CodingStyle: add networking specific block comment style
[linux-2.6.git] / mm / shmem.c
blobd3752110c8c7ee29b7a0d98947366482984c18ca
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
34 static struct vfsmount *shm_mnt;
36 #ifdef CONFIG_SHMEM
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
81 * shmem_fallocate and shmem_writepage communicate via inode->i_private
82 * (with i_mutex making sure that it has only one user at a time):
83 * we would prefer not to enlarge the shmem inode just for that.
85 struct shmem_falloc {
86 pgoff_t start; /* start of range currently being fallocated */
87 pgoff_t next; /* the next page offset to be fallocated */
88 pgoff_t nr_falloced; /* how many new pages have been fallocated */
89 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
92 /* Flag allocation requirements to shmem_getpage */
93 enum sgp_type {
94 SGP_READ, /* don't exceed i_size, don't allocate page */
95 SGP_CACHE, /* don't exceed i_size, may allocate page */
96 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
97 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
98 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages / 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
111 #endif
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
119 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, int *fault_type)
122 return shmem_getpage_gfp(inode, index, pagep, sgp,
123 mapping_gfp_mask(inode->i_mapping), fault_type);
126 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 return sb->s_fs_info;
132 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133 * for shared memory and for shared anonymous (/dev/zero) mappings
134 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135 * consistent with the pre-accounting of private mappings ...
137 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 return (flags & VM_NORESERVE) ?
140 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 if (!(flags & VM_NORESERVE))
146 vm_unacct_memory(VM_ACCT(size));
150 * ... whereas tmpfs objects are accounted incrementally as
151 * pages are allocated, in order to allow huge sparse files.
152 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
155 static inline int shmem_acct_block(unsigned long flags)
157 return (flags & VM_NORESERVE) ?
158 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
163 if (flags & VM_NORESERVE)
164 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167 static const struct super_operations shmem_ops;
168 static const struct address_space_operations shmem_aops;
169 static const struct file_operations shmem_file_operations;
170 static const struct inode_operations shmem_inode_operations;
171 static const struct inode_operations shmem_dir_inode_operations;
172 static const struct inode_operations shmem_special_inode_operations;
173 static const struct vm_operations_struct shmem_vm_ops;
175 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
176 .ra_pages = 0, /* No readahead */
177 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180 static LIST_HEAD(shmem_swaplist);
181 static DEFINE_MUTEX(shmem_swaplist_mutex);
183 static int shmem_reserve_inode(struct super_block *sb)
185 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
186 if (sbinfo->max_inodes) {
187 spin_lock(&sbinfo->stat_lock);
188 if (!sbinfo->free_inodes) {
189 spin_unlock(&sbinfo->stat_lock);
190 return -ENOSPC;
192 sbinfo->free_inodes--;
193 spin_unlock(&sbinfo->stat_lock);
195 return 0;
198 static void shmem_free_inode(struct super_block *sb)
200 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201 if (sbinfo->max_inodes) {
202 spin_lock(&sbinfo->stat_lock);
203 sbinfo->free_inodes++;
204 spin_unlock(&sbinfo->stat_lock);
209 * shmem_recalc_inode - recalculate the block usage of an inode
210 * @inode: inode to recalc
212 * We have to calculate the free blocks since the mm can drop
213 * undirtied hole pages behind our back.
215 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
216 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
218 * It has to be called with the spinlock held.
220 static void shmem_recalc_inode(struct inode *inode)
222 struct shmem_inode_info *info = SHMEM_I(inode);
223 long freed;
225 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
226 if (freed > 0) {
227 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228 if (sbinfo->max_blocks)
229 percpu_counter_add(&sbinfo->used_blocks, -freed);
230 info->alloced -= freed;
231 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
232 shmem_unacct_blocks(info->flags, freed);
237 * Replace item expected in radix tree by a new item, while holding tree lock.
239 static int shmem_radix_tree_replace(struct address_space *mapping,
240 pgoff_t index, void *expected, void *replacement)
242 void **pslot;
243 void *item = NULL;
245 VM_BUG_ON(!expected);
246 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
247 if (pslot)
248 item = radix_tree_deref_slot_protected(pslot,
249 &mapping->tree_lock);
250 if (item != expected)
251 return -ENOENT;
252 if (replacement)
253 radix_tree_replace_slot(pslot, replacement);
254 else
255 radix_tree_delete(&mapping->page_tree, index);
256 return 0;
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
266 static bool shmem_confirm_swap(struct address_space *mapping,
267 pgoff_t index, swp_entry_t swap)
269 void *item;
271 rcu_read_lock();
272 item = radix_tree_lookup(&mapping->page_tree, index);
273 rcu_read_unlock();
274 return item == swp_to_radix_entry(swap);
278 * Like add_to_page_cache_locked, but error if expected item has gone.
280 static int shmem_add_to_page_cache(struct page *page,
281 struct address_space *mapping,
282 pgoff_t index, gfp_t gfp, void *expected)
284 int error;
286 VM_BUG_ON(!PageLocked(page));
287 VM_BUG_ON(!PageSwapBacked(page));
289 page_cache_get(page);
290 page->mapping = mapping;
291 page->index = index;
293 spin_lock_irq(&mapping->tree_lock);
294 if (!expected)
295 error = radix_tree_insert(&mapping->page_tree, index, page);
296 else
297 error = shmem_radix_tree_replace(mapping, index, expected,
298 page);
299 if (!error) {
300 mapping->nrpages++;
301 __inc_zone_page_state(page, NR_FILE_PAGES);
302 __inc_zone_page_state(page, NR_SHMEM);
303 spin_unlock_irq(&mapping->tree_lock);
304 } else {
305 page->mapping = NULL;
306 spin_unlock_irq(&mapping->tree_lock);
307 page_cache_release(page);
309 return error;
313 * Like delete_from_page_cache, but substitutes swap for page.
315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317 struct address_space *mapping = page->mapping;
318 int error;
320 spin_lock_irq(&mapping->tree_lock);
321 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 page->mapping = NULL;
323 mapping->nrpages--;
324 __dec_zone_page_state(page, NR_FILE_PAGES);
325 __dec_zone_page_state(page, NR_SHMEM);
326 spin_unlock_irq(&mapping->tree_lock);
327 page_cache_release(page);
328 BUG_ON(error);
332 * Like find_get_pages, but collecting swap entries as well as pages.
334 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
335 pgoff_t start, unsigned int nr_pages,
336 struct page **pages, pgoff_t *indices)
338 unsigned int i;
339 unsigned int ret;
340 unsigned int nr_found;
342 rcu_read_lock();
343 restart:
344 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
345 (void ***)pages, indices, start, nr_pages);
346 ret = 0;
347 for (i = 0; i < nr_found; i++) {
348 struct page *page;
349 repeat:
350 page = radix_tree_deref_slot((void **)pages[i]);
351 if (unlikely(!page))
352 continue;
353 if (radix_tree_exception(page)) {
354 if (radix_tree_deref_retry(page))
355 goto restart;
357 * Otherwise, we must be storing a swap entry
358 * here as an exceptional entry: so return it
359 * without attempting to raise page count.
361 goto export;
363 if (!page_cache_get_speculative(page))
364 goto repeat;
366 /* Has the page moved? */
367 if (unlikely(page != *((void **)pages[i]))) {
368 page_cache_release(page);
369 goto repeat;
371 export:
372 indices[ret] = indices[i];
373 pages[ret] = page;
374 ret++;
376 if (unlikely(!ret && nr_found))
377 goto restart;
378 rcu_read_unlock();
379 return ret;
383 * Remove swap entry from radix tree, free the swap and its page cache.
385 static int shmem_free_swap(struct address_space *mapping,
386 pgoff_t index, void *radswap)
388 int error;
390 spin_lock_irq(&mapping->tree_lock);
391 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
392 spin_unlock_irq(&mapping->tree_lock);
393 if (!error)
394 free_swap_and_cache(radix_to_swp_entry(radswap));
395 return error;
399 * Pagevec may contain swap entries, so shuffle up pages before releasing.
401 static void shmem_deswap_pagevec(struct pagevec *pvec)
403 int i, j;
405 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
406 struct page *page = pvec->pages[i];
407 if (!radix_tree_exceptional_entry(page))
408 pvec->pages[j++] = page;
410 pvec->nr = j;
414 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416 void shmem_unlock_mapping(struct address_space *mapping)
418 struct pagevec pvec;
419 pgoff_t indices[PAGEVEC_SIZE];
420 pgoff_t index = 0;
422 pagevec_init(&pvec, 0);
424 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426 while (!mapping_unevictable(mapping)) {
428 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
432 PAGEVEC_SIZE, pvec.pages, indices);
433 if (!pvec.nr)
434 break;
435 index = indices[pvec.nr - 1] + 1;
436 shmem_deswap_pagevec(&pvec);
437 check_move_unevictable_pages(pvec.pages, pvec.nr);
438 pagevec_release(&pvec);
439 cond_resched();
444 * Remove range of pages and swap entries from radix tree, and free them.
445 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
448 bool unfalloc)
450 struct address_space *mapping = inode->i_mapping;
451 struct shmem_inode_info *info = SHMEM_I(inode);
452 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
453 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
454 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
455 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
456 struct pagevec pvec;
457 pgoff_t indices[PAGEVEC_SIZE];
458 long nr_swaps_freed = 0;
459 pgoff_t index;
460 int i;
462 if (lend == -1)
463 end = -1; /* unsigned, so actually very big */
465 pagevec_init(&pvec, 0);
466 index = start;
467 while (index < end) {
468 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
469 min(end - index, (pgoff_t)PAGEVEC_SIZE),
470 pvec.pages, indices);
471 if (!pvec.nr)
472 break;
473 mem_cgroup_uncharge_start();
474 for (i = 0; i < pagevec_count(&pvec); i++) {
475 struct page *page = pvec.pages[i];
477 index = indices[i];
478 if (index >= end)
479 break;
481 if (radix_tree_exceptional_entry(page)) {
482 if (unfalloc)
483 continue;
484 nr_swaps_freed += !shmem_free_swap(mapping,
485 index, page);
486 continue;
489 if (!trylock_page(page))
490 continue;
491 if (!unfalloc || !PageUptodate(page)) {
492 if (page->mapping == mapping) {
493 VM_BUG_ON(PageWriteback(page));
494 truncate_inode_page(mapping, page);
497 unlock_page(page);
499 shmem_deswap_pagevec(&pvec);
500 pagevec_release(&pvec);
501 mem_cgroup_uncharge_end();
502 cond_resched();
503 index++;
506 if (partial_start) {
507 struct page *page = NULL;
508 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
509 if (page) {
510 unsigned int top = PAGE_CACHE_SIZE;
511 if (start > end) {
512 top = partial_end;
513 partial_end = 0;
515 zero_user_segment(page, partial_start, top);
516 set_page_dirty(page);
517 unlock_page(page);
518 page_cache_release(page);
521 if (partial_end) {
522 struct page *page = NULL;
523 shmem_getpage(inode, end, &page, SGP_READ, NULL);
524 if (page) {
525 zero_user_segment(page, 0, partial_end);
526 set_page_dirty(page);
527 unlock_page(page);
528 page_cache_release(page);
531 if (start >= end)
532 return;
534 index = start;
535 for ( ; ; ) {
536 cond_resched();
537 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
538 min(end - index, (pgoff_t)PAGEVEC_SIZE),
539 pvec.pages, indices);
540 if (!pvec.nr) {
541 if (index == start || unfalloc)
542 break;
543 index = start;
544 continue;
546 if ((index == start || unfalloc) && indices[0] >= end) {
547 shmem_deswap_pagevec(&pvec);
548 pagevec_release(&pvec);
549 break;
551 mem_cgroup_uncharge_start();
552 for (i = 0; i < pagevec_count(&pvec); i++) {
553 struct page *page = pvec.pages[i];
555 index = indices[i];
556 if (index >= end)
557 break;
559 if (radix_tree_exceptional_entry(page)) {
560 if (unfalloc)
561 continue;
562 nr_swaps_freed += !shmem_free_swap(mapping,
563 index, page);
564 continue;
567 lock_page(page);
568 if (!unfalloc || !PageUptodate(page)) {
569 if (page->mapping == mapping) {
570 VM_BUG_ON(PageWriteback(page));
571 truncate_inode_page(mapping, page);
574 unlock_page(page);
576 shmem_deswap_pagevec(&pvec);
577 pagevec_release(&pvec);
578 mem_cgroup_uncharge_end();
579 index++;
582 spin_lock(&info->lock);
583 info->swapped -= nr_swaps_freed;
584 shmem_recalc_inode(inode);
585 spin_unlock(&info->lock);
588 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
590 shmem_undo_range(inode, lstart, lend, false);
591 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
593 EXPORT_SYMBOL_GPL(shmem_truncate_range);
595 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
597 struct inode *inode = dentry->d_inode;
598 int error;
600 error = inode_change_ok(inode, attr);
601 if (error)
602 return error;
604 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
605 loff_t oldsize = inode->i_size;
606 loff_t newsize = attr->ia_size;
608 if (newsize != oldsize) {
609 i_size_write(inode, newsize);
610 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
612 if (newsize < oldsize) {
613 loff_t holebegin = round_up(newsize, PAGE_SIZE);
614 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
615 shmem_truncate_range(inode, newsize, (loff_t)-1);
616 /* unmap again to remove racily COWed private pages */
617 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
621 setattr_copy(inode, attr);
622 #ifdef CONFIG_TMPFS_POSIX_ACL
623 if (attr->ia_valid & ATTR_MODE)
624 error = generic_acl_chmod(inode);
625 #endif
626 return error;
629 static void shmem_evict_inode(struct inode *inode)
631 struct shmem_inode_info *info = SHMEM_I(inode);
633 if (inode->i_mapping->a_ops == &shmem_aops) {
634 shmem_unacct_size(info->flags, inode->i_size);
635 inode->i_size = 0;
636 shmem_truncate_range(inode, 0, (loff_t)-1);
637 if (!list_empty(&info->swaplist)) {
638 mutex_lock(&shmem_swaplist_mutex);
639 list_del_init(&info->swaplist);
640 mutex_unlock(&shmem_swaplist_mutex);
642 } else
643 kfree(info->symlink);
645 simple_xattrs_free(&info->xattrs);
646 BUG_ON(inode->i_blocks);
647 shmem_free_inode(inode->i_sb);
648 clear_inode(inode);
652 * If swap found in inode, free it and move page from swapcache to filecache.
654 static int shmem_unuse_inode(struct shmem_inode_info *info,
655 swp_entry_t swap, struct page **pagep)
657 struct address_space *mapping = info->vfs_inode.i_mapping;
658 void *radswap;
659 pgoff_t index;
660 gfp_t gfp;
661 int error = 0;
663 radswap = swp_to_radix_entry(swap);
664 index = radix_tree_locate_item(&mapping->page_tree, radswap);
665 if (index == -1)
666 return 0;
669 * Move _head_ to start search for next from here.
670 * But be careful: shmem_evict_inode checks list_empty without taking
671 * mutex, and there's an instant in list_move_tail when info->swaplist
672 * would appear empty, if it were the only one on shmem_swaplist.
674 if (shmem_swaplist.next != &info->swaplist)
675 list_move_tail(&shmem_swaplist, &info->swaplist);
677 gfp = mapping_gfp_mask(mapping);
678 if (shmem_should_replace_page(*pagep, gfp)) {
679 mutex_unlock(&shmem_swaplist_mutex);
680 error = shmem_replace_page(pagep, gfp, info, index);
681 mutex_lock(&shmem_swaplist_mutex);
683 * We needed to drop mutex to make that restrictive page
684 * allocation, but the inode might have been freed while we
685 * dropped it: although a racing shmem_evict_inode() cannot
686 * complete without emptying the radix_tree, our page lock
687 * on this swapcache page is not enough to prevent that -
688 * free_swap_and_cache() of our swap entry will only
689 * trylock_page(), removing swap from radix_tree whatever.
691 * We must not proceed to shmem_add_to_page_cache() if the
692 * inode has been freed, but of course we cannot rely on
693 * inode or mapping or info to check that. However, we can
694 * safely check if our swap entry is still in use (and here
695 * it can't have got reused for another page): if it's still
696 * in use, then the inode cannot have been freed yet, and we
697 * can safely proceed (if it's no longer in use, that tells
698 * nothing about the inode, but we don't need to unuse swap).
700 if (!page_swapcount(*pagep))
701 error = -ENOENT;
705 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706 * but also to hold up shmem_evict_inode(): so inode cannot be freed
707 * beneath us (pagelock doesn't help until the page is in pagecache).
709 if (!error)
710 error = shmem_add_to_page_cache(*pagep, mapping, index,
711 GFP_NOWAIT, radswap);
712 if (error != -ENOMEM) {
714 * Truncation and eviction use free_swap_and_cache(), which
715 * only does trylock page: if we raced, best clean up here.
717 delete_from_swap_cache(*pagep);
718 set_page_dirty(*pagep);
719 if (!error) {
720 spin_lock(&info->lock);
721 info->swapped--;
722 spin_unlock(&info->lock);
723 swap_free(swap);
725 error = 1; /* not an error, but entry was found */
727 return error;
731 * Search through swapped inodes to find and replace swap by page.
733 int shmem_unuse(swp_entry_t swap, struct page *page)
735 struct list_head *this, *next;
736 struct shmem_inode_info *info;
737 int found = 0;
738 int error = 0;
741 * There's a faint possibility that swap page was replaced before
742 * caller locked it: caller will come back later with the right page.
744 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
745 goto out;
748 * Charge page using GFP_KERNEL while we can wait, before taking
749 * the shmem_swaplist_mutex which might hold up shmem_writepage().
750 * Charged back to the user (not to caller) when swap account is used.
752 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
753 if (error)
754 goto out;
755 /* No radix_tree_preload: swap entry keeps a place for page in tree */
757 mutex_lock(&shmem_swaplist_mutex);
758 list_for_each_safe(this, next, &shmem_swaplist) {
759 info = list_entry(this, struct shmem_inode_info, swaplist);
760 if (info->swapped)
761 found = shmem_unuse_inode(info, swap, &page);
762 else
763 list_del_init(&info->swaplist);
764 cond_resched();
765 if (found)
766 break;
768 mutex_unlock(&shmem_swaplist_mutex);
770 if (found < 0)
771 error = found;
772 out:
773 unlock_page(page);
774 page_cache_release(page);
775 return error;
779 * Move the page from the page cache to the swap cache.
781 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
783 struct shmem_inode_info *info;
784 struct address_space *mapping;
785 struct inode *inode;
786 swp_entry_t swap;
787 pgoff_t index;
789 BUG_ON(!PageLocked(page));
790 mapping = page->mapping;
791 index = page->index;
792 inode = mapping->host;
793 info = SHMEM_I(inode);
794 if (info->flags & VM_LOCKED)
795 goto redirty;
796 if (!total_swap_pages)
797 goto redirty;
800 * shmem_backing_dev_info's capabilities prevent regular writeback or
801 * sync from ever calling shmem_writepage; but a stacking filesystem
802 * might use ->writepage of its underlying filesystem, in which case
803 * tmpfs should write out to swap only in response to memory pressure,
804 * and not for the writeback threads or sync.
806 if (!wbc->for_reclaim) {
807 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
808 goto redirty;
812 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813 * value into swapfile.c, the only way we can correctly account for a
814 * fallocated page arriving here is now to initialize it and write it.
816 * That's okay for a page already fallocated earlier, but if we have
817 * not yet completed the fallocation, then (a) we want to keep track
818 * of this page in case we have to undo it, and (b) it may not be a
819 * good idea to continue anyway, once we're pushing into swap. So
820 * reactivate the page, and let shmem_fallocate() quit when too many.
822 if (!PageUptodate(page)) {
823 if (inode->i_private) {
824 struct shmem_falloc *shmem_falloc;
825 spin_lock(&inode->i_lock);
826 shmem_falloc = inode->i_private;
827 if (shmem_falloc &&
828 index >= shmem_falloc->start &&
829 index < shmem_falloc->next)
830 shmem_falloc->nr_unswapped++;
831 else
832 shmem_falloc = NULL;
833 spin_unlock(&inode->i_lock);
834 if (shmem_falloc)
835 goto redirty;
837 clear_highpage(page);
838 flush_dcache_page(page);
839 SetPageUptodate(page);
842 swap = get_swap_page();
843 if (!swap.val)
844 goto redirty;
847 * Add inode to shmem_unuse()'s list of swapped-out inodes,
848 * if it's not already there. Do it now before the page is
849 * moved to swap cache, when its pagelock no longer protects
850 * the inode from eviction. But don't unlock the mutex until
851 * we've incremented swapped, because shmem_unuse_inode() will
852 * prune a !swapped inode from the swaplist under this mutex.
854 mutex_lock(&shmem_swaplist_mutex);
855 if (list_empty(&info->swaplist))
856 list_add_tail(&info->swaplist, &shmem_swaplist);
858 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
859 swap_shmem_alloc(swap);
860 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
862 spin_lock(&info->lock);
863 info->swapped++;
864 shmem_recalc_inode(inode);
865 spin_unlock(&info->lock);
867 mutex_unlock(&shmem_swaplist_mutex);
868 BUG_ON(page_mapped(page));
869 swap_writepage(page, wbc);
870 return 0;
873 mutex_unlock(&shmem_swaplist_mutex);
874 swapcache_free(swap, NULL);
875 redirty:
876 set_page_dirty(page);
877 if (wbc->for_reclaim)
878 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
879 unlock_page(page);
880 return 0;
883 #ifdef CONFIG_NUMA
884 #ifdef CONFIG_TMPFS
885 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
887 char buffer[64];
889 if (!mpol || mpol->mode == MPOL_DEFAULT)
890 return; /* show nothing */
892 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
894 seq_printf(seq, ",mpol=%s", buffer);
897 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
899 struct mempolicy *mpol = NULL;
900 if (sbinfo->mpol) {
901 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
902 mpol = sbinfo->mpol;
903 mpol_get(mpol);
904 spin_unlock(&sbinfo->stat_lock);
906 return mpol;
908 #endif /* CONFIG_TMPFS */
910 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
911 struct shmem_inode_info *info, pgoff_t index)
913 struct mempolicy mpol, *spol;
914 struct vm_area_struct pvma;
916 spol = mpol_cond_copy(&mpol,
917 mpol_shared_policy_lookup(&info->policy, index));
919 /* Create a pseudo vma that just contains the policy */
920 pvma.vm_start = 0;
921 /* Bias interleave by inode number to distribute better across nodes */
922 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
923 pvma.vm_ops = NULL;
924 pvma.vm_policy = spol;
925 return swapin_readahead(swap, gfp, &pvma, 0);
928 static struct page *shmem_alloc_page(gfp_t gfp,
929 struct shmem_inode_info *info, pgoff_t index)
931 struct vm_area_struct pvma;
933 /* Create a pseudo vma that just contains the policy */
934 pvma.vm_start = 0;
935 /* Bias interleave by inode number to distribute better across nodes */
936 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
937 pvma.vm_ops = NULL;
938 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
941 * alloc_page_vma() will drop the shared policy reference
943 return alloc_page_vma(gfp, &pvma, 0);
945 #else /* !CONFIG_NUMA */
946 #ifdef CONFIG_TMPFS
947 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
950 #endif /* CONFIG_TMPFS */
952 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
953 struct shmem_inode_info *info, pgoff_t index)
955 return swapin_readahead(swap, gfp, NULL, 0);
958 static inline struct page *shmem_alloc_page(gfp_t gfp,
959 struct shmem_inode_info *info, pgoff_t index)
961 return alloc_page(gfp);
963 #endif /* CONFIG_NUMA */
965 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
968 return NULL;
970 #endif
973 * When a page is moved from swapcache to shmem filecache (either by the
974 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975 * shmem_unuse_inode()), it may have been read in earlier from swap, in
976 * ignorance of the mapping it belongs to. If that mapping has special
977 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978 * we may need to copy to a suitable page before moving to filecache.
980 * In a future release, this may well be extended to respect cpuset and
981 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982 * but for now it is a simple matter of zone.
984 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
986 return page_zonenum(page) > gfp_zone(gfp);
989 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
990 struct shmem_inode_info *info, pgoff_t index)
992 struct page *oldpage, *newpage;
993 struct address_space *swap_mapping;
994 pgoff_t swap_index;
995 int error;
997 oldpage = *pagep;
998 swap_index = page_private(oldpage);
999 swap_mapping = page_mapping(oldpage);
1002 * We have arrived here because our zones are constrained, so don't
1003 * limit chance of success by further cpuset and node constraints.
1005 gfp &= ~GFP_CONSTRAINT_MASK;
1006 newpage = shmem_alloc_page(gfp, info, index);
1007 if (!newpage)
1008 return -ENOMEM;
1010 page_cache_get(newpage);
1011 copy_highpage(newpage, oldpage);
1012 flush_dcache_page(newpage);
1014 __set_page_locked(newpage);
1015 SetPageUptodate(newpage);
1016 SetPageSwapBacked(newpage);
1017 set_page_private(newpage, swap_index);
1018 SetPageSwapCache(newpage);
1021 * Our caller will very soon move newpage out of swapcache, but it's
1022 * a nice clean interface for us to replace oldpage by newpage there.
1024 spin_lock_irq(&swap_mapping->tree_lock);
1025 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1026 newpage);
1027 if (!error) {
1028 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1029 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1031 spin_unlock_irq(&swap_mapping->tree_lock);
1033 if (unlikely(error)) {
1035 * Is this possible? I think not, now that our callers check
1036 * both PageSwapCache and page_private after getting page lock;
1037 * but be defensive. Reverse old to newpage for clear and free.
1039 oldpage = newpage;
1040 } else {
1041 mem_cgroup_replace_page_cache(oldpage, newpage);
1042 lru_cache_add_anon(newpage);
1043 *pagep = newpage;
1046 ClearPageSwapCache(oldpage);
1047 set_page_private(oldpage, 0);
1049 unlock_page(oldpage);
1050 page_cache_release(oldpage);
1051 page_cache_release(oldpage);
1052 return error;
1056 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1058 * If we allocate a new one we do not mark it dirty. That's up to the
1059 * vm. If we swap it in we mark it dirty since we also free the swap
1060 * entry since a page cannot live in both the swap and page cache
1062 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1063 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1065 struct address_space *mapping = inode->i_mapping;
1066 struct shmem_inode_info *info;
1067 struct shmem_sb_info *sbinfo;
1068 struct page *page;
1069 swp_entry_t swap;
1070 int error;
1071 int once = 0;
1072 int alloced = 0;
1074 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1075 return -EFBIG;
1076 repeat:
1077 swap.val = 0;
1078 page = find_lock_page(mapping, index);
1079 if (radix_tree_exceptional_entry(page)) {
1080 swap = radix_to_swp_entry(page);
1081 page = NULL;
1084 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1085 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1086 error = -EINVAL;
1087 goto failed;
1090 /* fallocated page? */
1091 if (page && !PageUptodate(page)) {
1092 if (sgp != SGP_READ)
1093 goto clear;
1094 unlock_page(page);
1095 page_cache_release(page);
1096 page = NULL;
1098 if (page || (sgp == SGP_READ && !swap.val)) {
1099 *pagep = page;
1100 return 0;
1104 * Fast cache lookup did not find it:
1105 * bring it back from swap or allocate.
1107 info = SHMEM_I(inode);
1108 sbinfo = SHMEM_SB(inode->i_sb);
1110 if (swap.val) {
1111 /* Look it up and read it in.. */
1112 page = lookup_swap_cache(swap);
1113 if (!page) {
1114 /* here we actually do the io */
1115 if (fault_type)
1116 *fault_type |= VM_FAULT_MAJOR;
1117 page = shmem_swapin(swap, gfp, info, index);
1118 if (!page) {
1119 error = -ENOMEM;
1120 goto failed;
1124 /* We have to do this with page locked to prevent races */
1125 lock_page(page);
1126 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1127 !shmem_confirm_swap(mapping, index, swap)) {
1128 error = -EEXIST; /* try again */
1129 goto unlock;
1131 if (!PageUptodate(page)) {
1132 error = -EIO;
1133 goto failed;
1135 wait_on_page_writeback(page);
1137 if (shmem_should_replace_page(page, gfp)) {
1138 error = shmem_replace_page(&page, gfp, info, index);
1139 if (error)
1140 goto failed;
1143 error = mem_cgroup_cache_charge(page, current->mm,
1144 gfp & GFP_RECLAIM_MASK);
1145 if (!error) {
1146 error = shmem_add_to_page_cache(page, mapping, index,
1147 gfp, swp_to_radix_entry(swap));
1148 /* We already confirmed swap, and make no allocation */
1149 VM_BUG_ON(error);
1151 if (error)
1152 goto failed;
1154 spin_lock(&info->lock);
1155 info->swapped--;
1156 shmem_recalc_inode(inode);
1157 spin_unlock(&info->lock);
1159 delete_from_swap_cache(page);
1160 set_page_dirty(page);
1161 swap_free(swap);
1163 } else {
1164 if (shmem_acct_block(info->flags)) {
1165 error = -ENOSPC;
1166 goto failed;
1168 if (sbinfo->max_blocks) {
1169 if (percpu_counter_compare(&sbinfo->used_blocks,
1170 sbinfo->max_blocks) >= 0) {
1171 error = -ENOSPC;
1172 goto unacct;
1174 percpu_counter_inc(&sbinfo->used_blocks);
1177 page = shmem_alloc_page(gfp, info, index);
1178 if (!page) {
1179 error = -ENOMEM;
1180 goto decused;
1183 SetPageSwapBacked(page);
1184 __set_page_locked(page);
1185 error = mem_cgroup_cache_charge(page, current->mm,
1186 gfp & GFP_RECLAIM_MASK);
1187 if (error)
1188 goto decused;
1189 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1190 if (!error) {
1191 error = shmem_add_to_page_cache(page, mapping, index,
1192 gfp, NULL);
1193 radix_tree_preload_end();
1195 if (error) {
1196 mem_cgroup_uncharge_cache_page(page);
1197 goto decused;
1199 lru_cache_add_anon(page);
1201 spin_lock(&info->lock);
1202 info->alloced++;
1203 inode->i_blocks += BLOCKS_PER_PAGE;
1204 shmem_recalc_inode(inode);
1205 spin_unlock(&info->lock);
1206 alloced = true;
1209 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1211 if (sgp == SGP_FALLOC)
1212 sgp = SGP_WRITE;
1213 clear:
1215 * Let SGP_WRITE caller clear ends if write does not fill page;
1216 * but SGP_FALLOC on a page fallocated earlier must initialize
1217 * it now, lest undo on failure cancel our earlier guarantee.
1219 if (sgp != SGP_WRITE) {
1220 clear_highpage(page);
1221 flush_dcache_page(page);
1222 SetPageUptodate(page);
1224 if (sgp == SGP_DIRTY)
1225 set_page_dirty(page);
1228 /* Perhaps the file has been truncated since we checked */
1229 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1230 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1231 error = -EINVAL;
1232 if (alloced)
1233 goto trunc;
1234 else
1235 goto failed;
1237 *pagep = page;
1238 return 0;
1241 * Error recovery.
1243 trunc:
1244 info = SHMEM_I(inode);
1245 ClearPageDirty(page);
1246 delete_from_page_cache(page);
1247 spin_lock(&info->lock);
1248 info->alloced--;
1249 inode->i_blocks -= BLOCKS_PER_PAGE;
1250 spin_unlock(&info->lock);
1251 decused:
1252 sbinfo = SHMEM_SB(inode->i_sb);
1253 if (sbinfo->max_blocks)
1254 percpu_counter_add(&sbinfo->used_blocks, -1);
1255 unacct:
1256 shmem_unacct_blocks(info->flags, 1);
1257 failed:
1258 if (swap.val && error != -EINVAL &&
1259 !shmem_confirm_swap(mapping, index, swap))
1260 error = -EEXIST;
1261 unlock:
1262 if (page) {
1263 unlock_page(page);
1264 page_cache_release(page);
1266 if (error == -ENOSPC && !once++) {
1267 info = SHMEM_I(inode);
1268 spin_lock(&info->lock);
1269 shmem_recalc_inode(inode);
1270 spin_unlock(&info->lock);
1271 goto repeat;
1273 if (error == -EEXIST) /* from above or from radix_tree_insert */
1274 goto repeat;
1275 return error;
1278 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1280 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1281 int error;
1282 int ret = VM_FAULT_LOCKED;
1284 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1285 if (error)
1286 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1288 if (ret & VM_FAULT_MAJOR) {
1289 count_vm_event(PGMAJFAULT);
1290 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1292 return ret;
1295 #ifdef CONFIG_NUMA
1296 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1298 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1299 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1302 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1303 unsigned long addr)
1305 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1306 pgoff_t index;
1308 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1309 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1311 #endif
1313 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1315 struct inode *inode = file->f_path.dentry->d_inode;
1316 struct shmem_inode_info *info = SHMEM_I(inode);
1317 int retval = -ENOMEM;
1319 spin_lock(&info->lock);
1320 if (lock && !(info->flags & VM_LOCKED)) {
1321 if (!user_shm_lock(inode->i_size, user))
1322 goto out_nomem;
1323 info->flags |= VM_LOCKED;
1324 mapping_set_unevictable(file->f_mapping);
1326 if (!lock && (info->flags & VM_LOCKED) && user) {
1327 user_shm_unlock(inode->i_size, user);
1328 info->flags &= ~VM_LOCKED;
1329 mapping_clear_unevictable(file->f_mapping);
1331 retval = 0;
1333 out_nomem:
1334 spin_unlock(&info->lock);
1335 return retval;
1338 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1340 file_accessed(file);
1341 vma->vm_ops = &shmem_vm_ops;
1342 vma->vm_flags |= VM_CAN_NONLINEAR;
1343 return 0;
1346 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1347 umode_t mode, dev_t dev, unsigned long flags)
1349 struct inode *inode;
1350 struct shmem_inode_info *info;
1351 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1353 if (shmem_reserve_inode(sb))
1354 return NULL;
1356 inode = new_inode(sb);
1357 if (inode) {
1358 inode->i_ino = get_next_ino();
1359 inode_init_owner(inode, dir, mode);
1360 inode->i_blocks = 0;
1361 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1362 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1363 inode->i_generation = get_seconds();
1364 info = SHMEM_I(inode);
1365 memset(info, 0, (char *)inode - (char *)info);
1366 spin_lock_init(&info->lock);
1367 info->flags = flags & VM_NORESERVE;
1368 INIT_LIST_HEAD(&info->swaplist);
1369 simple_xattrs_init(&info->xattrs);
1370 cache_no_acl(inode);
1372 switch (mode & S_IFMT) {
1373 default:
1374 inode->i_op = &shmem_special_inode_operations;
1375 init_special_inode(inode, mode, dev);
1376 break;
1377 case S_IFREG:
1378 inode->i_mapping->a_ops = &shmem_aops;
1379 inode->i_op = &shmem_inode_operations;
1380 inode->i_fop = &shmem_file_operations;
1381 mpol_shared_policy_init(&info->policy,
1382 shmem_get_sbmpol(sbinfo));
1383 break;
1384 case S_IFDIR:
1385 inc_nlink(inode);
1386 /* Some things misbehave if size == 0 on a directory */
1387 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1388 inode->i_op = &shmem_dir_inode_operations;
1389 inode->i_fop = &simple_dir_operations;
1390 break;
1391 case S_IFLNK:
1393 * Must not load anything in the rbtree,
1394 * mpol_free_shared_policy will not be called.
1396 mpol_shared_policy_init(&info->policy, NULL);
1397 break;
1399 } else
1400 shmem_free_inode(sb);
1401 return inode;
1404 #ifdef CONFIG_TMPFS
1405 static const struct inode_operations shmem_symlink_inode_operations;
1406 static const struct inode_operations shmem_short_symlink_operations;
1408 #ifdef CONFIG_TMPFS_XATTR
1409 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1410 #else
1411 #define shmem_initxattrs NULL
1412 #endif
1414 static int
1415 shmem_write_begin(struct file *file, struct address_space *mapping,
1416 loff_t pos, unsigned len, unsigned flags,
1417 struct page **pagep, void **fsdata)
1419 struct inode *inode = mapping->host;
1420 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1421 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1424 static int
1425 shmem_write_end(struct file *file, struct address_space *mapping,
1426 loff_t pos, unsigned len, unsigned copied,
1427 struct page *page, void *fsdata)
1429 struct inode *inode = mapping->host;
1431 if (pos + copied > inode->i_size)
1432 i_size_write(inode, pos + copied);
1434 if (!PageUptodate(page)) {
1435 if (copied < PAGE_CACHE_SIZE) {
1436 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1437 zero_user_segments(page, 0, from,
1438 from + copied, PAGE_CACHE_SIZE);
1440 SetPageUptodate(page);
1442 set_page_dirty(page);
1443 unlock_page(page);
1444 page_cache_release(page);
1446 return copied;
1449 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1451 struct inode *inode = filp->f_path.dentry->d_inode;
1452 struct address_space *mapping = inode->i_mapping;
1453 pgoff_t index;
1454 unsigned long offset;
1455 enum sgp_type sgp = SGP_READ;
1458 * Might this read be for a stacking filesystem? Then when reading
1459 * holes of a sparse file, we actually need to allocate those pages,
1460 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1462 if (segment_eq(get_fs(), KERNEL_DS))
1463 sgp = SGP_DIRTY;
1465 index = *ppos >> PAGE_CACHE_SHIFT;
1466 offset = *ppos & ~PAGE_CACHE_MASK;
1468 for (;;) {
1469 struct page *page = NULL;
1470 pgoff_t end_index;
1471 unsigned long nr, ret;
1472 loff_t i_size = i_size_read(inode);
1474 end_index = i_size >> PAGE_CACHE_SHIFT;
1475 if (index > end_index)
1476 break;
1477 if (index == end_index) {
1478 nr = i_size & ~PAGE_CACHE_MASK;
1479 if (nr <= offset)
1480 break;
1483 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1484 if (desc->error) {
1485 if (desc->error == -EINVAL)
1486 desc->error = 0;
1487 break;
1489 if (page)
1490 unlock_page(page);
1493 * We must evaluate after, since reads (unlike writes)
1494 * are called without i_mutex protection against truncate
1496 nr = PAGE_CACHE_SIZE;
1497 i_size = i_size_read(inode);
1498 end_index = i_size >> PAGE_CACHE_SHIFT;
1499 if (index == end_index) {
1500 nr = i_size & ~PAGE_CACHE_MASK;
1501 if (nr <= offset) {
1502 if (page)
1503 page_cache_release(page);
1504 break;
1507 nr -= offset;
1509 if (page) {
1511 * If users can be writing to this page using arbitrary
1512 * virtual addresses, take care about potential aliasing
1513 * before reading the page on the kernel side.
1515 if (mapping_writably_mapped(mapping))
1516 flush_dcache_page(page);
1518 * Mark the page accessed if we read the beginning.
1520 if (!offset)
1521 mark_page_accessed(page);
1522 } else {
1523 page = ZERO_PAGE(0);
1524 page_cache_get(page);
1528 * Ok, we have the page, and it's up-to-date, so
1529 * now we can copy it to user space...
1531 * The actor routine returns how many bytes were actually used..
1532 * NOTE! This may not be the same as how much of a user buffer
1533 * we filled up (we may be padding etc), so we can only update
1534 * "pos" here (the actor routine has to update the user buffer
1535 * pointers and the remaining count).
1537 ret = actor(desc, page, offset, nr);
1538 offset += ret;
1539 index += offset >> PAGE_CACHE_SHIFT;
1540 offset &= ~PAGE_CACHE_MASK;
1542 page_cache_release(page);
1543 if (ret != nr || !desc->count)
1544 break;
1546 cond_resched();
1549 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1550 file_accessed(filp);
1553 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1554 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1556 struct file *filp = iocb->ki_filp;
1557 ssize_t retval;
1558 unsigned long seg;
1559 size_t count;
1560 loff_t *ppos = &iocb->ki_pos;
1562 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1563 if (retval)
1564 return retval;
1566 for (seg = 0; seg < nr_segs; seg++) {
1567 read_descriptor_t desc;
1569 desc.written = 0;
1570 desc.arg.buf = iov[seg].iov_base;
1571 desc.count = iov[seg].iov_len;
1572 if (desc.count == 0)
1573 continue;
1574 desc.error = 0;
1575 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1576 retval += desc.written;
1577 if (desc.error) {
1578 retval = retval ?: desc.error;
1579 break;
1581 if (desc.count > 0)
1582 break;
1584 return retval;
1587 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1588 struct pipe_inode_info *pipe, size_t len,
1589 unsigned int flags)
1591 struct address_space *mapping = in->f_mapping;
1592 struct inode *inode = mapping->host;
1593 unsigned int loff, nr_pages, req_pages;
1594 struct page *pages[PIPE_DEF_BUFFERS];
1595 struct partial_page partial[PIPE_DEF_BUFFERS];
1596 struct page *page;
1597 pgoff_t index, end_index;
1598 loff_t isize, left;
1599 int error, page_nr;
1600 struct splice_pipe_desc spd = {
1601 .pages = pages,
1602 .partial = partial,
1603 .nr_pages_max = PIPE_DEF_BUFFERS,
1604 .flags = flags,
1605 .ops = &page_cache_pipe_buf_ops,
1606 .spd_release = spd_release_page,
1609 isize = i_size_read(inode);
1610 if (unlikely(*ppos >= isize))
1611 return 0;
1613 left = isize - *ppos;
1614 if (unlikely(left < len))
1615 len = left;
1617 if (splice_grow_spd(pipe, &spd))
1618 return -ENOMEM;
1620 index = *ppos >> PAGE_CACHE_SHIFT;
1621 loff = *ppos & ~PAGE_CACHE_MASK;
1622 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1623 nr_pages = min(req_pages, pipe->buffers);
1625 spd.nr_pages = find_get_pages_contig(mapping, index,
1626 nr_pages, spd.pages);
1627 index += spd.nr_pages;
1628 error = 0;
1630 while (spd.nr_pages < nr_pages) {
1631 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1632 if (error)
1633 break;
1634 unlock_page(page);
1635 spd.pages[spd.nr_pages++] = page;
1636 index++;
1639 index = *ppos >> PAGE_CACHE_SHIFT;
1640 nr_pages = spd.nr_pages;
1641 spd.nr_pages = 0;
1643 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1644 unsigned int this_len;
1646 if (!len)
1647 break;
1649 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1650 page = spd.pages[page_nr];
1652 if (!PageUptodate(page) || page->mapping != mapping) {
1653 error = shmem_getpage(inode, index, &page,
1654 SGP_CACHE, NULL);
1655 if (error)
1656 break;
1657 unlock_page(page);
1658 page_cache_release(spd.pages[page_nr]);
1659 spd.pages[page_nr] = page;
1662 isize = i_size_read(inode);
1663 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1664 if (unlikely(!isize || index > end_index))
1665 break;
1667 if (end_index == index) {
1668 unsigned int plen;
1670 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1671 if (plen <= loff)
1672 break;
1674 this_len = min(this_len, plen - loff);
1675 len = this_len;
1678 spd.partial[page_nr].offset = loff;
1679 spd.partial[page_nr].len = this_len;
1680 len -= this_len;
1681 loff = 0;
1682 spd.nr_pages++;
1683 index++;
1686 while (page_nr < nr_pages)
1687 page_cache_release(spd.pages[page_nr++]);
1689 if (spd.nr_pages)
1690 error = splice_to_pipe(pipe, &spd);
1692 splice_shrink_spd(&spd);
1694 if (error > 0) {
1695 *ppos += error;
1696 file_accessed(in);
1698 return error;
1701 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1702 loff_t len)
1704 struct inode *inode = file->f_path.dentry->d_inode;
1705 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1706 struct shmem_falloc shmem_falloc;
1707 pgoff_t start, index, end;
1708 int error;
1710 mutex_lock(&inode->i_mutex);
1712 if (mode & FALLOC_FL_PUNCH_HOLE) {
1713 struct address_space *mapping = file->f_mapping;
1714 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1715 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1717 if ((u64)unmap_end > (u64)unmap_start)
1718 unmap_mapping_range(mapping, unmap_start,
1719 1 + unmap_end - unmap_start, 0);
1720 shmem_truncate_range(inode, offset, offset + len - 1);
1721 /* No need to unmap again: hole-punching leaves COWed pages */
1722 error = 0;
1723 goto out;
1726 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1727 error = inode_newsize_ok(inode, offset + len);
1728 if (error)
1729 goto out;
1731 start = offset >> PAGE_CACHE_SHIFT;
1732 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1733 /* Try to avoid a swapstorm if len is impossible to satisfy */
1734 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1735 error = -ENOSPC;
1736 goto out;
1739 shmem_falloc.start = start;
1740 shmem_falloc.next = start;
1741 shmem_falloc.nr_falloced = 0;
1742 shmem_falloc.nr_unswapped = 0;
1743 spin_lock(&inode->i_lock);
1744 inode->i_private = &shmem_falloc;
1745 spin_unlock(&inode->i_lock);
1747 for (index = start; index < end; index++) {
1748 struct page *page;
1751 * Good, the fallocate(2) manpage permits EINTR: we may have
1752 * been interrupted because we are using up too much memory.
1754 if (signal_pending(current))
1755 error = -EINTR;
1756 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1757 error = -ENOMEM;
1758 else
1759 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1760 NULL);
1761 if (error) {
1762 /* Remove the !PageUptodate pages we added */
1763 shmem_undo_range(inode,
1764 (loff_t)start << PAGE_CACHE_SHIFT,
1765 (loff_t)index << PAGE_CACHE_SHIFT, true);
1766 goto undone;
1770 * Inform shmem_writepage() how far we have reached.
1771 * No need for lock or barrier: we have the page lock.
1773 shmem_falloc.next++;
1774 if (!PageUptodate(page))
1775 shmem_falloc.nr_falloced++;
1778 * If !PageUptodate, leave it that way so that freeable pages
1779 * can be recognized if we need to rollback on error later.
1780 * But set_page_dirty so that memory pressure will swap rather
1781 * than free the pages we are allocating (and SGP_CACHE pages
1782 * might still be clean: we now need to mark those dirty too).
1784 set_page_dirty(page);
1785 unlock_page(page);
1786 page_cache_release(page);
1787 cond_resched();
1790 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1791 i_size_write(inode, offset + len);
1792 inode->i_ctime = CURRENT_TIME;
1793 undone:
1794 spin_lock(&inode->i_lock);
1795 inode->i_private = NULL;
1796 spin_unlock(&inode->i_lock);
1797 out:
1798 mutex_unlock(&inode->i_mutex);
1799 return error;
1802 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1804 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1806 buf->f_type = TMPFS_MAGIC;
1807 buf->f_bsize = PAGE_CACHE_SIZE;
1808 buf->f_namelen = NAME_MAX;
1809 if (sbinfo->max_blocks) {
1810 buf->f_blocks = sbinfo->max_blocks;
1811 buf->f_bavail =
1812 buf->f_bfree = sbinfo->max_blocks -
1813 percpu_counter_sum(&sbinfo->used_blocks);
1815 if (sbinfo->max_inodes) {
1816 buf->f_files = sbinfo->max_inodes;
1817 buf->f_ffree = sbinfo->free_inodes;
1819 /* else leave those fields 0 like simple_statfs */
1820 return 0;
1824 * File creation. Allocate an inode, and we're done..
1826 static int
1827 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1829 struct inode *inode;
1830 int error = -ENOSPC;
1832 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1833 if (inode) {
1834 error = security_inode_init_security(inode, dir,
1835 &dentry->d_name,
1836 shmem_initxattrs, NULL);
1837 if (error) {
1838 if (error != -EOPNOTSUPP) {
1839 iput(inode);
1840 return error;
1843 #ifdef CONFIG_TMPFS_POSIX_ACL
1844 error = generic_acl_init(inode, dir);
1845 if (error) {
1846 iput(inode);
1847 return error;
1849 #else
1850 error = 0;
1851 #endif
1852 dir->i_size += BOGO_DIRENT_SIZE;
1853 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1854 d_instantiate(dentry, inode);
1855 dget(dentry); /* Extra count - pin the dentry in core */
1857 return error;
1860 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1862 int error;
1864 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1865 return error;
1866 inc_nlink(dir);
1867 return 0;
1870 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1871 bool excl)
1873 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1877 * Link a file..
1879 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1881 struct inode *inode = old_dentry->d_inode;
1882 int ret;
1885 * No ordinary (disk based) filesystem counts links as inodes;
1886 * but each new link needs a new dentry, pinning lowmem, and
1887 * tmpfs dentries cannot be pruned until they are unlinked.
1889 ret = shmem_reserve_inode(inode->i_sb);
1890 if (ret)
1891 goto out;
1893 dir->i_size += BOGO_DIRENT_SIZE;
1894 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1895 inc_nlink(inode);
1896 ihold(inode); /* New dentry reference */
1897 dget(dentry); /* Extra pinning count for the created dentry */
1898 d_instantiate(dentry, inode);
1899 out:
1900 return ret;
1903 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1905 struct inode *inode = dentry->d_inode;
1907 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1908 shmem_free_inode(inode->i_sb);
1910 dir->i_size -= BOGO_DIRENT_SIZE;
1911 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1912 drop_nlink(inode);
1913 dput(dentry); /* Undo the count from "create" - this does all the work */
1914 return 0;
1917 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1919 if (!simple_empty(dentry))
1920 return -ENOTEMPTY;
1922 drop_nlink(dentry->d_inode);
1923 drop_nlink(dir);
1924 return shmem_unlink(dir, dentry);
1928 * The VFS layer already does all the dentry stuff for rename,
1929 * we just have to decrement the usage count for the target if
1930 * it exists so that the VFS layer correctly free's it when it
1931 * gets overwritten.
1933 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1935 struct inode *inode = old_dentry->d_inode;
1936 int they_are_dirs = S_ISDIR(inode->i_mode);
1938 if (!simple_empty(new_dentry))
1939 return -ENOTEMPTY;
1941 if (new_dentry->d_inode) {
1942 (void) shmem_unlink(new_dir, new_dentry);
1943 if (they_are_dirs)
1944 drop_nlink(old_dir);
1945 } else if (they_are_dirs) {
1946 drop_nlink(old_dir);
1947 inc_nlink(new_dir);
1950 old_dir->i_size -= BOGO_DIRENT_SIZE;
1951 new_dir->i_size += BOGO_DIRENT_SIZE;
1952 old_dir->i_ctime = old_dir->i_mtime =
1953 new_dir->i_ctime = new_dir->i_mtime =
1954 inode->i_ctime = CURRENT_TIME;
1955 return 0;
1958 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1960 int error;
1961 int len;
1962 struct inode *inode;
1963 struct page *page;
1964 char *kaddr;
1965 struct shmem_inode_info *info;
1967 len = strlen(symname) + 1;
1968 if (len > PAGE_CACHE_SIZE)
1969 return -ENAMETOOLONG;
1971 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1972 if (!inode)
1973 return -ENOSPC;
1975 error = security_inode_init_security(inode, dir, &dentry->d_name,
1976 shmem_initxattrs, NULL);
1977 if (error) {
1978 if (error != -EOPNOTSUPP) {
1979 iput(inode);
1980 return error;
1982 error = 0;
1985 info = SHMEM_I(inode);
1986 inode->i_size = len-1;
1987 if (len <= SHORT_SYMLINK_LEN) {
1988 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1989 if (!info->symlink) {
1990 iput(inode);
1991 return -ENOMEM;
1993 inode->i_op = &shmem_short_symlink_operations;
1994 } else {
1995 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1996 if (error) {
1997 iput(inode);
1998 return error;
2000 inode->i_mapping->a_ops = &shmem_aops;
2001 inode->i_op = &shmem_symlink_inode_operations;
2002 kaddr = kmap_atomic(page);
2003 memcpy(kaddr, symname, len);
2004 kunmap_atomic(kaddr);
2005 SetPageUptodate(page);
2006 set_page_dirty(page);
2007 unlock_page(page);
2008 page_cache_release(page);
2010 dir->i_size += BOGO_DIRENT_SIZE;
2011 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2012 d_instantiate(dentry, inode);
2013 dget(dentry);
2014 return 0;
2017 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2019 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2020 return NULL;
2023 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2025 struct page *page = NULL;
2026 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2027 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2028 if (page)
2029 unlock_page(page);
2030 return page;
2033 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2035 if (!IS_ERR(nd_get_link(nd))) {
2036 struct page *page = cookie;
2037 kunmap(page);
2038 mark_page_accessed(page);
2039 page_cache_release(page);
2043 #ifdef CONFIG_TMPFS_XATTR
2045 * Superblocks without xattr inode operations may get some security.* xattr
2046 * support from the LSM "for free". As soon as we have any other xattrs
2047 * like ACLs, we also need to implement the security.* handlers at
2048 * filesystem level, though.
2052 * Callback for security_inode_init_security() for acquiring xattrs.
2054 static int shmem_initxattrs(struct inode *inode,
2055 const struct xattr *xattr_array,
2056 void *fs_info)
2058 struct shmem_inode_info *info = SHMEM_I(inode);
2059 const struct xattr *xattr;
2060 struct simple_xattr *new_xattr;
2061 size_t len;
2063 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2064 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2065 if (!new_xattr)
2066 return -ENOMEM;
2068 len = strlen(xattr->name) + 1;
2069 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2070 GFP_KERNEL);
2071 if (!new_xattr->name) {
2072 kfree(new_xattr);
2073 return -ENOMEM;
2076 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2077 XATTR_SECURITY_PREFIX_LEN);
2078 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2079 xattr->name, len);
2081 simple_xattr_list_add(&info->xattrs, new_xattr);
2084 return 0;
2087 static const struct xattr_handler *shmem_xattr_handlers[] = {
2088 #ifdef CONFIG_TMPFS_POSIX_ACL
2089 &generic_acl_access_handler,
2090 &generic_acl_default_handler,
2091 #endif
2092 NULL
2095 static int shmem_xattr_validate(const char *name)
2097 struct { const char *prefix; size_t len; } arr[] = {
2098 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2099 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2101 int i;
2103 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2104 size_t preflen = arr[i].len;
2105 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2106 if (!name[preflen])
2107 return -EINVAL;
2108 return 0;
2111 return -EOPNOTSUPP;
2114 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2115 void *buffer, size_t size)
2117 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2118 int err;
2121 * If this is a request for a synthetic attribute in the system.*
2122 * namespace use the generic infrastructure to resolve a handler
2123 * for it via sb->s_xattr.
2125 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2126 return generic_getxattr(dentry, name, buffer, size);
2128 err = shmem_xattr_validate(name);
2129 if (err)
2130 return err;
2132 return simple_xattr_get(&info->xattrs, name, buffer, size);
2135 static int shmem_setxattr(struct dentry *dentry, const char *name,
2136 const void *value, size_t size, int flags)
2138 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2139 int err;
2142 * If this is a request for a synthetic attribute in the system.*
2143 * namespace use the generic infrastructure to resolve a handler
2144 * for it via sb->s_xattr.
2146 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2147 return generic_setxattr(dentry, name, value, size, flags);
2149 err = shmem_xattr_validate(name);
2150 if (err)
2151 return err;
2153 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2156 static int shmem_removexattr(struct dentry *dentry, const char *name)
2158 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2159 int err;
2162 * If this is a request for a synthetic attribute in the system.*
2163 * namespace use the generic infrastructure to resolve a handler
2164 * for it via sb->s_xattr.
2166 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2167 return generic_removexattr(dentry, name);
2169 err = shmem_xattr_validate(name);
2170 if (err)
2171 return err;
2173 return simple_xattr_remove(&info->xattrs, name);
2176 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2178 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2179 return simple_xattr_list(&info->xattrs, buffer, size);
2181 #endif /* CONFIG_TMPFS_XATTR */
2183 static const struct inode_operations shmem_short_symlink_operations = {
2184 .readlink = generic_readlink,
2185 .follow_link = shmem_follow_short_symlink,
2186 #ifdef CONFIG_TMPFS_XATTR
2187 .setxattr = shmem_setxattr,
2188 .getxattr = shmem_getxattr,
2189 .listxattr = shmem_listxattr,
2190 .removexattr = shmem_removexattr,
2191 #endif
2194 static const struct inode_operations shmem_symlink_inode_operations = {
2195 .readlink = generic_readlink,
2196 .follow_link = shmem_follow_link,
2197 .put_link = shmem_put_link,
2198 #ifdef CONFIG_TMPFS_XATTR
2199 .setxattr = shmem_setxattr,
2200 .getxattr = shmem_getxattr,
2201 .listxattr = shmem_listxattr,
2202 .removexattr = shmem_removexattr,
2203 #endif
2206 static struct dentry *shmem_get_parent(struct dentry *child)
2208 return ERR_PTR(-ESTALE);
2211 static int shmem_match(struct inode *ino, void *vfh)
2213 __u32 *fh = vfh;
2214 __u64 inum = fh[2];
2215 inum = (inum << 32) | fh[1];
2216 return ino->i_ino == inum && fh[0] == ino->i_generation;
2219 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2220 struct fid *fid, int fh_len, int fh_type)
2222 struct inode *inode;
2223 struct dentry *dentry = NULL;
2224 u64 inum = fid->raw[2];
2225 inum = (inum << 32) | fid->raw[1];
2227 if (fh_len < 3)
2228 return NULL;
2230 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2231 shmem_match, fid->raw);
2232 if (inode) {
2233 dentry = d_find_alias(inode);
2234 iput(inode);
2237 return dentry;
2240 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2241 struct inode *parent)
2243 if (*len < 3) {
2244 *len = 3;
2245 return 255;
2248 if (inode_unhashed(inode)) {
2249 /* Unfortunately insert_inode_hash is not idempotent,
2250 * so as we hash inodes here rather than at creation
2251 * time, we need a lock to ensure we only try
2252 * to do it once
2254 static DEFINE_SPINLOCK(lock);
2255 spin_lock(&lock);
2256 if (inode_unhashed(inode))
2257 __insert_inode_hash(inode,
2258 inode->i_ino + inode->i_generation);
2259 spin_unlock(&lock);
2262 fh[0] = inode->i_generation;
2263 fh[1] = inode->i_ino;
2264 fh[2] = ((__u64)inode->i_ino) >> 32;
2266 *len = 3;
2267 return 1;
2270 static const struct export_operations shmem_export_ops = {
2271 .get_parent = shmem_get_parent,
2272 .encode_fh = shmem_encode_fh,
2273 .fh_to_dentry = shmem_fh_to_dentry,
2276 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2277 bool remount)
2279 char *this_char, *value, *rest;
2280 uid_t uid;
2281 gid_t gid;
2283 while (options != NULL) {
2284 this_char = options;
2285 for (;;) {
2287 * NUL-terminate this option: unfortunately,
2288 * mount options form a comma-separated list,
2289 * but mpol's nodelist may also contain commas.
2291 options = strchr(options, ',');
2292 if (options == NULL)
2293 break;
2294 options++;
2295 if (!isdigit(*options)) {
2296 options[-1] = '\0';
2297 break;
2300 if (!*this_char)
2301 continue;
2302 if ((value = strchr(this_char,'=')) != NULL) {
2303 *value++ = 0;
2304 } else {
2305 printk(KERN_ERR
2306 "tmpfs: No value for mount option '%s'\n",
2307 this_char);
2308 return 1;
2311 if (!strcmp(this_char,"size")) {
2312 unsigned long long size;
2313 size = memparse(value,&rest);
2314 if (*rest == '%') {
2315 size <<= PAGE_SHIFT;
2316 size *= totalram_pages;
2317 do_div(size, 100);
2318 rest++;
2320 if (*rest)
2321 goto bad_val;
2322 sbinfo->max_blocks =
2323 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2324 } else if (!strcmp(this_char,"nr_blocks")) {
2325 sbinfo->max_blocks = memparse(value, &rest);
2326 if (*rest)
2327 goto bad_val;
2328 } else if (!strcmp(this_char,"nr_inodes")) {
2329 sbinfo->max_inodes = memparse(value, &rest);
2330 if (*rest)
2331 goto bad_val;
2332 } else if (!strcmp(this_char,"mode")) {
2333 if (remount)
2334 continue;
2335 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2336 if (*rest)
2337 goto bad_val;
2338 } else if (!strcmp(this_char,"uid")) {
2339 if (remount)
2340 continue;
2341 uid = simple_strtoul(value, &rest, 0);
2342 if (*rest)
2343 goto bad_val;
2344 sbinfo->uid = make_kuid(current_user_ns(), uid);
2345 if (!uid_valid(sbinfo->uid))
2346 goto bad_val;
2347 } else if (!strcmp(this_char,"gid")) {
2348 if (remount)
2349 continue;
2350 gid = simple_strtoul(value, &rest, 0);
2351 if (*rest)
2352 goto bad_val;
2353 sbinfo->gid = make_kgid(current_user_ns(), gid);
2354 if (!gid_valid(sbinfo->gid))
2355 goto bad_val;
2356 } else if (!strcmp(this_char,"mpol")) {
2357 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2358 goto bad_val;
2359 } else {
2360 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2361 this_char);
2362 return 1;
2365 return 0;
2367 bad_val:
2368 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2369 value, this_char);
2370 return 1;
2374 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2376 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2377 struct shmem_sb_info config = *sbinfo;
2378 unsigned long inodes;
2379 int error = -EINVAL;
2381 if (shmem_parse_options(data, &config, true))
2382 return error;
2384 spin_lock(&sbinfo->stat_lock);
2385 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2386 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2387 goto out;
2388 if (config.max_inodes < inodes)
2389 goto out;
2391 * Those tests disallow limited->unlimited while any are in use;
2392 * but we must separately disallow unlimited->limited, because
2393 * in that case we have no record of how much is already in use.
2395 if (config.max_blocks && !sbinfo->max_blocks)
2396 goto out;
2397 if (config.max_inodes && !sbinfo->max_inodes)
2398 goto out;
2400 error = 0;
2401 sbinfo->max_blocks = config.max_blocks;
2402 sbinfo->max_inodes = config.max_inodes;
2403 sbinfo->free_inodes = config.max_inodes - inodes;
2405 mpol_put(sbinfo->mpol);
2406 sbinfo->mpol = config.mpol; /* transfers initial ref */
2407 out:
2408 spin_unlock(&sbinfo->stat_lock);
2409 return error;
2412 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2414 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2416 if (sbinfo->max_blocks != shmem_default_max_blocks())
2417 seq_printf(seq, ",size=%luk",
2418 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2419 if (sbinfo->max_inodes != shmem_default_max_inodes())
2420 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2421 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2422 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2423 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2424 seq_printf(seq, ",uid=%u",
2425 from_kuid_munged(&init_user_ns, sbinfo->uid));
2426 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2427 seq_printf(seq, ",gid=%u",
2428 from_kgid_munged(&init_user_ns, sbinfo->gid));
2429 shmem_show_mpol(seq, sbinfo->mpol);
2430 return 0;
2432 #endif /* CONFIG_TMPFS */
2434 static void shmem_put_super(struct super_block *sb)
2436 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2438 percpu_counter_destroy(&sbinfo->used_blocks);
2439 kfree(sbinfo);
2440 sb->s_fs_info = NULL;
2443 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2445 struct inode *inode;
2446 struct shmem_sb_info *sbinfo;
2447 int err = -ENOMEM;
2449 /* Round up to L1_CACHE_BYTES to resist false sharing */
2450 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2451 L1_CACHE_BYTES), GFP_KERNEL);
2452 if (!sbinfo)
2453 return -ENOMEM;
2455 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2456 sbinfo->uid = current_fsuid();
2457 sbinfo->gid = current_fsgid();
2458 sb->s_fs_info = sbinfo;
2460 #ifdef CONFIG_TMPFS
2462 * Per default we only allow half of the physical ram per
2463 * tmpfs instance, limiting inodes to one per page of lowmem;
2464 * but the internal instance is left unlimited.
2466 if (!(sb->s_flags & MS_NOUSER)) {
2467 sbinfo->max_blocks = shmem_default_max_blocks();
2468 sbinfo->max_inodes = shmem_default_max_inodes();
2469 if (shmem_parse_options(data, sbinfo, false)) {
2470 err = -EINVAL;
2471 goto failed;
2474 sb->s_export_op = &shmem_export_ops;
2475 sb->s_flags |= MS_NOSEC;
2476 #else
2477 sb->s_flags |= MS_NOUSER;
2478 #endif
2480 spin_lock_init(&sbinfo->stat_lock);
2481 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2482 goto failed;
2483 sbinfo->free_inodes = sbinfo->max_inodes;
2485 sb->s_maxbytes = MAX_LFS_FILESIZE;
2486 sb->s_blocksize = PAGE_CACHE_SIZE;
2487 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2488 sb->s_magic = TMPFS_MAGIC;
2489 sb->s_op = &shmem_ops;
2490 sb->s_time_gran = 1;
2491 #ifdef CONFIG_TMPFS_XATTR
2492 sb->s_xattr = shmem_xattr_handlers;
2493 #endif
2494 #ifdef CONFIG_TMPFS_POSIX_ACL
2495 sb->s_flags |= MS_POSIXACL;
2496 #endif
2498 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2499 if (!inode)
2500 goto failed;
2501 inode->i_uid = sbinfo->uid;
2502 inode->i_gid = sbinfo->gid;
2503 sb->s_root = d_make_root(inode);
2504 if (!sb->s_root)
2505 goto failed;
2506 return 0;
2508 failed:
2509 shmem_put_super(sb);
2510 return err;
2513 static struct kmem_cache *shmem_inode_cachep;
2515 static struct inode *shmem_alloc_inode(struct super_block *sb)
2517 struct shmem_inode_info *info;
2518 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2519 if (!info)
2520 return NULL;
2521 return &info->vfs_inode;
2524 static void shmem_destroy_callback(struct rcu_head *head)
2526 struct inode *inode = container_of(head, struct inode, i_rcu);
2527 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2530 static void shmem_destroy_inode(struct inode *inode)
2532 if (S_ISREG(inode->i_mode))
2533 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2534 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2537 static void shmem_init_inode(void *foo)
2539 struct shmem_inode_info *info = foo;
2540 inode_init_once(&info->vfs_inode);
2543 static int shmem_init_inodecache(void)
2545 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2546 sizeof(struct shmem_inode_info),
2547 0, SLAB_PANIC, shmem_init_inode);
2548 return 0;
2551 static void shmem_destroy_inodecache(void)
2553 kmem_cache_destroy(shmem_inode_cachep);
2556 static const struct address_space_operations shmem_aops = {
2557 .writepage = shmem_writepage,
2558 .set_page_dirty = __set_page_dirty_no_writeback,
2559 #ifdef CONFIG_TMPFS
2560 .write_begin = shmem_write_begin,
2561 .write_end = shmem_write_end,
2562 #endif
2563 .migratepage = migrate_page,
2564 .error_remove_page = generic_error_remove_page,
2567 static const struct file_operations shmem_file_operations = {
2568 .mmap = shmem_mmap,
2569 #ifdef CONFIG_TMPFS
2570 .llseek = generic_file_llseek,
2571 .read = do_sync_read,
2572 .write = do_sync_write,
2573 .aio_read = shmem_file_aio_read,
2574 .aio_write = generic_file_aio_write,
2575 .fsync = noop_fsync,
2576 .splice_read = shmem_file_splice_read,
2577 .splice_write = generic_file_splice_write,
2578 .fallocate = shmem_fallocate,
2579 #endif
2582 static const struct inode_operations shmem_inode_operations = {
2583 .setattr = shmem_setattr,
2584 #ifdef CONFIG_TMPFS_XATTR
2585 .setxattr = shmem_setxattr,
2586 .getxattr = shmem_getxattr,
2587 .listxattr = shmem_listxattr,
2588 .removexattr = shmem_removexattr,
2589 #endif
2592 static const struct inode_operations shmem_dir_inode_operations = {
2593 #ifdef CONFIG_TMPFS
2594 .create = shmem_create,
2595 .lookup = simple_lookup,
2596 .link = shmem_link,
2597 .unlink = shmem_unlink,
2598 .symlink = shmem_symlink,
2599 .mkdir = shmem_mkdir,
2600 .rmdir = shmem_rmdir,
2601 .mknod = shmem_mknod,
2602 .rename = shmem_rename,
2603 #endif
2604 #ifdef CONFIG_TMPFS_XATTR
2605 .setxattr = shmem_setxattr,
2606 .getxattr = shmem_getxattr,
2607 .listxattr = shmem_listxattr,
2608 .removexattr = shmem_removexattr,
2609 #endif
2610 #ifdef CONFIG_TMPFS_POSIX_ACL
2611 .setattr = shmem_setattr,
2612 #endif
2615 static const struct inode_operations shmem_special_inode_operations = {
2616 #ifdef CONFIG_TMPFS_XATTR
2617 .setxattr = shmem_setxattr,
2618 .getxattr = shmem_getxattr,
2619 .listxattr = shmem_listxattr,
2620 .removexattr = shmem_removexattr,
2621 #endif
2622 #ifdef CONFIG_TMPFS_POSIX_ACL
2623 .setattr = shmem_setattr,
2624 #endif
2627 static const struct super_operations shmem_ops = {
2628 .alloc_inode = shmem_alloc_inode,
2629 .destroy_inode = shmem_destroy_inode,
2630 #ifdef CONFIG_TMPFS
2631 .statfs = shmem_statfs,
2632 .remount_fs = shmem_remount_fs,
2633 .show_options = shmem_show_options,
2634 #endif
2635 .evict_inode = shmem_evict_inode,
2636 .drop_inode = generic_delete_inode,
2637 .put_super = shmem_put_super,
2640 static const struct vm_operations_struct shmem_vm_ops = {
2641 .fault = shmem_fault,
2642 #ifdef CONFIG_NUMA
2643 .set_policy = shmem_set_policy,
2644 .get_policy = shmem_get_policy,
2645 #endif
2648 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2649 int flags, const char *dev_name, void *data)
2651 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2654 static struct file_system_type shmem_fs_type = {
2655 .owner = THIS_MODULE,
2656 .name = "tmpfs",
2657 .mount = shmem_mount,
2658 .kill_sb = kill_litter_super,
2661 int __init shmem_init(void)
2663 int error;
2665 error = bdi_init(&shmem_backing_dev_info);
2666 if (error)
2667 goto out4;
2669 error = shmem_init_inodecache();
2670 if (error)
2671 goto out3;
2673 error = register_filesystem(&shmem_fs_type);
2674 if (error) {
2675 printk(KERN_ERR "Could not register tmpfs\n");
2676 goto out2;
2679 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2680 shmem_fs_type.name, NULL);
2681 if (IS_ERR(shm_mnt)) {
2682 error = PTR_ERR(shm_mnt);
2683 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2684 goto out1;
2686 return 0;
2688 out1:
2689 unregister_filesystem(&shmem_fs_type);
2690 out2:
2691 shmem_destroy_inodecache();
2692 out3:
2693 bdi_destroy(&shmem_backing_dev_info);
2694 out4:
2695 shm_mnt = ERR_PTR(error);
2696 return error;
2699 #else /* !CONFIG_SHMEM */
2702 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2704 * This is intended for small system where the benefits of the full
2705 * shmem code (swap-backed and resource-limited) are outweighed by
2706 * their complexity. On systems without swap this code should be
2707 * effectively equivalent, but much lighter weight.
2710 #include <linux/ramfs.h>
2712 static struct file_system_type shmem_fs_type = {
2713 .name = "tmpfs",
2714 .mount = ramfs_mount,
2715 .kill_sb = kill_litter_super,
2718 int __init shmem_init(void)
2720 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2722 shm_mnt = kern_mount(&shmem_fs_type);
2723 BUG_ON(IS_ERR(shm_mnt));
2725 return 0;
2728 int shmem_unuse(swp_entry_t swap, struct page *page)
2730 return 0;
2733 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2735 return 0;
2738 void shmem_unlock_mapping(struct address_space *mapping)
2742 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2744 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2746 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2748 #define shmem_vm_ops generic_file_vm_ops
2749 #define shmem_file_operations ramfs_file_operations
2750 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2751 #define shmem_acct_size(flags, size) 0
2752 #define shmem_unacct_size(flags, size) do {} while (0)
2754 #endif /* CONFIG_SHMEM */
2756 /* common code */
2759 * shmem_file_setup - get an unlinked file living in tmpfs
2760 * @name: name for dentry (to be seen in /proc/<pid>/maps
2761 * @size: size to be set for the file
2762 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2764 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2766 int error;
2767 struct file *file;
2768 struct inode *inode;
2769 struct path path;
2770 struct dentry *root;
2771 struct qstr this;
2773 if (IS_ERR(shm_mnt))
2774 return (void *)shm_mnt;
2776 if (size < 0 || size > MAX_LFS_FILESIZE)
2777 return ERR_PTR(-EINVAL);
2779 if (shmem_acct_size(flags, size))
2780 return ERR_PTR(-ENOMEM);
2782 error = -ENOMEM;
2783 this.name = name;
2784 this.len = strlen(name);
2785 this.hash = 0; /* will go */
2786 root = shm_mnt->mnt_root;
2787 path.dentry = d_alloc(root, &this);
2788 if (!path.dentry)
2789 goto put_memory;
2790 path.mnt = mntget(shm_mnt);
2792 error = -ENOSPC;
2793 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2794 if (!inode)
2795 goto put_dentry;
2797 d_instantiate(path.dentry, inode);
2798 inode->i_size = size;
2799 clear_nlink(inode); /* It is unlinked */
2800 #ifndef CONFIG_MMU
2801 error = ramfs_nommu_expand_for_mapping(inode, size);
2802 if (error)
2803 goto put_dentry;
2804 #endif
2806 error = -ENFILE;
2807 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2808 &shmem_file_operations);
2809 if (!file)
2810 goto put_dentry;
2812 return file;
2814 put_dentry:
2815 path_put(&path);
2816 put_memory:
2817 shmem_unacct_size(flags, size);
2818 return ERR_PTR(error);
2820 EXPORT_SYMBOL_GPL(shmem_file_setup);
2823 * shmem_zero_setup - setup a shared anonymous mapping
2824 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2826 int shmem_zero_setup(struct vm_area_struct *vma)
2828 struct file *file;
2829 loff_t size = vma->vm_end - vma->vm_start;
2831 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2832 if (IS_ERR(file))
2833 return PTR_ERR(file);
2835 if (vma->vm_file)
2836 fput(vma->vm_file);
2837 vma->vm_file = file;
2838 vma->vm_ops = &shmem_vm_ops;
2839 vma->vm_flags |= VM_CAN_NONLINEAR;
2840 return 0;
2844 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2845 * @mapping: the page's address_space
2846 * @index: the page index
2847 * @gfp: the page allocator flags to use if allocating
2849 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2850 * with any new page allocations done using the specified allocation flags.
2851 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2852 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2853 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2855 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2856 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2858 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2859 pgoff_t index, gfp_t gfp)
2861 #ifdef CONFIG_SHMEM
2862 struct inode *inode = mapping->host;
2863 struct page *page;
2864 int error;
2866 BUG_ON(mapping->a_ops != &shmem_aops);
2867 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2868 if (error)
2869 page = ERR_PTR(error);
2870 else
2871 unlock_page(page);
2872 return page;
2873 #else
2875 * The tiny !SHMEM case uses ramfs without swap
2877 return read_cache_page_gfp(mapping, index, gfp);
2878 #endif
2880 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);