2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock
);
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node
);
74 EXPORT_PER_CPU_SYMBOL(numa_node
);
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
84 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
89 * Array of node states.
91 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
92 [N_POSSIBLE
] = NODE_MASK_ALL
,
93 [N_ONLINE
] = { { [0] = 1UL } },
95 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
97 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
99 #ifdef CONFIG_MOVABLE_NODE
100 [N_MEMORY
] = { { [0] = 1UL } },
102 [N_CPU
] = { { [0] = 1UL } },
105 EXPORT_SYMBOL(node_states
);
107 /* Protect totalram_pages and zone->managed_pages */
108 static DEFINE_SPINLOCK(managed_page_count_lock
);
110 unsigned long totalram_pages __read_mostly
;
111 unsigned long totalreserve_pages __read_mostly
;
113 * When calculating the number of globally allowed dirty pages, there
114 * is a certain number of per-zone reserves that should not be
115 * considered dirtyable memory. This is the sum of those reserves
116 * over all existing zones that contribute dirtyable memory.
118 unsigned long dirty_balance_reserve __read_mostly
;
120 int percpu_pagelist_fraction
;
121 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
123 #ifdef CONFIG_PM_SLEEP
125 * The following functions are used by the suspend/hibernate code to temporarily
126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127 * while devices are suspended. To avoid races with the suspend/hibernate code,
128 * they should always be called with pm_mutex held (gfp_allowed_mask also should
129 * only be modified with pm_mutex held, unless the suspend/hibernate code is
130 * guaranteed not to run in parallel with that modification).
133 static gfp_t saved_gfp_mask
;
135 void pm_restore_gfp_mask(void)
137 WARN_ON(!mutex_is_locked(&pm_mutex
));
138 if (saved_gfp_mask
) {
139 gfp_allowed_mask
= saved_gfp_mask
;
144 void pm_restrict_gfp_mask(void)
146 WARN_ON(!mutex_is_locked(&pm_mutex
));
147 WARN_ON(saved_gfp_mask
);
148 saved_gfp_mask
= gfp_allowed_mask
;
149 gfp_allowed_mask
&= ~GFP_IOFS
;
152 bool pm_suspended_storage(void)
154 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
158 #endif /* CONFIG_PM_SLEEP */
160 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161 int pageblock_order __read_mostly
;
164 static void __free_pages_ok(struct page
*page
, unsigned int order
);
167 * results with 256, 32 in the lowmem_reserve sysctl:
168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169 * 1G machine -> (16M dma, 784M normal, 224M high)
170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 * TBD: should special case ZONE_DMA32 machines here - in those we normally
175 * don't need any ZONE_NORMAL reservation
177 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
178 #ifdef CONFIG_ZONE_DMA
181 #ifdef CONFIG_ZONE_DMA32
184 #ifdef CONFIG_HIGHMEM
190 EXPORT_SYMBOL(totalram_pages
);
192 static char * const zone_names
[MAX_NR_ZONES
] = {
193 #ifdef CONFIG_ZONE_DMA
196 #ifdef CONFIG_ZONE_DMA32
200 #ifdef CONFIG_HIGHMEM
206 int min_free_kbytes
= 1024;
208 static unsigned long __meminitdata nr_kernel_pages
;
209 static unsigned long __meminitdata nr_all_pages
;
210 static unsigned long __meminitdata dma_reserve
;
212 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
213 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
214 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
215 static unsigned long __initdata required_kernelcore
;
216 static unsigned long __initdata required_movablecore
;
217 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
219 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
221 EXPORT_SYMBOL(movable_zone
);
222 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
226 int nr_online_nodes __read_mostly
= 1;
227 EXPORT_SYMBOL(nr_node_ids
);
228 EXPORT_SYMBOL(nr_online_nodes
);
231 int page_group_by_mobility_disabled __read_mostly
;
233 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
236 if (unlikely(page_group_by_mobility_disabled
))
237 migratetype
= MIGRATE_UNMOVABLE
;
239 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
240 PB_migrate
, PB_migrate_end
);
243 bool oom_killer_disabled __read_mostly
;
245 #ifdef CONFIG_DEBUG_VM
246 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
250 unsigned long pfn
= page_to_pfn(page
);
251 unsigned long sp
, start_pfn
;
254 seq
= zone_span_seqbegin(zone
);
255 start_pfn
= zone
->zone_start_pfn
;
256 sp
= zone
->spanned_pages
;
257 if (!zone_spans_pfn(zone
, pfn
))
259 } while (zone_span_seqretry(zone
, seq
));
262 pr_err("page %lu outside zone [ %lu - %lu ]\n",
263 pfn
, start_pfn
, start_pfn
+ sp
);
268 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
270 if (!pfn_valid_within(page_to_pfn(page
)))
272 if (zone
!= page_zone(page
))
278 * Temporary debugging check for pages not lying within a given zone.
280 static int bad_range(struct zone
*zone
, struct page
*page
)
282 if (page_outside_zone_boundaries(zone
, page
))
284 if (!page_is_consistent(zone
, page
))
290 static inline int bad_range(struct zone
*zone
, struct page
*page
)
296 static void bad_page(struct page
*page
)
298 static unsigned long resume
;
299 static unsigned long nr_shown
;
300 static unsigned long nr_unshown
;
302 /* Don't complain about poisoned pages */
303 if (PageHWPoison(page
)) {
304 page_mapcount_reset(page
); /* remove PageBuddy */
309 * Allow a burst of 60 reports, then keep quiet for that minute;
310 * or allow a steady drip of one report per second.
312 if (nr_shown
== 60) {
313 if (time_before(jiffies
, resume
)) {
319 "BUG: Bad page state: %lu messages suppressed\n",
326 resume
= jiffies
+ 60 * HZ
;
328 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
329 current
->comm
, page_to_pfn(page
));
335 /* Leave bad fields for debug, except PageBuddy could make trouble */
336 page_mapcount_reset(page
); /* remove PageBuddy */
337 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
341 * Higher-order pages are called "compound pages". They are structured thusly:
343 * The first PAGE_SIZE page is called the "head page".
345 * The remaining PAGE_SIZE pages are called "tail pages".
347 * All pages have PG_compound set. All tail pages have their ->first_page
348 * pointing at the head page.
350 * The first tail page's ->lru.next holds the address of the compound page's
351 * put_page() function. Its ->lru.prev holds the order of allocation.
352 * This usage means that zero-order pages may not be compound.
355 static void free_compound_page(struct page
*page
)
357 __free_pages_ok(page
, compound_order(page
));
360 void prep_compound_page(struct page
*page
, unsigned long order
)
363 int nr_pages
= 1 << order
;
365 set_compound_page_dtor(page
, free_compound_page
);
366 set_compound_order(page
, order
);
368 for (i
= 1; i
< nr_pages
; i
++) {
369 struct page
*p
= page
+ i
;
371 set_page_count(p
, 0);
372 p
->first_page
= page
;
376 /* update __split_huge_page_refcount if you change this function */
377 static int destroy_compound_page(struct page
*page
, unsigned long order
)
380 int nr_pages
= 1 << order
;
383 if (unlikely(compound_order(page
) != order
)) {
388 __ClearPageHead(page
);
390 for (i
= 1; i
< nr_pages
; i
++) {
391 struct page
*p
= page
+ i
;
393 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
403 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
408 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
409 * and __GFP_HIGHMEM from hard or soft interrupt context.
411 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
412 for (i
= 0; i
< (1 << order
); i
++)
413 clear_highpage(page
+ i
);
416 #ifdef CONFIG_DEBUG_PAGEALLOC
417 unsigned int _debug_guardpage_minorder
;
419 static int __init
debug_guardpage_minorder_setup(char *buf
)
423 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
424 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
427 _debug_guardpage_minorder
= res
;
428 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
431 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
433 static inline void set_page_guard_flag(struct page
*page
)
435 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
438 static inline void clear_page_guard_flag(struct page
*page
)
440 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
443 static inline void set_page_guard_flag(struct page
*page
) { }
444 static inline void clear_page_guard_flag(struct page
*page
) { }
447 static inline void set_page_order(struct page
*page
, int order
)
449 set_page_private(page
, order
);
450 __SetPageBuddy(page
);
453 static inline void rmv_page_order(struct page
*page
)
455 __ClearPageBuddy(page
);
456 set_page_private(page
, 0);
460 * Locate the struct page for both the matching buddy in our
461 * pair (buddy1) and the combined O(n+1) page they form (page).
463 * 1) Any buddy B1 will have an order O twin B2 which satisfies
464 * the following equation:
466 * For example, if the starting buddy (buddy2) is #8 its order
468 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
470 * 2) Any buddy B will have an order O+1 parent P which
471 * satisfies the following equation:
474 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
476 static inline unsigned long
477 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
479 return page_idx
^ (1 << order
);
483 * This function checks whether a page is free && is the buddy
484 * we can do coalesce a page and its buddy if
485 * (a) the buddy is not in a hole &&
486 * (b) the buddy is in the buddy system &&
487 * (c) a page and its buddy have the same order &&
488 * (d) a page and its buddy are in the same zone.
490 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
491 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
493 * For recording page's order, we use page_private(page).
495 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
498 if (!pfn_valid_within(page_to_pfn(buddy
)))
501 if (page_zone_id(page
) != page_zone_id(buddy
))
504 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
505 VM_BUG_ON(page_count(buddy
) != 0);
509 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
510 VM_BUG_ON(page_count(buddy
) != 0);
517 * Freeing function for a buddy system allocator.
519 * The concept of a buddy system is to maintain direct-mapped table
520 * (containing bit values) for memory blocks of various "orders".
521 * The bottom level table contains the map for the smallest allocatable
522 * units of memory (here, pages), and each level above it describes
523 * pairs of units from the levels below, hence, "buddies".
524 * At a high level, all that happens here is marking the table entry
525 * at the bottom level available, and propagating the changes upward
526 * as necessary, plus some accounting needed to play nicely with other
527 * parts of the VM system.
528 * At each level, we keep a list of pages, which are heads of continuous
529 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
530 * order is recorded in page_private(page) field.
531 * So when we are allocating or freeing one, we can derive the state of the
532 * other. That is, if we allocate a small block, and both were
533 * free, the remainder of the region must be split into blocks.
534 * If a block is freed, and its buddy is also free, then this
535 * triggers coalescing into a block of larger size.
540 static inline void __free_one_page(struct page
*page
,
541 struct zone
*zone
, unsigned int order
,
544 unsigned long page_idx
;
545 unsigned long combined_idx
;
546 unsigned long uninitialized_var(buddy_idx
);
549 VM_BUG_ON(!zone_is_initialized(zone
));
551 if (unlikely(PageCompound(page
)))
552 if (unlikely(destroy_compound_page(page
, order
)))
555 VM_BUG_ON(migratetype
== -1);
557 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
559 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
560 VM_BUG_ON(bad_range(zone
, page
));
562 while (order
< MAX_ORDER
-1) {
563 buddy_idx
= __find_buddy_index(page_idx
, order
);
564 buddy
= page
+ (buddy_idx
- page_idx
);
565 if (!page_is_buddy(page
, buddy
, order
))
568 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
569 * merge with it and move up one order.
571 if (page_is_guard(buddy
)) {
572 clear_page_guard_flag(buddy
);
573 set_page_private(page
, 0);
574 __mod_zone_freepage_state(zone
, 1 << order
,
577 list_del(&buddy
->lru
);
578 zone
->free_area
[order
].nr_free
--;
579 rmv_page_order(buddy
);
581 combined_idx
= buddy_idx
& page_idx
;
582 page
= page
+ (combined_idx
- page_idx
);
583 page_idx
= combined_idx
;
586 set_page_order(page
, order
);
589 * If this is not the largest possible page, check if the buddy
590 * of the next-highest order is free. If it is, it's possible
591 * that pages are being freed that will coalesce soon. In case,
592 * that is happening, add the free page to the tail of the list
593 * so it's less likely to be used soon and more likely to be merged
594 * as a higher order page
596 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
597 struct page
*higher_page
, *higher_buddy
;
598 combined_idx
= buddy_idx
& page_idx
;
599 higher_page
= page
+ (combined_idx
- page_idx
);
600 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
601 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
602 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
603 list_add_tail(&page
->lru
,
604 &zone
->free_area
[order
].free_list
[migratetype
]);
609 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
611 zone
->free_area
[order
].nr_free
++;
614 static inline int free_pages_check(struct page
*page
)
616 if (unlikely(page_mapcount(page
) |
617 (page
->mapping
!= NULL
) |
618 (atomic_read(&page
->_count
) != 0) |
619 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
620 (mem_cgroup_bad_page_check(page
)))) {
624 page_nid_reset_last(page
);
625 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
626 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
631 * Frees a number of pages from the PCP lists
632 * Assumes all pages on list are in same zone, and of same order.
633 * count is the number of pages to free.
635 * If the zone was previously in an "all pages pinned" state then look to
636 * see if this freeing clears that state.
638 * And clear the zone's pages_scanned counter, to hold off the "all pages are
639 * pinned" detection logic.
641 static void free_pcppages_bulk(struct zone
*zone
, int count
,
642 struct per_cpu_pages
*pcp
)
648 spin_lock(&zone
->lock
);
649 zone
->all_unreclaimable
= 0;
650 zone
->pages_scanned
= 0;
654 struct list_head
*list
;
657 * Remove pages from lists in a round-robin fashion. A
658 * batch_free count is maintained that is incremented when an
659 * empty list is encountered. This is so more pages are freed
660 * off fuller lists instead of spinning excessively around empty
665 if (++migratetype
== MIGRATE_PCPTYPES
)
667 list
= &pcp
->lists
[migratetype
];
668 } while (list_empty(list
));
670 /* This is the only non-empty list. Free them all. */
671 if (batch_free
== MIGRATE_PCPTYPES
)
672 batch_free
= to_free
;
675 int mt
; /* migratetype of the to-be-freed page */
677 page
= list_entry(list
->prev
, struct page
, lru
);
678 /* must delete as __free_one_page list manipulates */
679 list_del(&page
->lru
);
680 mt
= get_freepage_migratetype(page
);
681 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
682 __free_one_page(page
, zone
, 0, mt
);
683 trace_mm_page_pcpu_drain(page
, 0, mt
);
684 if (likely(!is_migrate_isolate_page(page
))) {
685 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
686 if (is_migrate_cma(mt
))
687 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
689 } while (--to_free
&& --batch_free
&& !list_empty(list
));
691 spin_unlock(&zone
->lock
);
694 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
697 spin_lock(&zone
->lock
);
698 zone
->all_unreclaimable
= 0;
699 zone
->pages_scanned
= 0;
701 __free_one_page(page
, zone
, order
, migratetype
);
702 if (unlikely(!is_migrate_isolate(migratetype
)))
703 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
704 spin_unlock(&zone
->lock
);
707 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
712 trace_mm_page_free(page
, order
);
713 kmemcheck_free_shadow(page
, order
);
716 page
->mapping
= NULL
;
717 for (i
= 0; i
< (1 << order
); i
++)
718 bad
+= free_pages_check(page
+ i
);
722 if (!PageHighMem(page
)) {
723 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
724 debug_check_no_obj_freed(page_address(page
),
727 arch_free_page(page
, order
);
728 kernel_map_pages(page
, 1 << order
, 0);
733 static void __free_pages_ok(struct page
*page
, unsigned int order
)
738 if (!free_pages_prepare(page
, order
))
741 local_irq_save(flags
);
742 __count_vm_events(PGFREE
, 1 << order
);
743 migratetype
= get_pageblock_migratetype(page
);
744 set_freepage_migratetype(page
, migratetype
);
745 free_one_page(page_zone(page
), page
, order
, migratetype
);
746 local_irq_restore(flags
);
749 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
751 unsigned int nr_pages
= 1 << order
;
755 for (loop
= 0; loop
< nr_pages
; loop
++) {
756 struct page
*p
= &page
[loop
];
758 if (loop
+ 1 < nr_pages
)
760 __ClearPageReserved(p
);
761 set_page_count(p
, 0);
764 page_zone(page
)->managed_pages
+= 1 << order
;
765 set_page_refcounted(page
);
766 __free_pages(page
, order
);
770 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
771 void __init
init_cma_reserved_pageblock(struct page
*page
)
773 unsigned i
= pageblock_nr_pages
;
774 struct page
*p
= page
;
777 __ClearPageReserved(p
);
778 set_page_count(p
, 0);
781 set_page_refcounted(page
);
782 set_pageblock_migratetype(page
, MIGRATE_CMA
);
783 __free_pages(page
, pageblock_order
);
784 adjust_managed_page_count(page
, pageblock_nr_pages
);
789 * The order of subdivision here is critical for the IO subsystem.
790 * Please do not alter this order without good reasons and regression
791 * testing. Specifically, as large blocks of memory are subdivided,
792 * the order in which smaller blocks are delivered depends on the order
793 * they're subdivided in this function. This is the primary factor
794 * influencing the order in which pages are delivered to the IO
795 * subsystem according to empirical testing, and this is also justified
796 * by considering the behavior of a buddy system containing a single
797 * large block of memory acted on by a series of small allocations.
798 * This behavior is a critical factor in sglist merging's success.
802 static inline void expand(struct zone
*zone
, struct page
*page
,
803 int low
, int high
, struct free_area
*area
,
806 unsigned long size
= 1 << high
;
812 VM_BUG_ON(bad_range(zone
, &page
[size
]));
814 #ifdef CONFIG_DEBUG_PAGEALLOC
815 if (high
< debug_guardpage_minorder()) {
817 * Mark as guard pages (or page), that will allow to
818 * merge back to allocator when buddy will be freed.
819 * Corresponding page table entries will not be touched,
820 * pages will stay not present in virtual address space
822 INIT_LIST_HEAD(&page
[size
].lru
);
823 set_page_guard_flag(&page
[size
]);
824 set_page_private(&page
[size
], high
);
825 /* Guard pages are not available for any usage */
826 __mod_zone_freepage_state(zone
, -(1 << high
),
831 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
833 set_page_order(&page
[size
], high
);
838 * This page is about to be returned from the page allocator
840 static inline int check_new_page(struct page
*page
)
842 if (unlikely(page_mapcount(page
) |
843 (page
->mapping
!= NULL
) |
844 (atomic_read(&page
->_count
) != 0) |
845 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
846 (mem_cgroup_bad_page_check(page
)))) {
853 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
857 for (i
= 0; i
< (1 << order
); i
++) {
858 struct page
*p
= page
+ i
;
859 if (unlikely(check_new_page(p
)))
863 set_page_private(page
, 0);
864 set_page_refcounted(page
);
866 arch_alloc_page(page
, order
);
867 kernel_map_pages(page
, 1 << order
, 1);
869 if (gfp_flags
& __GFP_ZERO
)
870 prep_zero_page(page
, order
, gfp_flags
);
872 if (order
&& (gfp_flags
& __GFP_COMP
))
873 prep_compound_page(page
, order
);
879 * Go through the free lists for the given migratetype and remove
880 * the smallest available page from the freelists
883 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
886 unsigned int current_order
;
887 struct free_area
* area
;
890 /* Find a page of the appropriate size in the preferred list */
891 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
892 area
= &(zone
->free_area
[current_order
]);
893 if (list_empty(&area
->free_list
[migratetype
]))
896 page
= list_entry(area
->free_list
[migratetype
].next
,
898 list_del(&page
->lru
);
899 rmv_page_order(page
);
901 expand(zone
, page
, order
, current_order
, area
, migratetype
);
910 * This array describes the order lists are fallen back to when
911 * the free lists for the desirable migrate type are depleted
913 static int fallbacks
[MIGRATE_TYPES
][4] = {
914 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
915 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
917 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
918 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
920 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
922 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
923 #ifdef CONFIG_MEMORY_ISOLATION
924 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
929 * Move the free pages in a range to the free lists of the requested type.
930 * Note that start_page and end_pages are not aligned on a pageblock
931 * boundary. If alignment is required, use move_freepages_block()
933 int move_freepages(struct zone
*zone
,
934 struct page
*start_page
, struct page
*end_page
,
941 #ifndef CONFIG_HOLES_IN_ZONE
943 * page_zone is not safe to call in this context when
944 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
945 * anyway as we check zone boundaries in move_freepages_block().
946 * Remove at a later date when no bug reports exist related to
947 * grouping pages by mobility
949 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
952 for (page
= start_page
; page
<= end_page
;) {
953 /* Make sure we are not inadvertently changing nodes */
954 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
956 if (!pfn_valid_within(page_to_pfn(page
))) {
961 if (!PageBuddy(page
)) {
966 order
= page_order(page
);
967 list_move(&page
->lru
,
968 &zone
->free_area
[order
].free_list
[migratetype
]);
969 set_freepage_migratetype(page
, migratetype
);
971 pages_moved
+= 1 << order
;
977 int move_freepages_block(struct zone
*zone
, struct page
*page
,
980 unsigned long start_pfn
, end_pfn
;
981 struct page
*start_page
, *end_page
;
983 start_pfn
= page_to_pfn(page
);
984 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
985 start_page
= pfn_to_page(start_pfn
);
986 end_page
= start_page
+ pageblock_nr_pages
- 1;
987 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
989 /* Do not cross zone boundaries */
990 if (!zone_spans_pfn(zone
, start_pfn
))
992 if (!zone_spans_pfn(zone
, end_pfn
))
995 return move_freepages(zone
, start_page
, end_page
, migratetype
);
998 static void change_pageblock_range(struct page
*pageblock_page
,
999 int start_order
, int migratetype
)
1001 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1003 while (nr_pageblocks
--) {
1004 set_pageblock_migratetype(pageblock_page
, migratetype
);
1005 pageblock_page
+= pageblock_nr_pages
;
1009 /* Remove an element from the buddy allocator from the fallback list */
1010 static inline struct page
*
1011 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
1013 struct free_area
* area
;
1018 /* Find the largest possible block of pages in the other list */
1019 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
1022 migratetype
= fallbacks
[start_migratetype
][i
];
1024 /* MIGRATE_RESERVE handled later if necessary */
1025 if (migratetype
== MIGRATE_RESERVE
)
1028 area
= &(zone
->free_area
[current_order
]);
1029 if (list_empty(&area
->free_list
[migratetype
]))
1032 page
= list_entry(area
->free_list
[migratetype
].next
,
1037 * If breaking a large block of pages, move all free
1038 * pages to the preferred allocation list. If falling
1039 * back for a reclaimable kernel allocation, be more
1040 * aggressive about taking ownership of free pages
1042 * On the other hand, never change migration
1043 * type of MIGRATE_CMA pageblocks nor move CMA
1044 * pages on different free lists. We don't
1045 * want unmovable pages to be allocated from
1046 * MIGRATE_CMA areas.
1048 if (!is_migrate_cma(migratetype
) &&
1049 (unlikely(current_order
>= pageblock_order
/ 2) ||
1050 start_migratetype
== MIGRATE_RECLAIMABLE
||
1051 page_group_by_mobility_disabled
)) {
1053 pages
= move_freepages_block(zone
, page
,
1056 /* Claim the whole block if over half of it is free */
1057 if (pages
>= (1 << (pageblock_order
-1)) ||
1058 page_group_by_mobility_disabled
)
1059 set_pageblock_migratetype(page
,
1062 migratetype
= start_migratetype
;
1065 /* Remove the page from the freelists */
1066 list_del(&page
->lru
);
1067 rmv_page_order(page
);
1069 /* Take ownership for orders >= pageblock_order */
1070 if (current_order
>= pageblock_order
&&
1071 !is_migrate_cma(migratetype
))
1072 change_pageblock_range(page
, current_order
,
1075 expand(zone
, page
, order
, current_order
, area
,
1076 is_migrate_cma(migratetype
)
1077 ? migratetype
: start_migratetype
);
1079 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1080 start_migratetype
, migratetype
);
1090 * Do the hard work of removing an element from the buddy allocator.
1091 * Call me with the zone->lock already held.
1093 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1099 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1101 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1102 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1105 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1106 * is used because __rmqueue_smallest is an inline function
1107 * and we want just one call site
1110 migratetype
= MIGRATE_RESERVE
;
1115 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1120 * Obtain a specified number of elements from the buddy allocator, all under
1121 * a single hold of the lock, for efficiency. Add them to the supplied list.
1122 * Returns the number of new pages which were placed at *list.
1124 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1125 unsigned long count
, struct list_head
*list
,
1126 int migratetype
, int cold
)
1128 int mt
= migratetype
, i
;
1130 spin_lock(&zone
->lock
);
1131 for (i
= 0; i
< count
; ++i
) {
1132 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1133 if (unlikely(page
== NULL
))
1137 * Split buddy pages returned by expand() are received here
1138 * in physical page order. The page is added to the callers and
1139 * list and the list head then moves forward. From the callers
1140 * perspective, the linked list is ordered by page number in
1141 * some conditions. This is useful for IO devices that can
1142 * merge IO requests if the physical pages are ordered
1145 if (likely(cold
== 0))
1146 list_add(&page
->lru
, list
);
1148 list_add_tail(&page
->lru
, list
);
1149 if (IS_ENABLED(CONFIG_CMA
)) {
1150 mt
= get_pageblock_migratetype(page
);
1151 if (!is_migrate_cma(mt
) && !is_migrate_isolate(mt
))
1154 set_freepage_migratetype(page
, mt
);
1156 if (is_migrate_cma(mt
))
1157 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1160 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1161 spin_unlock(&zone
->lock
);
1167 * Called from the vmstat counter updater to drain pagesets of this
1168 * currently executing processor on remote nodes after they have
1171 * Note that this function must be called with the thread pinned to
1172 * a single processor.
1174 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1176 unsigned long flags
;
1178 unsigned long batch
;
1180 local_irq_save(flags
);
1181 batch
= ACCESS_ONCE(pcp
->batch
);
1182 if (pcp
->count
>= batch
)
1185 to_drain
= pcp
->count
;
1187 free_pcppages_bulk(zone
, to_drain
, pcp
);
1188 pcp
->count
-= to_drain
;
1190 local_irq_restore(flags
);
1195 * Drain pages of the indicated processor.
1197 * The processor must either be the current processor and the
1198 * thread pinned to the current processor or a processor that
1201 static void drain_pages(unsigned int cpu
)
1203 unsigned long flags
;
1206 for_each_populated_zone(zone
) {
1207 struct per_cpu_pageset
*pset
;
1208 struct per_cpu_pages
*pcp
;
1210 local_irq_save(flags
);
1211 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1215 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1218 local_irq_restore(flags
);
1223 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1225 void drain_local_pages(void *arg
)
1227 drain_pages(smp_processor_id());
1231 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1233 * Note that this code is protected against sending an IPI to an offline
1234 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1235 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1236 * nothing keeps CPUs from showing up after we populated the cpumask and
1237 * before the call to on_each_cpu_mask().
1239 void drain_all_pages(void)
1242 struct per_cpu_pageset
*pcp
;
1246 * Allocate in the BSS so we wont require allocation in
1247 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1249 static cpumask_t cpus_with_pcps
;
1252 * We don't care about racing with CPU hotplug event
1253 * as offline notification will cause the notified
1254 * cpu to drain that CPU pcps and on_each_cpu_mask
1255 * disables preemption as part of its processing
1257 for_each_online_cpu(cpu
) {
1258 bool has_pcps
= false;
1259 for_each_populated_zone(zone
) {
1260 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1261 if (pcp
->pcp
.count
) {
1267 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1269 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1271 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1274 #ifdef CONFIG_HIBERNATION
1276 void mark_free_pages(struct zone
*zone
)
1278 unsigned long pfn
, max_zone_pfn
;
1279 unsigned long flags
;
1281 struct list_head
*curr
;
1283 if (!zone
->spanned_pages
)
1286 spin_lock_irqsave(&zone
->lock
, flags
);
1288 max_zone_pfn
= zone_end_pfn(zone
);
1289 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1290 if (pfn_valid(pfn
)) {
1291 struct page
*page
= pfn_to_page(pfn
);
1293 if (!swsusp_page_is_forbidden(page
))
1294 swsusp_unset_page_free(page
);
1297 for_each_migratetype_order(order
, t
) {
1298 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1301 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1302 for (i
= 0; i
< (1UL << order
); i
++)
1303 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1306 spin_unlock_irqrestore(&zone
->lock
, flags
);
1308 #endif /* CONFIG_PM */
1311 * Free a 0-order page
1312 * cold == 1 ? free a cold page : free a hot page
1314 void free_hot_cold_page(struct page
*page
, int cold
)
1316 struct zone
*zone
= page_zone(page
);
1317 struct per_cpu_pages
*pcp
;
1318 unsigned long flags
;
1321 if (!free_pages_prepare(page
, 0))
1324 migratetype
= get_pageblock_migratetype(page
);
1325 set_freepage_migratetype(page
, migratetype
);
1326 local_irq_save(flags
);
1327 __count_vm_event(PGFREE
);
1330 * We only track unmovable, reclaimable and movable on pcp lists.
1331 * Free ISOLATE pages back to the allocator because they are being
1332 * offlined but treat RESERVE as movable pages so we can get those
1333 * areas back if necessary. Otherwise, we may have to free
1334 * excessively into the page allocator
1336 if (migratetype
>= MIGRATE_PCPTYPES
) {
1337 if (unlikely(is_migrate_isolate(migratetype
))) {
1338 free_one_page(zone
, page
, 0, migratetype
);
1341 migratetype
= MIGRATE_MOVABLE
;
1344 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1346 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1348 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1350 if (pcp
->count
>= pcp
->high
) {
1351 unsigned long batch
= ACCESS_ONCE(pcp
->batch
);
1352 free_pcppages_bulk(zone
, batch
, pcp
);
1353 pcp
->count
-= batch
;
1357 local_irq_restore(flags
);
1361 * Free a list of 0-order pages
1363 void free_hot_cold_page_list(struct list_head
*list
, int cold
)
1365 struct page
*page
, *next
;
1367 list_for_each_entry_safe(page
, next
, list
, lru
) {
1368 trace_mm_page_free_batched(page
, cold
);
1369 free_hot_cold_page(page
, cold
);
1374 * split_page takes a non-compound higher-order page, and splits it into
1375 * n (1<<order) sub-pages: page[0..n]
1376 * Each sub-page must be freed individually.
1378 * Note: this is probably too low level an operation for use in drivers.
1379 * Please consult with lkml before using this in your driver.
1381 void split_page(struct page
*page
, unsigned int order
)
1385 VM_BUG_ON(PageCompound(page
));
1386 VM_BUG_ON(!page_count(page
));
1388 #ifdef CONFIG_KMEMCHECK
1390 * Split shadow pages too, because free(page[0]) would
1391 * otherwise free the whole shadow.
1393 if (kmemcheck_page_is_tracked(page
))
1394 split_page(virt_to_page(page
[0].shadow
), order
);
1397 for (i
= 1; i
< (1 << order
); i
++)
1398 set_page_refcounted(page
+ i
);
1400 EXPORT_SYMBOL_GPL(split_page
);
1402 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1404 unsigned long watermark
;
1408 BUG_ON(!PageBuddy(page
));
1410 zone
= page_zone(page
);
1411 mt
= get_pageblock_migratetype(page
);
1413 if (!is_migrate_isolate(mt
)) {
1414 /* Obey watermarks as if the page was being allocated */
1415 watermark
= low_wmark_pages(zone
) + (1 << order
);
1416 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1419 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1422 /* Remove page from free list */
1423 list_del(&page
->lru
);
1424 zone
->free_area
[order
].nr_free
--;
1425 rmv_page_order(page
);
1427 /* Set the pageblock if the isolated page is at least a pageblock */
1428 if (order
>= pageblock_order
- 1) {
1429 struct page
*endpage
= page
+ (1 << order
) - 1;
1430 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1431 int mt
= get_pageblock_migratetype(page
);
1432 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1433 set_pageblock_migratetype(page
,
1438 return 1UL << order
;
1442 * Similar to split_page except the page is already free. As this is only
1443 * being used for migration, the migratetype of the block also changes.
1444 * As this is called with interrupts disabled, the caller is responsible
1445 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1448 * Note: this is probably too low level an operation for use in drivers.
1449 * Please consult with lkml before using this in your driver.
1451 int split_free_page(struct page
*page
)
1456 order
= page_order(page
);
1458 nr_pages
= __isolate_free_page(page
, order
);
1462 /* Split into individual pages */
1463 set_page_refcounted(page
);
1464 split_page(page
, order
);
1469 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1470 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1474 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1475 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1478 unsigned long flags
;
1480 int cold
= !!(gfp_flags
& __GFP_COLD
);
1483 if (likely(order
== 0)) {
1484 struct per_cpu_pages
*pcp
;
1485 struct list_head
*list
;
1487 local_irq_save(flags
);
1488 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1489 list
= &pcp
->lists
[migratetype
];
1490 if (list_empty(list
)) {
1491 pcp
->count
+= rmqueue_bulk(zone
, 0,
1494 if (unlikely(list_empty(list
)))
1499 page
= list_entry(list
->prev
, struct page
, lru
);
1501 page
= list_entry(list
->next
, struct page
, lru
);
1503 list_del(&page
->lru
);
1506 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1508 * __GFP_NOFAIL is not to be used in new code.
1510 * All __GFP_NOFAIL callers should be fixed so that they
1511 * properly detect and handle allocation failures.
1513 * We most definitely don't want callers attempting to
1514 * allocate greater than order-1 page units with
1517 WARN_ON_ONCE(order
> 1);
1519 spin_lock_irqsave(&zone
->lock
, flags
);
1520 page
= __rmqueue(zone
, order
, migratetype
);
1521 spin_unlock(&zone
->lock
);
1524 __mod_zone_freepage_state(zone
, -(1 << order
),
1525 get_pageblock_migratetype(page
));
1528 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1529 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1530 local_irq_restore(flags
);
1532 VM_BUG_ON(bad_range(zone
, page
));
1533 if (prep_new_page(page
, order
, gfp_flags
))
1538 local_irq_restore(flags
);
1542 #ifdef CONFIG_FAIL_PAGE_ALLOC
1545 struct fault_attr attr
;
1547 u32 ignore_gfp_highmem
;
1548 u32 ignore_gfp_wait
;
1550 } fail_page_alloc
= {
1551 .attr
= FAULT_ATTR_INITIALIZER
,
1552 .ignore_gfp_wait
= 1,
1553 .ignore_gfp_highmem
= 1,
1557 static int __init
setup_fail_page_alloc(char *str
)
1559 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1561 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1563 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1565 if (order
< fail_page_alloc
.min_order
)
1567 if (gfp_mask
& __GFP_NOFAIL
)
1569 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1571 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1574 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1577 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1579 static int __init
fail_page_alloc_debugfs(void)
1581 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1584 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1585 &fail_page_alloc
.attr
);
1587 return PTR_ERR(dir
);
1589 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1590 &fail_page_alloc
.ignore_gfp_wait
))
1592 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1593 &fail_page_alloc
.ignore_gfp_highmem
))
1595 if (!debugfs_create_u32("min-order", mode
, dir
,
1596 &fail_page_alloc
.min_order
))
1601 debugfs_remove_recursive(dir
);
1606 late_initcall(fail_page_alloc_debugfs
);
1608 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1610 #else /* CONFIG_FAIL_PAGE_ALLOC */
1612 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1617 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1620 * Return true if free pages are above 'mark'. This takes into account the order
1621 * of the allocation.
1623 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1624 int classzone_idx
, int alloc_flags
, long free_pages
)
1626 /* free_pages my go negative - that's OK */
1628 long lowmem_reserve
= z
->lowmem_reserve
[classzone_idx
];
1632 free_pages
-= (1 << order
) - 1;
1633 if (alloc_flags
& ALLOC_HIGH
)
1635 if (alloc_flags
& ALLOC_HARDER
)
1638 /* If allocation can't use CMA areas don't use free CMA pages */
1639 if (!(alloc_flags
& ALLOC_CMA
))
1640 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1643 if (free_pages
- free_cma
<= min
+ lowmem_reserve
)
1645 for (o
= 0; o
< order
; o
++) {
1646 /* At the next order, this order's pages become unavailable */
1647 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1649 /* Require fewer higher order pages to be free */
1652 if (free_pages
<= min
)
1658 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1659 int classzone_idx
, int alloc_flags
)
1661 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1662 zone_page_state(z
, NR_FREE_PAGES
));
1665 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1666 int classzone_idx
, int alloc_flags
)
1668 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1670 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1671 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1673 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1679 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1680 * skip over zones that are not allowed by the cpuset, or that have
1681 * been recently (in last second) found to be nearly full. See further
1682 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1683 * that have to skip over a lot of full or unallowed zones.
1685 * If the zonelist cache is present in the passed in zonelist, then
1686 * returns a pointer to the allowed node mask (either the current
1687 * tasks mems_allowed, or node_states[N_MEMORY].)
1689 * If the zonelist cache is not available for this zonelist, does
1690 * nothing and returns NULL.
1692 * If the fullzones BITMAP in the zonelist cache is stale (more than
1693 * a second since last zap'd) then we zap it out (clear its bits.)
1695 * We hold off even calling zlc_setup, until after we've checked the
1696 * first zone in the zonelist, on the theory that most allocations will
1697 * be satisfied from that first zone, so best to examine that zone as
1698 * quickly as we can.
1700 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1702 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1703 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1705 zlc
= zonelist
->zlcache_ptr
;
1709 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1710 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1711 zlc
->last_full_zap
= jiffies
;
1714 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1715 &cpuset_current_mems_allowed
:
1716 &node_states
[N_MEMORY
];
1717 return allowednodes
;
1721 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1722 * if it is worth looking at further for free memory:
1723 * 1) Check that the zone isn't thought to be full (doesn't have its
1724 * bit set in the zonelist_cache fullzones BITMAP).
1725 * 2) Check that the zones node (obtained from the zonelist_cache
1726 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1727 * Return true (non-zero) if zone is worth looking at further, or
1728 * else return false (zero) if it is not.
1730 * This check -ignores- the distinction between various watermarks,
1731 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1732 * found to be full for any variation of these watermarks, it will
1733 * be considered full for up to one second by all requests, unless
1734 * we are so low on memory on all allowed nodes that we are forced
1735 * into the second scan of the zonelist.
1737 * In the second scan we ignore this zonelist cache and exactly
1738 * apply the watermarks to all zones, even it is slower to do so.
1739 * We are low on memory in the second scan, and should leave no stone
1740 * unturned looking for a free page.
1742 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1743 nodemask_t
*allowednodes
)
1745 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1746 int i
; /* index of *z in zonelist zones */
1747 int n
; /* node that zone *z is on */
1749 zlc
= zonelist
->zlcache_ptr
;
1753 i
= z
- zonelist
->_zonerefs
;
1756 /* This zone is worth trying if it is allowed but not full */
1757 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1761 * Given 'z' scanning a zonelist, set the corresponding bit in
1762 * zlc->fullzones, so that subsequent attempts to allocate a page
1763 * from that zone don't waste time re-examining it.
1765 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1767 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1768 int i
; /* index of *z in zonelist zones */
1770 zlc
= zonelist
->zlcache_ptr
;
1774 i
= z
- zonelist
->_zonerefs
;
1776 set_bit(i
, zlc
->fullzones
);
1780 * clear all zones full, called after direct reclaim makes progress so that
1781 * a zone that was recently full is not skipped over for up to a second
1783 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1785 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1787 zlc
= zonelist
->zlcache_ptr
;
1791 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1794 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1796 return node_isset(local_zone
->node
, zone
->zone_pgdat
->reclaim_nodes
);
1799 static void __paginginit
init_zone_allows_reclaim(int nid
)
1803 for_each_online_node(i
)
1804 if (node_distance(nid
, i
) <= RECLAIM_DISTANCE
)
1805 node_set(i
, NODE_DATA(nid
)->reclaim_nodes
);
1807 zone_reclaim_mode
= 1;
1810 #else /* CONFIG_NUMA */
1812 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1817 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1818 nodemask_t
*allowednodes
)
1823 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1827 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1831 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1836 static inline void init_zone_allows_reclaim(int nid
)
1839 #endif /* CONFIG_NUMA */
1842 * get_page_from_freelist goes through the zonelist trying to allocate
1845 static struct page
*
1846 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1847 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1848 struct zone
*preferred_zone
, int migratetype
)
1851 struct page
*page
= NULL
;
1854 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1855 int zlc_active
= 0; /* set if using zonelist_cache */
1856 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1858 classzone_idx
= zone_idx(preferred_zone
);
1861 * Scan zonelist, looking for a zone with enough free.
1862 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1864 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1865 high_zoneidx
, nodemask
) {
1866 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1867 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1869 if ((alloc_flags
& ALLOC_CPUSET
) &&
1870 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1873 * When allocating a page cache page for writing, we
1874 * want to get it from a zone that is within its dirty
1875 * limit, such that no single zone holds more than its
1876 * proportional share of globally allowed dirty pages.
1877 * The dirty limits take into account the zone's
1878 * lowmem reserves and high watermark so that kswapd
1879 * should be able to balance it without having to
1880 * write pages from its LRU list.
1882 * This may look like it could increase pressure on
1883 * lower zones by failing allocations in higher zones
1884 * before they are full. But the pages that do spill
1885 * over are limited as the lower zones are protected
1886 * by this very same mechanism. It should not become
1887 * a practical burden to them.
1889 * XXX: For now, allow allocations to potentially
1890 * exceed the per-zone dirty limit in the slowpath
1891 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1892 * which is important when on a NUMA setup the allowed
1893 * zones are together not big enough to reach the
1894 * global limit. The proper fix for these situations
1895 * will require awareness of zones in the
1896 * dirty-throttling and the flusher threads.
1898 if ((alloc_flags
& ALLOC_WMARK_LOW
) &&
1899 (gfp_mask
& __GFP_WRITE
) && !zone_dirty_ok(zone
))
1900 goto this_zone_full
;
1902 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1903 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1907 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1908 if (zone_watermark_ok(zone
, order
, mark
,
1909 classzone_idx
, alloc_flags
))
1912 if (IS_ENABLED(CONFIG_NUMA
) &&
1913 !did_zlc_setup
&& nr_online_nodes
> 1) {
1915 * we do zlc_setup if there are multiple nodes
1916 * and before considering the first zone allowed
1919 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1924 if (zone_reclaim_mode
== 0 ||
1925 !zone_allows_reclaim(preferred_zone
, zone
))
1926 goto this_zone_full
;
1929 * As we may have just activated ZLC, check if the first
1930 * eligible zone has failed zone_reclaim recently.
1932 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1933 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1936 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1938 case ZONE_RECLAIM_NOSCAN
:
1941 case ZONE_RECLAIM_FULL
:
1942 /* scanned but unreclaimable */
1945 /* did we reclaim enough */
1946 if (zone_watermark_ok(zone
, order
, mark
,
1947 classzone_idx
, alloc_flags
))
1951 * Failed to reclaim enough to meet watermark.
1952 * Only mark the zone full if checking the min
1953 * watermark or if we failed to reclaim just
1954 * 1<<order pages or else the page allocator
1955 * fastpath will prematurely mark zones full
1956 * when the watermark is between the low and
1959 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
1960 ret
== ZONE_RECLAIM_SOME
)
1961 goto this_zone_full
;
1968 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1969 gfp_mask
, migratetype
);
1973 if (IS_ENABLED(CONFIG_NUMA
))
1974 zlc_mark_zone_full(zonelist
, z
);
1977 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && page
== NULL
&& zlc_active
)) {
1978 /* Disable zlc cache for second zonelist scan */
1985 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1986 * necessary to allocate the page. The expectation is
1987 * that the caller is taking steps that will free more
1988 * memory. The caller should avoid the page being used
1989 * for !PFMEMALLOC purposes.
1991 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
1997 * Large machines with many possible nodes should not always dump per-node
1998 * meminfo in irq context.
2000 static inline bool should_suppress_show_mem(void)
2005 ret
= in_interrupt();
2010 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2011 DEFAULT_RATELIMIT_INTERVAL
,
2012 DEFAULT_RATELIMIT_BURST
);
2014 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2016 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2018 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2019 debug_guardpage_minorder() > 0)
2023 * Walking all memory to count page types is very expensive and should
2024 * be inhibited in non-blockable contexts.
2026 if (!(gfp_mask
& __GFP_WAIT
))
2027 filter
|= SHOW_MEM_FILTER_PAGE_COUNT
;
2030 * This documents exceptions given to allocations in certain
2031 * contexts that are allowed to allocate outside current's set
2034 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2035 if (test_thread_flag(TIF_MEMDIE
) ||
2036 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2037 filter
&= ~SHOW_MEM_FILTER_NODES
;
2038 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2039 filter
&= ~SHOW_MEM_FILTER_NODES
;
2042 struct va_format vaf
;
2045 va_start(args
, fmt
);
2050 pr_warn("%pV", &vaf
);
2055 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2056 current
->comm
, order
, gfp_mask
);
2059 if (!should_suppress_show_mem())
2064 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2065 unsigned long did_some_progress
,
2066 unsigned long pages_reclaimed
)
2068 /* Do not loop if specifically requested */
2069 if (gfp_mask
& __GFP_NORETRY
)
2072 /* Always retry if specifically requested */
2073 if (gfp_mask
& __GFP_NOFAIL
)
2077 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2078 * making forward progress without invoking OOM. Suspend also disables
2079 * storage devices so kswapd will not help. Bail if we are suspending.
2081 if (!did_some_progress
&& pm_suspended_storage())
2085 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2086 * means __GFP_NOFAIL, but that may not be true in other
2089 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2093 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2094 * specified, then we retry until we no longer reclaim any pages
2095 * (above), or we've reclaimed an order of pages at least as
2096 * large as the allocation's order. In both cases, if the
2097 * allocation still fails, we stop retrying.
2099 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2105 static inline struct page
*
2106 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2107 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2108 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2113 /* Acquire the OOM killer lock for the zones in zonelist */
2114 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2115 schedule_timeout_uninterruptible(1);
2120 * Go through the zonelist yet one more time, keep very high watermark
2121 * here, this is only to catch a parallel oom killing, we must fail if
2122 * we're still under heavy pressure.
2124 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2125 order
, zonelist
, high_zoneidx
,
2126 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2127 preferred_zone
, migratetype
);
2131 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2132 /* The OOM killer will not help higher order allocs */
2133 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2135 /* The OOM killer does not needlessly kill tasks for lowmem */
2136 if (high_zoneidx
< ZONE_NORMAL
)
2139 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2140 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2141 * The caller should handle page allocation failure by itself if
2142 * it specifies __GFP_THISNODE.
2143 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2145 if (gfp_mask
& __GFP_THISNODE
)
2148 /* Exhausted what can be done so it's blamo time */
2149 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2152 clear_zonelist_oom(zonelist
, gfp_mask
);
2156 #ifdef CONFIG_COMPACTION
2157 /* Try memory compaction for high-order allocations before reclaim */
2158 static struct page
*
2159 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2160 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2161 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2162 int migratetype
, bool sync_migration
,
2163 bool *contended_compaction
, bool *deferred_compaction
,
2164 unsigned long *did_some_progress
)
2169 if (compaction_deferred(preferred_zone
, order
)) {
2170 *deferred_compaction
= true;
2174 current
->flags
|= PF_MEMALLOC
;
2175 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2176 nodemask
, sync_migration
,
2177 contended_compaction
);
2178 current
->flags
&= ~PF_MEMALLOC
;
2180 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2183 /* Page migration frees to the PCP lists but we want merging */
2184 drain_pages(get_cpu());
2187 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2188 order
, zonelist
, high_zoneidx
,
2189 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2190 preferred_zone
, migratetype
);
2192 preferred_zone
->compact_blockskip_flush
= false;
2193 preferred_zone
->compact_considered
= 0;
2194 preferred_zone
->compact_defer_shift
= 0;
2195 if (order
>= preferred_zone
->compact_order_failed
)
2196 preferred_zone
->compact_order_failed
= order
+ 1;
2197 count_vm_event(COMPACTSUCCESS
);
2202 * It's bad if compaction run occurs and fails.
2203 * The most likely reason is that pages exist,
2204 * but not enough to satisfy watermarks.
2206 count_vm_event(COMPACTFAIL
);
2209 * As async compaction considers a subset of pageblocks, only
2210 * defer if the failure was a sync compaction failure.
2213 defer_compaction(preferred_zone
, order
);
2221 static inline struct page
*
2222 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2223 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2224 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2225 int migratetype
, bool sync_migration
,
2226 bool *contended_compaction
, bool *deferred_compaction
,
2227 unsigned long *did_some_progress
)
2231 #endif /* CONFIG_COMPACTION */
2233 /* Perform direct synchronous page reclaim */
2235 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2236 nodemask_t
*nodemask
)
2238 struct reclaim_state reclaim_state
;
2243 /* We now go into synchronous reclaim */
2244 cpuset_memory_pressure_bump();
2245 current
->flags
|= PF_MEMALLOC
;
2246 lockdep_set_current_reclaim_state(gfp_mask
);
2247 reclaim_state
.reclaimed_slab
= 0;
2248 current
->reclaim_state
= &reclaim_state
;
2250 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2252 current
->reclaim_state
= NULL
;
2253 lockdep_clear_current_reclaim_state();
2254 current
->flags
&= ~PF_MEMALLOC
;
2261 /* The really slow allocator path where we enter direct reclaim */
2262 static inline struct page
*
2263 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2264 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2265 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2266 int migratetype
, unsigned long *did_some_progress
)
2268 struct page
*page
= NULL
;
2269 bool drained
= false;
2271 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2273 if (unlikely(!(*did_some_progress
)))
2276 /* After successful reclaim, reconsider all zones for allocation */
2277 if (IS_ENABLED(CONFIG_NUMA
))
2278 zlc_clear_zones_full(zonelist
);
2281 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2282 zonelist
, high_zoneidx
,
2283 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2284 preferred_zone
, migratetype
);
2287 * If an allocation failed after direct reclaim, it could be because
2288 * pages are pinned on the per-cpu lists. Drain them and try again
2290 if (!page
&& !drained
) {
2300 * This is called in the allocator slow-path if the allocation request is of
2301 * sufficient urgency to ignore watermarks and take other desperate measures
2303 static inline struct page
*
2304 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2305 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2306 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2312 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2313 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2314 preferred_zone
, migratetype
);
2316 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2317 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2318 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2324 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2325 enum zone_type high_zoneidx
,
2326 enum zone_type classzone_idx
)
2331 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2332 wakeup_kswapd(zone
, order
, classzone_idx
);
2336 gfp_to_alloc_flags(gfp_t gfp_mask
)
2338 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2339 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2341 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2342 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2345 * The caller may dip into page reserves a bit more if the caller
2346 * cannot run direct reclaim, or if the caller has realtime scheduling
2347 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2348 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2350 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2354 * Not worth trying to allocate harder for
2355 * __GFP_NOMEMALLOC even if it can't schedule.
2357 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2358 alloc_flags
|= ALLOC_HARDER
;
2360 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2361 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2363 alloc_flags
&= ~ALLOC_CPUSET
;
2364 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2365 alloc_flags
|= ALLOC_HARDER
;
2367 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2368 if (gfp_mask
& __GFP_MEMALLOC
)
2369 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2370 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2371 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2372 else if (!in_interrupt() &&
2373 ((current
->flags
& PF_MEMALLOC
) ||
2374 unlikely(test_thread_flag(TIF_MEMDIE
))))
2375 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2378 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2379 alloc_flags
|= ALLOC_CMA
;
2384 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2386 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2389 static inline struct page
*
2390 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2391 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2392 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2395 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2396 struct page
*page
= NULL
;
2398 unsigned long pages_reclaimed
= 0;
2399 unsigned long did_some_progress
;
2400 bool sync_migration
= false;
2401 bool deferred_compaction
= false;
2402 bool contended_compaction
= false;
2405 * In the slowpath, we sanity check order to avoid ever trying to
2406 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2407 * be using allocators in order of preference for an area that is
2410 if (order
>= MAX_ORDER
) {
2411 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2416 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2417 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2418 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2419 * using a larger set of nodes after it has established that the
2420 * allowed per node queues are empty and that nodes are
2423 if (IS_ENABLED(CONFIG_NUMA
) &&
2424 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2428 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2429 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2430 zone_idx(preferred_zone
));
2433 * OK, we're below the kswapd watermark and have kicked background
2434 * reclaim. Now things get more complex, so set up alloc_flags according
2435 * to how we want to proceed.
2437 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2440 * Find the true preferred zone if the allocation is unconstrained by
2443 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2444 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2448 /* This is the last chance, in general, before the goto nopage. */
2449 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2450 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2451 preferred_zone
, migratetype
);
2455 /* Allocate without watermarks if the context allows */
2456 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2458 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2459 * the allocation is high priority and these type of
2460 * allocations are system rather than user orientated
2462 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2464 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2465 zonelist
, high_zoneidx
, nodemask
,
2466 preferred_zone
, migratetype
);
2472 /* Atomic allocations - we can't balance anything */
2476 /* Avoid recursion of direct reclaim */
2477 if (current
->flags
& PF_MEMALLOC
)
2480 /* Avoid allocations with no watermarks from looping endlessly */
2481 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2485 * Try direct compaction. The first pass is asynchronous. Subsequent
2486 * attempts after direct reclaim are synchronous
2488 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2489 zonelist
, high_zoneidx
,
2491 alloc_flags
, preferred_zone
,
2492 migratetype
, sync_migration
,
2493 &contended_compaction
,
2494 &deferred_compaction
,
2495 &did_some_progress
);
2498 sync_migration
= true;
2501 * If compaction is deferred for high-order allocations, it is because
2502 * sync compaction recently failed. In this is the case and the caller
2503 * requested a movable allocation that does not heavily disrupt the
2504 * system then fail the allocation instead of entering direct reclaim.
2506 if ((deferred_compaction
|| contended_compaction
) &&
2507 (gfp_mask
& __GFP_NO_KSWAPD
))
2510 /* Try direct reclaim and then allocating */
2511 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2512 zonelist
, high_zoneidx
,
2514 alloc_flags
, preferred_zone
,
2515 migratetype
, &did_some_progress
);
2520 * If we failed to make any progress reclaiming, then we are
2521 * running out of options and have to consider going OOM
2523 if (!did_some_progress
) {
2524 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2525 if (oom_killer_disabled
)
2527 /* Coredumps can quickly deplete all memory reserves */
2528 if ((current
->flags
& PF_DUMPCORE
) &&
2529 !(gfp_mask
& __GFP_NOFAIL
))
2531 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2532 zonelist
, high_zoneidx
,
2533 nodemask
, preferred_zone
,
2538 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2540 * The oom killer is not called for high-order
2541 * allocations that may fail, so if no progress
2542 * is being made, there are no other options and
2543 * retrying is unlikely to help.
2545 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2548 * The oom killer is not called for lowmem
2549 * allocations to prevent needlessly killing
2552 if (high_zoneidx
< ZONE_NORMAL
)
2560 /* Check if we should retry the allocation */
2561 pages_reclaimed
+= did_some_progress
;
2562 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2564 /* Wait for some write requests to complete then retry */
2565 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2569 * High-order allocations do not necessarily loop after
2570 * direct reclaim and reclaim/compaction depends on compaction
2571 * being called after reclaim so call directly if necessary
2573 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2574 zonelist
, high_zoneidx
,
2576 alloc_flags
, preferred_zone
,
2577 migratetype
, sync_migration
,
2578 &contended_compaction
,
2579 &deferred_compaction
,
2580 &did_some_progress
);
2586 warn_alloc_failed(gfp_mask
, order
, NULL
);
2589 if (kmemcheck_enabled
)
2590 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2596 * This is the 'heart' of the zoned buddy allocator.
2599 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2600 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2602 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2603 struct zone
*preferred_zone
;
2604 struct page
*page
= NULL
;
2605 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2606 unsigned int cpuset_mems_cookie
;
2607 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
;
2608 struct mem_cgroup
*memcg
= NULL
;
2610 gfp_mask
&= gfp_allowed_mask
;
2612 lockdep_trace_alloc(gfp_mask
);
2614 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2616 if (should_fail_alloc_page(gfp_mask
, order
))
2620 * Check the zones suitable for the gfp_mask contain at least one
2621 * valid zone. It's possible to have an empty zonelist as a result
2622 * of GFP_THISNODE and a memoryless node
2624 if (unlikely(!zonelist
->_zonerefs
->zone
))
2628 * Will only have any effect when __GFP_KMEMCG is set. This is
2629 * verified in the (always inline) callee
2631 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2635 cpuset_mems_cookie
= get_mems_allowed();
2637 /* The preferred zone is used for statistics later */
2638 first_zones_zonelist(zonelist
, high_zoneidx
,
2639 nodemask
? : &cpuset_current_mems_allowed
,
2641 if (!preferred_zone
)
2645 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2646 alloc_flags
|= ALLOC_CMA
;
2648 /* First allocation attempt */
2649 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2650 zonelist
, high_zoneidx
, alloc_flags
,
2651 preferred_zone
, migratetype
);
2652 if (unlikely(!page
)) {
2654 * Runtime PM, block IO and its error handling path
2655 * can deadlock because I/O on the device might not
2658 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2659 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2660 zonelist
, high_zoneidx
, nodemask
,
2661 preferred_zone
, migratetype
);
2664 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2668 * When updating a task's mems_allowed, it is possible to race with
2669 * parallel threads in such a way that an allocation can fail while
2670 * the mask is being updated. If a page allocation is about to fail,
2671 * check if the cpuset changed during allocation and if so, retry.
2673 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
2676 memcg_kmem_commit_charge(page
, memcg
, order
);
2680 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2683 * Common helper functions.
2685 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2690 * __get_free_pages() returns a 32-bit address, which cannot represent
2693 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2695 page
= alloc_pages(gfp_mask
, order
);
2698 return (unsigned long) page_address(page
);
2700 EXPORT_SYMBOL(__get_free_pages
);
2702 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2704 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2706 EXPORT_SYMBOL(get_zeroed_page
);
2708 void __free_pages(struct page
*page
, unsigned int order
)
2710 if (put_page_testzero(page
)) {
2712 free_hot_cold_page(page
, 0);
2714 __free_pages_ok(page
, order
);
2718 EXPORT_SYMBOL(__free_pages
);
2720 void free_pages(unsigned long addr
, unsigned int order
)
2723 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2724 __free_pages(virt_to_page((void *)addr
), order
);
2728 EXPORT_SYMBOL(free_pages
);
2731 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2732 * pages allocated with __GFP_KMEMCG.
2734 * Those pages are accounted to a particular memcg, embedded in the
2735 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2736 * for that information only to find out that it is NULL for users who have no
2737 * interest in that whatsoever, we provide these functions.
2739 * The caller knows better which flags it relies on.
2741 void __free_memcg_kmem_pages(struct page
*page
, unsigned int order
)
2743 memcg_kmem_uncharge_pages(page
, order
);
2744 __free_pages(page
, order
);
2747 void free_memcg_kmem_pages(unsigned long addr
, unsigned int order
)
2750 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2751 __free_memcg_kmem_pages(virt_to_page((void *)addr
), order
);
2755 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2758 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2759 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2761 split_page(virt_to_page((void *)addr
), order
);
2762 while (used
< alloc_end
) {
2767 return (void *)addr
;
2771 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2772 * @size: the number of bytes to allocate
2773 * @gfp_mask: GFP flags for the allocation
2775 * This function is similar to alloc_pages(), except that it allocates the
2776 * minimum number of pages to satisfy the request. alloc_pages() can only
2777 * allocate memory in power-of-two pages.
2779 * This function is also limited by MAX_ORDER.
2781 * Memory allocated by this function must be released by free_pages_exact().
2783 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2785 unsigned int order
= get_order(size
);
2788 addr
= __get_free_pages(gfp_mask
, order
);
2789 return make_alloc_exact(addr
, order
, size
);
2791 EXPORT_SYMBOL(alloc_pages_exact
);
2794 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2796 * @nid: the preferred node ID where memory should be allocated
2797 * @size: the number of bytes to allocate
2798 * @gfp_mask: GFP flags for the allocation
2800 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2802 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2805 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2807 unsigned order
= get_order(size
);
2808 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2811 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2813 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2816 * free_pages_exact - release memory allocated via alloc_pages_exact()
2817 * @virt: the value returned by alloc_pages_exact.
2818 * @size: size of allocation, same value as passed to alloc_pages_exact().
2820 * Release the memory allocated by a previous call to alloc_pages_exact.
2822 void free_pages_exact(void *virt
, size_t size
)
2824 unsigned long addr
= (unsigned long)virt
;
2825 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2827 while (addr
< end
) {
2832 EXPORT_SYMBOL(free_pages_exact
);
2835 * nr_free_zone_pages - count number of pages beyond high watermark
2836 * @offset: The zone index of the highest zone
2838 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2839 * high watermark within all zones at or below a given zone index. For each
2840 * zone, the number of pages is calculated as:
2841 * managed_pages - high_pages
2843 static unsigned long nr_free_zone_pages(int offset
)
2848 /* Just pick one node, since fallback list is circular */
2849 unsigned long sum
= 0;
2851 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2853 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2854 unsigned long size
= zone
->managed_pages
;
2855 unsigned long high
= high_wmark_pages(zone
);
2864 * nr_free_buffer_pages - count number of pages beyond high watermark
2866 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2867 * watermark within ZONE_DMA and ZONE_NORMAL.
2869 unsigned long nr_free_buffer_pages(void)
2871 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2873 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2876 * nr_free_pagecache_pages - count number of pages beyond high watermark
2878 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2879 * high watermark within all zones.
2881 unsigned long nr_free_pagecache_pages(void)
2883 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2886 static inline void show_node(struct zone
*zone
)
2888 if (IS_ENABLED(CONFIG_NUMA
))
2889 printk("Node %d ", zone_to_nid(zone
));
2892 void si_meminfo(struct sysinfo
*val
)
2894 val
->totalram
= totalram_pages
;
2896 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2897 val
->bufferram
= nr_blockdev_pages();
2898 val
->totalhigh
= totalhigh_pages
;
2899 val
->freehigh
= nr_free_highpages();
2900 val
->mem_unit
= PAGE_SIZE
;
2903 EXPORT_SYMBOL(si_meminfo
);
2906 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2908 int zone_type
; /* needs to be signed */
2909 unsigned long managed_pages
= 0;
2910 pg_data_t
*pgdat
= NODE_DATA(nid
);
2912 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
2913 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
2914 val
->totalram
= managed_pages
;
2915 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2916 #ifdef CONFIG_HIGHMEM
2917 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
2918 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2924 val
->mem_unit
= PAGE_SIZE
;
2929 * Determine whether the node should be displayed or not, depending on whether
2930 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2932 bool skip_free_areas_node(unsigned int flags
, int nid
)
2935 unsigned int cpuset_mems_cookie
;
2937 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2941 cpuset_mems_cookie
= get_mems_allowed();
2942 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2943 } while (!put_mems_allowed(cpuset_mems_cookie
));
2948 #define K(x) ((x) << (PAGE_SHIFT-10))
2950 static void show_migration_types(unsigned char type
)
2952 static const char types
[MIGRATE_TYPES
] = {
2953 [MIGRATE_UNMOVABLE
] = 'U',
2954 [MIGRATE_RECLAIMABLE
] = 'E',
2955 [MIGRATE_MOVABLE
] = 'M',
2956 [MIGRATE_RESERVE
] = 'R',
2958 [MIGRATE_CMA
] = 'C',
2960 #ifdef CONFIG_MEMORY_ISOLATION
2961 [MIGRATE_ISOLATE
] = 'I',
2964 char tmp
[MIGRATE_TYPES
+ 1];
2968 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
2969 if (type
& (1 << i
))
2974 printk("(%s) ", tmp
);
2978 * Show free area list (used inside shift_scroll-lock stuff)
2979 * We also calculate the percentage fragmentation. We do this by counting the
2980 * memory on each free list with the exception of the first item on the list.
2981 * Suppresses nodes that are not allowed by current's cpuset if
2982 * SHOW_MEM_FILTER_NODES is passed.
2984 void show_free_areas(unsigned int filter
)
2989 for_each_populated_zone(zone
) {
2990 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2993 printk("%s per-cpu:\n", zone
->name
);
2995 for_each_online_cpu(cpu
) {
2996 struct per_cpu_pageset
*pageset
;
2998 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
3000 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3001 cpu
, pageset
->pcp
.high
,
3002 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3006 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3007 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3009 " dirty:%lu writeback:%lu unstable:%lu\n"
3010 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3011 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3013 global_page_state(NR_ACTIVE_ANON
),
3014 global_page_state(NR_INACTIVE_ANON
),
3015 global_page_state(NR_ISOLATED_ANON
),
3016 global_page_state(NR_ACTIVE_FILE
),
3017 global_page_state(NR_INACTIVE_FILE
),
3018 global_page_state(NR_ISOLATED_FILE
),
3019 global_page_state(NR_UNEVICTABLE
),
3020 global_page_state(NR_FILE_DIRTY
),
3021 global_page_state(NR_WRITEBACK
),
3022 global_page_state(NR_UNSTABLE_NFS
),
3023 global_page_state(NR_FREE_PAGES
),
3024 global_page_state(NR_SLAB_RECLAIMABLE
),
3025 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3026 global_page_state(NR_FILE_MAPPED
),
3027 global_page_state(NR_SHMEM
),
3028 global_page_state(NR_PAGETABLE
),
3029 global_page_state(NR_BOUNCE
),
3030 global_page_state(NR_FREE_CMA_PAGES
));
3032 for_each_populated_zone(zone
) {
3035 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3043 " active_anon:%lukB"
3044 " inactive_anon:%lukB"
3045 " active_file:%lukB"
3046 " inactive_file:%lukB"
3047 " unevictable:%lukB"
3048 " isolated(anon):%lukB"
3049 " isolated(file):%lukB"
3057 " slab_reclaimable:%lukB"
3058 " slab_unreclaimable:%lukB"
3059 " kernel_stack:%lukB"
3064 " writeback_tmp:%lukB"
3065 " pages_scanned:%lu"
3066 " all_unreclaimable? %s"
3069 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3070 K(min_wmark_pages(zone
)),
3071 K(low_wmark_pages(zone
)),
3072 K(high_wmark_pages(zone
)),
3073 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3074 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3075 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3076 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3077 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3078 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3079 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3080 K(zone
->present_pages
),
3081 K(zone
->managed_pages
),
3082 K(zone_page_state(zone
, NR_MLOCK
)),
3083 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3084 K(zone_page_state(zone
, NR_WRITEBACK
)),
3085 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3086 K(zone_page_state(zone
, NR_SHMEM
)),
3087 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3088 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3089 zone_page_state(zone
, NR_KERNEL_STACK
) *
3091 K(zone_page_state(zone
, NR_PAGETABLE
)),
3092 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3093 K(zone_page_state(zone
, NR_BOUNCE
)),
3094 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3095 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3096 zone
->pages_scanned
,
3097 (zone
->all_unreclaimable
? "yes" : "no")
3099 printk("lowmem_reserve[]:");
3100 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3101 printk(" %lu", zone
->lowmem_reserve
[i
]);
3105 for_each_populated_zone(zone
) {
3106 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3107 unsigned char types
[MAX_ORDER
];
3109 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3112 printk("%s: ", zone
->name
);
3114 spin_lock_irqsave(&zone
->lock
, flags
);
3115 for (order
= 0; order
< MAX_ORDER
; order
++) {
3116 struct free_area
*area
= &zone
->free_area
[order
];
3119 nr
[order
] = area
->nr_free
;
3120 total
+= nr
[order
] << order
;
3123 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3124 if (!list_empty(&area
->free_list
[type
]))
3125 types
[order
] |= 1 << type
;
3128 spin_unlock_irqrestore(&zone
->lock
, flags
);
3129 for (order
= 0; order
< MAX_ORDER
; order
++) {
3130 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3132 show_migration_types(types
[order
]);
3134 printk("= %lukB\n", K(total
));
3137 hugetlb_show_meminfo();
3139 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3141 show_swap_cache_info();
3144 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3146 zoneref
->zone
= zone
;
3147 zoneref
->zone_idx
= zone_idx(zone
);
3151 * Builds allocation fallback zone lists.
3153 * Add all populated zones of a node to the zonelist.
3155 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3156 int nr_zones
, enum zone_type zone_type
)
3160 BUG_ON(zone_type
>= MAX_NR_ZONES
);
3165 zone
= pgdat
->node_zones
+ zone_type
;
3166 if (populated_zone(zone
)) {
3167 zoneref_set_zone(zone
,
3168 &zonelist
->_zonerefs
[nr_zones
++]);
3169 check_highest_zone(zone_type
);
3172 } while (zone_type
);
3179 * 0 = automatic detection of better ordering.
3180 * 1 = order by ([node] distance, -zonetype)
3181 * 2 = order by (-zonetype, [node] distance)
3183 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3184 * the same zonelist. So only NUMA can configure this param.
3186 #define ZONELIST_ORDER_DEFAULT 0
3187 #define ZONELIST_ORDER_NODE 1
3188 #define ZONELIST_ORDER_ZONE 2
3190 /* zonelist order in the kernel.
3191 * set_zonelist_order() will set this to NODE or ZONE.
3193 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3194 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3198 /* The value user specified ....changed by config */
3199 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3200 /* string for sysctl */
3201 #define NUMA_ZONELIST_ORDER_LEN 16
3202 char numa_zonelist_order
[16] = "default";
3205 * interface for configure zonelist ordering.
3206 * command line option "numa_zonelist_order"
3207 * = "[dD]efault - default, automatic configuration.
3208 * = "[nN]ode - order by node locality, then by zone within node
3209 * = "[zZ]one - order by zone, then by locality within zone
3212 static int __parse_numa_zonelist_order(char *s
)
3214 if (*s
== 'd' || *s
== 'D') {
3215 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3216 } else if (*s
== 'n' || *s
== 'N') {
3217 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3218 } else if (*s
== 'z' || *s
== 'Z') {
3219 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3222 "Ignoring invalid numa_zonelist_order value: "
3229 static __init
int setup_numa_zonelist_order(char *s
)
3236 ret
= __parse_numa_zonelist_order(s
);
3238 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3242 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3245 * sysctl handler for numa_zonelist_order
3247 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
3248 void __user
*buffer
, size_t *length
,
3251 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3253 static DEFINE_MUTEX(zl_order_mutex
);
3255 mutex_lock(&zl_order_mutex
);
3257 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3261 strcpy(saved_string
, (char *)table
->data
);
3263 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3267 int oldval
= user_zonelist_order
;
3269 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3272 * bogus value. restore saved string
3274 strncpy((char *)table
->data
, saved_string
,
3275 NUMA_ZONELIST_ORDER_LEN
);
3276 user_zonelist_order
= oldval
;
3277 } else if (oldval
!= user_zonelist_order
) {
3278 mutex_lock(&zonelists_mutex
);
3279 build_all_zonelists(NULL
, NULL
);
3280 mutex_unlock(&zonelists_mutex
);
3284 mutex_unlock(&zl_order_mutex
);
3289 #define MAX_NODE_LOAD (nr_online_nodes)
3290 static int node_load
[MAX_NUMNODES
];
3293 * find_next_best_node - find the next node that should appear in a given node's fallback list
3294 * @node: node whose fallback list we're appending
3295 * @used_node_mask: nodemask_t of already used nodes
3297 * We use a number of factors to determine which is the next node that should
3298 * appear on a given node's fallback list. The node should not have appeared
3299 * already in @node's fallback list, and it should be the next closest node
3300 * according to the distance array (which contains arbitrary distance values
3301 * from each node to each node in the system), and should also prefer nodes
3302 * with no CPUs, since presumably they'll have very little allocation pressure
3303 * on them otherwise.
3304 * It returns -1 if no node is found.
3306 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3309 int min_val
= INT_MAX
;
3310 int best_node
= NUMA_NO_NODE
;
3311 const struct cpumask
*tmp
= cpumask_of_node(0);
3313 /* Use the local node if we haven't already */
3314 if (!node_isset(node
, *used_node_mask
)) {
3315 node_set(node
, *used_node_mask
);
3319 for_each_node_state(n
, N_MEMORY
) {
3321 /* Don't want a node to appear more than once */
3322 if (node_isset(n
, *used_node_mask
))
3325 /* Use the distance array to find the distance */
3326 val
= node_distance(node
, n
);
3328 /* Penalize nodes under us ("prefer the next node") */
3331 /* Give preference to headless and unused nodes */
3332 tmp
= cpumask_of_node(n
);
3333 if (!cpumask_empty(tmp
))
3334 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3336 /* Slight preference for less loaded node */
3337 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3338 val
+= node_load
[n
];
3340 if (val
< min_val
) {
3347 node_set(best_node
, *used_node_mask
);
3354 * Build zonelists ordered by node and zones within node.
3355 * This results in maximum locality--normal zone overflows into local
3356 * DMA zone, if any--but risks exhausting DMA zone.
3358 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3361 struct zonelist
*zonelist
;
3363 zonelist
= &pgdat
->node_zonelists
[0];
3364 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3366 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3368 zonelist
->_zonerefs
[j
].zone
= NULL
;
3369 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3373 * Build gfp_thisnode zonelists
3375 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3378 struct zonelist
*zonelist
;
3380 zonelist
= &pgdat
->node_zonelists
[1];
3381 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3382 zonelist
->_zonerefs
[j
].zone
= NULL
;
3383 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3387 * Build zonelists ordered by zone and nodes within zones.
3388 * This results in conserving DMA zone[s] until all Normal memory is
3389 * exhausted, but results in overflowing to remote node while memory
3390 * may still exist in local DMA zone.
3392 static int node_order
[MAX_NUMNODES
];
3394 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3397 int zone_type
; /* needs to be signed */
3399 struct zonelist
*zonelist
;
3401 zonelist
= &pgdat
->node_zonelists
[0];
3403 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3404 for (j
= 0; j
< nr_nodes
; j
++) {
3405 node
= node_order
[j
];
3406 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3407 if (populated_zone(z
)) {
3409 &zonelist
->_zonerefs
[pos
++]);
3410 check_highest_zone(zone_type
);
3414 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3415 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3418 static int default_zonelist_order(void)
3421 unsigned long low_kmem_size
,total_size
;
3425 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3426 * If they are really small and used heavily, the system can fall
3427 * into OOM very easily.
3428 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3430 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3433 for_each_online_node(nid
) {
3434 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3435 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3436 if (populated_zone(z
)) {
3437 if (zone_type
< ZONE_NORMAL
)
3438 low_kmem_size
+= z
->managed_pages
;
3439 total_size
+= z
->managed_pages
;
3440 } else if (zone_type
== ZONE_NORMAL
) {
3442 * If any node has only lowmem, then node order
3443 * is preferred to allow kernel allocations
3444 * locally; otherwise, they can easily infringe
3445 * on other nodes when there is an abundance of
3446 * lowmem available to allocate from.
3448 return ZONELIST_ORDER_NODE
;
3452 if (!low_kmem_size
|| /* there are no DMA area. */
3453 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3454 return ZONELIST_ORDER_NODE
;
3456 * look into each node's config.
3457 * If there is a node whose DMA/DMA32 memory is very big area on
3458 * local memory, NODE_ORDER may be suitable.
3460 average_size
= total_size
/
3461 (nodes_weight(node_states
[N_MEMORY
]) + 1);
3462 for_each_online_node(nid
) {
3465 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3466 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3467 if (populated_zone(z
)) {
3468 if (zone_type
< ZONE_NORMAL
)
3469 low_kmem_size
+= z
->present_pages
;
3470 total_size
+= z
->present_pages
;
3473 if (low_kmem_size
&&
3474 total_size
> average_size
&& /* ignore small node */
3475 low_kmem_size
> total_size
* 70/100)
3476 return ZONELIST_ORDER_NODE
;
3478 return ZONELIST_ORDER_ZONE
;
3481 static void set_zonelist_order(void)
3483 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3484 current_zonelist_order
= default_zonelist_order();
3486 current_zonelist_order
= user_zonelist_order
;
3489 static void build_zonelists(pg_data_t
*pgdat
)
3493 nodemask_t used_mask
;
3494 int local_node
, prev_node
;
3495 struct zonelist
*zonelist
;
3496 int order
= current_zonelist_order
;
3498 /* initialize zonelists */
3499 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3500 zonelist
= pgdat
->node_zonelists
+ i
;
3501 zonelist
->_zonerefs
[0].zone
= NULL
;
3502 zonelist
->_zonerefs
[0].zone_idx
= 0;
3505 /* NUMA-aware ordering of nodes */
3506 local_node
= pgdat
->node_id
;
3507 load
= nr_online_nodes
;
3508 prev_node
= local_node
;
3509 nodes_clear(used_mask
);
3511 memset(node_order
, 0, sizeof(node_order
));
3514 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3516 * We don't want to pressure a particular node.
3517 * So adding penalty to the first node in same
3518 * distance group to make it round-robin.
3520 if (node_distance(local_node
, node
) !=
3521 node_distance(local_node
, prev_node
))
3522 node_load
[node
] = load
;
3526 if (order
== ZONELIST_ORDER_NODE
)
3527 build_zonelists_in_node_order(pgdat
, node
);
3529 node_order
[j
++] = node
; /* remember order */
3532 if (order
== ZONELIST_ORDER_ZONE
) {
3533 /* calculate node order -- i.e., DMA last! */
3534 build_zonelists_in_zone_order(pgdat
, j
);
3537 build_thisnode_zonelists(pgdat
);
3540 /* Construct the zonelist performance cache - see further mmzone.h */
3541 static void build_zonelist_cache(pg_data_t
*pgdat
)
3543 struct zonelist
*zonelist
;
3544 struct zonelist_cache
*zlc
;
3547 zonelist
= &pgdat
->node_zonelists
[0];
3548 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3549 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3550 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3551 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3554 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3556 * Return node id of node used for "local" allocations.
3557 * I.e., first node id of first zone in arg node's generic zonelist.
3558 * Used for initializing percpu 'numa_mem', which is used primarily
3559 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3561 int local_memory_node(int node
)
3565 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3566 gfp_zone(GFP_KERNEL
),
3573 #else /* CONFIG_NUMA */
3575 static void set_zonelist_order(void)
3577 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3580 static void build_zonelists(pg_data_t
*pgdat
)
3582 int node
, local_node
;
3584 struct zonelist
*zonelist
;
3586 local_node
= pgdat
->node_id
;
3588 zonelist
= &pgdat
->node_zonelists
[0];
3589 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3592 * Now we build the zonelist so that it contains the zones
3593 * of all the other nodes.
3594 * We don't want to pressure a particular node, so when
3595 * building the zones for node N, we make sure that the
3596 * zones coming right after the local ones are those from
3597 * node N+1 (modulo N)
3599 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3600 if (!node_online(node
))
3602 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3605 for (node
= 0; node
< local_node
; node
++) {
3606 if (!node_online(node
))
3608 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3612 zonelist
->_zonerefs
[j
].zone
= NULL
;
3613 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3616 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3617 static void build_zonelist_cache(pg_data_t
*pgdat
)
3619 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3622 #endif /* CONFIG_NUMA */
3625 * Boot pageset table. One per cpu which is going to be used for all
3626 * zones and all nodes. The parameters will be set in such a way
3627 * that an item put on a list will immediately be handed over to
3628 * the buddy list. This is safe since pageset manipulation is done
3629 * with interrupts disabled.
3631 * The boot_pagesets must be kept even after bootup is complete for
3632 * unused processors and/or zones. They do play a role for bootstrapping
3633 * hotplugged processors.
3635 * zoneinfo_show() and maybe other functions do
3636 * not check if the processor is online before following the pageset pointer.
3637 * Other parts of the kernel may not check if the zone is available.
3639 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3640 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3641 static void setup_zone_pageset(struct zone
*zone
);
3644 * Global mutex to protect against size modification of zonelists
3645 * as well as to serialize pageset setup for the new populated zone.
3647 DEFINE_MUTEX(zonelists_mutex
);
3649 /* return values int ....just for stop_machine() */
3650 static int __build_all_zonelists(void *data
)
3654 pg_data_t
*self
= data
;
3657 memset(node_load
, 0, sizeof(node_load
));
3660 if (self
&& !node_online(self
->node_id
)) {
3661 build_zonelists(self
);
3662 build_zonelist_cache(self
);
3665 for_each_online_node(nid
) {
3666 pg_data_t
*pgdat
= NODE_DATA(nid
);
3668 build_zonelists(pgdat
);
3669 build_zonelist_cache(pgdat
);
3673 * Initialize the boot_pagesets that are going to be used
3674 * for bootstrapping processors. The real pagesets for
3675 * each zone will be allocated later when the per cpu
3676 * allocator is available.
3678 * boot_pagesets are used also for bootstrapping offline
3679 * cpus if the system is already booted because the pagesets
3680 * are needed to initialize allocators on a specific cpu too.
3681 * F.e. the percpu allocator needs the page allocator which
3682 * needs the percpu allocator in order to allocate its pagesets
3683 * (a chicken-egg dilemma).
3685 for_each_possible_cpu(cpu
) {
3686 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3688 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3690 * We now know the "local memory node" for each node--
3691 * i.e., the node of the first zone in the generic zonelist.
3692 * Set up numa_mem percpu variable for on-line cpus. During
3693 * boot, only the boot cpu should be on-line; we'll init the
3694 * secondary cpus' numa_mem as they come on-line. During
3695 * node/memory hotplug, we'll fixup all on-line cpus.
3697 if (cpu_online(cpu
))
3698 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3706 * Called with zonelists_mutex held always
3707 * unless system_state == SYSTEM_BOOTING.
3709 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3711 set_zonelist_order();
3713 if (system_state
== SYSTEM_BOOTING
) {
3714 __build_all_zonelists(NULL
);
3715 mminit_verify_zonelist();
3716 cpuset_init_current_mems_allowed();
3718 #ifdef CONFIG_MEMORY_HOTPLUG
3720 setup_zone_pageset(zone
);
3722 /* we have to stop all cpus to guarantee there is no user
3724 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3725 /* cpuset refresh routine should be here */
3727 vm_total_pages
= nr_free_pagecache_pages();
3729 * Disable grouping by mobility if the number of pages in the
3730 * system is too low to allow the mechanism to work. It would be
3731 * more accurate, but expensive to check per-zone. This check is
3732 * made on memory-hotadd so a system can start with mobility
3733 * disabled and enable it later
3735 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3736 page_group_by_mobility_disabled
= 1;
3738 page_group_by_mobility_disabled
= 0;
3740 printk("Built %i zonelists in %s order, mobility grouping %s. "
3741 "Total pages: %ld\n",
3743 zonelist_order_name
[current_zonelist_order
],
3744 page_group_by_mobility_disabled
? "off" : "on",
3747 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3752 * Helper functions to size the waitqueue hash table.
3753 * Essentially these want to choose hash table sizes sufficiently
3754 * large so that collisions trying to wait on pages are rare.
3755 * But in fact, the number of active page waitqueues on typical
3756 * systems is ridiculously low, less than 200. So this is even
3757 * conservative, even though it seems large.
3759 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3760 * waitqueues, i.e. the size of the waitq table given the number of pages.
3762 #define PAGES_PER_WAITQUEUE 256
3764 #ifndef CONFIG_MEMORY_HOTPLUG
3765 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3767 unsigned long size
= 1;
3769 pages
/= PAGES_PER_WAITQUEUE
;
3771 while (size
< pages
)
3775 * Once we have dozens or even hundreds of threads sleeping
3776 * on IO we've got bigger problems than wait queue collision.
3777 * Limit the size of the wait table to a reasonable size.
3779 size
= min(size
, 4096UL);
3781 return max(size
, 4UL);
3785 * A zone's size might be changed by hot-add, so it is not possible to determine
3786 * a suitable size for its wait_table. So we use the maximum size now.
3788 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3790 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3791 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3792 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3794 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3795 * or more by the traditional way. (See above). It equals:
3797 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3798 * ia64(16K page size) : = ( 8G + 4M)byte.
3799 * powerpc (64K page size) : = (32G +16M)byte.
3801 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3808 * This is an integer logarithm so that shifts can be used later
3809 * to extract the more random high bits from the multiplicative
3810 * hash function before the remainder is taken.
3812 static inline unsigned long wait_table_bits(unsigned long size
)
3817 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3820 * Check if a pageblock contains reserved pages
3822 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3826 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3827 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3834 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3835 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3836 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3837 * higher will lead to a bigger reserve which will get freed as contiguous
3838 * blocks as reclaim kicks in
3840 static void setup_zone_migrate_reserve(struct zone
*zone
)
3842 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3844 unsigned long block_migratetype
;
3848 * Get the start pfn, end pfn and the number of blocks to reserve
3849 * We have to be careful to be aligned to pageblock_nr_pages to
3850 * make sure that we always check pfn_valid for the first page in
3853 start_pfn
= zone
->zone_start_pfn
;
3854 end_pfn
= zone_end_pfn(zone
);
3855 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3856 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3860 * Reserve blocks are generally in place to help high-order atomic
3861 * allocations that are short-lived. A min_free_kbytes value that
3862 * would result in more than 2 reserve blocks for atomic allocations
3863 * is assumed to be in place to help anti-fragmentation for the
3864 * future allocation of hugepages at runtime.
3866 reserve
= min(2, reserve
);
3868 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3869 if (!pfn_valid(pfn
))
3871 page
= pfn_to_page(pfn
);
3873 /* Watch out for overlapping nodes */
3874 if (page_to_nid(page
) != zone_to_nid(zone
))
3877 block_migratetype
= get_pageblock_migratetype(page
);
3879 /* Only test what is necessary when the reserves are not met */
3882 * Blocks with reserved pages will never free, skip
3885 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3886 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3889 /* If this block is reserved, account for it */
3890 if (block_migratetype
== MIGRATE_RESERVE
) {
3895 /* Suitable for reserving if this block is movable */
3896 if (block_migratetype
== MIGRATE_MOVABLE
) {
3897 set_pageblock_migratetype(page
,
3899 move_freepages_block(zone
, page
,
3907 * If the reserve is met and this is a previous reserved block,
3910 if (block_migratetype
== MIGRATE_RESERVE
) {
3911 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3912 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3918 * Initially all pages are reserved - free ones are freed
3919 * up by free_all_bootmem() once the early boot process is
3920 * done. Non-atomic initialization, single-pass.
3922 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3923 unsigned long start_pfn
, enum memmap_context context
)
3926 unsigned long end_pfn
= start_pfn
+ size
;
3930 if (highest_memmap_pfn
< end_pfn
- 1)
3931 highest_memmap_pfn
= end_pfn
- 1;
3933 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3934 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3936 * There can be holes in boot-time mem_map[]s
3937 * handed to this function. They do not
3938 * exist on hotplugged memory.
3940 if (context
== MEMMAP_EARLY
) {
3941 if (!early_pfn_valid(pfn
))
3943 if (!early_pfn_in_nid(pfn
, nid
))
3946 page
= pfn_to_page(pfn
);
3947 set_page_links(page
, zone
, nid
, pfn
);
3948 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3949 init_page_count(page
);
3950 page_mapcount_reset(page
);
3951 page_nid_reset_last(page
);
3952 SetPageReserved(page
);
3954 * Mark the block movable so that blocks are reserved for
3955 * movable at startup. This will force kernel allocations
3956 * to reserve their blocks rather than leaking throughout
3957 * the address space during boot when many long-lived
3958 * kernel allocations are made. Later some blocks near
3959 * the start are marked MIGRATE_RESERVE by
3960 * setup_zone_migrate_reserve()
3962 * bitmap is created for zone's valid pfn range. but memmap
3963 * can be created for invalid pages (for alignment)
3964 * check here not to call set_pageblock_migratetype() against
3967 if ((z
->zone_start_pfn
<= pfn
)
3968 && (pfn
< zone_end_pfn(z
))
3969 && !(pfn
& (pageblock_nr_pages
- 1)))
3970 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3972 INIT_LIST_HEAD(&page
->lru
);
3973 #ifdef WANT_PAGE_VIRTUAL
3974 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3975 if (!is_highmem_idx(zone
))
3976 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3981 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3984 for_each_migratetype_order(order
, t
) {
3985 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3986 zone
->free_area
[order
].nr_free
= 0;
3990 #ifndef __HAVE_ARCH_MEMMAP_INIT
3991 #define memmap_init(size, nid, zone, start_pfn) \
3992 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3995 static int __meminit
zone_batchsize(struct zone
*zone
)
4001 * The per-cpu-pages pools are set to around 1000th of the
4002 * size of the zone. But no more than 1/2 of a meg.
4004 * OK, so we don't know how big the cache is. So guess.
4006 batch
= zone
->managed_pages
/ 1024;
4007 if (batch
* PAGE_SIZE
> 512 * 1024)
4008 batch
= (512 * 1024) / PAGE_SIZE
;
4009 batch
/= 4; /* We effectively *= 4 below */
4014 * Clamp the batch to a 2^n - 1 value. Having a power
4015 * of 2 value was found to be more likely to have
4016 * suboptimal cache aliasing properties in some cases.
4018 * For example if 2 tasks are alternately allocating
4019 * batches of pages, one task can end up with a lot
4020 * of pages of one half of the possible page colors
4021 * and the other with pages of the other colors.
4023 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4028 /* The deferral and batching of frees should be suppressed under NOMMU
4031 * The problem is that NOMMU needs to be able to allocate large chunks
4032 * of contiguous memory as there's no hardware page translation to
4033 * assemble apparent contiguous memory from discontiguous pages.
4035 * Queueing large contiguous runs of pages for batching, however,
4036 * causes the pages to actually be freed in smaller chunks. As there
4037 * can be a significant delay between the individual batches being
4038 * recycled, this leads to the once large chunks of space being
4039 * fragmented and becoming unavailable for high-order allocations.
4046 * pcp->high and pcp->batch values are related and dependent on one another:
4047 * ->batch must never be higher then ->high.
4048 * The following function updates them in a safe manner without read side
4051 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4052 * those fields changing asynchronously (acording the the above rule).
4054 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4055 * outside of boot time (or some other assurance that no concurrent updaters
4058 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4059 unsigned long batch
)
4061 /* start with a fail safe value for batch */
4065 /* Update high, then batch, in order */
4072 /* a companion to pageset_set_high() */
4073 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4075 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4078 static void pageset_init(struct per_cpu_pageset
*p
)
4080 struct per_cpu_pages
*pcp
;
4083 memset(p
, 0, sizeof(*p
));
4087 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4088 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4091 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4094 pageset_set_batch(p
, batch
);
4098 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4099 * to the value high for the pageset p.
4101 static void pageset_set_high(struct per_cpu_pageset
*p
,
4104 unsigned long batch
= max(1UL, high
/ 4);
4105 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4106 batch
= PAGE_SHIFT
* 8;
4108 pageset_update(&p
->pcp
, high
, batch
);
4111 static void __meminit
pageset_set_high_and_batch(struct zone
*zone
,
4112 struct per_cpu_pageset
*pcp
)
4114 if (percpu_pagelist_fraction
)
4115 pageset_set_high(pcp
,
4116 (zone
->managed_pages
/
4117 percpu_pagelist_fraction
));
4119 pageset_set_batch(pcp
, zone_batchsize(zone
));
4122 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4124 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4127 pageset_set_high_and_batch(zone
, pcp
);
4130 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4133 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4134 for_each_possible_cpu(cpu
)
4135 zone_pageset_init(zone
, cpu
);
4139 * Allocate per cpu pagesets and initialize them.
4140 * Before this call only boot pagesets were available.
4142 void __init
setup_per_cpu_pageset(void)
4146 for_each_populated_zone(zone
)
4147 setup_zone_pageset(zone
);
4150 static noinline __init_refok
4151 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4154 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4158 * The per-page waitqueue mechanism uses hashed waitqueues
4161 zone
->wait_table_hash_nr_entries
=
4162 wait_table_hash_nr_entries(zone_size_pages
);
4163 zone
->wait_table_bits
=
4164 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4165 alloc_size
= zone
->wait_table_hash_nr_entries
4166 * sizeof(wait_queue_head_t
);
4168 if (!slab_is_available()) {
4169 zone
->wait_table
= (wait_queue_head_t
*)
4170 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
4173 * This case means that a zone whose size was 0 gets new memory
4174 * via memory hot-add.
4175 * But it may be the case that a new node was hot-added. In
4176 * this case vmalloc() will not be able to use this new node's
4177 * memory - this wait_table must be initialized to use this new
4178 * node itself as well.
4179 * To use this new node's memory, further consideration will be
4182 zone
->wait_table
= vmalloc(alloc_size
);
4184 if (!zone
->wait_table
)
4187 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4188 init_waitqueue_head(zone
->wait_table
+ i
);
4193 static __meminit
void zone_pcp_init(struct zone
*zone
)
4196 * per cpu subsystem is not up at this point. The following code
4197 * relies on the ability of the linker to provide the
4198 * offset of a (static) per cpu variable into the per cpu area.
4200 zone
->pageset
= &boot_pageset
;
4202 if (zone
->present_pages
)
4203 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4204 zone
->name
, zone
->present_pages
,
4205 zone_batchsize(zone
));
4208 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4209 unsigned long zone_start_pfn
,
4211 enum memmap_context context
)
4213 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4215 ret
= zone_wait_table_init(zone
, size
);
4218 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4220 zone
->zone_start_pfn
= zone_start_pfn
;
4222 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4223 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4225 (unsigned long)zone_idx(zone
),
4226 zone_start_pfn
, (zone_start_pfn
+ size
));
4228 zone_init_free_lists(zone
);
4233 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4234 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4236 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4237 * Architectures may implement their own version but if add_active_range()
4238 * was used and there are no special requirements, this is a convenient
4241 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4243 unsigned long start_pfn
, end_pfn
;
4246 * NOTE: The following SMP-unsafe globals are only used early in boot
4247 * when the kernel is running single-threaded.
4249 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4250 static int __meminitdata last_nid
;
4252 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4255 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
4256 if (start_pfn
<= pfn
&& pfn
< end_pfn
) {
4257 last_start_pfn
= start_pfn
;
4258 last_end_pfn
= end_pfn
;
4262 /* This is a memory hole */
4265 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4267 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4271 nid
= __early_pfn_to_nid(pfn
);
4274 /* just returns 0 */
4278 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4279 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4283 nid
= __early_pfn_to_nid(pfn
);
4284 if (nid
>= 0 && nid
!= node
)
4291 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4292 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4293 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4295 * If an architecture guarantees that all ranges registered with
4296 * add_active_ranges() contain no holes and may be freed, this
4297 * this function may be used instead of calling free_bootmem() manually.
4299 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4301 unsigned long start_pfn
, end_pfn
;
4304 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4305 start_pfn
= min(start_pfn
, max_low_pfn
);
4306 end_pfn
= min(end_pfn
, max_low_pfn
);
4308 if (start_pfn
< end_pfn
)
4309 free_bootmem_node(NODE_DATA(this_nid
),
4310 PFN_PHYS(start_pfn
),
4311 (end_pfn
- start_pfn
) << PAGE_SHIFT
);
4316 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4317 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4319 * If an architecture guarantees that all ranges registered with
4320 * add_active_ranges() contain no holes and may be freed, this
4321 * function may be used instead of calling memory_present() manually.
4323 void __init
sparse_memory_present_with_active_regions(int nid
)
4325 unsigned long start_pfn
, end_pfn
;
4328 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4329 memory_present(this_nid
, start_pfn
, end_pfn
);
4333 * get_pfn_range_for_nid - Return the start and end page frames for a node
4334 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4335 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4336 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4338 * It returns the start and end page frame of a node based on information
4339 * provided by an arch calling add_active_range(). If called for a node
4340 * with no available memory, a warning is printed and the start and end
4343 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4344 unsigned long *start_pfn
, unsigned long *end_pfn
)
4346 unsigned long this_start_pfn
, this_end_pfn
;
4352 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4353 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4354 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4357 if (*start_pfn
== -1UL)
4362 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4363 * assumption is made that zones within a node are ordered in monotonic
4364 * increasing memory addresses so that the "highest" populated zone is used
4366 static void __init
find_usable_zone_for_movable(void)
4369 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4370 if (zone_index
== ZONE_MOVABLE
)
4373 if (arch_zone_highest_possible_pfn
[zone_index
] >
4374 arch_zone_lowest_possible_pfn
[zone_index
])
4378 VM_BUG_ON(zone_index
== -1);
4379 movable_zone
= zone_index
;
4383 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4384 * because it is sized independent of architecture. Unlike the other zones,
4385 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4386 * in each node depending on the size of each node and how evenly kernelcore
4387 * is distributed. This helper function adjusts the zone ranges
4388 * provided by the architecture for a given node by using the end of the
4389 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4390 * zones within a node are in order of monotonic increases memory addresses
4392 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4393 unsigned long zone_type
,
4394 unsigned long node_start_pfn
,
4395 unsigned long node_end_pfn
,
4396 unsigned long *zone_start_pfn
,
4397 unsigned long *zone_end_pfn
)
4399 /* Only adjust if ZONE_MOVABLE is on this node */
4400 if (zone_movable_pfn
[nid
]) {
4401 /* Size ZONE_MOVABLE */
4402 if (zone_type
== ZONE_MOVABLE
) {
4403 *zone_start_pfn
= zone_movable_pfn
[nid
];
4404 *zone_end_pfn
= min(node_end_pfn
,
4405 arch_zone_highest_possible_pfn
[movable_zone
]);
4407 /* Adjust for ZONE_MOVABLE starting within this range */
4408 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4409 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4410 *zone_end_pfn
= zone_movable_pfn
[nid
];
4412 /* Check if this whole range is within ZONE_MOVABLE */
4413 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4414 *zone_start_pfn
= *zone_end_pfn
;
4419 * Return the number of pages a zone spans in a node, including holes
4420 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4422 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4423 unsigned long zone_type
,
4424 unsigned long *ignored
)
4426 unsigned long node_start_pfn
, node_end_pfn
;
4427 unsigned long zone_start_pfn
, zone_end_pfn
;
4429 /* Get the start and end of the node and zone */
4430 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4431 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4432 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4433 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4434 node_start_pfn
, node_end_pfn
,
4435 &zone_start_pfn
, &zone_end_pfn
);
4437 /* Check that this node has pages within the zone's required range */
4438 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4441 /* Move the zone boundaries inside the node if necessary */
4442 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4443 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4445 /* Return the spanned pages */
4446 return zone_end_pfn
- zone_start_pfn
;
4450 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4451 * then all holes in the requested range will be accounted for.
4453 unsigned long __meminit
__absent_pages_in_range(int nid
,
4454 unsigned long range_start_pfn
,
4455 unsigned long range_end_pfn
)
4457 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4458 unsigned long start_pfn
, end_pfn
;
4461 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4462 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4463 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4464 nr_absent
-= end_pfn
- start_pfn
;
4470 * absent_pages_in_range - Return number of page frames in holes within a range
4471 * @start_pfn: The start PFN to start searching for holes
4472 * @end_pfn: The end PFN to stop searching for holes
4474 * It returns the number of pages frames in memory holes within a range.
4476 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4477 unsigned long end_pfn
)
4479 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4482 /* Return the number of page frames in holes in a zone on a node */
4483 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4484 unsigned long zone_type
,
4485 unsigned long *ignored
)
4487 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4488 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4489 unsigned long node_start_pfn
, node_end_pfn
;
4490 unsigned long zone_start_pfn
, zone_end_pfn
;
4492 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4493 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4494 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4496 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4497 node_start_pfn
, node_end_pfn
,
4498 &zone_start_pfn
, &zone_end_pfn
);
4499 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4502 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4503 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4504 unsigned long zone_type
,
4505 unsigned long *zones_size
)
4507 return zones_size
[zone_type
];
4510 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4511 unsigned long zone_type
,
4512 unsigned long *zholes_size
)
4517 return zholes_size
[zone_type
];
4520 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4522 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4523 unsigned long *zones_size
, unsigned long *zholes_size
)
4525 unsigned long realtotalpages
, totalpages
= 0;
4528 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4529 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4531 pgdat
->node_spanned_pages
= totalpages
;
4533 realtotalpages
= totalpages
;
4534 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4536 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4538 pgdat
->node_present_pages
= realtotalpages
;
4539 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4543 #ifndef CONFIG_SPARSEMEM
4545 * Calculate the size of the zone->blockflags rounded to an unsigned long
4546 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4547 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4548 * round what is now in bits to nearest long in bits, then return it in
4551 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4553 unsigned long usemapsize
;
4555 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4556 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4557 usemapsize
= usemapsize
>> pageblock_order
;
4558 usemapsize
*= NR_PAGEBLOCK_BITS
;
4559 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4561 return usemapsize
/ 8;
4564 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4566 unsigned long zone_start_pfn
,
4567 unsigned long zonesize
)
4569 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4570 zone
->pageblock_flags
= NULL
;
4572 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4576 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4577 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4578 #endif /* CONFIG_SPARSEMEM */
4580 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4582 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4583 void __init
set_pageblock_order(void)
4587 /* Check that pageblock_nr_pages has not already been setup */
4588 if (pageblock_order
)
4591 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4592 order
= HUGETLB_PAGE_ORDER
;
4594 order
= MAX_ORDER
- 1;
4597 * Assume the largest contiguous order of interest is a huge page.
4598 * This value may be variable depending on boot parameters on IA64 and
4601 pageblock_order
= order
;
4603 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4606 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4607 * is unused as pageblock_order is set at compile-time. See
4608 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4611 void __init
set_pageblock_order(void)
4615 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4617 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4618 unsigned long present_pages
)
4620 unsigned long pages
= spanned_pages
;
4623 * Provide a more accurate estimation if there are holes within
4624 * the zone and SPARSEMEM is in use. If there are holes within the
4625 * zone, each populated memory region may cost us one or two extra
4626 * memmap pages due to alignment because memmap pages for each
4627 * populated regions may not naturally algined on page boundary.
4628 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4630 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4631 IS_ENABLED(CONFIG_SPARSEMEM
))
4632 pages
= present_pages
;
4634 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4638 * Set up the zone data structures:
4639 * - mark all pages reserved
4640 * - mark all memory queues empty
4641 * - clear the memory bitmaps
4643 * NOTE: pgdat should get zeroed by caller.
4645 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4646 unsigned long *zones_size
, unsigned long *zholes_size
)
4649 int nid
= pgdat
->node_id
;
4650 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4653 pgdat_resize_init(pgdat
);
4654 #ifdef CONFIG_NUMA_BALANCING
4655 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4656 pgdat
->numabalancing_migrate_nr_pages
= 0;
4657 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4659 init_waitqueue_head(&pgdat
->kswapd_wait
);
4660 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4661 pgdat_page_cgroup_init(pgdat
);
4663 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4664 struct zone
*zone
= pgdat
->node_zones
+ j
;
4665 unsigned long size
, realsize
, freesize
, memmap_pages
;
4667 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4668 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4672 * Adjust freesize so that it accounts for how much memory
4673 * is used by this zone for memmap. This affects the watermark
4674 * and per-cpu initialisations
4676 memmap_pages
= calc_memmap_size(size
, realsize
);
4677 if (freesize
>= memmap_pages
) {
4678 freesize
-= memmap_pages
;
4681 " %s zone: %lu pages used for memmap\n",
4682 zone_names
[j
], memmap_pages
);
4685 " %s zone: %lu pages exceeds freesize %lu\n",
4686 zone_names
[j
], memmap_pages
, freesize
);
4688 /* Account for reserved pages */
4689 if (j
== 0 && freesize
> dma_reserve
) {
4690 freesize
-= dma_reserve
;
4691 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4692 zone_names
[0], dma_reserve
);
4695 if (!is_highmem_idx(j
))
4696 nr_kernel_pages
+= freesize
;
4697 /* Charge for highmem memmap if there are enough kernel pages */
4698 else if (nr_kernel_pages
> memmap_pages
* 2)
4699 nr_kernel_pages
-= memmap_pages
;
4700 nr_all_pages
+= freesize
;
4702 zone
->spanned_pages
= size
;
4703 zone
->present_pages
= realsize
;
4705 * Set an approximate value for lowmem here, it will be adjusted
4706 * when the bootmem allocator frees pages into the buddy system.
4707 * And all highmem pages will be managed by the buddy system.
4709 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4712 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4714 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4716 zone
->name
= zone_names
[j
];
4717 spin_lock_init(&zone
->lock
);
4718 spin_lock_init(&zone
->lru_lock
);
4719 zone_seqlock_init(zone
);
4720 zone
->zone_pgdat
= pgdat
;
4722 zone_pcp_init(zone
);
4723 lruvec_init(&zone
->lruvec
);
4727 set_pageblock_order();
4728 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4729 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4730 size
, MEMMAP_EARLY
);
4732 memmap_init(size
, nid
, j
, zone_start_pfn
);
4733 zone_start_pfn
+= size
;
4737 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4739 /* Skip empty nodes */
4740 if (!pgdat
->node_spanned_pages
)
4743 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4744 /* ia64 gets its own node_mem_map, before this, without bootmem */
4745 if (!pgdat
->node_mem_map
) {
4746 unsigned long size
, start
, end
;
4750 * The zone's endpoints aren't required to be MAX_ORDER
4751 * aligned but the node_mem_map endpoints must be in order
4752 * for the buddy allocator to function correctly.
4754 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4755 end
= pgdat_end_pfn(pgdat
);
4756 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4757 size
= (end
- start
) * sizeof(struct page
);
4758 map
= alloc_remap(pgdat
->node_id
, size
);
4760 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4761 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4763 #ifndef CONFIG_NEED_MULTIPLE_NODES
4765 * With no DISCONTIG, the global mem_map is just set as node 0's
4767 if (pgdat
== NODE_DATA(0)) {
4768 mem_map
= NODE_DATA(0)->node_mem_map
;
4769 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4770 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4771 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4772 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4775 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4778 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4779 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4781 pg_data_t
*pgdat
= NODE_DATA(nid
);
4783 /* pg_data_t should be reset to zero when it's allocated */
4784 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4786 pgdat
->node_id
= nid
;
4787 pgdat
->node_start_pfn
= node_start_pfn
;
4788 init_zone_allows_reclaim(nid
);
4789 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4791 alloc_node_mem_map(pgdat
);
4792 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4793 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4794 nid
, (unsigned long)pgdat
,
4795 (unsigned long)pgdat
->node_mem_map
);
4798 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4801 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4803 #if MAX_NUMNODES > 1
4805 * Figure out the number of possible node ids.
4807 void __init
setup_nr_node_ids(void)
4810 unsigned int highest
= 0;
4812 for_each_node_mask(node
, node_possible_map
)
4814 nr_node_ids
= highest
+ 1;
4819 * node_map_pfn_alignment - determine the maximum internode alignment
4821 * This function should be called after node map is populated and sorted.
4822 * It calculates the maximum power of two alignment which can distinguish
4825 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4826 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4827 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4828 * shifted, 1GiB is enough and this function will indicate so.
4830 * This is used to test whether pfn -> nid mapping of the chosen memory
4831 * model has fine enough granularity to avoid incorrect mapping for the
4832 * populated node map.
4834 * Returns the determined alignment in pfn's. 0 if there is no alignment
4835 * requirement (single node).
4837 unsigned long __init
node_map_pfn_alignment(void)
4839 unsigned long accl_mask
= 0, last_end
= 0;
4840 unsigned long start
, end
, mask
;
4844 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
4845 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4852 * Start with a mask granular enough to pin-point to the
4853 * start pfn and tick off bits one-by-one until it becomes
4854 * too coarse to separate the current node from the last.
4856 mask
= ~((1 << __ffs(start
)) - 1);
4857 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4860 /* accumulate all internode masks */
4864 /* convert mask to number of pages */
4865 return ~accl_mask
+ 1;
4868 /* Find the lowest pfn for a node */
4869 static unsigned long __init
find_min_pfn_for_node(int nid
)
4871 unsigned long min_pfn
= ULONG_MAX
;
4872 unsigned long start_pfn
;
4875 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
4876 min_pfn
= min(min_pfn
, start_pfn
);
4878 if (min_pfn
== ULONG_MAX
) {
4880 "Could not find start_pfn for node %d\n", nid
);
4888 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4890 * It returns the minimum PFN based on information provided via
4891 * add_active_range().
4893 unsigned long __init
find_min_pfn_with_active_regions(void)
4895 return find_min_pfn_for_node(MAX_NUMNODES
);
4899 * early_calculate_totalpages()
4900 * Sum pages in active regions for movable zone.
4901 * Populate N_MEMORY for calculating usable_nodes.
4903 static unsigned long __init
early_calculate_totalpages(void)
4905 unsigned long totalpages
= 0;
4906 unsigned long start_pfn
, end_pfn
;
4909 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
4910 unsigned long pages
= end_pfn
- start_pfn
;
4912 totalpages
+= pages
;
4914 node_set_state(nid
, N_MEMORY
);
4920 * Find the PFN the Movable zone begins in each node. Kernel memory
4921 * is spread evenly between nodes as long as the nodes have enough
4922 * memory. When they don't, some nodes will have more kernelcore than
4925 static void __init
find_zone_movable_pfns_for_nodes(void)
4928 unsigned long usable_startpfn
;
4929 unsigned long kernelcore_node
, kernelcore_remaining
;
4930 /* save the state before borrow the nodemask */
4931 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
4932 unsigned long totalpages
= early_calculate_totalpages();
4933 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
4936 * If movablecore was specified, calculate what size of
4937 * kernelcore that corresponds so that memory usable for
4938 * any allocation type is evenly spread. If both kernelcore
4939 * and movablecore are specified, then the value of kernelcore
4940 * will be used for required_kernelcore if it's greater than
4941 * what movablecore would have allowed.
4943 if (required_movablecore
) {
4944 unsigned long corepages
;
4947 * Round-up so that ZONE_MOVABLE is at least as large as what
4948 * was requested by the user
4950 required_movablecore
=
4951 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4952 corepages
= totalpages
- required_movablecore
;
4954 required_kernelcore
= max(required_kernelcore
, corepages
);
4957 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4958 if (!required_kernelcore
)
4961 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4962 find_usable_zone_for_movable();
4963 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4966 /* Spread kernelcore memory as evenly as possible throughout nodes */
4967 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4968 for_each_node_state(nid
, N_MEMORY
) {
4969 unsigned long start_pfn
, end_pfn
;
4972 * Recalculate kernelcore_node if the division per node
4973 * now exceeds what is necessary to satisfy the requested
4974 * amount of memory for the kernel
4976 if (required_kernelcore
< kernelcore_node
)
4977 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4980 * As the map is walked, we track how much memory is usable
4981 * by the kernel using kernelcore_remaining. When it is
4982 * 0, the rest of the node is usable by ZONE_MOVABLE
4984 kernelcore_remaining
= kernelcore_node
;
4986 /* Go through each range of PFNs within this node */
4987 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4988 unsigned long size_pages
;
4990 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
4991 if (start_pfn
>= end_pfn
)
4994 /* Account for what is only usable for kernelcore */
4995 if (start_pfn
< usable_startpfn
) {
4996 unsigned long kernel_pages
;
4997 kernel_pages
= min(end_pfn
, usable_startpfn
)
5000 kernelcore_remaining
-= min(kernel_pages
,
5001 kernelcore_remaining
);
5002 required_kernelcore
-= min(kernel_pages
,
5003 required_kernelcore
);
5005 /* Continue if range is now fully accounted */
5006 if (end_pfn
<= usable_startpfn
) {
5009 * Push zone_movable_pfn to the end so
5010 * that if we have to rebalance
5011 * kernelcore across nodes, we will
5012 * not double account here
5014 zone_movable_pfn
[nid
] = end_pfn
;
5017 start_pfn
= usable_startpfn
;
5021 * The usable PFN range for ZONE_MOVABLE is from
5022 * start_pfn->end_pfn. Calculate size_pages as the
5023 * number of pages used as kernelcore
5025 size_pages
= end_pfn
- start_pfn
;
5026 if (size_pages
> kernelcore_remaining
)
5027 size_pages
= kernelcore_remaining
;
5028 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5031 * Some kernelcore has been met, update counts and
5032 * break if the kernelcore for this node has been
5035 required_kernelcore
-= min(required_kernelcore
,
5037 kernelcore_remaining
-= size_pages
;
5038 if (!kernelcore_remaining
)
5044 * If there is still required_kernelcore, we do another pass with one
5045 * less node in the count. This will push zone_movable_pfn[nid] further
5046 * along on the nodes that still have memory until kernelcore is
5050 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5053 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5054 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5055 zone_movable_pfn
[nid
] =
5056 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5059 /* restore the node_state */
5060 node_states
[N_MEMORY
] = saved_node_state
;
5063 /* Any regular or high memory on that node ? */
5064 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5066 enum zone_type zone_type
;
5068 if (N_MEMORY
== N_NORMAL_MEMORY
)
5071 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5072 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5073 if (zone
->present_pages
) {
5074 node_set_state(nid
, N_HIGH_MEMORY
);
5075 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5076 zone_type
<= ZONE_NORMAL
)
5077 node_set_state(nid
, N_NORMAL_MEMORY
);
5084 * free_area_init_nodes - Initialise all pg_data_t and zone data
5085 * @max_zone_pfn: an array of max PFNs for each zone
5087 * This will call free_area_init_node() for each active node in the system.
5088 * Using the page ranges provided by add_active_range(), the size of each
5089 * zone in each node and their holes is calculated. If the maximum PFN
5090 * between two adjacent zones match, it is assumed that the zone is empty.
5091 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5092 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5093 * starts where the previous one ended. For example, ZONE_DMA32 starts
5094 * at arch_max_dma_pfn.
5096 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5098 unsigned long start_pfn
, end_pfn
;
5101 /* Record where the zone boundaries are */
5102 memset(arch_zone_lowest_possible_pfn
, 0,
5103 sizeof(arch_zone_lowest_possible_pfn
));
5104 memset(arch_zone_highest_possible_pfn
, 0,
5105 sizeof(arch_zone_highest_possible_pfn
));
5106 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5107 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5108 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5109 if (i
== ZONE_MOVABLE
)
5111 arch_zone_lowest_possible_pfn
[i
] =
5112 arch_zone_highest_possible_pfn
[i
-1];
5113 arch_zone_highest_possible_pfn
[i
] =
5114 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5116 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5117 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5119 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5120 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5121 find_zone_movable_pfns_for_nodes();
5123 /* Print out the zone ranges */
5124 printk("Zone ranges:\n");
5125 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5126 if (i
== ZONE_MOVABLE
)
5128 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5129 if (arch_zone_lowest_possible_pfn
[i
] ==
5130 arch_zone_highest_possible_pfn
[i
])
5131 printk(KERN_CONT
"empty\n");
5133 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5134 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5135 (arch_zone_highest_possible_pfn
[i
]
5136 << PAGE_SHIFT
) - 1);
5139 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5140 printk("Movable zone start for each node\n");
5141 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5142 if (zone_movable_pfn
[i
])
5143 printk(" Node %d: %#010lx\n", i
,
5144 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5147 /* Print out the early node map */
5148 printk("Early memory node ranges\n");
5149 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5150 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5151 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5153 /* Initialise every node */
5154 mminit_verify_pageflags_layout();
5155 setup_nr_node_ids();
5156 for_each_online_node(nid
) {
5157 pg_data_t
*pgdat
= NODE_DATA(nid
);
5158 free_area_init_node(nid
, NULL
,
5159 find_min_pfn_for_node(nid
), NULL
);
5161 /* Any memory on that node */
5162 if (pgdat
->node_present_pages
)
5163 node_set_state(nid
, N_MEMORY
);
5164 check_for_memory(pgdat
, nid
);
5168 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5170 unsigned long long coremem
;
5174 coremem
= memparse(p
, &p
);
5175 *core
= coremem
>> PAGE_SHIFT
;
5177 /* Paranoid check that UL is enough for the coremem value */
5178 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5184 * kernelcore=size sets the amount of memory for use for allocations that
5185 * cannot be reclaimed or migrated.
5187 static int __init
cmdline_parse_kernelcore(char *p
)
5189 return cmdline_parse_core(p
, &required_kernelcore
);
5193 * movablecore=size sets the amount of memory for use for allocations that
5194 * can be reclaimed or migrated.
5196 static int __init
cmdline_parse_movablecore(char *p
)
5198 return cmdline_parse_core(p
, &required_movablecore
);
5201 early_param("kernelcore", cmdline_parse_kernelcore
);
5202 early_param("movablecore", cmdline_parse_movablecore
);
5204 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5206 void adjust_managed_page_count(struct page
*page
, long count
)
5208 spin_lock(&managed_page_count_lock
);
5209 page_zone(page
)->managed_pages
+= count
;
5210 totalram_pages
+= count
;
5211 #ifdef CONFIG_HIGHMEM
5212 if (PageHighMem(page
))
5213 totalhigh_pages
+= count
;
5215 spin_unlock(&managed_page_count_lock
);
5217 EXPORT_SYMBOL(adjust_managed_page_count
);
5219 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5222 unsigned long pages
= 0;
5224 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5225 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5226 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5227 if ((unsigned int)poison
<= 0xFF)
5228 memset(pos
, poison
, PAGE_SIZE
);
5229 free_reserved_page(virt_to_page(pos
));
5233 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5234 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5238 EXPORT_SYMBOL(free_reserved_area
);
5240 #ifdef CONFIG_HIGHMEM
5241 void free_highmem_page(struct page
*page
)
5243 __free_reserved_page(page
);
5245 page_zone(page
)->managed_pages
++;
5251 void __init
mem_init_print_info(const char *str
)
5253 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5254 unsigned long init_code_size
, init_data_size
;
5256 physpages
= get_num_physpages();
5257 codesize
= _etext
- _stext
;
5258 datasize
= _edata
- _sdata
;
5259 rosize
= __end_rodata
- __start_rodata
;
5260 bss_size
= __bss_stop
- __bss_start
;
5261 init_data_size
= __init_end
- __init_begin
;
5262 init_code_size
= _einittext
- _sinittext
;
5265 * Detect special cases and adjust section sizes accordingly:
5266 * 1) .init.* may be embedded into .data sections
5267 * 2) .init.text.* may be out of [__init_begin, __init_end],
5268 * please refer to arch/tile/kernel/vmlinux.lds.S.
5269 * 3) .rodata.* may be embedded into .text or .data sections.
5271 #define adj_init_size(start, end, size, pos, adj) \
5272 if (start <= pos && pos < end && size > adj) \
5275 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5276 _sinittext
, init_code_size
);
5277 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5278 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5279 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5280 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5282 #undef adj_init_size
5284 printk("Memory: %luK/%luK available "
5285 "(%luK kernel code, %luK rwdata, %luK rodata, "
5286 "%luK init, %luK bss, %luK reserved"
5287 #ifdef CONFIG_HIGHMEM
5291 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5292 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5293 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5294 (physpages
- totalram_pages
) << (PAGE_SHIFT
-10),
5295 #ifdef CONFIG_HIGHMEM
5296 totalhigh_pages
<< (PAGE_SHIFT
-10),
5298 str
? ", " : "", str
? str
: "");
5302 * set_dma_reserve - set the specified number of pages reserved in the first zone
5303 * @new_dma_reserve: The number of pages to mark reserved
5305 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5306 * In the DMA zone, a significant percentage may be consumed by kernel image
5307 * and other unfreeable allocations which can skew the watermarks badly. This
5308 * function may optionally be used to account for unfreeable pages in the
5309 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5310 * smaller per-cpu batchsize.
5312 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5314 dma_reserve
= new_dma_reserve
;
5317 void __init
free_area_init(unsigned long *zones_size
)
5319 free_area_init_node(0, zones_size
,
5320 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5323 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5324 unsigned long action
, void *hcpu
)
5326 int cpu
= (unsigned long)hcpu
;
5328 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5329 lru_add_drain_cpu(cpu
);
5333 * Spill the event counters of the dead processor
5334 * into the current processors event counters.
5335 * This artificially elevates the count of the current
5338 vm_events_fold_cpu(cpu
);
5341 * Zero the differential counters of the dead processor
5342 * so that the vm statistics are consistent.
5344 * This is only okay since the processor is dead and cannot
5345 * race with what we are doing.
5347 refresh_cpu_vm_stats(cpu
);
5352 void __init
page_alloc_init(void)
5354 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5358 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5359 * or min_free_kbytes changes.
5361 static void calculate_totalreserve_pages(void)
5363 struct pglist_data
*pgdat
;
5364 unsigned long reserve_pages
= 0;
5365 enum zone_type i
, j
;
5367 for_each_online_pgdat(pgdat
) {
5368 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5369 struct zone
*zone
= pgdat
->node_zones
+ i
;
5370 unsigned long max
= 0;
5372 /* Find valid and maximum lowmem_reserve in the zone */
5373 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5374 if (zone
->lowmem_reserve
[j
] > max
)
5375 max
= zone
->lowmem_reserve
[j
];
5378 /* we treat the high watermark as reserved pages. */
5379 max
+= high_wmark_pages(zone
);
5381 if (max
> zone
->managed_pages
)
5382 max
= zone
->managed_pages
;
5383 reserve_pages
+= max
;
5385 * Lowmem reserves are not available to
5386 * GFP_HIGHUSER page cache allocations and
5387 * kswapd tries to balance zones to their high
5388 * watermark. As a result, neither should be
5389 * regarded as dirtyable memory, to prevent a
5390 * situation where reclaim has to clean pages
5391 * in order to balance the zones.
5393 zone
->dirty_balance_reserve
= max
;
5396 dirty_balance_reserve
= reserve_pages
;
5397 totalreserve_pages
= reserve_pages
;
5401 * setup_per_zone_lowmem_reserve - called whenever
5402 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5403 * has a correct pages reserved value, so an adequate number of
5404 * pages are left in the zone after a successful __alloc_pages().
5406 static void setup_per_zone_lowmem_reserve(void)
5408 struct pglist_data
*pgdat
;
5409 enum zone_type j
, idx
;
5411 for_each_online_pgdat(pgdat
) {
5412 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5413 struct zone
*zone
= pgdat
->node_zones
+ j
;
5414 unsigned long managed_pages
= zone
->managed_pages
;
5416 zone
->lowmem_reserve
[j
] = 0;
5420 struct zone
*lower_zone
;
5424 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5425 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5427 lower_zone
= pgdat
->node_zones
+ idx
;
5428 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5429 sysctl_lowmem_reserve_ratio
[idx
];
5430 managed_pages
+= lower_zone
->managed_pages
;
5435 /* update totalreserve_pages */
5436 calculate_totalreserve_pages();
5439 static void __setup_per_zone_wmarks(void)
5441 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5442 unsigned long lowmem_pages
= 0;
5444 unsigned long flags
;
5446 /* Calculate total number of !ZONE_HIGHMEM pages */
5447 for_each_zone(zone
) {
5448 if (!is_highmem(zone
))
5449 lowmem_pages
+= zone
->managed_pages
;
5452 for_each_zone(zone
) {
5455 spin_lock_irqsave(&zone
->lock
, flags
);
5456 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5457 do_div(tmp
, lowmem_pages
);
5458 if (is_highmem(zone
)) {
5460 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5461 * need highmem pages, so cap pages_min to a small
5464 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5465 * deltas controls asynch page reclaim, and so should
5466 * not be capped for highmem.
5468 unsigned long min_pages
;
5470 min_pages
= zone
->managed_pages
/ 1024;
5471 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5472 zone
->watermark
[WMARK_MIN
] = min_pages
;
5475 * If it's a lowmem zone, reserve a number of pages
5476 * proportionate to the zone's size.
5478 zone
->watermark
[WMARK_MIN
] = tmp
;
5481 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5482 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5484 setup_zone_migrate_reserve(zone
);
5485 spin_unlock_irqrestore(&zone
->lock
, flags
);
5488 /* update totalreserve_pages */
5489 calculate_totalreserve_pages();
5493 * setup_per_zone_wmarks - called when min_free_kbytes changes
5494 * or when memory is hot-{added|removed}
5496 * Ensures that the watermark[min,low,high] values for each zone are set
5497 * correctly with respect to min_free_kbytes.
5499 void setup_per_zone_wmarks(void)
5501 mutex_lock(&zonelists_mutex
);
5502 __setup_per_zone_wmarks();
5503 mutex_unlock(&zonelists_mutex
);
5507 * The inactive anon list should be small enough that the VM never has to
5508 * do too much work, but large enough that each inactive page has a chance
5509 * to be referenced again before it is swapped out.
5511 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5512 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5513 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5514 * the anonymous pages are kept on the inactive list.
5517 * memory ratio inactive anon
5518 * -------------------------------------
5527 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5529 unsigned int gb
, ratio
;
5531 /* Zone size in gigabytes */
5532 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5534 ratio
= int_sqrt(10 * gb
);
5538 zone
->inactive_ratio
= ratio
;
5541 static void __meminit
setup_per_zone_inactive_ratio(void)
5546 calculate_zone_inactive_ratio(zone
);
5550 * Initialise min_free_kbytes.
5552 * For small machines we want it small (128k min). For large machines
5553 * we want it large (64MB max). But it is not linear, because network
5554 * bandwidth does not increase linearly with machine size. We use
5556 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5557 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5573 int __meminit
init_per_zone_wmark_min(void)
5575 unsigned long lowmem_kbytes
;
5577 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5579 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5580 if (min_free_kbytes
< 128)
5581 min_free_kbytes
= 128;
5582 if (min_free_kbytes
> 65536)
5583 min_free_kbytes
= 65536;
5584 setup_per_zone_wmarks();
5585 refresh_zone_stat_thresholds();
5586 setup_per_zone_lowmem_reserve();
5587 setup_per_zone_inactive_ratio();
5590 module_init(init_per_zone_wmark_min
)
5593 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5594 * that we can call two helper functions whenever min_free_kbytes
5597 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5598 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5600 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5602 setup_per_zone_wmarks();
5607 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5608 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5613 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5618 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5619 sysctl_min_unmapped_ratio
) / 100;
5623 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5624 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5629 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5634 zone
->min_slab_pages
= (zone
->managed_pages
*
5635 sysctl_min_slab_ratio
) / 100;
5641 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5642 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5643 * whenever sysctl_lowmem_reserve_ratio changes.
5645 * The reserve ratio obviously has absolutely no relation with the
5646 * minimum watermarks. The lowmem reserve ratio can only make sense
5647 * if in function of the boot time zone sizes.
5649 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5650 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5652 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5653 setup_per_zone_lowmem_reserve();
5658 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5659 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5660 * can have before it gets flushed back to buddy allocator.
5662 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5663 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5669 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5670 if (!write
|| (ret
< 0))
5673 mutex_lock(&pcp_batch_high_lock
);
5674 for_each_populated_zone(zone
) {
5676 high
= zone
->managed_pages
/ percpu_pagelist_fraction
;
5677 for_each_possible_cpu(cpu
)
5678 pageset_set_high(per_cpu_ptr(zone
->pageset
, cpu
),
5681 mutex_unlock(&pcp_batch_high_lock
);
5685 int hashdist
= HASHDIST_DEFAULT
;
5688 static int __init
set_hashdist(char *str
)
5692 hashdist
= simple_strtoul(str
, &str
, 0);
5695 __setup("hashdist=", set_hashdist
);
5699 * allocate a large system hash table from bootmem
5700 * - it is assumed that the hash table must contain an exact power-of-2
5701 * quantity of entries
5702 * - limit is the number of hash buckets, not the total allocation size
5704 void *__init
alloc_large_system_hash(const char *tablename
,
5705 unsigned long bucketsize
,
5706 unsigned long numentries
,
5709 unsigned int *_hash_shift
,
5710 unsigned int *_hash_mask
,
5711 unsigned long low_limit
,
5712 unsigned long high_limit
)
5714 unsigned long long max
= high_limit
;
5715 unsigned long log2qty
, size
;
5718 /* allow the kernel cmdline to have a say */
5720 /* round applicable memory size up to nearest megabyte */
5721 numentries
= nr_kernel_pages
;
5722 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5723 numentries
>>= 20 - PAGE_SHIFT
;
5724 numentries
<<= 20 - PAGE_SHIFT
;
5726 /* limit to 1 bucket per 2^scale bytes of low memory */
5727 if (scale
> PAGE_SHIFT
)
5728 numentries
>>= (scale
- PAGE_SHIFT
);
5730 numentries
<<= (PAGE_SHIFT
- scale
);
5732 /* Make sure we've got at least a 0-order allocation.. */
5733 if (unlikely(flags
& HASH_SMALL
)) {
5734 /* Makes no sense without HASH_EARLY */
5735 WARN_ON(!(flags
& HASH_EARLY
));
5736 if (!(numentries
>> *_hash_shift
)) {
5737 numentries
= 1UL << *_hash_shift
;
5738 BUG_ON(!numentries
);
5740 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5741 numentries
= PAGE_SIZE
/ bucketsize
;
5743 numentries
= roundup_pow_of_two(numentries
);
5745 /* limit allocation size to 1/16 total memory by default */
5747 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5748 do_div(max
, bucketsize
);
5750 max
= min(max
, 0x80000000ULL
);
5752 if (numentries
< low_limit
)
5753 numentries
= low_limit
;
5754 if (numentries
> max
)
5757 log2qty
= ilog2(numentries
);
5760 size
= bucketsize
<< log2qty
;
5761 if (flags
& HASH_EARLY
)
5762 table
= alloc_bootmem_nopanic(size
);
5764 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5767 * If bucketsize is not a power-of-two, we may free
5768 * some pages at the end of hash table which
5769 * alloc_pages_exact() automatically does
5771 if (get_order(size
) < MAX_ORDER
) {
5772 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5773 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5776 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5779 panic("Failed to allocate %s hash table\n", tablename
);
5781 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5784 ilog2(size
) - PAGE_SHIFT
,
5788 *_hash_shift
= log2qty
;
5790 *_hash_mask
= (1 << log2qty
) - 1;
5795 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5796 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5799 #ifdef CONFIG_SPARSEMEM
5800 return __pfn_to_section(pfn
)->pageblock_flags
;
5802 return zone
->pageblock_flags
;
5803 #endif /* CONFIG_SPARSEMEM */
5806 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5808 #ifdef CONFIG_SPARSEMEM
5809 pfn
&= (PAGES_PER_SECTION
-1);
5810 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5812 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
5813 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5814 #endif /* CONFIG_SPARSEMEM */
5818 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5819 * @page: The page within the block of interest
5820 * @start_bitidx: The first bit of interest to retrieve
5821 * @end_bitidx: The last bit of interest
5822 * returns pageblock_bits flags
5824 unsigned long get_pageblock_flags_group(struct page
*page
,
5825 int start_bitidx
, int end_bitidx
)
5828 unsigned long *bitmap
;
5829 unsigned long pfn
, bitidx
;
5830 unsigned long flags
= 0;
5831 unsigned long value
= 1;
5833 zone
= page_zone(page
);
5834 pfn
= page_to_pfn(page
);
5835 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5836 bitidx
= pfn_to_bitidx(zone
, pfn
);
5838 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5839 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5846 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5847 * @page: The page within the block of interest
5848 * @start_bitidx: The first bit of interest
5849 * @end_bitidx: The last bit of interest
5850 * @flags: The flags to set
5852 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5853 int start_bitidx
, int end_bitidx
)
5856 unsigned long *bitmap
;
5857 unsigned long pfn
, bitidx
;
5858 unsigned long value
= 1;
5860 zone
= page_zone(page
);
5861 pfn
= page_to_pfn(page
);
5862 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5863 bitidx
= pfn_to_bitidx(zone
, pfn
);
5864 VM_BUG_ON(!zone_spans_pfn(zone
, pfn
));
5866 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5868 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5870 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5874 * This function checks whether pageblock includes unmovable pages or not.
5875 * If @count is not zero, it is okay to include less @count unmovable pages
5877 * PageLRU check wihtout isolation or lru_lock could race so that
5878 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5879 * expect this function should be exact.
5881 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
5882 bool skip_hwpoisoned_pages
)
5884 unsigned long pfn
, iter
, found
;
5888 * For avoiding noise data, lru_add_drain_all() should be called
5889 * If ZONE_MOVABLE, the zone never contains unmovable pages
5891 if (zone_idx(zone
) == ZONE_MOVABLE
)
5893 mt
= get_pageblock_migratetype(page
);
5894 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
5897 pfn
= page_to_pfn(page
);
5898 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5899 unsigned long check
= pfn
+ iter
;
5901 if (!pfn_valid_within(check
))
5904 page
= pfn_to_page(check
);
5906 * We can't use page_count without pin a page
5907 * because another CPU can free compound page.
5908 * This check already skips compound tails of THP
5909 * because their page->_count is zero at all time.
5911 if (!atomic_read(&page
->_count
)) {
5912 if (PageBuddy(page
))
5913 iter
+= (1 << page_order(page
)) - 1;
5918 * The HWPoisoned page may be not in buddy system, and
5919 * page_count() is not 0.
5921 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
5927 * If there are RECLAIMABLE pages, we need to check it.
5928 * But now, memory offline itself doesn't call shrink_slab()
5929 * and it still to be fixed.
5932 * If the page is not RAM, page_count()should be 0.
5933 * we don't need more check. This is an _used_ not-movable page.
5935 * The problematic thing here is PG_reserved pages. PG_reserved
5936 * is set to both of a memory hole page and a _used_ kernel
5945 bool is_pageblock_removable_nolock(struct page
*page
)
5951 * We have to be careful here because we are iterating over memory
5952 * sections which are not zone aware so we might end up outside of
5953 * the zone but still within the section.
5954 * We have to take care about the node as well. If the node is offline
5955 * its NODE_DATA will be NULL - see page_zone.
5957 if (!node_online(page_to_nid(page
)))
5960 zone
= page_zone(page
);
5961 pfn
= page_to_pfn(page
);
5962 if (!zone_spans_pfn(zone
, pfn
))
5965 return !has_unmovable_pages(zone
, page
, 0, true);
5970 static unsigned long pfn_max_align_down(unsigned long pfn
)
5972 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
5973 pageblock_nr_pages
) - 1);
5976 static unsigned long pfn_max_align_up(unsigned long pfn
)
5978 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
5979 pageblock_nr_pages
));
5982 /* [start, end) must belong to a single zone. */
5983 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
5984 unsigned long start
, unsigned long end
)
5986 /* This function is based on compact_zone() from compaction.c. */
5987 unsigned long nr_reclaimed
;
5988 unsigned long pfn
= start
;
5989 unsigned int tries
= 0;
5994 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
5995 if (fatal_signal_pending(current
)) {
6000 if (list_empty(&cc
->migratepages
)) {
6001 cc
->nr_migratepages
= 0;
6002 pfn
= isolate_migratepages_range(cc
->zone
, cc
,
6009 } else if (++tries
== 5) {
6010 ret
= ret
< 0 ? ret
: -EBUSY
;
6014 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6016 cc
->nr_migratepages
-= nr_reclaimed
;
6018 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6019 0, MIGRATE_SYNC
, MR_CMA
);
6022 putback_movable_pages(&cc
->migratepages
);
6029 * alloc_contig_range() -- tries to allocate given range of pages
6030 * @start: start PFN to allocate
6031 * @end: one-past-the-last PFN to allocate
6032 * @migratetype: migratetype of the underlaying pageblocks (either
6033 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6034 * in range must have the same migratetype and it must
6035 * be either of the two.
6037 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6038 * aligned, however it's the caller's responsibility to guarantee that
6039 * we are the only thread that changes migrate type of pageblocks the
6042 * The PFN range must belong to a single zone.
6044 * Returns zero on success or negative error code. On success all
6045 * pages which PFN is in [start, end) are allocated for the caller and
6046 * need to be freed with free_contig_range().
6048 int alloc_contig_range(unsigned long start
, unsigned long end
,
6049 unsigned migratetype
)
6051 unsigned long outer_start
, outer_end
;
6054 struct compact_control cc
= {
6055 .nr_migratepages
= 0,
6057 .zone
= page_zone(pfn_to_page(start
)),
6059 .ignore_skip_hint
= true,
6061 INIT_LIST_HEAD(&cc
.migratepages
);
6064 * What we do here is we mark all pageblocks in range as
6065 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6066 * have different sizes, and due to the way page allocator
6067 * work, we align the range to biggest of the two pages so
6068 * that page allocator won't try to merge buddies from
6069 * different pageblocks and change MIGRATE_ISOLATE to some
6070 * other migration type.
6072 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6073 * migrate the pages from an unaligned range (ie. pages that
6074 * we are interested in). This will put all the pages in
6075 * range back to page allocator as MIGRATE_ISOLATE.
6077 * When this is done, we take the pages in range from page
6078 * allocator removing them from the buddy system. This way
6079 * page allocator will never consider using them.
6081 * This lets us mark the pageblocks back as
6082 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6083 * aligned range but not in the unaligned, original range are
6084 * put back to page allocator so that buddy can use them.
6087 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6088 pfn_max_align_up(end
), migratetype
,
6093 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6098 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6099 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6100 * more, all pages in [start, end) are free in page allocator.
6101 * What we are going to do is to allocate all pages from
6102 * [start, end) (that is remove them from page allocator).
6104 * The only problem is that pages at the beginning and at the
6105 * end of interesting range may be not aligned with pages that
6106 * page allocator holds, ie. they can be part of higher order
6107 * pages. Because of this, we reserve the bigger range and
6108 * once this is done free the pages we are not interested in.
6110 * We don't have to hold zone->lock here because the pages are
6111 * isolated thus they won't get removed from buddy.
6114 lru_add_drain_all();
6118 outer_start
= start
;
6119 while (!PageBuddy(pfn_to_page(outer_start
))) {
6120 if (++order
>= MAX_ORDER
) {
6124 outer_start
&= ~0UL << order
;
6127 /* Make sure the range is really isolated. */
6128 if (test_pages_isolated(outer_start
, end
, false)) {
6129 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6136 /* Grab isolated pages from freelists. */
6137 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6143 /* Free head and tail (if any) */
6144 if (start
!= outer_start
)
6145 free_contig_range(outer_start
, start
- outer_start
);
6146 if (end
!= outer_end
)
6147 free_contig_range(end
, outer_end
- end
);
6150 undo_isolate_page_range(pfn_max_align_down(start
),
6151 pfn_max_align_up(end
), migratetype
);
6155 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6157 unsigned int count
= 0;
6159 for (; nr_pages
--; pfn
++) {
6160 struct page
*page
= pfn_to_page(pfn
);
6162 count
+= page_count(page
) != 1;
6165 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6169 #ifdef CONFIG_MEMORY_HOTPLUG
6171 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6172 * page high values need to be recalulated.
6174 void __meminit
zone_pcp_update(struct zone
*zone
)
6177 mutex_lock(&pcp_batch_high_lock
);
6178 for_each_possible_cpu(cpu
)
6179 pageset_set_high_and_batch(zone
,
6180 per_cpu_ptr(zone
->pageset
, cpu
));
6181 mutex_unlock(&pcp_batch_high_lock
);
6185 void zone_pcp_reset(struct zone
*zone
)
6187 unsigned long flags
;
6189 struct per_cpu_pageset
*pset
;
6191 /* avoid races with drain_pages() */
6192 local_irq_save(flags
);
6193 if (zone
->pageset
!= &boot_pageset
) {
6194 for_each_online_cpu(cpu
) {
6195 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6196 drain_zonestat(zone
, pset
);
6198 free_percpu(zone
->pageset
);
6199 zone
->pageset
= &boot_pageset
;
6201 local_irq_restore(flags
);
6204 #ifdef CONFIG_MEMORY_HOTREMOVE
6206 * All pages in the range must be isolated before calling this.
6209 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6215 unsigned long flags
;
6216 /* find the first valid pfn */
6217 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6222 zone
= page_zone(pfn_to_page(pfn
));
6223 spin_lock_irqsave(&zone
->lock
, flags
);
6225 while (pfn
< end_pfn
) {
6226 if (!pfn_valid(pfn
)) {
6230 page
= pfn_to_page(pfn
);
6232 * The HWPoisoned page may be not in buddy system, and
6233 * page_count() is not 0.
6235 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6237 SetPageReserved(page
);
6241 BUG_ON(page_count(page
));
6242 BUG_ON(!PageBuddy(page
));
6243 order
= page_order(page
);
6244 #ifdef CONFIG_DEBUG_VM
6245 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6246 pfn
, 1 << order
, end_pfn
);
6248 list_del(&page
->lru
);
6249 rmv_page_order(page
);
6250 zone
->free_area
[order
].nr_free
--;
6251 #ifdef CONFIG_HIGHMEM
6252 if (PageHighMem(page
))
6253 totalhigh_pages
-= 1 << order
;
6255 for (i
= 0; i
< (1 << order
); i
++)
6256 SetPageReserved((page
+i
));
6257 pfn
+= (1 << order
);
6259 spin_unlock_irqrestore(&zone
->lock
, flags
);
6263 #ifdef CONFIG_MEMORY_FAILURE
6264 bool is_free_buddy_page(struct page
*page
)
6266 struct zone
*zone
= page_zone(page
);
6267 unsigned long pfn
= page_to_pfn(page
);
6268 unsigned long flags
;
6271 spin_lock_irqsave(&zone
->lock
, flags
);
6272 for (order
= 0; order
< MAX_ORDER
; order
++) {
6273 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6275 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6278 spin_unlock_irqrestore(&zone
->lock
, flags
);
6280 return order
< MAX_ORDER
;
6284 static const struct trace_print_flags pageflag_names
[] = {
6285 {1UL << PG_locked
, "locked" },
6286 {1UL << PG_error
, "error" },
6287 {1UL << PG_referenced
, "referenced" },
6288 {1UL << PG_uptodate
, "uptodate" },
6289 {1UL << PG_dirty
, "dirty" },
6290 {1UL << PG_lru
, "lru" },
6291 {1UL << PG_active
, "active" },
6292 {1UL << PG_slab
, "slab" },
6293 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6294 {1UL << PG_arch_1
, "arch_1" },
6295 {1UL << PG_reserved
, "reserved" },
6296 {1UL << PG_private
, "private" },
6297 {1UL << PG_private_2
, "private_2" },
6298 {1UL << PG_writeback
, "writeback" },
6299 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6300 {1UL << PG_head
, "head" },
6301 {1UL << PG_tail
, "tail" },
6303 {1UL << PG_compound
, "compound" },
6305 {1UL << PG_swapcache
, "swapcache" },
6306 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6307 {1UL << PG_reclaim
, "reclaim" },
6308 {1UL << PG_swapbacked
, "swapbacked" },
6309 {1UL << PG_unevictable
, "unevictable" },
6311 {1UL << PG_mlocked
, "mlocked" },
6313 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6314 {1UL << PG_uncached
, "uncached" },
6316 #ifdef CONFIG_MEMORY_FAILURE
6317 {1UL << PG_hwpoison
, "hwpoison" },
6319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6320 {1UL << PG_compound_lock
, "compound_lock" },
6324 static void dump_page_flags(unsigned long flags
)
6326 const char *delim
= "";
6330 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6332 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6334 /* remove zone id */
6335 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6337 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6339 mask
= pageflag_names
[i
].mask
;
6340 if ((flags
& mask
) != mask
)
6344 printk("%s%s", delim
, pageflag_names
[i
].name
);
6348 /* check for left over flags */
6350 printk("%s%#lx", delim
, flags
);
6355 void dump_page(struct page
*page
)
6358 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6359 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6360 page
->mapping
, page
->index
);
6361 dump_page_flags(page
->flags
);
6362 mem_cgroup_print_bad_page(page
);