KVM: PPC: Move fields between struct kvm_vcpu_arch and kvmppc_vcpu_book3s
[linux-2.6.git] / arch / blackfin / kernel / perf_event.c
blob04300f29c0e7bc5584d5093063d21b9f7ce38706
1 /*
2 * Blackfin performance counters
4 * Copyright 2011 Analog Devices Inc.
6 * Ripped from SuperH version:
8 * Copyright (C) 2009 Paul Mundt
10 * Heavily based on the x86 and PowerPC implementations.
12 * x86:
13 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
14 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
15 * Copyright (C) 2009 Jaswinder Singh Rajput
16 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
17 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
18 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
20 * ppc:
21 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
23 * Licensed under the GPL-2 or later.
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/perf_event.h>
29 #include <asm/bfin_pfmon.h>
32 * We have two counters, and each counter can support an event type.
33 * The 'o' is PFCNTx=1 and 's' is PFCNTx=0
35 * 0x04 o pc invariant branches
36 * 0x06 o mispredicted branches
37 * 0x09 o predicted branches taken
38 * 0x0B o EXCPT insn
39 * 0x0C o CSYNC/SSYNC insn
40 * 0x0D o Insns committed
41 * 0x0E o Interrupts taken
42 * 0x0F o Misaligned address exceptions
43 * 0x80 o Code memory fetches stalled due to DMA
44 * 0x83 o 64bit insn fetches delivered
45 * 0x9A o data cache fills (bank a)
46 * 0x9B o data cache fills (bank b)
47 * 0x9C o data cache lines evicted (bank a)
48 * 0x9D o data cache lines evicted (bank b)
49 * 0x9E o data cache high priority fills
50 * 0x9F o data cache low priority fills
51 * 0x00 s loop 0 iterations
52 * 0x01 s loop 1 iterations
53 * 0x0A s CSYNC/SSYNC stalls
54 * 0x10 s DAG read/after write hazards
55 * 0x13 s RAW data hazards
56 * 0x81 s code TAG stalls
57 * 0x82 s code fill stalls
58 * 0x90 s processor to memory stalls
59 * 0x91 s data memory stalls not hidden by 0x90
60 * 0x92 s data store buffer full stalls
61 * 0x93 s data memory write buffer full stalls due to high->low priority
62 * 0x95 s data memory fill buffer stalls
63 * 0x96 s data TAG collision stalls
64 * 0x97 s data collision stalls
65 * 0x98 s data stalls
66 * 0x99 s data stalls sent to processor
69 static const int event_map[] = {
70 /* use CYCLES cpu register */
71 [PERF_COUNT_HW_CPU_CYCLES] = -1,
72 [PERF_COUNT_HW_INSTRUCTIONS] = 0x0D,
73 [PERF_COUNT_HW_CACHE_REFERENCES] = -1,
74 [PERF_COUNT_HW_CACHE_MISSES] = 0x83,
75 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x09,
76 [PERF_COUNT_HW_BRANCH_MISSES] = 0x06,
77 [PERF_COUNT_HW_BUS_CYCLES] = -1,
80 #define C(x) PERF_COUNT_HW_CACHE_##x
82 static const int cache_events[PERF_COUNT_HW_CACHE_MAX]
83 [PERF_COUNT_HW_CACHE_OP_MAX]
84 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
86 [C(L1D)] = { /* Data bank A */
87 [C(OP_READ)] = {
88 [C(RESULT_ACCESS)] = 0,
89 [C(RESULT_MISS) ] = 0x9A,
91 [C(OP_WRITE)] = {
92 [C(RESULT_ACCESS)] = 0,
93 [C(RESULT_MISS) ] = 0,
95 [C(OP_PREFETCH)] = {
96 [C(RESULT_ACCESS)] = 0,
97 [C(RESULT_MISS) ] = 0,
101 [C(L1I)] = {
102 [C(OP_READ)] = {
103 [C(RESULT_ACCESS)] = 0,
104 [C(RESULT_MISS) ] = 0x83,
106 [C(OP_WRITE)] = {
107 [C(RESULT_ACCESS)] = -1,
108 [C(RESULT_MISS) ] = -1,
110 [C(OP_PREFETCH)] = {
111 [C(RESULT_ACCESS)] = 0,
112 [C(RESULT_MISS) ] = 0,
116 [C(LL)] = {
117 [C(OP_READ)] = {
118 [C(RESULT_ACCESS)] = -1,
119 [C(RESULT_MISS) ] = -1,
121 [C(OP_WRITE)] = {
122 [C(RESULT_ACCESS)] = -1,
123 [C(RESULT_MISS) ] = -1,
125 [C(OP_PREFETCH)] = {
126 [C(RESULT_ACCESS)] = -1,
127 [C(RESULT_MISS) ] = -1,
131 [C(DTLB)] = {
132 [C(OP_READ)] = {
133 [C(RESULT_ACCESS)] = -1,
134 [C(RESULT_MISS) ] = -1,
136 [C(OP_WRITE)] = {
137 [C(RESULT_ACCESS)] = -1,
138 [C(RESULT_MISS) ] = -1,
140 [C(OP_PREFETCH)] = {
141 [C(RESULT_ACCESS)] = -1,
142 [C(RESULT_MISS) ] = -1,
146 [C(ITLB)] = {
147 [C(OP_READ)] = {
148 [C(RESULT_ACCESS)] = -1,
149 [C(RESULT_MISS) ] = -1,
151 [C(OP_WRITE)] = {
152 [C(RESULT_ACCESS)] = -1,
153 [C(RESULT_MISS) ] = -1,
155 [C(OP_PREFETCH)] = {
156 [C(RESULT_ACCESS)] = -1,
157 [C(RESULT_MISS) ] = -1,
161 [C(BPU)] = {
162 [C(OP_READ)] = {
163 [C(RESULT_ACCESS)] = -1,
164 [C(RESULT_MISS) ] = -1,
166 [C(OP_WRITE)] = {
167 [C(RESULT_ACCESS)] = -1,
168 [C(RESULT_MISS) ] = -1,
170 [C(OP_PREFETCH)] = {
171 [C(RESULT_ACCESS)] = -1,
172 [C(RESULT_MISS) ] = -1,
177 const char *perf_pmu_name(void)
179 return "bfin";
181 EXPORT_SYMBOL(perf_pmu_name);
183 int perf_num_counters(void)
185 return ARRAY_SIZE(event_map);
187 EXPORT_SYMBOL(perf_num_counters);
189 static u64 bfin_pfmon_read(int idx)
191 return bfin_read32(PFCNTR0 + (idx * 4));
194 static void bfin_pfmon_disable(struct hw_perf_event *hwc, int idx)
196 bfin_write_PFCTL(bfin_read_PFCTL() & ~PFCEN(idx, PFCEN_MASK));
199 static void bfin_pfmon_enable(struct hw_perf_event *hwc, int idx)
201 u32 val, mask;
203 val = PFPWR;
204 if (idx) {
205 mask = ~(PFCNT1 | PFMON1 | PFCEN1 | PEMUSW1);
206 /* The packed config is for event0, so shift it to event1 slots */
207 val |= (hwc->config << (PFMON1_P - PFMON0_P));
208 val |= (hwc->config & PFCNT0) << (PFCNT1_P - PFCNT0_P);
209 bfin_write_PFCNTR1(0);
210 } else {
211 mask = ~(PFCNT0 | PFMON0 | PFCEN0 | PEMUSW0);
212 val |= hwc->config;
213 bfin_write_PFCNTR0(0);
216 bfin_write_PFCTL((bfin_read_PFCTL() & mask) | val);
219 static void bfin_pfmon_disable_all(void)
221 bfin_write_PFCTL(bfin_read_PFCTL() & ~PFPWR);
224 static void bfin_pfmon_enable_all(void)
226 bfin_write_PFCTL(bfin_read_PFCTL() | PFPWR);
229 struct cpu_hw_events {
230 struct perf_event *events[MAX_HWEVENTS];
231 unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
233 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
235 static int hw_perf_cache_event(int config, int *evp)
237 unsigned long type, op, result;
238 int ev;
240 /* unpack config */
241 type = config & 0xff;
242 op = (config >> 8) & 0xff;
243 result = (config >> 16) & 0xff;
245 if (type >= PERF_COUNT_HW_CACHE_MAX ||
246 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
247 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
248 return -EINVAL;
250 ev = cache_events[type][op][result];
251 if (ev == 0)
252 return -EOPNOTSUPP;
253 if (ev == -1)
254 return -EINVAL;
255 *evp = ev;
256 return 0;
259 static void bfin_perf_event_update(struct perf_event *event,
260 struct hw_perf_event *hwc, int idx)
262 u64 prev_raw_count, new_raw_count;
263 s64 delta;
264 int shift = 0;
267 * Depending on the counter configuration, they may or may not
268 * be chained, in which case the previous counter value can be
269 * updated underneath us if the lower-half overflows.
271 * Our tactic to handle this is to first atomically read and
272 * exchange a new raw count - then add that new-prev delta
273 * count to the generic counter atomically.
275 * As there is no interrupt associated with the overflow events,
276 * this is the simplest approach for maintaining consistency.
278 again:
279 prev_raw_count = local64_read(&hwc->prev_count);
280 new_raw_count = bfin_pfmon_read(idx);
282 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
283 new_raw_count) != prev_raw_count)
284 goto again;
287 * Now we have the new raw value and have updated the prev
288 * timestamp already. We can now calculate the elapsed delta
289 * (counter-)time and add that to the generic counter.
291 * Careful, not all hw sign-extends above the physical width
292 * of the count.
294 delta = (new_raw_count << shift) - (prev_raw_count << shift);
295 delta >>= shift;
297 local64_add(delta, &event->count);
300 static void bfin_pmu_stop(struct perf_event *event, int flags)
302 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
303 struct hw_perf_event *hwc = &event->hw;
304 int idx = hwc->idx;
306 if (!(event->hw.state & PERF_HES_STOPPED)) {
307 bfin_pfmon_disable(hwc, idx);
308 cpuc->events[idx] = NULL;
309 event->hw.state |= PERF_HES_STOPPED;
312 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
313 bfin_perf_event_update(event, &event->hw, idx);
314 event->hw.state |= PERF_HES_UPTODATE;
318 static void bfin_pmu_start(struct perf_event *event, int flags)
320 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
321 struct hw_perf_event *hwc = &event->hw;
322 int idx = hwc->idx;
324 if (WARN_ON_ONCE(idx == -1))
325 return;
327 if (flags & PERF_EF_RELOAD)
328 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
330 cpuc->events[idx] = event;
331 event->hw.state = 0;
332 bfin_pfmon_enable(hwc, idx);
335 static void bfin_pmu_del(struct perf_event *event, int flags)
337 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
339 bfin_pmu_stop(event, PERF_EF_UPDATE);
340 __clear_bit(event->hw.idx, cpuc->used_mask);
342 perf_event_update_userpage(event);
345 static int bfin_pmu_add(struct perf_event *event, int flags)
347 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
348 struct hw_perf_event *hwc = &event->hw;
349 int idx = hwc->idx;
350 int ret = -EAGAIN;
352 perf_pmu_disable(event->pmu);
354 if (__test_and_set_bit(idx, cpuc->used_mask)) {
355 idx = find_first_zero_bit(cpuc->used_mask, MAX_HWEVENTS);
356 if (idx == MAX_HWEVENTS)
357 goto out;
359 __set_bit(idx, cpuc->used_mask);
360 hwc->idx = idx;
363 bfin_pfmon_disable(hwc, idx);
365 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
366 if (flags & PERF_EF_START)
367 bfin_pmu_start(event, PERF_EF_RELOAD);
369 perf_event_update_userpage(event);
370 ret = 0;
371 out:
372 perf_pmu_enable(event->pmu);
373 return ret;
376 static void bfin_pmu_read(struct perf_event *event)
378 bfin_perf_event_update(event, &event->hw, event->hw.idx);
381 static int bfin_pmu_event_init(struct perf_event *event)
383 struct perf_event_attr *attr = &event->attr;
384 struct hw_perf_event *hwc = &event->hw;
385 int config = -1;
386 int ret;
388 if (attr->exclude_hv || attr->exclude_idle)
389 return -EPERM;
392 * All of the on-chip counters are "limited", in that they have
393 * no interrupts, and are therefore unable to do sampling without
394 * further work and timer assistance.
396 if (hwc->sample_period)
397 return -EINVAL;
399 ret = 0;
400 switch (attr->type) {
401 case PERF_TYPE_RAW:
402 config = PFMON(0, attr->config & PFMON_MASK) |
403 PFCNT(0, !(attr->config & 0x100));
404 break;
405 case PERF_TYPE_HW_CACHE:
406 ret = hw_perf_cache_event(attr->config, &config);
407 break;
408 case PERF_TYPE_HARDWARE:
409 if (attr->config >= ARRAY_SIZE(event_map))
410 return -EINVAL;
412 config = event_map[attr->config];
413 break;
416 if (config == -1)
417 return -EINVAL;
419 if (!attr->exclude_kernel)
420 config |= PFCEN(0, PFCEN_ENABLE_SUPV);
421 if (!attr->exclude_user)
422 config |= PFCEN(0, PFCEN_ENABLE_USER);
424 hwc->config |= config;
426 return ret;
429 static void bfin_pmu_enable(struct pmu *pmu)
431 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
432 struct perf_event *event;
433 struct hw_perf_event *hwc;
434 int i;
436 for (i = 0; i < MAX_HWEVENTS; ++i) {
437 event = cpuc->events[i];
438 if (!event)
439 continue;
440 hwc = &event->hw;
441 bfin_pfmon_enable(hwc, hwc->idx);
444 bfin_pfmon_enable_all();
447 static void bfin_pmu_disable(struct pmu *pmu)
449 bfin_pfmon_disable_all();
452 static struct pmu pmu = {
453 .pmu_enable = bfin_pmu_enable,
454 .pmu_disable = bfin_pmu_disable,
455 .event_init = bfin_pmu_event_init,
456 .add = bfin_pmu_add,
457 .del = bfin_pmu_del,
458 .start = bfin_pmu_start,
459 .stop = bfin_pmu_stop,
460 .read = bfin_pmu_read,
463 static void bfin_pmu_setup(int cpu)
465 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
467 memset(cpuhw, 0, sizeof(struct cpu_hw_events));
470 static int __cpuinit
471 bfin_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
473 unsigned int cpu = (long)hcpu;
475 switch (action & ~CPU_TASKS_FROZEN) {
476 case CPU_UP_PREPARE:
477 bfin_write_PFCTL(0);
478 bfin_pmu_setup(cpu);
479 break;
481 default:
482 break;
485 return NOTIFY_OK;
488 static int __init bfin_pmu_init(void)
490 int ret;
492 ret = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
493 if (!ret)
494 perf_cpu_notifier(bfin_pmu_notifier);
496 return ret;
498 early_initcall(bfin_pmu_init);