sched: Remove obsolete arch_ prefixes
[linux-2.6.git] / kernel / capability.c
blobbf0c734d0c123f6b5733629f2f1bff4614197a3f
1 /*
2 * linux/kernel/capability.c
4 * Copyright (C) 1997 Andrew Main <zefram@fysh.org>
6 * Integrated into 2.1.97+, Andrew G. Morgan <morgan@kernel.org>
7 * 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net>
8 */
10 #include <linux/audit.h>
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/security.h>
15 #include <linux/syscalls.h>
16 #include <linux/pid_namespace.h>
17 #include <linux/user_namespace.h>
18 #include <asm/uaccess.h>
21 * Leveraged for setting/resetting capabilities
24 const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
25 const kernel_cap_t __cap_full_set = CAP_FULL_SET;
26 const kernel_cap_t __cap_init_eff_set = CAP_INIT_EFF_SET;
28 EXPORT_SYMBOL(__cap_empty_set);
29 EXPORT_SYMBOL(__cap_full_set);
30 EXPORT_SYMBOL(__cap_init_eff_set);
32 int file_caps_enabled = 1;
34 static int __init file_caps_disable(char *str)
36 file_caps_enabled = 0;
37 return 1;
39 __setup("no_file_caps", file_caps_disable);
42 * More recent versions of libcap are available from:
44 * http://www.kernel.org/pub/linux/libs/security/linux-privs/
47 static void warn_legacy_capability_use(void)
49 static int warned;
50 if (!warned) {
51 char name[sizeof(current->comm)];
53 printk(KERN_INFO "warning: `%s' uses 32-bit capabilities"
54 " (legacy support in use)\n",
55 get_task_comm(name, current));
56 warned = 1;
61 * Version 2 capabilities worked fine, but the linux/capability.h file
62 * that accompanied their introduction encouraged their use without
63 * the necessary user-space source code changes. As such, we have
64 * created a version 3 with equivalent functionality to version 2, but
65 * with a header change to protect legacy source code from using
66 * version 2 when it wanted to use version 1. If your system has code
67 * that trips the following warning, it is using version 2 specific
68 * capabilities and may be doing so insecurely.
70 * The remedy is to either upgrade your version of libcap (to 2.10+,
71 * if the application is linked against it), or recompile your
72 * application with modern kernel headers and this warning will go
73 * away.
76 static void warn_deprecated_v2(void)
78 static int warned;
80 if (!warned) {
81 char name[sizeof(current->comm)];
83 printk(KERN_INFO "warning: `%s' uses deprecated v2"
84 " capabilities in a way that may be insecure.\n",
85 get_task_comm(name, current));
86 warned = 1;
91 * Version check. Return the number of u32s in each capability flag
92 * array, or a negative value on error.
94 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
96 __u32 version;
98 if (get_user(version, &header->version))
99 return -EFAULT;
101 switch (version) {
102 case _LINUX_CAPABILITY_VERSION_1:
103 warn_legacy_capability_use();
104 *tocopy = _LINUX_CAPABILITY_U32S_1;
105 break;
106 case _LINUX_CAPABILITY_VERSION_2:
107 warn_deprecated_v2();
109 * fall through - v3 is otherwise equivalent to v2.
111 case _LINUX_CAPABILITY_VERSION_3:
112 *tocopy = _LINUX_CAPABILITY_U32S_3;
113 break;
114 default:
115 if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
116 return -EFAULT;
117 return -EINVAL;
120 return 0;
124 * The only thing that can change the capabilities of the current
125 * process is the current process. As such, we can't be in this code
126 * at the same time as we are in the process of setting capabilities
127 * in this process. The net result is that we can limit our use of
128 * locks to when we are reading the caps of another process.
130 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
131 kernel_cap_t *pIp, kernel_cap_t *pPp)
133 int ret;
135 if (pid && (pid != task_pid_vnr(current))) {
136 struct task_struct *target;
138 rcu_read_lock();
140 target = find_task_by_vpid(pid);
141 if (!target)
142 ret = -ESRCH;
143 else
144 ret = security_capget(target, pEp, pIp, pPp);
146 rcu_read_unlock();
147 } else
148 ret = security_capget(current, pEp, pIp, pPp);
150 return ret;
154 * sys_capget - get the capabilities of a given process.
155 * @header: pointer to struct that contains capability version and
156 * target pid data
157 * @dataptr: pointer to struct that contains the effective, permitted,
158 * and inheritable capabilities that are returned
160 * Returns 0 on success and < 0 on error.
162 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
164 int ret = 0;
165 pid_t pid;
166 unsigned tocopy;
167 kernel_cap_t pE, pI, pP;
169 ret = cap_validate_magic(header, &tocopy);
170 if ((dataptr == NULL) || (ret != 0))
171 return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
173 if (get_user(pid, &header->pid))
174 return -EFAULT;
176 if (pid < 0)
177 return -EINVAL;
179 ret = cap_get_target_pid(pid, &pE, &pI, &pP);
180 if (!ret) {
181 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
182 unsigned i;
184 for (i = 0; i < tocopy; i++) {
185 kdata[i].effective = pE.cap[i];
186 kdata[i].permitted = pP.cap[i];
187 kdata[i].inheritable = pI.cap[i];
191 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
192 * we silently drop the upper capabilities here. This
193 * has the effect of making older libcap
194 * implementations implicitly drop upper capability
195 * bits when they perform a: capget/modify/capset
196 * sequence.
198 * This behavior is considered fail-safe
199 * behavior. Upgrading the application to a newer
200 * version of libcap will enable access to the newer
201 * capabilities.
203 * An alternative would be to return an error here
204 * (-ERANGE), but that causes legacy applications to
205 * unexpectidly fail; the capget/modify/capset aborts
206 * before modification is attempted and the application
207 * fails.
209 if (copy_to_user(dataptr, kdata, tocopy
210 * sizeof(struct __user_cap_data_struct))) {
211 return -EFAULT;
215 return ret;
219 * sys_capset - set capabilities for a process or (*) a group of processes
220 * @header: pointer to struct that contains capability version and
221 * target pid data
222 * @data: pointer to struct that contains the effective, permitted,
223 * and inheritable capabilities
225 * Set capabilities for the current process only. The ability to any other
226 * process(es) has been deprecated and removed.
228 * The restrictions on setting capabilities are specified as:
230 * I: any raised capabilities must be a subset of the old permitted
231 * P: any raised capabilities must be a subset of the old permitted
232 * E: must be set to a subset of new permitted
234 * Returns 0 on success and < 0 on error.
236 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
238 struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
239 unsigned i, tocopy, copybytes;
240 kernel_cap_t inheritable, permitted, effective;
241 struct cred *new;
242 int ret;
243 pid_t pid;
245 ret = cap_validate_magic(header, &tocopy);
246 if (ret != 0)
247 return ret;
249 if (get_user(pid, &header->pid))
250 return -EFAULT;
252 /* may only affect current now */
253 if (pid != 0 && pid != task_pid_vnr(current))
254 return -EPERM;
256 copybytes = tocopy * sizeof(struct __user_cap_data_struct);
257 if (copybytes > sizeof(kdata))
258 return -EFAULT;
260 if (copy_from_user(&kdata, data, copybytes))
261 return -EFAULT;
263 for (i = 0; i < tocopy; i++) {
264 effective.cap[i] = kdata[i].effective;
265 permitted.cap[i] = kdata[i].permitted;
266 inheritable.cap[i] = kdata[i].inheritable;
268 while (i < _KERNEL_CAPABILITY_U32S) {
269 effective.cap[i] = 0;
270 permitted.cap[i] = 0;
271 inheritable.cap[i] = 0;
272 i++;
275 new = prepare_creds();
276 if (!new)
277 return -ENOMEM;
279 ret = security_capset(new, current_cred(),
280 &effective, &inheritable, &permitted);
281 if (ret < 0)
282 goto error;
284 audit_log_capset(pid, new, current_cred());
286 return commit_creds(new);
288 error:
289 abort_creds(new);
290 return ret;
294 * has_capability - Does a task have a capability in init_user_ns
295 * @t: The task in question
296 * @cap: The capability to be tested for
298 * Return true if the specified task has the given superior capability
299 * currently in effect to the initial user namespace, false if not.
301 * Note that this does not set PF_SUPERPRIV on the task.
303 bool has_capability(struct task_struct *t, int cap)
305 int ret = security_real_capable(t, &init_user_ns, cap);
307 return (ret == 0);
311 * has_capability - Does a task have a capability in a specific user ns
312 * @t: The task in question
313 * @ns: target user namespace
314 * @cap: The capability to be tested for
316 * Return true if the specified task has the given superior capability
317 * currently in effect to the specified user namespace, false if not.
319 * Note that this does not set PF_SUPERPRIV on the task.
321 bool has_ns_capability(struct task_struct *t,
322 struct user_namespace *ns, int cap)
324 int ret = security_real_capable(t, ns, cap);
326 return (ret == 0);
330 * has_capability_noaudit - Does a task have a capability (unaudited)
331 * @t: The task in question
332 * @cap: The capability to be tested for
334 * Return true if the specified task has the given superior capability
335 * currently in effect to init_user_ns, false if not. Don't write an
336 * audit message for the check.
338 * Note that this does not set PF_SUPERPRIV on the task.
340 bool has_capability_noaudit(struct task_struct *t, int cap)
342 int ret = security_real_capable_noaudit(t, &init_user_ns, cap);
344 return (ret == 0);
348 * capable - Determine if the current task has a superior capability in effect
349 * @cap: The capability to be tested for
351 * Return true if the current task has the given superior capability currently
352 * available for use, false if not.
354 * This sets PF_SUPERPRIV on the task if the capability is available on the
355 * assumption that it's about to be used.
357 bool capable(int cap)
359 return ns_capable(&init_user_ns, cap);
361 EXPORT_SYMBOL(capable);
364 * ns_capable - Determine if the current task has a superior capability in effect
365 * @ns: The usernamespace we want the capability in
366 * @cap: The capability to be tested for
368 * Return true if the current task has the given superior capability currently
369 * available for use, false if not.
371 * This sets PF_SUPERPRIV on the task if the capability is available on the
372 * assumption that it's about to be used.
374 bool ns_capable(struct user_namespace *ns, int cap)
376 if (unlikely(!cap_valid(cap))) {
377 printk(KERN_CRIT "capable() called with invalid cap=%u\n", cap);
378 BUG();
381 if (security_capable(ns, current_cred(), cap) == 0) {
382 current->flags |= PF_SUPERPRIV;
383 return true;
385 return false;
387 EXPORT_SYMBOL(ns_capable);
390 * task_ns_capable - Determine whether current task has a superior
391 * capability targeted at a specific task's user namespace.
392 * @t: The task whose user namespace is targeted.
393 * @cap: The capability in question.
395 * Return true if it does, false otherwise.
397 bool task_ns_capable(struct task_struct *t, int cap)
399 return ns_capable(task_cred_xxx(t, user)->user_ns, cap);
401 EXPORT_SYMBOL(task_ns_capable);