4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/lmb.h>
22 #include <asm/sparsemem.h>
24 #include <asm/system.h>
27 static int numa_enabled
= 1;
29 static char *cmdline __initdata
;
31 static int numa_debug
;
32 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
34 int numa_cpu_lookup_table
[NR_CPUS
];
35 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
36 struct pglist_data
*node_data
[MAX_NUMNODES
];
38 EXPORT_SYMBOL(numa_cpu_lookup_table
);
39 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
40 EXPORT_SYMBOL(node_data
);
42 static int min_common_depth
;
43 static int n_mem_addr_cells
, n_mem_size_cells
;
45 static int __cpuinit
fake_numa_create_new_node(unsigned long end_pfn
,
48 unsigned long long mem
;
50 static unsigned int fake_nid
;
51 static unsigned long long curr_boundary
;
54 * Modify node id, iff we started creating NUMA nodes
55 * We want to continue from where we left of the last time
60 * In case there are no more arguments to parse, the
61 * node_id should be the same as the last fake node id
62 * (we've handled this above).
67 mem
= memparse(p
, &p
);
71 if (mem
< curr_boundary
)
76 if ((end_pfn
<< PAGE_SHIFT
) > mem
) {
78 * Skip commas and spaces
80 while (*p
== ',' || *p
== ' ' || *p
== '\t')
86 dbg("created new fake_node with id %d\n", fake_nid
);
93 * get_active_region_work_fn - A helper function for get_node_active_region
94 * Returns datax set to the start_pfn and end_pfn if they contain
95 * the initial value of datax->start_pfn between them
96 * @start_pfn: start page(inclusive) of region to check
97 * @end_pfn: end page(exclusive) of region to check
98 * @datax: comes in with ->start_pfn set to value to search for and
99 * goes out with active range if it contains it
100 * Returns 1 if search value is in range else 0
102 static int __init
get_active_region_work_fn(unsigned long start_pfn
,
103 unsigned long end_pfn
, void *datax
)
105 struct node_active_region
*data
;
106 data
= (struct node_active_region
*)datax
;
108 if (start_pfn
<= data
->start_pfn
&& end_pfn
> data
->start_pfn
) {
109 data
->start_pfn
= start_pfn
;
110 data
->end_pfn
= end_pfn
;
118 * get_node_active_region - Return active region containing start_pfn
119 * Active range returned is empty if none found.
120 * @start_pfn: The page to return the region for.
121 * @node_ar: Returned set to the active region containing start_pfn
123 static void __init
get_node_active_region(unsigned long start_pfn
,
124 struct node_active_region
*node_ar
)
126 int nid
= early_pfn_to_nid(start_pfn
);
129 node_ar
->start_pfn
= start_pfn
;
130 node_ar
->end_pfn
= start_pfn
;
131 work_with_active_regions(nid
, get_active_region_work_fn
, node_ar
);
134 static void __cpuinit
map_cpu_to_node(int cpu
, int node
)
136 numa_cpu_lookup_table
[cpu
] = node
;
138 dbg("adding cpu %d to node %d\n", cpu
, node
);
140 if (!(cpu_isset(cpu
, numa_cpumask_lookup_table
[node
])))
141 cpu_set(cpu
, numa_cpumask_lookup_table
[node
]);
144 #ifdef CONFIG_HOTPLUG_CPU
145 static void unmap_cpu_from_node(unsigned long cpu
)
147 int node
= numa_cpu_lookup_table
[cpu
];
149 dbg("removing cpu %lu from node %d\n", cpu
, node
);
151 if (cpu_isset(cpu
, numa_cpumask_lookup_table
[node
])) {
152 cpu_clear(cpu
, numa_cpumask_lookup_table
[node
]);
154 printk(KERN_ERR
"WARNING: cpu %lu not found in node %d\n",
158 #endif /* CONFIG_HOTPLUG_CPU */
160 static struct device_node
* __cpuinit
find_cpu_node(unsigned int cpu
)
162 unsigned int hw_cpuid
= get_hard_smp_processor_id(cpu
);
163 struct device_node
*cpu_node
= NULL
;
164 const unsigned int *interrupt_server
, *reg
;
167 while ((cpu_node
= of_find_node_by_type(cpu_node
, "cpu")) != NULL
) {
168 /* Try interrupt server first */
169 interrupt_server
= of_get_property(cpu_node
,
170 "ibm,ppc-interrupt-server#s", &len
);
172 len
= len
/ sizeof(u32
);
174 if (interrupt_server
&& (len
> 0)) {
176 if (interrupt_server
[len
] == hw_cpuid
)
180 reg
= of_get_property(cpu_node
, "reg", &len
);
181 if (reg
&& (len
> 0) && (reg
[0] == hw_cpuid
))
189 /* must hold reference to node during call */
190 static const int *of_get_associativity(struct device_node
*dev
)
192 return of_get_property(dev
, "ibm,associativity", NULL
);
196 * Returns the property linux,drconf-usable-memory if
197 * it exists (the property exists only in kexec/kdump kernels,
198 * added by kexec-tools)
200 static const u32
*of_get_usable_memory(struct device_node
*memory
)
204 prop
= of_get_property(memory
, "linux,drconf-usable-memory", &len
);
205 if (!prop
|| len
< sizeof(unsigned int))
210 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
213 static int of_node_to_nid_single(struct device_node
*device
)
216 const unsigned int *tmp
;
218 if (min_common_depth
== -1)
221 tmp
= of_get_associativity(device
);
225 if (tmp
[0] >= min_common_depth
)
226 nid
= tmp
[min_common_depth
];
228 /* POWER4 LPAR uses 0xffff as invalid node */
229 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
235 /* Walk the device tree upwards, looking for an associativity id */
236 int of_node_to_nid(struct device_node
*device
)
238 struct device_node
*tmp
;
243 nid
= of_node_to_nid_single(device
);
248 device
= of_get_parent(tmp
);
255 EXPORT_SYMBOL_GPL(of_node_to_nid
);
258 * In theory, the "ibm,associativity" property may contain multiple
259 * associativity lists because a resource may be multiply connected
260 * into the machine. This resource then has different associativity
261 * characteristics relative to its multiple connections. We ignore
262 * this for now. We also assume that all cpu and memory sets have
263 * their distances represented at a common level. This won't be
264 * true for hierarchical NUMA.
266 * In any case the ibm,associativity-reference-points should give
267 * the correct depth for a normal NUMA system.
269 * - Dave Hansen <haveblue@us.ibm.com>
271 static int __init
find_min_common_depth(void)
274 const unsigned int *ref_points
;
275 struct device_node
*rtas_root
;
278 rtas_root
= of_find_node_by_path("/rtas");
284 * this property is 2 32-bit integers, each representing a level of
285 * depth in the associativity nodes. The first is for an SMP
286 * configuration (should be all 0's) and the second is for a normal
287 * NUMA configuration.
289 ref_points
= of_get_property(rtas_root
,
290 "ibm,associativity-reference-points", &len
);
292 if ((len
>= 1) && ref_points
) {
293 depth
= ref_points
[1];
295 dbg("NUMA: ibm,associativity-reference-points not found.\n");
298 of_node_put(rtas_root
);
303 static void __init
get_n_mem_cells(int *n_addr_cells
, int *n_size_cells
)
305 struct device_node
*memory
= NULL
;
307 memory
= of_find_node_by_type(memory
, "memory");
309 panic("numa.c: No memory nodes found!");
311 *n_addr_cells
= of_n_addr_cells(memory
);
312 *n_size_cells
= of_n_size_cells(memory
);
316 static unsigned long __devinit
read_n_cells(int n
, const unsigned int **buf
)
318 unsigned long result
= 0;
321 result
= (result
<< 32) | **buf
;
327 struct of_drconf_cell
{
335 #define DRCONF_MEM_ASSIGNED 0x00000008
336 #define DRCONF_MEM_AI_INVALID 0x00000040
337 #define DRCONF_MEM_RESERVED 0x00000080
340 * Read the next lmb list entry from the ibm,dynamic-memory property
341 * and return the information in the provided of_drconf_cell structure.
343 static void read_drconf_cell(struct of_drconf_cell
*drmem
, const u32
**cellp
)
347 drmem
->base_addr
= read_n_cells(n_mem_addr_cells
, cellp
);
350 drmem
->drc_index
= cp
[0];
351 drmem
->reserved
= cp
[1];
352 drmem
->aa_index
= cp
[2];
353 drmem
->flags
= cp
[3];
359 * Retreive and validate the ibm,dynamic-memory property of the device tree.
361 * The layout of the ibm,dynamic-memory property is a number N of lmb
362 * list entries followed by N lmb list entries. Each lmb list entry
363 * contains information as layed out in the of_drconf_cell struct above.
365 static int of_get_drconf_memory(struct device_node
*memory
, const u32
**dm
)
370 prop
= of_get_property(memory
, "ibm,dynamic-memory", &len
);
371 if (!prop
|| len
< sizeof(unsigned int))
376 /* Now that we know the number of entries, revalidate the size
377 * of the property read in to ensure we have everything
379 if (len
< (entries
* (n_mem_addr_cells
+ 4) + 1) * sizeof(unsigned int))
387 * Retreive and validate the ibm,lmb-size property for drconf memory
388 * from the device tree.
390 static u64
of_get_lmb_size(struct device_node
*memory
)
395 prop
= of_get_property(memory
, "ibm,lmb-size", &len
);
396 if (!prop
|| len
< sizeof(unsigned int))
399 return read_n_cells(n_mem_size_cells
, &prop
);
402 struct assoc_arrays
{
409 * Retreive and validate the list of associativity arrays for drconf
410 * memory from the ibm,associativity-lookup-arrays property of the
413 * The layout of the ibm,associativity-lookup-arrays property is a number N
414 * indicating the number of associativity arrays, followed by a number M
415 * indicating the size of each associativity array, followed by a list
416 * of N associativity arrays.
418 static int of_get_assoc_arrays(struct device_node
*memory
,
419 struct assoc_arrays
*aa
)
424 prop
= of_get_property(memory
, "ibm,associativity-lookup-arrays", &len
);
425 if (!prop
|| len
< 2 * sizeof(unsigned int))
428 aa
->n_arrays
= *prop
++;
429 aa
->array_sz
= *prop
++;
431 /* Now that we know the number of arrrays and size of each array,
432 * revalidate the size of the property read in.
434 if (len
< (aa
->n_arrays
* aa
->array_sz
+ 2) * sizeof(unsigned int))
442 * This is like of_node_to_nid_single() for memory represented in the
443 * ibm,dynamic-reconfiguration-memory node.
445 static int of_drconf_to_nid_single(struct of_drconf_cell
*drmem
,
446 struct assoc_arrays
*aa
)
449 int nid
= default_nid
;
452 if (min_common_depth
> 0 && min_common_depth
<= aa
->array_sz
&&
453 !(drmem
->flags
& DRCONF_MEM_AI_INVALID
) &&
454 drmem
->aa_index
< aa
->n_arrays
) {
455 index
= drmem
->aa_index
* aa
->array_sz
+ min_common_depth
- 1;
456 nid
= aa
->arrays
[index
];
458 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
466 * Figure out to which domain a cpu belongs and stick it there.
467 * Return the id of the domain used.
469 static int __cpuinit
numa_setup_cpu(unsigned long lcpu
)
472 struct device_node
*cpu
= find_cpu_node(lcpu
);
479 nid
= of_node_to_nid_single(cpu
);
481 if (nid
< 0 || !node_online(nid
))
482 nid
= any_online_node(NODE_MASK_ALL
);
484 map_cpu_to_node(lcpu
, nid
);
491 static int __cpuinit
cpu_numa_callback(struct notifier_block
*nfb
,
492 unsigned long action
,
495 unsigned long lcpu
= (unsigned long)hcpu
;
496 int ret
= NOTIFY_DONE
;
500 case CPU_UP_PREPARE_FROZEN
:
501 numa_setup_cpu(lcpu
);
504 #ifdef CONFIG_HOTPLUG_CPU
506 case CPU_DEAD_FROZEN
:
507 case CPU_UP_CANCELED
:
508 case CPU_UP_CANCELED_FROZEN
:
509 unmap_cpu_from_node(lcpu
);
518 * Check and possibly modify a memory region to enforce the memory limit.
520 * Returns the size the region should have to enforce the memory limit.
521 * This will either be the original value of size, a truncated value,
522 * or zero. If the returned value of size is 0 the region should be
523 * discarded as it lies wholy above the memory limit.
525 static unsigned long __init
numa_enforce_memory_limit(unsigned long start
,
529 * We use lmb_end_of_DRAM() in here instead of memory_limit because
530 * we've already adjusted it for the limit and it takes care of
531 * having memory holes below the limit. Also, in the case of
532 * iommu_is_off, memory_limit is not set but is implicitly enforced.
535 if (start
+ size
<= lmb_end_of_DRAM())
538 if (start
>= lmb_end_of_DRAM())
541 return lmb_end_of_DRAM() - start
;
545 * Reads the counter for a given entry in
546 * linux,drconf-usable-memory property
548 static inline int __init
read_usm_ranges(const u32
**usm
)
551 * For each lmb in ibm,dynamic-memory a corresponding
552 * entry in linux,drconf-usable-memory property contains
553 * a counter followed by that many (base, size) duple.
554 * read the counter from linux,drconf-usable-memory
556 return read_n_cells(n_mem_size_cells
, usm
);
560 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
561 * node. This assumes n_mem_{addr,size}_cells have been set.
563 static void __init
parse_drconf_memory(struct device_node
*memory
)
566 unsigned int n
, rc
, ranges
, is_kexec_kdump
= 0;
567 unsigned long lmb_size
, base
, size
, sz
;
569 struct assoc_arrays aa
;
571 n
= of_get_drconf_memory(memory
, &dm
);
575 lmb_size
= of_get_lmb_size(memory
);
579 rc
= of_get_assoc_arrays(memory
, &aa
);
583 /* check if this is a kexec/kdump kernel */
584 usm
= of_get_usable_memory(memory
);
588 for (; n
!= 0; --n
) {
589 struct of_drconf_cell drmem
;
591 read_drconf_cell(&drmem
, &dm
);
593 /* skip this block if the reserved bit is set in flags (0x80)
594 or if the block is not assigned to this partition (0x8) */
595 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
596 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
599 base
= drmem
.base_addr
;
603 if (is_kexec_kdump
) {
604 ranges
= read_usm_ranges(&usm
);
605 if (!ranges
) /* there are no (base, size) duple */
609 if (is_kexec_kdump
) {
610 base
= read_n_cells(n_mem_addr_cells
, &usm
);
611 size
= read_n_cells(n_mem_size_cells
, &usm
);
613 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
614 fake_numa_create_new_node(
615 ((base
+ size
) >> PAGE_SHIFT
),
617 node_set_online(nid
);
618 sz
= numa_enforce_memory_limit(base
, size
);
620 add_active_range(nid
, base
>> PAGE_SHIFT
,
622 + (sz
>> PAGE_SHIFT
));
627 static int __init
parse_numa_properties(void)
629 struct device_node
*cpu
= NULL
;
630 struct device_node
*memory
= NULL
;
634 if (numa_enabled
== 0) {
635 printk(KERN_WARNING
"NUMA disabled by user\n");
639 min_common_depth
= find_min_common_depth();
641 if (min_common_depth
< 0)
642 return min_common_depth
;
644 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth
);
647 * Even though we connect cpus to numa domains later in SMP
648 * init, we need to know the node ids now. This is because
649 * each node to be onlined must have NODE_DATA etc backing it.
651 for_each_present_cpu(i
) {
654 cpu
= find_cpu_node(i
);
656 nid
= of_node_to_nid_single(cpu
);
660 * Don't fall back to default_nid yet -- we will plug
661 * cpus into nodes once the memory scan has discovered
666 node_set_online(nid
);
669 get_n_mem_cells(&n_mem_addr_cells
, &n_mem_size_cells
);
671 while ((memory
= of_find_node_by_type(memory
, "memory")) != NULL
) {
676 const unsigned int *memcell_buf
;
679 memcell_buf
= of_get_property(memory
,
680 "linux,usable-memory", &len
);
681 if (!memcell_buf
|| len
<= 0)
682 memcell_buf
= of_get_property(memory
, "reg", &len
);
683 if (!memcell_buf
|| len
<= 0)
687 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
689 /* these are order-sensitive, and modify the buffer pointer */
690 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
691 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
694 * Assumption: either all memory nodes or none will
695 * have associativity properties. If none, then
696 * everything goes to default_nid.
698 nid
= of_node_to_nid_single(memory
);
702 fake_numa_create_new_node(((start
+ size
) >> PAGE_SHIFT
), &nid
);
703 node_set_online(nid
);
705 if (!(size
= numa_enforce_memory_limit(start
, size
))) {
712 add_active_range(nid
, start
>> PAGE_SHIFT
,
713 (start
>> PAGE_SHIFT
) + (size
>> PAGE_SHIFT
));
720 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
721 * property in the ibm,dynamic-reconfiguration-memory node.
723 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
725 parse_drconf_memory(memory
);
730 static void __init
setup_nonnuma(void)
732 unsigned long top_of_ram
= lmb_end_of_DRAM();
733 unsigned long total_ram
= lmb_phys_mem_size();
734 unsigned long start_pfn
, end_pfn
;
735 unsigned int i
, nid
= 0;
737 printk(KERN_DEBUG
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
738 top_of_ram
, total_ram
);
739 printk(KERN_DEBUG
"Memory hole size: %ldMB\n",
740 (top_of_ram
- total_ram
) >> 20);
742 for (i
= 0; i
< lmb
.memory
.cnt
; ++i
) {
743 start_pfn
= lmb
.memory
.region
[i
].base
>> PAGE_SHIFT
;
744 end_pfn
= start_pfn
+ lmb_size_pages(&lmb
.memory
, i
);
746 fake_numa_create_new_node(end_pfn
, &nid
);
747 add_active_range(nid
, start_pfn
, end_pfn
);
748 node_set_online(nid
);
752 void __init
dump_numa_cpu_topology(void)
755 unsigned int cpu
, count
;
757 if (min_common_depth
== -1 || !numa_enabled
)
760 for_each_online_node(node
) {
761 printk(KERN_DEBUG
"Node %d CPUs:", node
);
765 * If we used a CPU iterator here we would miss printing
766 * the holes in the cpumap.
768 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
769 if (cpu_isset(cpu
, numa_cpumask_lookup_table
[node
])) {
775 printk("-%u", cpu
- 1);
781 printk("-%u", NR_CPUS
- 1);
786 static void __init
dump_numa_memory_topology(void)
791 if (min_common_depth
== -1 || !numa_enabled
)
794 for_each_online_node(node
) {
797 printk(KERN_DEBUG
"Node %d Memory:", node
);
801 for (i
= 0; i
< lmb_end_of_DRAM();
802 i
+= (1 << SECTION_SIZE_BITS
)) {
803 if (early_pfn_to_nid(i
>> PAGE_SHIFT
) == node
) {
821 * Allocate some memory, satisfying the lmb or bootmem allocator where
822 * required. nid is the preferred node and end is the physical address of
823 * the highest address in the node.
825 * Returns the physical address of the memory.
827 static void __init
*careful_allocation(int nid
, unsigned long size
,
829 unsigned long end_pfn
)
832 unsigned long ret
= __lmb_alloc_base(size
, align
, end_pfn
<< PAGE_SHIFT
);
834 /* retry over all memory */
836 ret
= __lmb_alloc_base(size
, align
, lmb_end_of_DRAM());
839 panic("numa.c: cannot allocate %lu bytes on node %d",
843 * We initialize the nodes in numeric order: 0, 1, 2...
844 * and hand over control from the LMB allocator to the
845 * bootmem allocator. If this function is called for
846 * node 5, then we know that all nodes <5 are using the
847 * bootmem allocator instead of the LMB allocator.
849 * So, check the nid from which this allocation came
850 * and double check to see if we need to use bootmem
851 * instead of the LMB. We don't free the LMB memory
852 * since it would be useless.
854 new_nid
= early_pfn_to_nid(ret
>> PAGE_SHIFT
);
856 ret
= (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid
),
860 panic("numa.c: cannot allocate %lu bytes on node %d",
865 dbg("alloc_bootmem %lx %lx\n", ret
, size
);
871 static struct notifier_block __cpuinitdata ppc64_numa_nb
= {
872 .notifier_call
= cpu_numa_callback
,
873 .priority
= 1 /* Must run before sched domains notifier. */
876 static void mark_reserved_regions_for_nid(int nid
)
878 struct pglist_data
*node
= NODE_DATA(nid
);
881 for (i
= 0; i
< lmb
.reserved
.cnt
; i
++) {
882 unsigned long physbase
= lmb
.reserved
.region
[i
].base
;
883 unsigned long size
= lmb
.reserved
.region
[i
].size
;
884 unsigned long start_pfn
= physbase
>> PAGE_SHIFT
;
885 unsigned long end_pfn
= ((physbase
+ size
) >> PAGE_SHIFT
);
886 struct node_active_region node_ar
;
887 unsigned long node_end_pfn
= node
->node_start_pfn
+
888 node
->node_spanned_pages
;
891 * Check to make sure that this lmb.reserved area is
892 * within the bounds of the node that we care about.
893 * Checking the nid of the start and end points is not
894 * sufficient because the reserved area could span the
897 if (end_pfn
<= node
->node_start_pfn
||
898 start_pfn
>= node_end_pfn
)
901 get_node_active_region(start_pfn
, &node_ar
);
902 while (start_pfn
< end_pfn
&&
903 node_ar
.start_pfn
< node_ar
.end_pfn
) {
904 unsigned long reserve_size
= size
;
906 * if reserved region extends past active region
907 * then trim size to active region
909 if (end_pfn
> node_ar
.end_pfn
)
910 reserve_size
= (node_ar
.end_pfn
<< PAGE_SHIFT
)
911 - (start_pfn
<< PAGE_SHIFT
);
913 * Only worry about *this* node, others may not
914 * yet have valid NODE_DATA().
916 if (node_ar
.nid
== nid
) {
917 dbg("reserve_bootmem %lx %lx nid=%d\n",
918 physbase
, reserve_size
, node_ar
.nid
);
919 reserve_bootmem_node(NODE_DATA(node_ar
.nid
),
920 physbase
, reserve_size
,
924 * if reserved region is contained in the active region
927 if (end_pfn
<= node_ar
.end_pfn
)
931 * reserved region extends past the active region
932 * get next active region that contains this
935 start_pfn
= node_ar
.end_pfn
;
936 physbase
= start_pfn
<< PAGE_SHIFT
;
937 size
= size
- reserve_size
;
938 get_node_active_region(start_pfn
, &node_ar
);
944 void __init
do_init_bootmem(void)
949 max_low_pfn
= lmb_end_of_DRAM() >> PAGE_SHIFT
;
950 max_pfn
= max_low_pfn
;
952 if (parse_numa_properties())
955 dump_numa_memory_topology();
957 register_cpu_notifier(&ppc64_numa_nb
);
958 cpu_numa_callback(&ppc64_numa_nb
, CPU_UP_PREPARE
,
959 (void *)(unsigned long)boot_cpuid
);
961 for_each_online_node(nid
) {
962 unsigned long start_pfn
, end_pfn
;
963 unsigned long bootmem_paddr
;
964 unsigned long bootmap_pages
;
966 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
969 * Allocate the node structure node local if possible
971 * Be careful moving this around, as it relies on all
972 * previous nodes' bootmem to be initialized and have
973 * all reserved areas marked.
975 NODE_DATA(nid
) = careful_allocation(nid
,
976 sizeof(struct pglist_data
),
977 SMP_CACHE_BYTES
, end_pfn
);
978 NODE_DATA(nid
) = __va(NODE_DATA(nid
));
979 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
981 dbg("node %d\n", nid
);
982 dbg("NODE_DATA() = %p\n", NODE_DATA(nid
));
984 NODE_DATA(nid
)->bdata
= &bootmem_node_data
[nid
];
985 NODE_DATA(nid
)->node_start_pfn
= start_pfn
;
986 NODE_DATA(nid
)->node_spanned_pages
= end_pfn
- start_pfn
;
988 if (NODE_DATA(nid
)->node_spanned_pages
== 0)
991 dbg("start_paddr = %lx\n", start_pfn
<< PAGE_SHIFT
);
992 dbg("end_paddr = %lx\n", end_pfn
<< PAGE_SHIFT
);
994 bootmap_pages
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
995 bootmem_paddr
= (unsigned long)careful_allocation(nid
,
996 bootmap_pages
<< PAGE_SHIFT
,
998 memset(__va(bootmem_paddr
), 0, bootmap_pages
<< PAGE_SHIFT
);
1000 dbg("bootmap_paddr = %lx\n", bootmem_paddr
);
1002 init_bootmem_node(NODE_DATA(nid
), bootmem_paddr
>> PAGE_SHIFT
,
1003 start_pfn
, end_pfn
);
1005 free_bootmem_with_active_regions(nid
, end_pfn
);
1007 * Be very careful about moving this around. Future
1008 * calls to careful_allocation() depend on this getting
1011 mark_reserved_regions_for_nid(nid
);
1012 sparse_memory_present_with_active_regions(nid
);
1016 void __init
paging_init(void)
1018 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
1019 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
1020 max_zone_pfns
[ZONE_DMA
] = lmb_end_of_DRAM() >> PAGE_SHIFT
;
1021 free_area_init_nodes(max_zone_pfns
);
1024 static int __init
early_numa(char *p
)
1029 if (strstr(p
, "off"))
1032 if (strstr(p
, "debug"))
1035 p
= strstr(p
, "fake=");
1037 cmdline
= p
+ strlen("fake=");
1041 early_param("numa", early_numa
);
1043 #ifdef CONFIG_MEMORY_HOTPLUG
1045 * Validate the node associated with the memory section we are
1048 int valid_hot_add_scn(int *nid
, unsigned long start
, u32 lmb_size
,
1049 unsigned long scn_addr
)
1053 if (*nid
< 0 || !node_online(*nid
))
1054 *nid
= any_online_node(NODE_MASK_ALL
);
1056 if ((scn_addr
>= start
) && (scn_addr
< (start
+ lmb_size
))) {
1057 nodes_setall(nodes
);
1058 while (NODE_DATA(*nid
)->node_spanned_pages
== 0) {
1059 node_clear(*nid
, nodes
);
1060 *nid
= any_online_node(nodes
);
1070 * Find the node associated with a hot added memory section represented
1071 * by the ibm,dynamic-reconfiguration-memory node.
1073 static int hot_add_drconf_scn_to_nid(struct device_node
*memory
,
1074 unsigned long scn_addr
)
1078 unsigned long lmb_size
;
1079 int default_nid
= any_online_node(NODE_MASK_ALL
);
1081 struct assoc_arrays aa
;
1083 n
= of_get_drconf_memory(memory
, &dm
);
1085 return default_nid
;;
1087 lmb_size
= of_get_lmb_size(memory
);
1091 rc
= of_get_assoc_arrays(memory
, &aa
);
1095 for (; n
!= 0; --n
) {
1096 struct of_drconf_cell drmem
;
1098 read_drconf_cell(&drmem
, &dm
);
1100 /* skip this block if it is reserved or not assigned to
1102 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
1103 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
1106 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
1108 if (valid_hot_add_scn(&nid
, drmem
.base_addr
, lmb_size
,
1113 BUG(); /* section address should be found above */
1118 * Find the node associated with a hot added memory section. Section
1119 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
1120 * sections are fully contained within a single LMB.
1122 int hot_add_scn_to_nid(unsigned long scn_addr
)
1124 struct device_node
*memory
= NULL
;
1127 if (!numa_enabled
|| (min_common_depth
< 0))
1128 return any_online_node(NODE_MASK_ALL
);
1130 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1132 nid
= hot_add_drconf_scn_to_nid(memory
, scn_addr
);
1133 of_node_put(memory
);
1137 while ((memory
= of_find_node_by_type(memory
, "memory")) != NULL
) {
1138 unsigned long start
, size
;
1140 const unsigned int *memcell_buf
;
1143 memcell_buf
= of_get_property(memory
, "reg", &len
);
1144 if (!memcell_buf
|| len
<= 0)
1147 /* ranges in cell */
1148 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
1150 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
1151 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
1152 nid
= of_node_to_nid_single(memory
);
1154 if (valid_hot_add_scn(&nid
, start
, size
, scn_addr
)) {
1155 of_node_put(memory
);
1159 if (--ranges
) /* process all ranges in cell */
1162 BUG(); /* section address should be found above */
1165 #endif /* CONFIG_MEMORY_HOTPLUG */