;
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
174 frag->size = size;
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
179 frag->size += delta;
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
184 frag->size -= delta;
187 #define HAVE_HW_TIME_STAMP
190 * struct skb_shared_hwtstamps - hardware time stamps
191 * @hwtstamp: hardware time stamp transformed into duration
192 * since arbitrary point in time
193 * @syststamp: hwtstamp transformed to system time base
195 * Software time stamps generated by ktime_get_real() are stored in
196 * skb->tstamp. The relation between the different kinds of time
197 * stamps is as follows:
199 * syststamp and tstamp can be compared against each other in
200 * arbitrary combinations. The accuracy of a
201 * syststamp/tstamp/"syststamp from other device" comparison is
202 * limited by the accuracy of the transformation into system time
203 * base. This depends on the device driver and its underlying
204 * hardware.
206 * hwtstamps can only be compared against other hwtstamps from
207 * the same device.
209 * This structure is attached to packets as part of the
210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
212 struct skb_shared_hwtstamps {
213 ktime_t hwtstamp;
214 ktime_t syststamp;
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 /* generate hardware time stamp */
220 SKBTX_HW_TSTAMP = 1 << 0,
222 /* generate software time stamp */
223 SKBTX_SW_TSTAMP = 1 << 1,
225 /* device driver is going to provide hardware time stamp */
226 SKBTX_IN_PROGRESS = 1 << 2,
228 /* device driver supports TX zero-copy buffers */
229 SKBTX_DEV_ZEROCOPY = 1 << 3,
231 /* generate wifi status information (where possible) */
232 SKBTX_WIFI_STATUS = 1 << 4,
236 * The callback notifies userspace to release buffers when skb DMA is done in
237 * lower device, the skb last reference should be 0 when calling this.
238 * The ctx field is used to track device context.
239 * The desc field is used to track userspace buffer index.
241 struct ubuf_info {
242 void (*callback)(struct ubuf_info *);
243 void *ctx;
244 unsigned long desc;
247 /* This data is invariant across clones and lives at
248 * the end of the header data, ie. at skb->end.
250 struct skb_shared_info {
251 unsigned char nr_frags;
252 __u8 tx_flags;
253 unsigned short gso_size;
254 /* Warning: this field is not always filled in (UFO)! */
255 unsigned short gso_segs;
256 unsigned short gso_type;
257 struct sk_buff *frag_list;
258 struct skb_shared_hwtstamps hwtstamps;
259 __be32 ip6_frag_id;
262 * Warning : all fields before dataref are cleared in __alloc_skb()
264 atomic_t dataref;
266 /* Intermediate layers must ensure that destructor_arg
267 * remains valid until skb destructor */
268 void * destructor_arg;
270 /* must be last field, see pskb_expand_head() */
271 skb_frag_t frags[MAX_SKB_FRAGS];
274 /* We divide dataref into two halves. The higher 16 bits hold references
275 * to the payload part of skb->data. The lower 16 bits hold references to
276 * the entire skb->data. A clone of a headerless skb holds the length of
277 * the header in skb->hdr_len.
279 * All users must obey the rule that the skb->data reference count must be
280 * greater than or equal to the payload reference count.
282 * Holding a reference to the payload part means that the user does not
283 * care about modifications to the header part of skb->data.
285 #define SKB_DATAREF_SHIFT 16
286 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
289 enum {
290 SKB_FCLONE_UNAVAILABLE,
291 SKB_FCLONE_ORIG,
292 SKB_FCLONE_CLONE,
295 enum {
296 SKB_GSO_TCPV4 = 1 << 0,
297 SKB_GSO_UDP = 1 << 1,
299 /* This indicates the skb is from an untrusted source. */
300 SKB_GSO_DODGY = 1 << 2,
302 /* This indicates the tcp segment has CWR set. */
303 SKB_GSO_TCP_ECN = 1 << 3,
305 SKB_GSO_TCPV6 = 1 << 4,
307 SKB_GSO_FCOE = 1 << 5,
310 #if BITS_PER_LONG > 32
311 #define NET_SKBUFF_DATA_USES_OFFSET 1
312 #endif
314 #ifdef NET_SKBUFF_DATA_USES_OFFSET
315 typedef unsigned int sk_buff_data_t;
316 #else
317 typedef unsigned char *sk_buff_data_t;
318 #endif
320 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
321 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
322 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
323 #endif
325 /**
326 * struct sk_buff - socket buffer
327 * @next: Next buffer in list
328 * @prev: Previous buffer in list
329 * @tstamp: Time we arrived
330 * @sk: Socket we are owned by
331 * @dev: Device we arrived on/are leaving by
332 * @cb: Control buffer. Free for use by every layer. Put private vars here
333 * @_skb_refdst: destination entry (with norefcount bit)
334 * @sp: the security path, used for xfrm
335 * @len: Length of actual data
336 * @data_len: Data length
337 * @mac_len: Length of link layer header
338 * @hdr_len: writable header length of cloned skb
339 * @csum: Checksum (must include start/offset pair)
340 * @csum_start: Offset from skb->head where checksumming should start
341 * @csum_offset: Offset from csum_start where checksum should be stored
342 * @priority: Packet queueing priority
343 * @local_df: allow local fragmentation
344 * @cloned: Head may be cloned (check refcnt to be sure)
345 * @ip_summed: Driver fed us an IP checksum
346 * @nohdr: Payload reference only, must not modify header
347 * @nfctinfo: Relationship of this skb to the connection
348 * @pkt_type: Packet class
349 * @fclone: skbuff clone status
350 * @ipvs_property: skbuff is owned by ipvs
351 * @peeked: this packet has been seen already, so stats have been
352 * done for it, don't do them again
353 * @nf_trace: netfilter packet trace flag
354 * @protocol: Packet protocol from driver
355 * @destructor: Destruct function
356 * @nfct: Associated connection, if any
357 * @nfct_reasm: netfilter conntrack re-assembly pointer
358 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
359 * @skb_iif: ifindex of device we arrived on
360 * @tc_index: Traffic control index
361 * @tc_verd: traffic control verdict
362 * @rxhash: the packet hash computed on receive
363 * @queue_mapping: Queue mapping for multiqueue devices
364 * @ndisc_nodetype: router type (from link layer)
365 * @ooo_okay: allow the mapping of a socket to a queue to be changed
366 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
367 * ports.
368 * @wifi_acked_valid: wifi_acked was set
369 * @wifi_acked: whether frame was acked on wifi or not
370 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
371 * @dma_cookie: a cookie to one of several possible DMA operations
372 * done by skb DMA functions
373 * @secmark: security marking
374 * @mark: Generic packet mark
375 * @dropcount: total number of sk_receive_queue overflows
376 * @vlan_tci: vlan tag control information
377 * @transport_header: Transport layer header
378 * @network_header: Network layer header
379 * @mac_header: Link layer header
380 * @tail: Tail pointer
381 * @end: End pointer
382 * @head: Head of buffer
383 * @data: Data head pointer
384 * @truesize: Buffer size
385 * @users: User count - see {datagram,tcp}.c
388 struct sk_buff {
389 /* These two members must be first. */
390 struct sk_buff *next;
391 struct sk_buff *prev;
393 ktime_t tstamp;
395 struct sock *sk;
396 struct net_device *dev;
399 * This is the control buffer. It is free to use for every
400 * layer. Please put your private variables there. If you
401 * want to keep them across layers you have to do a skb_clone()
402 * first. This is owned by whoever has the skb queued ATM.
404 char cb[48] __aligned(8);
406 unsigned long _skb_refdst;
407 #ifdef CONFIG_XFRM
408 struct sec_path *sp;
409 #endif
410 unsigned int len,
411 data_len;
412 __u16 mac_len,
413 hdr_len;
414 union {
415 __wsum csum;
416 struct {
417 __u16 csum_start;
418 __u16 csum_offset;
421 __u32 priority;
422 kmemcheck_bitfield_begin(flags1);
423 __u8 local_df:1,
424 cloned:1,
425 ip_summed:2,
426 nohdr:1,
427 nfctinfo:3;
428 __u8 pkt_type:3,
429 fclone:2,
430 ipvs_property:1,
431 peeked:1,
432 nf_trace:1;
433 kmemcheck_bitfield_end(flags1);
434 __be16 protocol;
436 void (*destructor)(struct sk_buff *skb);
437 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
438 struct nf_conntrack *nfct;
439 #endif
440 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
441 struct sk_buff *nfct_reasm;
442 #endif
443 #ifdef CONFIG_BRIDGE_NETFILTER
444 struct nf_bridge_info *nf_bridge;
445 #endif
447 int skb_iif;
449 __u32 rxhash;
451 __u16 vlan_tci;
453 #ifdef CONFIG_NET_SCHED
454 __u16 tc_index; /* traffic control index */
455 #ifdef CONFIG_NET_CLS_ACT
456 __u16 tc_verd; /* traffic control verdict */
457 #endif
458 #endif
460 __u16 queue_mapping;
461 kmemcheck_bitfield_begin(flags2);
462 #ifdef CONFIG_IPV6_NDISC_NODETYPE
463 __u8 ndisc_nodetype:2;
464 #endif
465 __u8 pfmemalloc:1;
466 __u8 ooo_okay:1;
467 __u8 l4_rxhash:1;
468 __u8 wifi_acked_valid:1;
469 __u8 wifi_acked:1;
470 __u8 no_fcs:1;
471 __u8 head_frag:1;
472 /* 8/10 bit hole (depending on ndisc_nodetype presence) */
473 kmemcheck_bitfield_end(flags2);
475 #ifdef CONFIG_NET_DMA
476 dma_cookie_t dma_cookie;
477 #endif
478 #ifdef CONFIG_NETWORK_SECMARK
479 __u32 secmark;
480 #endif
481 union {
482 __u32 mark;
483 __u32 dropcount;
484 __u32 avail_size;
487 sk_buff_data_t transport_header;
488 sk_buff_data_t network_header;
489 sk_buff_data_t mac_header;
490 /* These elements must be at the end, see alloc_skb() for details. */
491 sk_buff_data_t tail;
492 sk_buff_data_t end;
493 unsigned char *head,
494 *data;
495 unsigned int truesize;
496 atomic_t users;
499 #ifdef __KERNEL__
501 * Handling routines are only of interest to the kernel
503 #include <linux/slab.h>
506 #define SKB_ALLOC_FCLONE 0x01
507 #define SKB_ALLOC_RX 0x02
509 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
510 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
512 return unlikely(skb->pfmemalloc);
516 * skb might have a dst pointer attached, refcounted or not.
517 * _skb_refdst low order bit is set if refcount was _not_ taken
519 #define SKB_DST_NOREF 1UL
520 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
523 * skb_dst - returns skb dst_entry
524 * @skb: buffer
526 * Returns skb dst_entry, regardless of reference taken or not.
528 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
530 /* If refdst was not refcounted, check we still are in a
531 * rcu_read_lock section
533 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
534 !rcu_read_lock_held() &&
535 !rcu_read_lock_bh_held());
536 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
540 * skb_dst_set - sets skb dst
541 * @skb: buffer
542 * @dst: dst entry
544 * Sets skb dst, assuming a reference was taken on dst and should
545 * be released by skb_dst_drop()
547 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
549 skb->_skb_refdst = (unsigned long)dst;
552 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
555 * skb_dst_is_noref - Test if skb dst isn't refcounted
556 * @skb: buffer
558 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
560 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
563 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
565 return (struct rtable *)skb_dst(skb);
568 extern void kfree_skb(struct sk_buff *skb);
569 extern void consume_skb(struct sk_buff *skb);
570 extern void __kfree_skb(struct sk_buff *skb);
571 extern struct kmem_cache *skbuff_head_cache;
573 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
574 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
575 bool *fragstolen, int *delta_truesize);
577 extern struct sk_buff *__alloc_skb(unsigned int size,
578 gfp_t priority, int flags, int node);
579 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
580 static inline struct sk_buff *alloc_skb(unsigned int size,
581 gfp_t priority)
583 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
586 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
587 gfp_t priority)
589 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
592 extern void skb_recycle(struct sk_buff *skb);
593 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
595 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
596 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
597 extern struct sk_buff *skb_clone(struct sk_buff *skb,
598 gfp_t priority);
599 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
600 gfp_t priority);
601 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
602 int headroom, gfp_t gfp_mask);
604 extern int pskb_expand_head(struct sk_buff *skb,
605 int nhead, int ntail,
606 gfp_t gfp_mask);
607 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
608 unsigned int headroom);
609 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
610 int newheadroom, int newtailroom,
611 gfp_t priority);
612 extern int skb_to_sgvec(struct sk_buff *skb,
613 struct scatterlist *sg, int offset,
614 int len);
615 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
616 struct sk_buff **trailer);
617 extern int skb_pad(struct sk_buff *skb, int pad);
618 #define dev_kfree_skb(a) consume_skb(a)
620 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
621 int getfrag(void *from, char *to, int offset,
622 int len,int odd, struct sk_buff *skb),
623 void *from, int length);
625 struct skb_seq_state {
626 __u32 lower_offset;
627 __u32 upper_offset;
628 __u32 frag_idx;
629 __u32 stepped_offset;
630 struct sk_buff *root_skb;
631 struct sk_buff *cur_skb;
632 __u8 *frag_data;
635 extern void skb_prepare_seq_read(struct sk_buff *skb,
636 unsigned int from, unsigned int to,
637 struct skb_seq_state *st);
638 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
639 struct skb_seq_state *st);
640 extern void skb_abort_seq_read(struct skb_seq_state *st);
642 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
643 unsigned int to, struct ts_config *config,
644 struct ts_state *state);
646 extern void __skb_get_rxhash(struct sk_buff *skb);
647 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
649 if (!skb->rxhash)
650 __skb_get_rxhash(skb);
652 return skb->rxhash;
655 #ifdef NET_SKBUFF_DATA_USES_OFFSET
656 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
658 return skb->head + skb->end;
661 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
663 return skb->end;
665 #else
666 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
668 return skb->end;
671 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
673 return skb->end - skb->head;
675 #endif
677 /* Internal */
678 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
680 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
682 return &skb_shinfo(skb)->hwtstamps;
686 * skb_queue_empty - check if a queue is empty
687 * @list: queue head
689 * Returns true if the queue is empty, false otherwise.
691 static inline int skb_queue_empty(const struct sk_buff_head *list)
693 return list->next == (struct sk_buff *)list;
697 * skb_queue_is_last - check if skb is the last entry in the queue
698 * @list: queue head
699 * @skb: buffer
701 * Returns true if @skb is the last buffer on the list.
703 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
704 const struct sk_buff *skb)
706 return skb->next == (struct sk_buff *)list;
710 * skb_queue_is_first - check if skb is the first entry in the queue
711 * @list: queue head
712 * @skb: buffer
714 * Returns true if @skb is the first buffer on the list.
716 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
717 const struct sk_buff *skb)
719 return skb->prev == (struct sk_buff *)list;
723 * skb_queue_next - return the next packet in the queue
724 * @list: queue head
725 * @skb: current buffer
727 * Return the next packet in @list after @skb. It is only valid to
728 * call this if skb_queue_is_last() evaluates to false.
730 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
731 const struct sk_buff *skb)
733 /* This BUG_ON may seem severe, but if we just return then we
734 * are going to dereference garbage.
736 BUG_ON(skb_queue_is_last(list, skb));
737 return skb->next;
741 * skb_queue_prev - return the prev packet in the queue
742 * @list: queue head
743 * @skb: current buffer
745 * Return the prev packet in @list before @skb. It is only valid to
746 * call this if skb_queue_is_first() evaluates to false.
748 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
749 const struct sk_buff *skb)
751 /* This BUG_ON may seem severe, but if we just return then we
752 * are going to dereference garbage.
754 BUG_ON(skb_queue_is_first(list, skb));
755 return skb->prev;
759 * skb_get - reference buffer
760 * @skb: buffer to reference
762 * Makes another reference to a socket buffer and returns a pointer
763 * to the buffer.
765 static inline struct sk_buff *skb_get(struct sk_buff *skb)
767 atomic_inc(&skb->users);
768 return skb;
772 * If users == 1, we are the only owner and are can avoid redundant
773 * atomic change.
777 * skb_cloned - is the buffer a clone
778 * @skb: buffer to check
780 * Returns true if the buffer was generated with skb_clone() and is
781 * one of multiple shared copies of the buffer. Cloned buffers are
782 * shared data so must not be written to under normal circumstances.
784 static inline int skb_cloned(const struct sk_buff *skb)
786 return skb->cloned &&
787 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
791 * skb_header_cloned - is the header a clone
792 * @skb: buffer to check
794 * Returns true if modifying the header part of the buffer requires
795 * the data to be copied.
797 static inline int skb_header_cloned(const struct sk_buff *skb)
799 int dataref;
801 if (!skb->cloned)
802 return 0;
804 dataref = atomic_read(&skb_shinfo(skb)->dataref);
805 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
806 return dataref != 1;
810 * skb_header_release - release reference to header
811 * @skb: buffer to operate on
813 * Drop a reference to the header part of the buffer. This is done
814 * by acquiring a payload reference. You must not read from the header
815 * part of skb->data after this.
817 static inline void skb_header_release(struct sk_buff *skb)
819 BUG_ON(skb->nohdr);
820 skb->nohdr = 1;
821 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
825 * skb_shared - is the buffer shared
826 * @skb: buffer to check
828 * Returns true if more than one person has a reference to this
829 * buffer.
831 static inline int skb_shared(const struct sk_buff *skb)
833 return atomic_read(&skb->users) != 1;
837 * skb_share_check - check if buffer is shared and if so clone it
838 * @skb: buffer to check
839 * @pri: priority for memory allocation
841 * If the buffer is shared the buffer is cloned and the old copy
842 * drops a reference. A new clone with a single reference is returned.
843 * If the buffer is not shared the original buffer is returned. When
844 * being called from interrupt status or with spinlocks held pri must
845 * be GFP_ATOMIC.
847 * NULL is returned on a memory allocation failure.
849 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
850 gfp_t pri)
852 might_sleep_if(pri & __GFP_WAIT);
853 if (skb_shared(skb)) {
854 struct sk_buff *nskb = skb_clone(skb, pri);
855 kfree_skb(skb);
856 skb = nskb;
858 return skb;
862 * Copy shared buffers into a new sk_buff. We effectively do COW on
863 * packets to handle cases where we have a local reader and forward
864 * and a couple of other messy ones. The normal one is tcpdumping
865 * a packet thats being forwarded.
869 * skb_unshare - make a copy of a shared buffer
870 * @skb: buffer to check
871 * @pri: priority for memory allocation
873 * If the socket buffer is a clone then this function creates a new
874 * copy of the data, drops a reference count on the old copy and returns
875 * the new copy with the reference count at 1. If the buffer is not a clone
876 * the original buffer is returned. When called with a spinlock held or
877 * from interrupt state @pri must be %GFP_ATOMIC
879 * %NULL is returned on a memory allocation failure.
881 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
882 gfp_t pri)
884 might_sleep_if(pri & __GFP_WAIT);
885 if (skb_cloned(skb)) {
886 struct sk_buff *nskb = skb_copy(skb, pri);
887 kfree_skb(skb); /* Free our shared copy */
888 skb = nskb;
890 return skb;
894 * skb_peek - peek at the head of an &sk_buff_head
895 * @list_: list to peek at
897 * Peek an &sk_buff. Unlike most other operations you _MUST_
898 * be careful with this one. A peek leaves the buffer on the
899 * list and someone else may run off with it. You must hold
900 * the appropriate locks or have a private queue to do this.
902 * Returns %NULL for an empty list or a pointer to the head element.
903 * The reference count is not incremented and the reference is therefore
904 * volatile. Use with caution.
906 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
908 struct sk_buff *skb = list_->next;
910 if (skb == (struct sk_buff *)list_)
911 skb = NULL;
912 return skb;
916 * skb_peek_next - peek skb following the given one from a queue
917 * @skb: skb to start from
918 * @list_: list to peek at
920 * Returns %NULL when the end of the list is met or a pointer to the
921 * next element. The reference count is not incremented and the
922 * reference is therefore volatile. Use with caution.
924 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
925 const struct sk_buff_head *list_)
927 struct sk_buff *next = skb->next;
929 if (next == (struct sk_buff *)list_)
930 next = NULL;
931 return next;
935 * skb_peek_tail - peek at the tail of an &sk_buff_head
936 * @list_: list to peek at
938 * Peek an &sk_buff. Unlike most other operations you _MUST_
939 * be careful with this one. A peek leaves the buffer on the
940 * list and someone else may run off with it. You must hold
941 * the appropriate locks or have a private queue to do this.
943 * Returns %NULL for an empty list or a pointer to the tail element.
944 * The reference count is not incremented and the reference is therefore
945 * volatile. Use with caution.
947 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
949 struct sk_buff *skb = list_->prev;
951 if (skb == (struct sk_buff *)list_)
952 skb = NULL;
953 return skb;
958 * skb_queue_len - get queue length
959 * @list_: list to measure
961 * Return the length of an &sk_buff queue.
963 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
965 return list_->qlen;
969 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
970 * @list: queue to initialize
972 * This initializes only the list and queue length aspects of
973 * an sk_buff_head object. This allows to initialize the list
974 * aspects of an sk_buff_head without reinitializing things like
975 * the spinlock. It can also be used for on-stack sk_buff_head
976 * objects where the spinlock is known to not be used.
978 static inline void __skb_queue_head_init(struct sk_buff_head *list)
980 list->prev = list->next = (struct sk_buff *)list;
981 list->qlen = 0;
985 * This function creates a split out lock class for each invocation;
986 * this is needed for now since a whole lot of users of the skb-queue
987 * infrastructure in drivers have different locking usage (in hardirq)
988 * than the networking core (in softirq only). In the long run either the
989 * network layer or drivers should need annotation to consolidate the
990 * main types of usage into 3 classes.
992 static inline void skb_queue_head_init(struct sk_buff_head *list)
994 spin_lock_init(&list->lock);
995 __skb_queue_head_init(list);
998 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
999 struct lock_class_key *class)
1001 skb_queue_head_init(list);
1002 lockdep_set_class(&list->lock, class);
1006 * Insert an sk_buff on a list.
1008 * The "__skb_xxxx()" functions are the non-atomic ones that
1009 * can only be called with interrupts disabled.
1011 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1012 static inline void __skb_insert(struct sk_buff *newsk,
1013 struct sk_buff *prev, struct sk_buff *next,
1014 struct sk_buff_head *list)
1016 newsk->next = next;
1017 newsk->prev = prev;
1018 next->prev = prev->next = newsk;
1019 list->qlen++;
1022 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1023 struct sk_buff *prev,
1024 struct sk_buff *next)
1026 struct sk_buff *first = list->next;
1027 struct sk_buff *last = list->prev;
1029 first->prev = prev;
1030 prev->next = first;
1032 last->next = next;
1033 next->prev = last;
1037 * skb_queue_splice - join two skb lists, this is designed for stacks
1038 * @list: the new list to add
1039 * @head: the place to add it in the first list
1041 static inline void skb_queue_splice(const struct sk_buff_head *list,
1042 struct sk_buff_head *head)
1044 if (!skb_queue_empty(list)) {
1045 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1046 head->qlen += list->qlen;
1051 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1052 * @list: the new list to add
1053 * @head: the place to add it in the first list
1055 * The list at @list is reinitialised
1057 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1058 struct sk_buff_head *head)
1060 if (!skb_queue_empty(list)) {
1061 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1062 head->qlen += list->qlen;
1063 __skb_queue_head_init(list);
1068 * skb_queue_splice_tail - join two skb lists, each list being a queue
1069 * @list: the new list to add
1070 * @head: the place to add it in the first list
1072 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1073 struct sk_buff_head *head)
1075 if (!skb_queue_empty(list)) {
1076 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1077 head->qlen += list->qlen;
1082 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1083 * @list: the new list to add
1084 * @head: the place to add it in the first list
1086 * Each of the lists is a queue.
1087 * The list at @list is reinitialised
1089 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1090 struct sk_buff_head *head)
1092 if (!skb_queue_empty(list)) {
1093 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1094 head->qlen += list->qlen;
1095 __skb_queue_head_init(list);
1100 * __skb_queue_after - queue a buffer at the list head
1101 * @list: list to use
1102 * @prev: place after this buffer
1103 * @newsk: buffer to queue
1105 * Queue a buffer int the middle of a list. This function takes no locks
1106 * and you must therefore hold required locks before calling it.
1108 * A buffer cannot be placed on two lists at the same time.
1110 static inline void __skb_queue_after(struct sk_buff_head *list,
1111 struct sk_buff *prev,
1112 struct sk_buff *newsk)
1114 __skb_insert(newsk, prev, prev->next, list);
1117 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1118 struct sk_buff_head *list);
1120 static inline void __skb_queue_before(struct sk_buff_head *list,
1121 struct sk_buff *next,
1122 struct sk_buff *newsk)
1124 __skb_insert(newsk, next->prev, next, list);
1128 * __skb_queue_head - queue a buffer at the list head
1129 * @list: list to use
1130 * @newsk: buffer to queue
1132 * Queue a buffer at the start of a list. This function takes no locks
1133 * and you must therefore hold required locks before calling it.
1135 * A buffer cannot be placed on two lists at the same time.
1137 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1138 static inline void __skb_queue_head(struct sk_buff_head *list,
1139 struct sk_buff *newsk)
1141 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1145 * __skb_queue_tail - queue a buffer at the list tail
1146 * @list: list to use
1147 * @newsk: buffer to queue
1149 * Queue a buffer at the end of a list. This function takes no locks
1150 * and you must therefore hold required locks before calling it.
1152 * A buffer cannot be placed on two lists at the same time.
1154 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1155 static inline void __skb_queue_tail(struct sk_buff_head *list,
1156 struct sk_buff *newsk)
1158 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1162 * remove sk_buff from list. _Must_ be called atomically, and with
1163 * the list known..
1165 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1166 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1168 struct sk_buff *next, *prev;
1170 list->qlen--;
1171 next = skb->next;
1172 prev = skb->prev;
1173 skb->next = skb->prev = NULL;
1174 next->prev = prev;
1175 prev->next = next;
1179 * __skb_dequeue - remove from the head of the queue
1180 * @list: list to dequeue from
1182 * Remove the head of the list. This function does not take any locks
1183 * so must be used with appropriate locks held only. The head item is
1184 * returned or %NULL if the list is empty.
1186 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1187 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1189 struct sk_buff *skb = skb_peek(list);
1190 if (skb)
1191 __skb_unlink(skb, list);
1192 return skb;
1196 * __skb_dequeue_tail - remove from the tail of the queue
1197 * @list: list to dequeue from
1199 * Remove the tail of the list. This function does not take any locks
1200 * so must be used with appropriate locks held only. The tail item is
1201 * returned or %NULL if the list is empty.
1203 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1204 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1206 struct sk_buff *skb = skb_peek_tail(list);
1207 if (skb)
1208 __skb_unlink(skb, list);
1209 return skb;
1213 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1215 return skb->data_len;
1218 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1220 return skb->len - skb->data_len;
1223 static inline int skb_pagelen(const struct sk_buff *skb)
1225 int i, len = 0;
1227 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1228 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1229 return len + skb_headlen(skb);
1233 * __skb_fill_page_desc - initialise a paged fragment in an skb
1234 * @skb: buffer containing fragment to be initialised
1235 * @i: paged fragment index to initialise
1236 * @page: the page to use for this fragment
1237 * @off: the offset to the data with @page
1238 * @size: the length of the data
1240 * Initialises the @i'th fragment of @skb to point to &size bytes at
1241 * offset @off within @page.
1243 * Does not take any additional reference on the fragment.
1245 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1246 struct page *page, int off, int size)
1248 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1251 * Propagate page->pfmemalloc to the skb if we can. The problem is
1252 * that not all callers have unique ownership of the page. If
1253 * pfmemalloc is set, we check the mapping as a mapping implies
1254 * page->index is set (index and pfmemalloc share space).
1255 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1256 * do not lose pfmemalloc information as the pages would not be
1257 * allocated using __GFP_MEMALLOC.
1259 if (page->pfmemalloc && !page->mapping)
1260 skb->pfmemalloc = true;
1261 frag->page.p = page;
1262 frag->page_offset = off;
1263 skb_frag_size_set(frag, size);
1267 * skb_fill_page_desc - initialise a paged fragment in an skb
1268 * @skb: buffer containing fragment to be initialised
1269 * @i: paged fragment index to initialise
1270 * @page: the page to use for this fragment
1271 * @off: the offset to the data with @page
1272 * @size: the length of the data
1274 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1275 * @skb to point to &size bytes at offset @off within @page. In
1276 * addition updates @skb such that @i is the last fragment.
1278 * Does not take any additional reference on the fragment.
1280 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1281 struct page *page, int off, int size)
1283 __skb_fill_page_desc(skb, i, page, off, size);
1284 skb_shinfo(skb)->nr_frags = i + 1;
1287 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1288 int off, int size, unsigned int truesize);
1290 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1291 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1292 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1294 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1295 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1297 return skb->head + skb->tail;
1300 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1302 skb->tail = skb->data - skb->head;
1305 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1307 skb_reset_tail_pointer(skb);
1308 skb->tail += offset;
1310 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1311 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1313 return skb->tail;
1316 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1318 skb->tail = skb->data;
1321 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1323 skb->tail = skb->data + offset;
1326 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1329 * Add data to an sk_buff
1331 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1332 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1334 unsigned char *tmp = skb_tail_pointer(skb);
1335 SKB_LINEAR_ASSERT(skb);
1336 skb->tail += len;
1337 skb->len += len;
1338 return tmp;
1341 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1342 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1344 skb->data -= len;
1345 skb->len += len;
1346 return skb->data;
1349 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1350 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1352 skb->len -= len;
1353 BUG_ON(skb->len < skb->data_len);
1354 return skb->data += len;
1357 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1359 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1362 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1364 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1366 if (len > skb_headlen(skb) &&
1367 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1368 return NULL;
1369 skb->len -= len;
1370 return skb->data += len;
1373 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1375 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1378 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1380 if (likely(len <= skb_headlen(skb)))
1381 return 1;
1382 if (unlikely(len > skb->len))
1383 return 0;
1384 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1388 * skb_headroom - bytes at buffer head
1389 * @skb: buffer to check
1391 * Return the number of bytes of free space at the head of an &sk_buff.
1393 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1395 return skb->data - skb->head;
1399 * skb_tailroom - bytes at buffer end
1400 * @skb: buffer to check
1402 * Return the number of bytes of free space at the tail of an sk_buff
1404 static inline int skb_tailroom(const struct sk_buff *skb)
1406 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1410 * skb_availroom - bytes at buffer end
1411 * @skb: buffer to check
1413 * Return the number of bytes of free space at the tail of an sk_buff
1414 * allocated by sk_stream_alloc()
1416 static inline int skb_availroom(const struct sk_buff *skb)
1418 return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
1422 * skb_reserve - adjust headroom
1423 * @skb: buffer to alter
1424 * @len: bytes to move
1426 * Increase the headroom of an empty &sk_buff by reducing the tail
1427 * room. This is only allowed for an empty buffer.
1429 static inline void skb_reserve(struct sk_buff *skb, int len)
1431 skb->data += len;
1432 skb->tail += len;
1435 static inline void skb_reset_mac_len(struct sk_buff *skb)
1437 skb->mac_len = skb->network_header - skb->mac_header;
1440 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1441 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1443 return skb->head + skb->transport_header;
1446 static inline void skb_reset_transport_header(struct sk_buff *skb)
1448 skb->transport_header = skb->data - skb->head;
1451 static inline void skb_set_transport_header(struct sk_buff *skb,
1452 const int offset)
1454 skb_reset_transport_header(skb);
1455 skb->transport_header += offset;
1458 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1460 return skb->head + skb->network_header;
1463 static inline void skb_reset_network_header(struct sk_buff *skb)
1465 skb->network_header = skb->data - skb->head;
1468 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1470 skb_reset_network_header(skb);
1471 skb->network_header += offset;
1474 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1476 return skb->head + skb->mac_header;
1479 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1481 return skb->mac_header != ~0U;
1484 static inline void skb_reset_mac_header(struct sk_buff *skb)
1486 skb->mac_header = skb->data - skb->head;
1489 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1491 skb_reset_mac_header(skb);
1492 skb->mac_header += offset;
1495 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1497 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1499 return skb->transport_header;
1502 static inline void skb_reset_transport_header(struct sk_buff *skb)
1504 skb->transport_header = skb->data;
1507 static inline void skb_set_transport_header(struct sk_buff *skb,
1508 const int offset)
1510 skb->transport_header = skb->data + offset;
1513 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1515 return skb->network_header;
1518 static inline void skb_reset_network_header(struct sk_buff *skb)
1520 skb->network_header = skb->data;
1523 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1525 skb->network_header = skb->data + offset;
1528 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1530 return skb->mac_header;
1533 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1535 return skb->mac_header != NULL;
1538 static inline void skb_reset_mac_header(struct sk_buff *skb)
1540 skb->mac_header = skb->data;
1543 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1545 skb->mac_header = skb->data + offset;
1547 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1549 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1551 if (skb_mac_header_was_set(skb)) {
1552 const unsigned char *old_mac = skb_mac_header(skb);
1554 skb_set_mac_header(skb, -skb->mac_len);
1555 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1559 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1561 return skb->csum_start - skb_headroom(skb);
1564 static inline int skb_transport_offset(const struct sk_buff *skb)
1566 return skb_transport_header(skb) - skb->data;
1569 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1571 return skb->transport_header - skb->network_header;
1574 static inline int skb_network_offset(const struct sk_buff *skb)
1576 return skb_network_header(skb) - skb->data;
1579 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1581 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1585 * CPUs often take a performance hit when accessing unaligned memory
1586 * locations. The actual performance hit varies, it can be small if the
1587 * hardware handles it or large if we have to take an exception and fix it
1588 * in software.
1590 * Since an ethernet header is 14 bytes network drivers often end up with
1591 * the IP header at an unaligned offset. The IP header can be aligned by
1592 * shifting the start of the packet by 2 bytes. Drivers should do this
1593 * with:
1595 * skb_reserve(skb, NET_IP_ALIGN);
1597 * The downside to this alignment of the IP header is that the DMA is now
1598 * unaligned. On some architectures the cost of an unaligned DMA is high
1599 * and this cost outweighs the gains made by aligning the IP header.
1601 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1602 * to be overridden.
1604 #ifndef NET_IP_ALIGN
1605 #define NET_IP_ALIGN 2
1606 #endif
1609 * The networking layer reserves some headroom in skb data (via
1610 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1611 * the header has to grow. In the default case, if the header has to grow
1612 * 32 bytes or less we avoid the reallocation.
1614 * Unfortunately this headroom changes the DMA alignment of the resulting
1615 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1616 * on some architectures. An architecture can override this value,
1617 * perhaps setting it to a cacheline in size (since that will maintain
1618 * cacheline alignment of the DMA). It must be a power of 2.
1620 * Various parts of the networking layer expect at least 32 bytes of
1621 * headroom, you should not reduce this.
1623 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1624 * to reduce average number of cache lines per packet.
1625 * get_rps_cpus() for example only access one 64 bytes aligned block :
1626 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1628 #ifndef NET_SKB_PAD
1629 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1630 #endif
1632 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1634 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1636 if (unlikely(skb_is_nonlinear(skb))) {
1637 WARN_ON(1);
1638 return;
1640 skb->len = len;
1641 skb_set_tail_pointer(skb, len);
1644 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1646 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1648 if (skb->data_len)
1649 return ___pskb_trim(skb, len);
1650 __skb_trim(skb, len);
1651 return 0;
1654 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1656 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1660 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1661 * @skb: buffer to alter
1662 * @len: new length
1664 * This is identical to pskb_trim except that the caller knows that
1665 * the skb is not cloned so we should never get an error due to out-
1666 * of-memory.
1668 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1670 int err = pskb_trim(skb, len);
1671 BUG_ON(err);
1675 * skb_orphan - orphan a buffer
1676 * @skb: buffer to orphan
1678 * If a buffer currently has an owner then we call the owner's
1679 * destructor function and make the @skb unowned. The buffer continues
1680 * to exist but is no longer charged to its former owner.
1682 static inline void skb_orphan(struct sk_buff *skb)
1684 if (skb->destructor)
1685 skb->destructor(skb);
1686 skb->destructor = NULL;
1687 skb->sk = NULL;
1691 * skb_orphan_frags - orphan the frags contained in a buffer
1692 * @skb: buffer to orphan frags from
1693 * @gfp_mask: allocation mask for replacement pages
1695 * For each frag in the SKB which needs a destructor (i.e. has an
1696 * owner) create a copy of that frag and release the original
1697 * page by calling the destructor.
1699 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1701 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1702 return 0;
1703 return skb_copy_ubufs(skb, gfp_mask);
1707 * __skb_queue_purge - empty a list
1708 * @list: list to empty
1710 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1711 * the list and one reference dropped. This function does not take the
1712 * list lock and the caller must hold the relevant locks to use it.
1714 extern void skb_queue_purge(struct sk_buff_head *list);
1715 static inline void __skb_queue_purge(struct sk_buff_head *list)
1717 struct sk_buff *skb;
1718 while ((skb = __skb_dequeue(list)) != NULL)
1719 kfree_skb(skb);
1722 extern void *netdev_alloc_frag(unsigned int fragsz);
1724 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1725 unsigned int length,
1726 gfp_t gfp_mask);
1729 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1730 * @dev: network device to receive on
1731 * @length: length to allocate
1733 * Allocate a new &sk_buff and assign it a usage count of one. The
1734 * buffer has unspecified headroom built in. Users should allocate
1735 * the headroom they think they need without accounting for the
1736 * built in space. The built in space is used for optimisations.
1738 * %NULL is returned if there is no free memory. Although this function
1739 * allocates memory it can be called from an interrupt.
1741 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1742 unsigned int length)
1744 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1747 /* legacy helper around __netdev_alloc_skb() */
1748 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1749 gfp_t gfp_mask)
1751 return __netdev_alloc_skb(NULL, length, gfp_mask);
1754 /* legacy helper around netdev_alloc_skb() */
1755 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1757 return netdev_alloc_skb(NULL, length);
1761 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1762 unsigned int length, gfp_t gfp)
1764 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1766 if (NET_IP_ALIGN && skb)
1767 skb_reserve(skb, NET_IP_ALIGN);
1768 return skb;
1771 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1772 unsigned int length)
1774 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1778 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
1779 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1780 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1781 * @order: size of the allocation
1783 * Allocate a new page.
1785 * %NULL is returned if there is no free memory.
1787 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
1788 struct sk_buff *skb,
1789 unsigned int order)
1791 struct page *page;
1793 gfp_mask |= __GFP_COLD;
1795 if (!(gfp_mask & __GFP_NOMEMALLOC))
1796 gfp_mask |= __GFP_MEMALLOC;
1798 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
1799 if (skb && page && page->pfmemalloc)
1800 skb->pfmemalloc = true;
1802 return page;
1806 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
1807 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1808 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1810 * Allocate a new page.
1812 * %NULL is returned if there is no free memory.
1814 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
1815 struct sk_buff *skb)
1817 return __skb_alloc_pages(gfp_mask, skb, 0);
1821 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
1822 * @page: The page that was allocated from skb_alloc_page
1823 * @skb: The skb that may need pfmemalloc set
1825 static inline void skb_propagate_pfmemalloc(struct page *page,
1826 struct sk_buff *skb)
1828 if (page && page->pfmemalloc)
1829 skb->pfmemalloc = true;
1833 * skb_frag_page - retrieve the page refered to by a paged fragment
1834 * @frag: the paged fragment
1836 * Returns the &struct page associated with @frag.
1838 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1840 return frag->page.p;
1844 * __skb_frag_ref - take an addition reference on a paged fragment.
1845 * @frag: the paged fragment
1847 * Takes an additional reference on the paged fragment @frag.
1849 static inline void __skb_frag_ref(skb_frag_t *frag)
1851 get_page(skb_frag_page(frag));
1855 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1856 * @skb: the buffer
1857 * @f: the fragment offset.
1859 * Takes an additional reference on the @f'th paged fragment of @skb.
1861 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1863 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1867 * __skb_frag_unref - release a reference on a paged fragment.
1868 * @frag: the paged fragment
1870 * Releases a reference on the paged fragment @frag.
1872 static inline void __skb_frag_unref(skb_frag_t *frag)
1874 put_page(skb_frag_page(frag));
1878 * skb_frag_unref - release a reference on a paged fragment of an skb.
1879 * @skb: the buffer
1880 * @f: the fragment offset
1882 * Releases a reference on the @f'th paged fragment of @skb.
1884 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1886 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1890 * skb_frag_address - gets the address of the data contained in a paged fragment
1891 * @frag: the paged fragment buffer
1893 * Returns the address of the data within @frag. The page must already
1894 * be mapped.
1896 static inline void *skb_frag_address(const skb_frag_t *frag)
1898 return page_address(skb_frag_page(frag)) + frag->page_offset;
1902 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1903 * @frag: the paged fragment buffer
1905 * Returns the address of the data within @frag. Checks that the page
1906 * is mapped and returns %NULL otherwise.
1908 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1910 void *ptr = page_address(skb_frag_page(frag));
1911 if (unlikely(!ptr))
1912 return NULL;
1914 return ptr + frag->page_offset;
1918 * __skb_frag_set_page - sets the page contained in a paged fragment
1919 * @frag: the paged fragment
1920 * @page: the page to set
1922 * Sets the fragment @frag to contain @page.
1924 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1926 frag->page.p = page;
1930 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1931 * @skb: the buffer
1932 * @f: the fragment offset
1933 * @page: the page to set
1935 * Sets the @f'th fragment of @skb to contain @page.
1937 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1938 struct page *page)
1940 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1944 * skb_frag_dma_map - maps a paged fragment via the DMA API
1945 * @dev: the device to map the fragment to
1946 * @frag: the paged fragment to map
1947 * @offset: the offset within the fragment (starting at the
1948 * fragment's own offset)
1949 * @size: the number of bytes to map
1950 * @dir: the direction of the mapping (%PCI_DMA_*)
1952 * Maps the page associated with @frag to @device.
1954 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1955 const skb_frag_t *frag,
1956 size_t offset, size_t size,
1957 enum dma_data_direction dir)
1959 return dma_map_page(dev, skb_frag_page(frag),
1960 frag->page_offset + offset, size, dir);
1963 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1964 gfp_t gfp_mask)
1966 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1970 * skb_clone_writable - is the header of a clone writable
1971 * @skb: buffer to check
1972 * @len: length up to which to write
1974 * Returns true if modifying the header part of the cloned buffer
1975 * does not requires the data to be copied.
1977 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1979 return !skb_header_cloned(skb) &&
1980 skb_headroom(skb) + len <= skb->hdr_len;
1983 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1984 int cloned)
1986 int delta = 0;
1988 if (headroom > skb_headroom(skb))
1989 delta = headroom - skb_headroom(skb);
1991 if (delta || cloned)
1992 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1993 GFP_ATOMIC);
1994 return 0;
1998 * skb_cow - copy header of skb when it is required
1999 * @skb: buffer to cow
2000 * @headroom: needed headroom
2002 * If the skb passed lacks sufficient headroom or its data part
2003 * is shared, data is reallocated. If reallocation fails, an error
2004 * is returned and original skb is not changed.
2006 * The result is skb with writable area skb->head...skb->tail
2007 * and at least @headroom of space at head.
2009 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2011 return __skb_cow(skb, headroom, skb_cloned(skb));
2015 * skb_cow_head - skb_cow but only making the head writable
2016 * @skb: buffer to cow
2017 * @headroom: needed headroom
2019 * This function is identical to skb_cow except that we replace the
2020 * skb_cloned check by skb_header_cloned. It should be used when
2021 * you only need to push on some header and do not need to modify
2022 * the data.
2024 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2026 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2030 * skb_padto - pad an skbuff up to a minimal size
2031 * @skb: buffer to pad
2032 * @len: minimal length
2034 * Pads up a buffer to ensure the trailing bytes exist and are
2035 * blanked. If the buffer already contains sufficient data it
2036 * is untouched. Otherwise it is extended. Returns zero on
2037 * success. The skb is freed on error.
2040 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2042 unsigned int size = skb->len;
2043 if (likely(size >= len))
2044 return 0;
2045 return skb_pad(skb, len - size);
2048 static inline int skb_add_data(struct sk_buff *skb,
2049 char __user *from, int copy)
2051 const int off = skb->len;
2053 if (skb->ip_summed == CHECKSUM_NONE) {
2054 int err = 0;
2055 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2056 copy, 0, &err);
2057 if (!err) {
2058 skb->csum = csum_block_add(skb->csum, csum, off);
2059 return 0;
2061 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2062 return 0;
2064 __skb_trim(skb, off);
2065 return -EFAULT;
2068 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2069 const struct page *page, int off)
2071 if (i) {
2072 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2074 return page == skb_frag_page(frag) &&
2075 off == frag->page_offset + skb_frag_size(frag);
2077 return false;
2080 static inline int __skb_linearize(struct sk_buff *skb)
2082 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2086 * skb_linearize - convert paged skb to linear one
2087 * @skb: buffer to linarize
2089 * If there is no free memory -ENOMEM is returned, otherwise zero
2090 * is returned and the old skb data released.
2092 static inline int skb_linearize(struct sk_buff *skb)
2094 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2098 * skb_linearize_cow - make sure skb is linear and writable
2099 * @skb: buffer to process
2101 * If there is no free memory -ENOMEM is returned, otherwise zero
2102 * is returned and the old skb data released.
2104 static inline int skb_linearize_cow(struct sk_buff *skb)
2106 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2107 __skb_linearize(skb) : 0;
2111 * skb_postpull_rcsum - update checksum for received skb after pull
2112 * @skb: buffer to update
2113 * @start: start of data before pull
2114 * @len: length of data pulled
2116 * After doing a pull on a received packet, you need to call this to
2117 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2118 * CHECKSUM_NONE so that it can be recomputed from scratch.
2121 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2122 const void *start, unsigned int len)
2124 if (skb->ip_summed == CHECKSUM_COMPLETE)
2125 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2128 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2131 * pskb_trim_rcsum - trim received skb and update checksum
2132 * @skb: buffer to trim
2133 * @len: new length
2135 * This is exactly the same as pskb_trim except that it ensures the
2136 * checksum of received packets are still valid after the operation.
2139 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2141 if (likely(len >= skb->len))
2142 return 0;
2143 if (skb->ip_summed == CHECKSUM_COMPLETE)
2144 skb->ip_summed = CHECKSUM_NONE;
2145 return __pskb_trim(skb, len);
2148 #define skb_queue_walk(queue, skb) \
2149 for (skb = (queue)->next; \
2150 skb != (struct sk_buff *)(queue); \
2151 skb = skb->next)
2153 #define skb_queue_walk_safe(queue, skb, tmp) \
2154 for (skb = (queue)->next, tmp = skb->next; \
2155 skb != (struct sk_buff *)(queue); \
2156 skb = tmp, tmp = skb->next)
2158 #define skb_queue_walk_from(queue, skb) \
2159 for (; skb != (struct sk_buff *)(queue); \
2160 skb = skb->next)
2162 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2163 for (tmp = skb->next; \
2164 skb != (struct sk_buff *)(queue); \
2165 skb = tmp, tmp = skb->next)
2167 #define skb_queue_reverse_walk(queue, skb) \
2168 for (skb = (queue)->prev; \
2169 skb != (struct sk_buff *)(queue); \
2170 skb = skb->prev)
2172 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2173 for (skb = (queue)->prev, tmp = skb->prev; \
2174 skb != (struct sk_buff *)(queue); \
2175 skb = tmp, tmp = skb->prev)
2177 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2178 for (tmp = skb->prev; \
2179 skb != (struct sk_buff *)(queue); \
2180 skb = tmp, tmp = skb->prev)
2182 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2184 return skb_shinfo(skb)->frag_list != NULL;
2187 static inline void skb_frag_list_init(struct sk_buff *skb)
2189 skb_shinfo(skb)->frag_list = NULL;
2192 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2194 frag->next = skb_shinfo(skb)->frag_list;
2195 skb_shinfo(skb)->frag_list = frag;
2198 #define skb_walk_frags(skb, iter) \
2199 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2201 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2202 int *peeked, int *off, int *err);
2203 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2204 int noblock, int *err);
2205 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2206 struct poll_table_struct *wait);
2207 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2208 int offset, struct iovec *to,
2209 int size);
2210 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2211 int hlen,
2212 struct iovec *iov);
2213 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2214 int offset,
2215 const struct iovec *from,
2216 int from_offset,
2217 int len);
2218 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2219 int offset,
2220 const struct iovec *to,
2221 int to_offset,
2222 int size);
2223 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2224 extern void skb_free_datagram_locked(struct sock *sk,
2225 struct sk_buff *skb);
2226 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2227 unsigned int flags);
2228 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2229 int len, __wsum csum);
2230 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2231 void *to, int len);
2232 extern int skb_store_bits(struct sk_buff *skb, int offset,
2233 const void *from, int len);
2234 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2235 int offset, u8 *to, int len,
2236 __wsum csum);
2237 extern int skb_splice_bits(struct sk_buff *skb,
2238 unsigned int offset,
2239 struct pipe_inode_info *pipe,
2240 unsigned int len,
2241 unsigned int flags);
2242 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2243 extern void skb_split(struct sk_buff *skb,
2244 struct sk_buff *skb1, const u32 len);
2245 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2246 int shiftlen);
2248 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2249 netdev_features_t features);
2251 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2252 int len, void *buffer)
2254 int hlen = skb_headlen(skb);
2256 if (hlen - offset >= len)
2257 return skb->data + offset;
2259 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2260 return NULL;
2262 return buffer;
2265 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2266 void *to,
2267 const unsigned int len)
2269 memcpy(to, skb->data, len);
2272 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2273 const int offset, void *to,
2274 const unsigned int len)
2276 memcpy(to, skb->data + offset, len);
2279 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2280 const void *from,
2281 const unsigned int len)
2283 memcpy(skb->data, from, len);
2286 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2287 const int offset,
2288 const void *from,
2289 const unsigned int len)
2291 memcpy(skb->data + offset, from, len);
2294 extern void skb_init(void);
2296 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2298 return skb->tstamp;
2302 * skb_get_timestamp - get timestamp from a skb
2303 * @skb: skb to get stamp from
2304 * @stamp: pointer to struct timeval to store stamp in
2306 * Timestamps are stored in the skb as offsets to a base timestamp.
2307 * This function converts the offset back to a struct timeval and stores
2308 * it in stamp.
2310 static inline void skb_get_timestamp(const struct sk_buff *skb,
2311 struct timeval *stamp)
2313 *stamp = ktime_to_timeval(skb->tstamp);
2316 static inline void skb_get_timestampns(const struct sk_buff *skb,
2317 struct timespec *stamp)
2319 *stamp = ktime_to_timespec(skb->tstamp);
2322 static inline void __net_timestamp(struct sk_buff *skb)
2324 skb->tstamp = ktime_get_real();
2327 static inline ktime_t net_timedelta(ktime_t t)
2329 return ktime_sub(ktime_get_real(), t);
2332 static inline ktime_t net_invalid_timestamp(void)
2334 return ktime_set(0, 0);
2337 extern void skb_timestamping_init(void);
2339 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2341 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2342 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2344 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2346 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2350 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2352 return false;
2355 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2358 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2360 * PHY drivers may accept clones of transmitted packets for
2361 * timestamping via their phy_driver.txtstamp method. These drivers
2362 * must call this function to return the skb back to the stack, with
2363 * or without a timestamp.
2365 * @skb: clone of the the original outgoing packet
2366 * @hwtstamps: hardware time stamps, may be NULL if not available
2369 void skb_complete_tx_timestamp(struct sk_buff *skb,
2370 struct skb_shared_hwtstamps *hwtstamps);
2373 * skb_tstamp_tx - queue clone of skb with send time stamps
2374 * @orig_skb: the original outgoing packet
2375 * @hwtstamps: hardware time stamps, may be NULL if not available
2377 * If the skb has a socket associated, then this function clones the
2378 * skb (thus sharing the actual data and optional structures), stores
2379 * the optional hardware time stamping information (if non NULL) or
2380 * generates a software time stamp (otherwise), then queues the clone
2381 * to the error queue of the socket. Errors are silently ignored.
2383 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2384 struct skb_shared_hwtstamps *hwtstamps);
2386 static inline void sw_tx_timestamp(struct sk_buff *skb)
2388 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2389 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2390 skb_tstamp_tx(skb, NULL);
2394 * skb_tx_timestamp() - Driver hook for transmit timestamping
2396 * Ethernet MAC Drivers should call this function in their hard_xmit()
2397 * function immediately before giving the sk_buff to the MAC hardware.
2399 * @skb: A socket buffer.
2401 static inline void skb_tx_timestamp(struct sk_buff *skb)
2403 skb_clone_tx_timestamp(skb);
2404 sw_tx_timestamp(skb);
2408 * skb_complete_wifi_ack - deliver skb with wifi status
2410 * @skb: the original outgoing packet
2411 * @acked: ack status
2414 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2416 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2417 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2419 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2421 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2425 * skb_checksum_complete - Calculate checksum of an entire packet
2426 * @skb: packet to process
2428 * This function calculates the checksum over the entire packet plus
2429 * the value of skb->csum. The latter can be used to supply the
2430 * checksum of a pseudo header as used by TCP/UDP. It returns the
2431 * checksum.
2433 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2434 * this function can be used to verify that checksum on received
2435 * packets. In that case the function should return zero if the
2436 * checksum is correct. In particular, this function will return zero
2437 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2438 * hardware has already verified the correctness of the checksum.
2440 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2442 return skb_csum_unnecessary(skb) ?
2443 0 : __skb_checksum_complete(skb);
2446 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2447 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2448 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2450 if (nfct && atomic_dec_and_test(&nfct->use))
2451 nf_conntrack_destroy(nfct);
2453 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2455 if (nfct)
2456 atomic_inc(&nfct->use);
2458 #endif
2459 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2460 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2462 if (skb)
2463 atomic_inc(&skb->users);
2465 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2467 if (skb)
2468 kfree_skb(skb);
2470 #endif
2471 #ifdef CONFIG_BRIDGE_NETFILTER
2472 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2474 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2475 kfree(nf_bridge);
2477 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2479 if (nf_bridge)
2480 atomic_inc(&nf_bridge->use);
2482 #endif /* CONFIG_BRIDGE_NETFILTER */
2483 static inline void nf_reset(struct sk_buff *skb)
2485 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2486 nf_conntrack_put(skb->nfct);
2487 skb->nfct = NULL;
2488 #endif
2489 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2490 nf_conntrack_put_reasm(skb->nfct_reasm);
2491 skb->nfct_reasm = NULL;
2492 #endif
2493 #ifdef CONFIG_BRIDGE_NETFILTER
2494 nf_bridge_put(skb->nf_bridge);
2495 skb->nf_bridge = NULL;
2496 #endif
2499 /* Note: This doesn't put any conntrack and bridge info in dst. */
2500 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2502 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2503 dst->nfct = src->nfct;
2504 nf_conntrack_get(src->nfct);
2505 dst->nfctinfo = src->nfctinfo;
2506 #endif
2507 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2508 dst->nfct_reasm = src->nfct_reasm;
2509 nf_conntrack_get_reasm(src->nfct_reasm);
2510 #endif
2511 #ifdef CONFIG_BRIDGE_NETFILTER
2512 dst->nf_bridge = src->nf_bridge;
2513 nf_bridge_get(src->nf_bridge);
2514 #endif
2517 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2519 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2520 nf_conntrack_put(dst->nfct);
2521 #endif
2522 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2523 nf_conntrack_put_reasm(dst->nfct_reasm);
2524 #endif
2525 #ifdef CONFIG_BRIDGE_NETFILTER
2526 nf_bridge_put(dst->nf_bridge);
2527 #endif
2528 __nf_copy(dst, src);
2531 #ifdef CONFIG_NETWORK_SECMARK
2532 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2534 to->secmark = from->secmark;
2537 static inline void skb_init_secmark(struct sk_buff *skb)
2539 skb->secmark = 0;
2541 #else
2542 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2545 static inline void skb_init_secmark(struct sk_buff *skb)
2547 #endif
2549 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2551 skb->queue_mapping = queue_mapping;
2554 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2556 return skb->queue_mapping;
2559 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2561 to->queue_mapping = from->queue_mapping;
2564 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2566 skb->queue_mapping = rx_queue + 1;
2569 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2571 return skb->queue_mapping - 1;
2574 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2576 return skb->queue_mapping != 0;
2579 extern u16 __skb_tx_hash(const struct net_device *dev,
2580 const struct sk_buff *skb,
2581 unsigned int num_tx_queues);
2583 #ifdef CONFIG_XFRM
2584 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2586 return skb->sp;
2588 #else
2589 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2591 return NULL;
2593 #endif
2595 static inline bool skb_is_gso(const struct sk_buff *skb)
2597 return skb_shinfo(skb)->gso_size;
2600 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2602 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2605 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2607 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2609 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2610 * wanted then gso_type will be set. */
2611 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2613 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2614 unlikely(shinfo->gso_type == 0)) {
2615 __skb_warn_lro_forwarding(skb);
2616 return true;
2618 return false;
2621 static inline void skb_forward_csum(struct sk_buff *skb)
2623 /* Unfortunately we don't support this one. Any brave souls? */
2624 if (skb->ip_summed == CHECKSUM_COMPLETE)
2625 skb->ip_summed = CHECKSUM_NONE;
2629 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2630 * @skb: skb to check
2632 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2633 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2634 * use this helper, to document places where we make this assertion.
2636 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2638 #ifdef DEBUG
2639 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2640 #endif
2643 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2645 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2647 if (irqs_disabled())
2648 return false;
2650 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2651 return false;
2653 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2654 return false;
2656 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2657 if (skb_end_offset(skb) < skb_size)
2658 return false;
2660 if (skb_shared(skb) || skb_cloned(skb))
2661 return false;
2663 return true;
2667 * skb_head_is_locked - Determine if the skb->head is locked down
2668 * @skb: skb to check
2670 * The head on skbs build around a head frag can be removed if they are
2671 * not cloned. This function returns true if the skb head is locked down
2672 * due to either being allocated via kmalloc, or by being a clone with
2673 * multiple references to the head.
2675 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2677 return !skb->head_frag || skb_cloned(skb);
2679 #endif /* __KERNEL__ */
2680 #endif /* _LINUX_SKBUFF_H */