1 /* Common capabilities, needed by capability.o and root_plug.o
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
28 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
30 * Because of the reduced scope of CAP_SETPCAP when filesystem
31 * capabilities are in effect, it is safe to allow this capability to
32 * be available in the default configuration.
34 # define CAP_INIT_BSET CAP_FULL_SET
35 #else /* ie. ndef CONFIG_SECURITY_FILE_CAPABILITIES */
36 # define CAP_INIT_BSET CAP_INIT_EFF_SET
37 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
39 kernel_cap_t cap_bset
= CAP_INIT_BSET
; /* systemwide capability bound */
40 EXPORT_SYMBOL(cap_bset
);
42 /* Global security state */
44 unsigned securebits
= SECUREBITS_DEFAULT
; /* systemwide security settings */
45 EXPORT_SYMBOL(securebits
);
47 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
49 NETLINK_CB(skb
).eff_cap
= current
->cap_effective
;
53 int cap_netlink_recv(struct sk_buff
*skb
, int cap
)
55 if (!cap_raised(NETLINK_CB(skb
).eff_cap
, cap
))
60 EXPORT_SYMBOL(cap_netlink_recv
);
62 int cap_capable (struct task_struct
*tsk
, int cap
)
64 /* Derived from include/linux/sched.h:capable. */
65 if (cap_raised(tsk
->cap_effective
, cap
))
70 int cap_settime(struct timespec
*ts
, struct timezone
*tz
)
72 if (!capable(CAP_SYS_TIME
))
77 int cap_ptrace (struct task_struct
*parent
, struct task_struct
*child
)
79 /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
80 if (!cap_issubset(child
->cap_permitted
, parent
->cap_permitted
) &&
81 !__capable(parent
, CAP_SYS_PTRACE
))
86 int cap_capget (struct task_struct
*target
, kernel_cap_t
*effective
,
87 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
89 /* Derived from kernel/capability.c:sys_capget. */
90 *effective
= cap_t (target
->cap_effective
);
91 *inheritable
= cap_t (target
->cap_inheritable
);
92 *permitted
= cap_t (target
->cap_permitted
);
96 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
98 static inline int cap_block_setpcap(struct task_struct
*target
)
101 * No support for remote process capability manipulation with
102 * filesystem capability support.
104 return (target
!= current
);
107 static inline int cap_inh_is_capped(void)
110 * return 1 if changes to the inheritable set are limited
111 * to the old permitted set.
113 return !cap_capable(current
, CAP_SETPCAP
);
116 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
118 static inline int cap_block_setpcap(struct task_struct
*t
) { return 0; }
119 static inline int cap_inh_is_capped(void) { return 1; }
121 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
123 int cap_capset_check (struct task_struct
*target
, kernel_cap_t
*effective
,
124 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
126 if (cap_block_setpcap(target
)) {
129 if (cap_inh_is_capped()
130 && !cap_issubset(*inheritable
,
131 cap_combine(target
->cap_inheritable
,
132 current
->cap_permitted
))) {
133 /* incapable of using this inheritable set */
137 /* verify restrictions on target's new Permitted set */
138 if (!cap_issubset (*permitted
,
139 cap_combine (target
->cap_permitted
,
140 current
->cap_permitted
))) {
144 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
145 if (!cap_issubset (*effective
, *permitted
)) {
152 void cap_capset_set (struct task_struct
*target
, kernel_cap_t
*effective
,
153 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
155 target
->cap_effective
= *effective
;
156 target
->cap_inheritable
= *inheritable
;
157 target
->cap_permitted
= *permitted
;
160 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
162 cap_clear(bprm
->cap_inheritable
);
163 cap_clear(bprm
->cap_permitted
);
164 bprm
->cap_effective
= false;
167 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
169 int cap_inode_need_killpriv(struct dentry
*dentry
)
171 struct inode
*inode
= dentry
->d_inode
;
174 if (!inode
->i_op
|| !inode
->i_op
->getxattr
)
177 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
183 int cap_inode_killpriv(struct dentry
*dentry
)
185 struct inode
*inode
= dentry
->d_inode
;
187 if (!inode
->i_op
|| !inode
->i_op
->removexattr
)
190 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
193 static inline int cap_from_disk(struct vfs_cap_data
*caps
,
194 struct linux_binprm
*bprm
,
199 if (size
!= XATTR_CAPS_SZ
)
202 magic_etc
= le32_to_cpu(caps
->magic_etc
);
204 switch ((magic_etc
& VFS_CAP_REVISION_MASK
)) {
205 case VFS_CAP_REVISION
:
206 if (magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
207 bprm
->cap_effective
= true;
209 bprm
->cap_effective
= false;
210 bprm
->cap_permitted
= to_cap_t(le32_to_cpu(caps
->permitted
));
211 bprm
->cap_inheritable
= to_cap_t(le32_to_cpu(caps
->inheritable
));
218 /* Locate any VFS capabilities: */
219 static int get_file_caps(struct linux_binprm
*bprm
)
221 struct dentry
*dentry
;
223 struct vfs_cap_data incaps
;
226 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
) {
227 bprm_clear_caps(bprm
);
231 dentry
= dget(bprm
->file
->f_dentry
);
232 inode
= dentry
->d_inode
;
233 if (!inode
->i_op
|| !inode
->i_op
->getxattr
)
236 rc
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
238 if (rc
== XATTR_CAPS_SZ
)
239 rc
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
,
240 &incaps
, XATTR_CAPS_SZ
);
244 if (rc
== -ENODATA
|| rc
== -EOPNOTSUPP
) {
245 /* no data, that's ok */
252 rc
= cap_from_disk(&incaps
, bprm
, rc
);
254 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
255 __FUNCTION__
, rc
, bprm
->filename
);
260 bprm_clear_caps(bprm
);
266 int cap_inode_need_killpriv(struct dentry
*dentry
)
271 int cap_inode_killpriv(struct dentry
*dentry
)
276 static inline int get_file_caps(struct linux_binprm
*bprm
)
278 bprm_clear_caps(bprm
);
283 int cap_bprm_set_security (struct linux_binprm
*bprm
)
287 ret
= get_file_caps(bprm
);
289 printk(KERN_NOTICE
"%s: get_file_caps returned %d for %s\n",
290 __FUNCTION__
, ret
, bprm
->filename
);
292 /* To support inheritance of root-permissions and suid-root
293 * executables under compatibility mode, we raise all three
294 * capability sets for the file.
296 * If only the real uid is 0, we only raise the inheritable
297 * and permitted sets of the executable file.
300 if (!issecure (SECURE_NOROOT
)) {
301 if (bprm
->e_uid
== 0 || current
->uid
== 0) {
302 cap_set_full (bprm
->cap_inheritable
);
303 cap_set_full (bprm
->cap_permitted
);
305 if (bprm
->e_uid
== 0)
306 bprm
->cap_effective
= true;
312 void cap_bprm_apply_creds (struct linux_binprm
*bprm
, int unsafe
)
314 /* Derived from fs/exec.c:compute_creds. */
315 kernel_cap_t new_permitted
, working
;
317 new_permitted
= cap_intersect (bprm
->cap_permitted
, cap_bset
);
318 working
= cap_intersect (bprm
->cap_inheritable
,
319 current
->cap_inheritable
);
320 new_permitted
= cap_combine (new_permitted
, working
);
322 if (bprm
->e_uid
!= current
->uid
|| bprm
->e_gid
!= current
->gid
||
323 !cap_issubset (new_permitted
, current
->cap_permitted
)) {
324 set_dumpable(current
->mm
, suid_dumpable
);
325 current
->pdeath_signal
= 0;
327 if (unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
328 if (!capable(CAP_SETUID
)) {
329 bprm
->e_uid
= current
->uid
;
330 bprm
->e_gid
= current
->gid
;
332 if (!capable (CAP_SETPCAP
)) {
333 new_permitted
= cap_intersect (new_permitted
,
334 current
->cap_permitted
);
339 current
->suid
= current
->euid
= current
->fsuid
= bprm
->e_uid
;
340 current
->sgid
= current
->egid
= current
->fsgid
= bprm
->e_gid
;
342 /* For init, we want to retain the capabilities set
343 * in the init_task struct. Thus we skip the usual
344 * capability rules */
345 if (!is_global_init(current
)) {
346 current
->cap_permitted
= new_permitted
;
347 current
->cap_effective
= bprm
->cap_effective
?
351 /* AUD: Audit candidate if current->cap_effective is set */
353 current
->keep_capabilities
= 0;
356 int cap_bprm_secureexec (struct linux_binprm
*bprm
)
358 if (current
->uid
!= 0) {
359 if (bprm
->cap_effective
)
361 if (!cap_isclear(bprm
->cap_permitted
))
363 if (!cap_isclear(bprm
->cap_inheritable
))
367 return (current
->euid
!= current
->uid
||
368 current
->egid
!= current
->gid
);
371 int cap_inode_setxattr(struct dentry
*dentry
, char *name
, void *value
,
372 size_t size
, int flags
)
374 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
375 if (!capable(CAP_SETFCAP
))
378 } else if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
379 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
380 !capable(CAP_SYS_ADMIN
))
385 int cap_inode_removexattr(struct dentry
*dentry
, char *name
)
387 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
388 if (!capable(CAP_SETFCAP
))
391 } else if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
392 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
393 !capable(CAP_SYS_ADMIN
))
398 /* moved from kernel/sys.c. */
400 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
401 * a process after a call to setuid, setreuid, or setresuid.
403 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
404 * {r,e,s}uid != 0, the permitted and effective capabilities are
407 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
408 * capabilities of the process are cleared.
410 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
411 * capabilities are set to the permitted capabilities.
413 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
418 * cevans - New behaviour, Oct '99
419 * A process may, via prctl(), elect to keep its capabilities when it
420 * calls setuid() and switches away from uid==0. Both permitted and
421 * effective sets will be retained.
422 * Without this change, it was impossible for a daemon to drop only some
423 * of its privilege. The call to setuid(!=0) would drop all privileges!
424 * Keeping uid 0 is not an option because uid 0 owns too many vital
426 * Thanks to Olaf Kirch and Peter Benie for spotting this.
428 static inline void cap_emulate_setxuid (int old_ruid
, int old_euid
,
431 if ((old_ruid
== 0 || old_euid
== 0 || old_suid
== 0) &&
432 (current
->uid
!= 0 && current
->euid
!= 0 && current
->suid
!= 0) &&
433 !current
->keep_capabilities
) {
434 cap_clear (current
->cap_permitted
);
435 cap_clear (current
->cap_effective
);
437 if (old_euid
== 0 && current
->euid
!= 0) {
438 cap_clear (current
->cap_effective
);
440 if (old_euid
!= 0 && current
->euid
== 0) {
441 current
->cap_effective
= current
->cap_permitted
;
445 int cap_task_post_setuid (uid_t old_ruid
, uid_t old_euid
, uid_t old_suid
,
452 /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
453 if (!issecure (SECURE_NO_SETUID_FIXUP
)) {
454 cap_emulate_setxuid (old_ruid
, old_euid
, old_suid
);
459 uid_t old_fsuid
= old_ruid
;
461 /* Copied from kernel/sys.c:setfsuid. */
464 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
465 * if not, we might be a bit too harsh here.
468 if (!issecure (SECURE_NO_SETUID_FIXUP
)) {
469 if (old_fsuid
== 0 && current
->fsuid
!= 0) {
470 cap_t (current
->cap_effective
) &=
473 if (old_fsuid
!= 0 && current
->fsuid
== 0) {
474 cap_t (current
->cap_effective
) |=
475 (cap_t (current
->cap_permitted
) &
488 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
490 * Rationale: code calling task_setscheduler, task_setioprio, and
491 * task_setnice, assumes that
492 * . if capable(cap_sys_nice), then those actions should be allowed
493 * . if not capable(cap_sys_nice), but acting on your own processes,
494 * then those actions should be allowed
495 * This is insufficient now since you can call code without suid, but
496 * yet with increased caps.
497 * So we check for increased caps on the target process.
499 static inline int cap_safe_nice(struct task_struct
*p
)
501 if (!cap_issubset(p
->cap_permitted
, current
->cap_permitted
) &&
502 !__capable(current
, CAP_SYS_NICE
))
507 int cap_task_setscheduler (struct task_struct
*p
, int policy
,
508 struct sched_param
*lp
)
510 return cap_safe_nice(p
);
513 int cap_task_setioprio (struct task_struct
*p
, int ioprio
)
515 return cap_safe_nice(p
);
518 int cap_task_setnice (struct task_struct
*p
, int nice
)
520 return cap_safe_nice(p
);
523 int cap_task_kill(struct task_struct
*p
, struct siginfo
*info
,
526 if (info
!= SEND_SIG_NOINFO
&& (is_si_special(info
) || SI_FROMKERNEL(info
)))
530 * Running a setuid root program raises your capabilities.
531 * Killing your own setuid root processes was previously
533 * We must preserve legacy signal behavior in this case.
535 if (p
->euid
== 0 && p
->uid
== current
->uid
)
538 /* sigcont is permitted within same session */
539 if (sig
== SIGCONT
&& (task_session_nr(current
) == task_session_nr(p
)))
544 * Signal sent as a particular user.
545 * Capabilities are ignored. May be wrong, but it's the
546 * only thing we can do at the moment.
547 * Used only by usb drivers?
550 if (cap_issubset(p
->cap_permitted
, current
->cap_permitted
))
552 if (capable(CAP_KILL
))
558 int cap_task_setscheduler (struct task_struct
*p
, int policy
,
559 struct sched_param
*lp
)
563 int cap_task_setioprio (struct task_struct
*p
, int ioprio
)
567 int cap_task_setnice (struct task_struct
*p
, int nice
)
571 int cap_task_kill(struct task_struct
*p
, struct siginfo
*info
,
578 void cap_task_reparent_to_init (struct task_struct
*p
)
580 p
->cap_effective
= CAP_INIT_EFF_SET
;
581 p
->cap_inheritable
= CAP_INIT_INH_SET
;
582 p
->cap_permitted
= CAP_FULL_SET
;
583 p
->keep_capabilities
= 0;
587 int cap_syslog (int type
)
589 if ((type
!= 3 && type
!= 10) && !capable(CAP_SYS_ADMIN
))
594 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
596 int cap_sys_admin
= 0;
598 if (cap_capable(current
, CAP_SYS_ADMIN
) == 0)
600 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);