KVM: PPC: Move fields between struct kvm_vcpu_arch and kvmppc_vcpu_book3s
[linux-2.6.git] / arch / blackfin / kernel / setup.c
blob536bd9d7e0cfb80392e3ed43b8ac8f6fb106fce0
1 /*
2 * Copyright 2004-2010 Analog Devices Inc.
4 * Licensed under the GPL-2 or later.
5 */
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32 #include <asm/irq_handler.h>
34 u16 _bfin_swrst;
35 EXPORT_SYMBOL(_bfin_swrst);
37 unsigned long memory_start, memory_end, physical_mem_end;
38 unsigned long _rambase, _ramstart, _ramend;
39 unsigned long reserved_mem_dcache_on;
40 unsigned long reserved_mem_icache_on;
41 EXPORT_SYMBOL(memory_start);
42 EXPORT_SYMBOL(memory_end);
43 EXPORT_SYMBOL(physical_mem_end);
44 EXPORT_SYMBOL(_ramend);
45 EXPORT_SYMBOL(reserved_mem_dcache_on);
47 #ifdef CONFIG_MTD_UCLINUX
48 extern struct map_info uclinux_ram_map;
49 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
50 unsigned long _ebss;
51 EXPORT_SYMBOL(memory_mtd_end);
52 EXPORT_SYMBOL(memory_mtd_start);
53 EXPORT_SYMBOL(mtd_size);
54 #endif
56 char __initdata command_line[COMMAND_LINE_SIZE];
57 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
58 *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
60 /* boot memmap, for parsing "memmap=" */
61 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
62 #define BFIN_MEMMAP_RAM 1
63 #define BFIN_MEMMAP_RESERVED 2
64 static struct bfin_memmap {
65 int nr_map;
66 struct bfin_memmap_entry {
67 unsigned long long addr; /* start of memory segment */
68 unsigned long long size;
69 unsigned long type;
70 } map[BFIN_MEMMAP_MAX];
71 } bfin_memmap __initdata;
73 /* for memmap sanitization */
74 struct change_member {
75 struct bfin_memmap_entry *pentry; /* pointer to original entry */
76 unsigned long long addr; /* address for this change point */
78 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
81 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
83 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
85 static int early_init_clkin_hz(char *buf);
87 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
88 void __init generate_cplb_tables(void)
90 unsigned int cpu;
92 generate_cplb_tables_all();
93 /* Generate per-CPU I&D CPLB tables */
94 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
95 generate_cplb_tables_cpu(cpu);
97 #endif
99 void __cpuinit bfin_setup_caches(unsigned int cpu)
101 #ifdef CONFIG_BFIN_ICACHE
102 bfin_icache_init(icplb_tbl[cpu]);
103 #endif
105 #ifdef CONFIG_BFIN_DCACHE
106 bfin_dcache_init(dcplb_tbl[cpu]);
107 #endif
109 bfin_setup_cpudata(cpu);
112 * In cache coherence emulation mode, we need to have the
113 * D-cache enabled before running any atomic operation which
114 * might involve cache invalidation (i.e. spinlock, rwlock).
115 * So printk's are deferred until then.
117 #ifdef CONFIG_BFIN_ICACHE
118 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
119 printk(KERN_INFO " External memory:"
120 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
121 " cacheable"
122 # else
123 " uncacheable"
124 # endif
125 " in instruction cache\n");
126 if (L2_LENGTH)
127 printk(KERN_INFO " L2 SRAM :"
128 # ifdef CONFIG_BFIN_L2_ICACHEABLE
129 " cacheable"
130 # else
131 " uncacheable"
132 # endif
133 " in instruction cache\n");
135 #else
136 printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
137 #endif
139 #ifdef CONFIG_BFIN_DCACHE
140 printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
141 printk(KERN_INFO " External memory:"
142 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
143 " cacheable (write-back)"
144 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
145 " cacheable (write-through)"
146 # else
147 " uncacheable"
148 # endif
149 " in data cache\n");
150 if (L2_LENGTH)
151 printk(KERN_INFO " L2 SRAM :"
152 # if defined CONFIG_BFIN_L2_WRITEBACK
153 " cacheable (write-back)"
154 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
155 " cacheable (write-through)"
156 # else
157 " uncacheable"
158 # endif
159 " in data cache\n");
160 #else
161 printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
162 #endif
165 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
167 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
169 cpudata->imemctl = bfin_read_IMEM_CONTROL();
170 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
173 void __init bfin_cache_init(void)
175 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
176 generate_cplb_tables();
177 #endif
178 bfin_setup_caches(0);
181 void __init bfin_relocate_l1_mem(void)
183 unsigned long text_l1_len = (unsigned long)_text_l1_len;
184 unsigned long data_l1_len = (unsigned long)_data_l1_len;
185 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
186 unsigned long l2_len = (unsigned long)_l2_len;
188 early_shadow_stamp();
191 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
192 * we know that everything about l1 text/data is nice and aligned,
193 * so copy by 4 byte chunks, and don't worry about overlapping
194 * src/dest.
196 * We can't use the dma_memcpy functions, since they can call
197 * scheduler functions which might be in L1 :( and core writes
198 * into L1 instruction cause bad access errors, so we are stuck,
199 * we are required to use DMA, but can't use the common dma
200 * functions. We can't use memcpy either - since that might be
201 * going to be in the relocated L1
204 blackfin_dma_early_init();
206 /* if necessary, copy L1 text to L1 instruction SRAM */
207 if (L1_CODE_LENGTH && text_l1_len)
208 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
210 /* if necessary, copy L1 data to L1 data bank A SRAM */
211 if (L1_DATA_A_LENGTH && data_l1_len)
212 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
214 /* if necessary, copy L1 data B to L1 data bank B SRAM */
215 if (L1_DATA_B_LENGTH && data_b_l1_len)
216 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
218 early_dma_memcpy_done();
220 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
221 blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
222 #endif
224 /* if necessary, copy L2 text/data to L2 SRAM */
225 if (L2_LENGTH && l2_len)
226 memcpy(_stext_l2, _l2_lma, l2_len);
229 #ifdef CONFIG_SMP
230 void __init bfin_relocate_coreb_l1_mem(void)
232 unsigned long text_l1_len = (unsigned long)_text_l1_len;
233 unsigned long data_l1_len = (unsigned long)_data_l1_len;
234 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
236 blackfin_dma_early_init();
238 /* if necessary, copy L1 text to L1 instruction SRAM */
239 if (L1_CODE_LENGTH && text_l1_len)
240 early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
241 text_l1_len);
243 /* if necessary, copy L1 data to L1 data bank A SRAM */
244 if (L1_DATA_A_LENGTH && data_l1_len)
245 early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
246 data_l1_len);
248 /* if necessary, copy L1 data B to L1 data bank B SRAM */
249 if (L1_DATA_B_LENGTH && data_b_l1_len)
250 early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
251 data_b_l1_len);
253 early_dma_memcpy_done();
255 #ifdef CONFIG_ICACHE_FLUSH_L1
256 blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
257 (unsigned long)_stext_l1 + COREB_L1_CODE_START;
258 #endif
260 #endif
262 #ifdef CONFIG_ROMKERNEL
263 void __init bfin_relocate_xip_data(void)
265 early_shadow_stamp();
267 memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
268 memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
270 #endif
272 /* add_memory_region to memmap */
273 static void __init add_memory_region(unsigned long long start,
274 unsigned long long size, int type)
276 int i;
278 i = bfin_memmap.nr_map;
280 if (i == BFIN_MEMMAP_MAX) {
281 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
282 return;
285 bfin_memmap.map[i].addr = start;
286 bfin_memmap.map[i].size = size;
287 bfin_memmap.map[i].type = type;
288 bfin_memmap.nr_map++;
292 * Sanitize the boot memmap, removing overlaps.
294 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
296 struct change_member *change_tmp;
297 unsigned long current_type, last_type;
298 unsigned long long last_addr;
299 int chgidx, still_changing;
300 int overlap_entries;
301 int new_entry;
302 int old_nr, new_nr, chg_nr;
303 int i;
306 Visually we're performing the following (1,2,3,4 = memory types)
308 Sample memory map (w/overlaps):
309 ____22__________________
310 ______________________4_
311 ____1111________________
312 _44_____________________
313 11111111________________
314 ____________________33__
315 ___________44___________
316 __________33333_________
317 ______________22________
318 ___________________2222_
319 _________111111111______
320 _____________________11_
321 _________________4______
323 Sanitized equivalent (no overlap):
324 1_______________________
325 _44_____________________
326 ___1____________________
327 ____22__________________
328 ______11________________
329 _________1______________
330 __________3_____________
331 ___________44___________
332 _____________33_________
333 _______________2________
334 ________________1_______
335 _________________4______
336 ___________________2____
337 ____________________33__
338 ______________________4_
340 /* if there's only one memory region, don't bother */
341 if (*pnr_map < 2)
342 return -1;
344 old_nr = *pnr_map;
346 /* bail out if we find any unreasonable addresses in memmap */
347 for (i = 0; i < old_nr; i++)
348 if (map[i].addr + map[i].size < map[i].addr)
349 return -1;
351 /* create pointers for initial change-point information (for sorting) */
352 for (i = 0; i < 2*old_nr; i++)
353 change_point[i] = &change_point_list[i];
355 /* record all known change-points (starting and ending addresses),
356 omitting those that are for empty memory regions */
357 chgidx = 0;
358 for (i = 0; i < old_nr; i++) {
359 if (map[i].size != 0) {
360 change_point[chgidx]->addr = map[i].addr;
361 change_point[chgidx++]->pentry = &map[i];
362 change_point[chgidx]->addr = map[i].addr + map[i].size;
363 change_point[chgidx++]->pentry = &map[i];
366 chg_nr = chgidx; /* true number of change-points */
368 /* sort change-point list by memory addresses (low -> high) */
369 still_changing = 1;
370 while (still_changing) {
371 still_changing = 0;
372 for (i = 1; i < chg_nr; i++) {
373 /* if <current_addr> > <last_addr>, swap */
374 /* or, if current=<start_addr> & last=<end_addr>, swap */
375 if ((change_point[i]->addr < change_point[i-1]->addr) ||
376 ((change_point[i]->addr == change_point[i-1]->addr) &&
377 (change_point[i]->addr == change_point[i]->pentry->addr) &&
378 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
380 change_tmp = change_point[i];
381 change_point[i] = change_point[i-1];
382 change_point[i-1] = change_tmp;
383 still_changing = 1;
388 /* create a new memmap, removing overlaps */
389 overlap_entries = 0; /* number of entries in the overlap table */
390 new_entry = 0; /* index for creating new memmap entries */
391 last_type = 0; /* start with undefined memory type */
392 last_addr = 0; /* start with 0 as last starting address */
393 /* loop through change-points, determining affect on the new memmap */
394 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
395 /* keep track of all overlapping memmap entries */
396 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
397 /* add map entry to overlap list (> 1 entry implies an overlap) */
398 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
399 } else {
400 /* remove entry from list (order independent, so swap with last) */
401 for (i = 0; i < overlap_entries; i++) {
402 if (overlap_list[i] == change_point[chgidx]->pentry)
403 overlap_list[i] = overlap_list[overlap_entries-1];
405 overlap_entries--;
407 /* if there are overlapping entries, decide which "type" to use */
408 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
409 current_type = 0;
410 for (i = 0; i < overlap_entries; i++)
411 if (overlap_list[i]->type > current_type)
412 current_type = overlap_list[i]->type;
413 /* continue building up new memmap based on this information */
414 if (current_type != last_type) {
415 if (last_type != 0) {
416 new_map[new_entry].size =
417 change_point[chgidx]->addr - last_addr;
418 /* move forward only if the new size was non-zero */
419 if (new_map[new_entry].size != 0)
420 if (++new_entry >= BFIN_MEMMAP_MAX)
421 break; /* no more space left for new entries */
423 if (current_type != 0) {
424 new_map[new_entry].addr = change_point[chgidx]->addr;
425 new_map[new_entry].type = current_type;
426 last_addr = change_point[chgidx]->addr;
428 last_type = current_type;
431 new_nr = new_entry; /* retain count for new entries */
433 /* copy new mapping into original location */
434 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
435 *pnr_map = new_nr;
437 return 0;
440 static void __init print_memory_map(char *who)
442 int i;
444 for (i = 0; i < bfin_memmap.nr_map; i++) {
445 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
446 bfin_memmap.map[i].addr,
447 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
448 switch (bfin_memmap.map[i].type) {
449 case BFIN_MEMMAP_RAM:
450 printk(KERN_CONT "(usable)\n");
451 break;
452 case BFIN_MEMMAP_RESERVED:
453 printk(KERN_CONT "(reserved)\n");
454 break;
455 default:
456 printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
457 break;
462 static __init int parse_memmap(char *arg)
464 unsigned long long start_at, mem_size;
466 if (!arg)
467 return -EINVAL;
469 mem_size = memparse(arg, &arg);
470 if (*arg == '@') {
471 start_at = memparse(arg+1, &arg);
472 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
473 } else if (*arg == '$') {
474 start_at = memparse(arg+1, &arg);
475 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
478 return 0;
482 * Initial parsing of the command line. Currently, we support:
483 * - Controlling the linux memory size: mem=xxx[KMG]
484 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
485 * $ -> reserved memory is dcacheable
486 * # -> reserved memory is icacheable
487 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
488 * @ from <start> to <start>+<mem>, type RAM
489 * $ from <start> to <start>+<mem>, type RESERVED
491 static __init void parse_cmdline_early(char *cmdline_p)
493 char c = ' ', *to = cmdline_p;
494 unsigned int memsize;
495 for (;;) {
496 if (c == ' ') {
497 if (!memcmp(to, "mem=", 4)) {
498 to += 4;
499 memsize = memparse(to, &to);
500 if (memsize)
501 _ramend = memsize;
503 } else if (!memcmp(to, "max_mem=", 8)) {
504 to += 8;
505 memsize = memparse(to, &to);
506 if (memsize) {
507 physical_mem_end = memsize;
508 if (*to != ' ') {
509 if (*to == '$'
510 || *(to + 1) == '$')
511 reserved_mem_dcache_on = 1;
512 if (*to == '#'
513 || *(to + 1) == '#')
514 reserved_mem_icache_on = 1;
517 } else if (!memcmp(to, "clkin_hz=", 9)) {
518 to += 9;
519 early_init_clkin_hz(to);
520 #ifdef CONFIG_EARLY_PRINTK
521 } else if (!memcmp(to, "earlyprintk=", 12)) {
522 to += 12;
523 setup_early_printk(to);
524 #endif
525 } else if (!memcmp(to, "memmap=", 7)) {
526 to += 7;
527 parse_memmap(to);
530 c = *(to++);
531 if (!c)
532 break;
537 * Setup memory defaults from user config.
538 * The physical memory layout looks like:
540 * [_rambase, _ramstart]: kernel image
541 * [memory_start, memory_end]: dynamic memory managed by kernel
542 * [memory_end, _ramend]: reserved memory
543 * [memory_mtd_start(memory_end),
544 * memory_mtd_start + mtd_size]: rootfs (if any)
545 * [_ramend - DMA_UNCACHED_REGION,
546 * _ramend]: uncached DMA region
547 * [_ramend, physical_mem_end]: memory not managed by kernel
549 static __init void memory_setup(void)
551 #ifdef CONFIG_MTD_UCLINUX
552 unsigned long mtd_phys = 0;
553 #endif
554 unsigned long max_mem;
556 _rambase = CONFIG_BOOT_LOAD;
557 _ramstart = (unsigned long)_end;
559 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
560 console_init();
561 panic("DMA region exceeds memory limit: %lu.",
562 _ramend - _ramstart);
564 max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
566 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
567 /* Due to a Hardware Anomaly we need to limit the size of usable
568 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
569 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
571 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
572 if (max_mem >= 56 * 1024 * 1024)
573 max_mem = 56 * 1024 * 1024;
574 # else
575 if (max_mem >= 60 * 1024 * 1024)
576 max_mem = 60 * 1024 * 1024;
577 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
578 #endif /* ANOMALY_05000263 */
581 #ifdef CONFIG_MPU
582 /* Round up to multiple of 4MB */
583 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
584 #else
585 memory_start = PAGE_ALIGN(_ramstart);
586 #endif
588 #if defined(CONFIG_MTD_UCLINUX)
589 /* generic memory mapped MTD driver */
590 memory_mtd_end = memory_end;
592 mtd_phys = _ramstart;
593 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
595 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
596 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
597 mtd_size =
598 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
599 # endif
601 # if defined(CONFIG_CRAMFS)
602 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
603 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
604 # endif
606 # if defined(CONFIG_ROMFS_FS)
607 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
608 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
609 mtd_size =
610 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
612 /* ROM_FS is XIP, so if we found it, we need to limit memory */
613 if (memory_end > max_mem) {
614 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
615 memory_end = max_mem;
618 # endif /* CONFIG_ROMFS_FS */
620 /* Since the default MTD_UCLINUX has no magic number, we just blindly
621 * read 8 past the end of the kernel's image, and look at it.
622 * When no image is attached, mtd_size is set to a random number
623 * Do some basic sanity checks before operating on things
625 if (mtd_size == 0 || memory_end <= mtd_size) {
626 pr_emerg("Could not find valid ram mtd attached.\n");
627 } else {
628 memory_end -= mtd_size;
630 /* Relocate MTD image to the top of memory after the uncached memory area */
631 uclinux_ram_map.phys = memory_mtd_start = memory_end;
632 uclinux_ram_map.size = mtd_size;
633 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
634 _end, mtd_size, (void *)memory_mtd_start);
635 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
637 #endif /* CONFIG_MTD_UCLINUX */
639 /* We need lo limit memory, since everything could have a text section
640 * of userspace in it, and expose anomaly 05000263. If the anomaly
641 * doesn't exist, or we don't need to - then dont.
643 if (memory_end > max_mem) {
644 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
645 memory_end = max_mem;
648 #ifdef CONFIG_MPU
649 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
650 page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
651 ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
652 #else
653 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
654 #endif
655 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
656 #endif
658 init_mm.start_code = (unsigned long)_stext;
659 init_mm.end_code = (unsigned long)_etext;
660 init_mm.end_data = (unsigned long)_edata;
661 init_mm.brk = (unsigned long)0;
663 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
664 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
666 printk(KERN_INFO "Memory map:\n"
667 " fixedcode = 0x%p-0x%p\n"
668 " text = 0x%p-0x%p\n"
669 " rodata = 0x%p-0x%p\n"
670 " bss = 0x%p-0x%p\n"
671 " data = 0x%p-0x%p\n"
672 " stack = 0x%p-0x%p\n"
673 " init = 0x%p-0x%p\n"
674 " available = 0x%p-0x%p\n"
675 #ifdef CONFIG_MTD_UCLINUX
676 " rootfs = 0x%p-0x%p\n"
677 #endif
678 #if DMA_UNCACHED_REGION > 0
679 " DMA Zone = 0x%p-0x%p\n"
680 #endif
681 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
682 _stext, _etext,
683 __start_rodata, __end_rodata,
684 __bss_start, __bss_stop,
685 _sdata, _edata,
686 (void *)&init_thread_union,
687 (void *)((int)(&init_thread_union) + THREAD_SIZE),
688 __init_begin, __init_end,
689 (void *)_ramstart, (void *)memory_end
690 #ifdef CONFIG_MTD_UCLINUX
691 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
692 #endif
693 #if DMA_UNCACHED_REGION > 0
694 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
695 #endif
700 * Find the lowest, highest page frame number we have available
702 void __init find_min_max_pfn(void)
704 int i;
706 max_pfn = 0;
707 min_low_pfn = memory_end;
709 for (i = 0; i < bfin_memmap.nr_map; i++) {
710 unsigned long start, end;
711 /* RAM? */
712 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
713 continue;
714 start = PFN_UP(bfin_memmap.map[i].addr);
715 end = PFN_DOWN(bfin_memmap.map[i].addr +
716 bfin_memmap.map[i].size);
717 if (start >= end)
718 continue;
719 if (end > max_pfn)
720 max_pfn = end;
721 if (start < min_low_pfn)
722 min_low_pfn = start;
726 static __init void setup_bootmem_allocator(void)
728 int bootmap_size;
729 int i;
730 unsigned long start_pfn, end_pfn;
731 unsigned long curr_pfn, last_pfn, size;
733 /* mark memory between memory_start and memory_end usable */
734 add_memory_region(memory_start,
735 memory_end - memory_start, BFIN_MEMMAP_RAM);
736 /* sanity check for overlap */
737 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
738 print_memory_map("boot memmap");
740 /* initialize globals in linux/bootmem.h */
741 find_min_max_pfn();
742 /* pfn of the last usable page frame */
743 if (max_pfn > memory_end >> PAGE_SHIFT)
744 max_pfn = memory_end >> PAGE_SHIFT;
745 /* pfn of last page frame directly mapped by kernel */
746 max_low_pfn = max_pfn;
747 /* pfn of the first usable page frame after kernel image*/
748 if (min_low_pfn < memory_start >> PAGE_SHIFT)
749 min_low_pfn = memory_start >> PAGE_SHIFT;
751 start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
752 end_pfn = memory_end >> PAGE_SHIFT;
755 * give all the memory to the bootmap allocator, tell it to put the
756 * boot mem_map at the start of memory.
758 bootmap_size = init_bootmem_node(NODE_DATA(0),
759 memory_start >> PAGE_SHIFT, /* map goes here */
760 start_pfn, end_pfn);
762 /* register the memmap regions with the bootmem allocator */
763 for (i = 0; i < bfin_memmap.nr_map; i++) {
765 * Reserve usable memory
767 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
768 continue;
770 * We are rounding up the start address of usable memory:
772 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
773 if (curr_pfn >= end_pfn)
774 continue;
776 * ... and at the end of the usable range downwards:
778 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
779 bfin_memmap.map[i].size);
781 if (last_pfn > end_pfn)
782 last_pfn = end_pfn;
785 * .. finally, did all the rounding and playing
786 * around just make the area go away?
788 if (last_pfn <= curr_pfn)
789 continue;
791 size = last_pfn - curr_pfn;
792 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
795 /* reserve memory before memory_start, including bootmap */
796 reserve_bootmem(PAGE_OFFSET,
797 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
798 BOOTMEM_DEFAULT);
801 #define EBSZ_TO_MEG(ebsz) \
802 ({ \
803 int meg = 0; \
804 switch (ebsz & 0xf) { \
805 case 0x1: meg = 16; break; \
806 case 0x3: meg = 32; break; \
807 case 0x5: meg = 64; break; \
808 case 0x7: meg = 128; break; \
809 case 0x9: meg = 256; break; \
810 case 0xb: meg = 512; break; \
812 meg; \
814 static inline int __init get_mem_size(void)
816 #if defined(EBIU_SDBCTL)
817 # if defined(BF561_FAMILY)
818 int ret = 0;
819 u32 sdbctl = bfin_read_EBIU_SDBCTL();
820 ret += EBSZ_TO_MEG(sdbctl >> 0);
821 ret += EBSZ_TO_MEG(sdbctl >> 8);
822 ret += EBSZ_TO_MEG(sdbctl >> 16);
823 ret += EBSZ_TO_MEG(sdbctl >> 24);
824 return ret;
825 # else
826 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
827 # endif
828 #elif defined(EBIU_DDRCTL1)
829 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
830 int ret = 0;
831 switch (ddrctl & 0xc0000) {
832 case DEVSZ_64: ret = 64 / 8;
833 case DEVSZ_128: ret = 128 / 8;
834 case DEVSZ_256: ret = 256 / 8;
835 case DEVSZ_512: ret = 512 / 8;
837 switch (ddrctl & 0x30000) {
838 case DEVWD_4: ret *= 2;
839 case DEVWD_8: ret *= 2;
840 case DEVWD_16: break;
842 if ((ddrctl & 0xc000) == 0x4000)
843 ret *= 2;
844 return ret;
845 #endif
846 BUG();
849 __attribute__((weak))
850 void __init native_machine_early_platform_add_devices(void)
854 void __init setup_arch(char **cmdline_p)
856 u32 mmr;
857 unsigned long sclk, cclk;
859 native_machine_early_platform_add_devices();
861 enable_shadow_console();
863 /* Check to make sure we are running on the right processor */
864 if (unlikely(CPUID != bfin_cpuid()))
865 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
866 CPU, bfin_cpuid(), bfin_revid());
868 #ifdef CONFIG_DUMMY_CONSOLE
869 conswitchp = &dummy_con;
870 #endif
872 #if defined(CONFIG_CMDLINE_BOOL)
873 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
874 command_line[sizeof(command_line) - 1] = 0;
875 #endif
877 /* Keep a copy of command line */
878 *cmdline_p = &command_line[0];
879 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
880 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
882 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
884 /* If the user does not specify things on the command line, use
885 * what the bootloader set things up as
887 physical_mem_end = 0;
888 parse_cmdline_early(&command_line[0]);
890 if (_ramend == 0)
891 _ramend = get_mem_size() * 1024 * 1024;
893 if (physical_mem_end == 0)
894 physical_mem_end = _ramend;
896 memory_setup();
898 /* Initialize Async memory banks */
899 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
900 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
901 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
902 #ifdef CONFIG_EBIU_MBSCTLVAL
903 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
904 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
905 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
906 #endif
907 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
908 bfin_write_PORTF_HYSTERESIS(HYST_PORTF_0_15);
909 bfin_write_PORTG_HYSTERESIS(HYST_PORTG_0_15);
910 bfin_write_PORTH_HYSTERESIS(HYST_PORTH_0_15);
911 bfin_write_MISCPORT_HYSTERESIS((bfin_read_MISCPORT_HYSTERESIS() &
912 ~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
913 #endif
915 cclk = get_cclk();
916 sclk = get_sclk();
918 if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
919 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
921 #ifdef BF561_FAMILY
922 if (ANOMALY_05000266) {
923 bfin_read_IMDMA_D0_IRQ_STATUS();
924 bfin_read_IMDMA_D1_IRQ_STATUS();
926 #endif
928 mmr = bfin_read_TBUFCTL();
929 printk(KERN_INFO "Hardware Trace %s and %sabled\n",
930 (mmr & 0x1) ? "active" : "off",
931 (mmr & 0x2) ? "en" : "dis");
933 mmr = bfin_read_SYSCR();
934 printk(KERN_INFO "Boot Mode: %i\n", mmr & 0xF);
936 /* Newer parts mirror SWRST bits in SYSCR */
937 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
938 defined(CONFIG_BF538) || defined(CONFIG_BF539)
939 _bfin_swrst = bfin_read_SWRST();
940 #else
941 /* Clear boot mode field */
942 _bfin_swrst = mmr & ~0xf;
943 #endif
945 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
946 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
947 #endif
948 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
949 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
950 #endif
952 #ifdef CONFIG_SMP
953 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
954 #else
955 if (_bfin_swrst & RESET_DOUBLE) {
956 #endif
957 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
958 #ifdef CONFIG_DEBUG_DOUBLEFAULT
959 /* We assume the crashing kernel, and the current symbol table match */
960 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
961 (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
962 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
963 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
964 #endif
965 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
966 init_retx);
967 } else if (_bfin_swrst & RESET_WDOG)
968 printk(KERN_INFO "Recovering from Watchdog event\n");
969 else if (_bfin_swrst & RESET_SOFTWARE)
970 printk(KERN_NOTICE "Reset caused by Software reset\n");
972 printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
973 if (bfin_compiled_revid() == 0xffff)
974 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
975 else if (bfin_compiled_revid() == -1)
976 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
977 else
978 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
980 if (likely(CPUID == bfin_cpuid())) {
981 if (bfin_revid() != bfin_compiled_revid()) {
982 if (bfin_compiled_revid() == -1)
983 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
984 bfin_revid());
985 else if (bfin_compiled_revid() != 0xffff) {
986 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
987 bfin_compiled_revid(), bfin_revid());
988 if (bfin_compiled_revid() > bfin_revid())
989 panic("Error: you are missing anomaly workarounds for this rev");
992 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
993 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
994 CPU, bfin_revid());
997 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
999 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1000 cclk / 1000000, sclk / 1000000);
1002 setup_bootmem_allocator();
1004 paging_init();
1006 /* Copy atomic sequences to their fixed location, and sanity check that
1007 these locations are the ones that we advertise to userspace. */
1008 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
1009 FIXED_CODE_END - FIXED_CODE_START);
1010 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
1011 != SIGRETURN_STUB - FIXED_CODE_START);
1012 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
1013 != ATOMIC_XCHG32 - FIXED_CODE_START);
1014 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
1015 != ATOMIC_CAS32 - FIXED_CODE_START);
1016 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
1017 != ATOMIC_ADD32 - FIXED_CODE_START);
1018 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
1019 != ATOMIC_SUB32 - FIXED_CODE_START);
1020 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
1021 != ATOMIC_IOR32 - FIXED_CODE_START);
1022 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
1023 != ATOMIC_AND32 - FIXED_CODE_START);
1024 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
1025 != ATOMIC_XOR32 - FIXED_CODE_START);
1026 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
1027 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
1029 #ifdef CONFIG_SMP
1030 platform_init_cpus();
1031 #endif
1032 init_exception_vectors();
1033 bfin_cache_init(); /* Initialize caches for the boot CPU */
1036 static int __init topology_init(void)
1038 unsigned int cpu;
1040 for_each_possible_cpu(cpu) {
1041 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1044 return 0;
1047 subsys_initcall(topology_init);
1049 /* Get the input clock frequency */
1050 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1051 static u_long get_clkin_hz(void)
1053 return cached_clkin_hz;
1055 static int __init early_init_clkin_hz(char *buf)
1057 cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1058 #ifdef BFIN_KERNEL_CLOCK
1059 if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1060 panic("cannot change clkin_hz when reprogramming clocks");
1061 #endif
1062 return 1;
1064 early_param("clkin_hz=", early_init_clkin_hz);
1066 /* Get the voltage input multiplier */
1067 static u_long get_vco(void)
1069 static u_long cached_vco;
1070 u_long msel, pll_ctl;
1072 /* The assumption here is that VCO never changes at runtime.
1073 * If, someday, we support that, then we'll have to change this.
1075 if (cached_vco)
1076 return cached_vco;
1078 pll_ctl = bfin_read_PLL_CTL();
1079 msel = (pll_ctl >> 9) & 0x3F;
1080 if (0 == msel)
1081 msel = 64;
1083 cached_vco = get_clkin_hz();
1084 cached_vco >>= (1 & pll_ctl); /* DF bit */
1085 cached_vco *= msel;
1086 return cached_vco;
1089 /* Get the Core clock */
1090 u_long get_cclk(void)
1092 static u_long cached_cclk_pll_div, cached_cclk;
1093 u_long csel, ssel;
1095 if (bfin_read_PLL_STAT() & 0x1)
1096 return get_clkin_hz();
1098 ssel = bfin_read_PLL_DIV();
1099 if (ssel == cached_cclk_pll_div)
1100 return cached_cclk;
1101 else
1102 cached_cclk_pll_div = ssel;
1104 csel = ((ssel >> 4) & 0x03);
1105 ssel &= 0xf;
1106 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1107 cached_cclk = get_vco() / ssel;
1108 else
1109 cached_cclk = get_vco() >> csel;
1110 return cached_cclk;
1112 EXPORT_SYMBOL(get_cclk);
1114 /* Get the System clock */
1115 u_long get_sclk(void)
1117 static u_long cached_sclk;
1118 u_long ssel;
1120 /* The assumption here is that SCLK never changes at runtime.
1121 * If, someday, we support that, then we'll have to change this.
1123 if (cached_sclk)
1124 return cached_sclk;
1126 if (bfin_read_PLL_STAT() & 0x1)
1127 return get_clkin_hz();
1129 ssel = bfin_read_PLL_DIV() & 0xf;
1130 if (0 == ssel) {
1131 printk(KERN_WARNING "Invalid System Clock\n");
1132 ssel = 1;
1135 cached_sclk = get_vco() / ssel;
1136 return cached_sclk;
1138 EXPORT_SYMBOL(get_sclk);
1140 unsigned long sclk_to_usecs(unsigned long sclk)
1142 u64 tmp = USEC_PER_SEC * (u64)sclk;
1143 do_div(tmp, get_sclk());
1144 return tmp;
1146 EXPORT_SYMBOL(sclk_to_usecs);
1148 unsigned long usecs_to_sclk(unsigned long usecs)
1150 u64 tmp = get_sclk() * (u64)usecs;
1151 do_div(tmp, USEC_PER_SEC);
1152 return tmp;
1154 EXPORT_SYMBOL(usecs_to_sclk);
1157 * Get CPU information for use by the procfs.
1159 static int show_cpuinfo(struct seq_file *m, void *v)
1161 char *cpu, *mmu, *fpu, *vendor, *cache;
1162 uint32_t revid;
1163 int cpu_num = *(unsigned int *)v;
1164 u_long sclk, cclk;
1165 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1166 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1168 cpu = CPU;
1169 mmu = "none";
1170 fpu = "none";
1171 revid = bfin_revid();
1173 sclk = get_sclk();
1174 cclk = get_cclk();
1176 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1177 case 0xca:
1178 vendor = "Analog Devices";
1179 break;
1180 default:
1181 vendor = "unknown";
1182 break;
1185 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1187 if (CPUID == bfin_cpuid())
1188 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1189 else
1190 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1191 CPUID, bfin_cpuid());
1193 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1194 "stepping\t: %d ",
1195 cpu, cclk/1000000, sclk/1000000,
1196 #ifdef CONFIG_MPU
1197 "mpu on",
1198 #else
1199 "mpu off",
1200 #endif
1201 revid);
1203 if (bfin_revid() != bfin_compiled_revid()) {
1204 if (bfin_compiled_revid() == -1)
1205 seq_printf(m, "(Compiled for Rev none)");
1206 else if (bfin_compiled_revid() == 0xffff)
1207 seq_printf(m, "(Compiled for Rev any)");
1208 else
1209 seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1212 seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1213 cclk/1000000, cclk%1000000,
1214 sclk/1000000, sclk%1000000);
1215 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1216 "Calibration\t: %lu loops\n",
1217 (loops_per_jiffy * HZ) / 500000,
1218 ((loops_per_jiffy * HZ) / 5000) % 100,
1219 (loops_per_jiffy * HZ));
1221 /* Check Cache configutation */
1222 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1223 case ACACHE_BSRAM:
1224 cache = "dbank-A/B\t: cache/sram";
1225 dcache_size = 16;
1226 dsup_banks = 1;
1227 break;
1228 case ACACHE_BCACHE:
1229 cache = "dbank-A/B\t: cache/cache";
1230 dcache_size = 32;
1231 dsup_banks = 2;
1232 break;
1233 case ASRAM_BSRAM:
1234 cache = "dbank-A/B\t: sram/sram";
1235 dcache_size = 0;
1236 dsup_banks = 0;
1237 break;
1238 default:
1239 cache = "unknown";
1240 dcache_size = 0;
1241 dsup_banks = 0;
1242 break;
1245 /* Is it turned on? */
1246 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1247 dcache_size = 0;
1249 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1250 icache_size = 0;
1252 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1253 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1254 icache_size, dcache_size, 0);
1255 seq_printf(m, "%s\n", cache);
1256 seq_printf(m, "external memory\t: "
1257 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1258 "cacheable"
1259 #else
1260 "uncacheable"
1261 #endif
1262 " in instruction cache\n");
1263 seq_printf(m, "external memory\t: "
1264 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1265 "cacheable (write-back)"
1266 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1267 "cacheable (write-through)"
1268 #else
1269 "uncacheable"
1270 #endif
1271 " in data cache\n");
1273 if (icache_size)
1274 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1275 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1276 else
1277 seq_printf(m, "icache setup\t: off\n");
1279 seq_printf(m,
1280 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1281 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1282 BFIN_DLINES);
1283 #ifdef __ARCH_SYNC_CORE_DCACHE
1284 seq_printf(m, "dcache flushes\t: %lu\n", dcache_invld_count[cpu_num]);
1285 #endif
1286 #ifdef __ARCH_SYNC_CORE_ICACHE
1287 seq_printf(m, "icache flushes\t: %lu\n", icache_invld_count[cpu_num]);
1288 #endif
1290 seq_printf(m, "\n");
1292 if (cpu_num != num_possible_cpus() - 1)
1293 return 0;
1295 if (L2_LENGTH) {
1296 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1297 seq_printf(m, "L2 SRAM\t\t: "
1298 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1299 "cacheable"
1300 #else
1301 "uncacheable"
1302 #endif
1303 " in instruction cache\n");
1304 seq_printf(m, "L2 SRAM\t\t: "
1305 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1306 "cacheable (write-back)"
1307 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1308 "cacheable (write-through)"
1309 #else
1310 "uncacheable"
1311 #endif
1312 " in data cache\n");
1314 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1315 seq_printf(m, "board memory\t: %ld kB (0x%08lx -> 0x%08lx)\n",
1316 physical_mem_end >> 10, 0ul, physical_mem_end);
1317 seq_printf(m, "kernel memory\t: %d kB (0x%08lx -> 0x%08lx)\n",
1318 ((int)memory_end - (int)_rambase) >> 10,
1319 _rambase, memory_end);
1321 return 0;
1324 static void *c_start(struct seq_file *m, loff_t *pos)
1326 if (*pos == 0)
1327 *pos = cpumask_first(cpu_online_mask);
1328 if (*pos >= num_online_cpus())
1329 return NULL;
1331 return pos;
1334 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1336 *pos = cpumask_next(*pos, cpu_online_mask);
1338 return c_start(m, pos);
1341 static void c_stop(struct seq_file *m, void *v)
1345 const struct seq_operations cpuinfo_op = {
1346 .start = c_start,
1347 .next = c_next,
1348 .stop = c_stop,
1349 .show = show_cpuinfo,
1352 void __init cmdline_init(const char *r0)
1354 early_shadow_stamp();
1355 if (r0)
1356 strncpy(command_line, r0, COMMAND_LINE_SIZE);