[MTD] [NAND] S3C2410 Allow unset ecc to be ignored for ecc correction
[linux-2.6.git] / fs / xfs / xfs_inode.c
blobca12acb90394193571f4b09f9febba47ac091ea7
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_imap.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_sb.h"
30 #include "xfs_ag.h"
31 #include "xfs_dir2.h"
32 #include "xfs_dmapi.h"
33 #include "xfs_mount.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_acl.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70 #ifdef DEBUG
72 * Make sure that the extents in the given memory buffer
73 * are valid.
75 STATIC void
76 xfs_validate_extents(
77 xfs_ifork_t *ifp,
78 int nrecs,
79 xfs_exntfmt_t fmt)
81 xfs_bmbt_irec_t irec;
82 xfs_bmbt_rec_host_t rec;
83 int i;
85 for (i = 0; i < nrecs; i++) {
86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 rec.l0 = get_unaligned(&ep->l0);
88 rec.l1 = get_unaligned(&ep->l1);
89 xfs_bmbt_get_all(&rec, &irec);
90 if (fmt == XFS_EXTFMT_NOSTATE)
91 ASSERT(irec.br_state == XFS_EXT_NORM);
94 #else /* DEBUG */
95 #define xfs_validate_extents(ifp, nrecs, fmt)
96 #endif /* DEBUG */
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
102 #if defined(DEBUG)
103 void
104 xfs_inobp_check(
105 xfs_mount_t *mp,
106 xfs_buf_t *bp)
108 int i;
109 int j;
110 xfs_dinode_t *dip;
112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
114 for (i = 0; i < j; i++) {
115 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 i * mp->m_sb.sb_inodesize);
117 if (!dip->di_next_unlinked) {
118 xfs_fs_cmn_err(CE_ALERT, mp,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 bp);
121 ASSERT(dip->di_next_unlinked);
125 #endif
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
132 STATIC int
133 xfs_imap_to_bp(
134 xfs_mount_t *mp,
135 xfs_trans_t *tp,
136 xfs_imap_t *imap,
137 xfs_buf_t **bpp,
138 uint buf_flags,
139 uint imap_flags)
141 int error;
142 int i;
143 int ni;
144 xfs_buf_t *bp;
146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
147 (int)imap->im_len, buf_flags, &bp);
148 if (error) {
149 if (error != EAGAIN) {
150 cmn_err(CE_WARN,
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 "an error %d on %s. Returning error.",
153 error, mp->m_fsname);
154 } else {
155 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
157 return error;
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
164 #ifdef DEBUG
165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166 #else /* usual case */
167 ni = 1;
168 #endif
170 for (i = 0; i < ni; i++) {
171 int di_ok;
172 xfs_dinode_t *dip;
174 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 (i << mp->m_sb.sb_inodelog));
176 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
177 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 XFS_ERRTAG_ITOBP_INOTOBP,
180 XFS_RANDOM_ITOBP_INOTOBP))) {
181 if (imap_flags & XFS_IMAP_BULKSTAT) {
182 xfs_trans_brelse(tp, bp);
183 return XFS_ERROR(EINVAL);
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH, mp, dip);
187 #ifdef DEBUG
188 cmn_err(CE_PANIC,
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 (unsigned long long)imap->im_blkno, i,
193 be16_to_cpu(dip->di_core.di_magic));
194 #endif
195 xfs_trans_brelse(tp, bp);
196 return XFS_ERROR(EFSCORRUPTED);
200 xfs_inobp_check(mp, bp);
203 * Mark the buffer as an inode buffer now that it looks good
205 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
207 *bpp = bp;
208 return 0;
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
224 STATIC int
225 xfs_inotobp(
226 xfs_mount_t *mp,
227 xfs_trans_t *tp,
228 xfs_ino_t ino,
229 xfs_dinode_t **dipp,
230 xfs_buf_t **bpp,
231 int *offset)
233 xfs_imap_t imap;
234 xfs_buf_t *bp;
235 int error;
237 imap.im_blkno = 0;
238 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
239 if (error)
240 return error;
242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
243 if (error)
244 return error;
246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 *bpp = bp;
248 *offset = imap.im_boffset;
249 return 0;
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
258 * that buffer.
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
263 * If the inode is new and has not yet been initialized, use xfs_imap()
264 * to determine the size and location of the buffer to read from disk.
265 * If the inode has already been mapped to its buffer and read in once,
266 * then use the mapping information stored in the inode rather than
267 * calling xfs_imap(). This allows us to avoid the overhead of looking
268 * at the inode btree for small block file systems (see xfs_dilocate()).
269 * We can tell whether the inode has been mapped in before by comparing
270 * its disk block address to 0. Only uninitialized inodes will have
271 * 0 for the disk block address.
274 xfs_itobp(
275 xfs_mount_t *mp,
276 xfs_trans_t *tp,
277 xfs_inode_t *ip,
278 xfs_dinode_t **dipp,
279 xfs_buf_t **bpp,
280 xfs_daddr_t bno,
281 uint imap_flags,
282 uint buf_flags)
284 xfs_imap_t imap;
285 xfs_buf_t *bp;
286 int error;
288 if (ip->i_blkno == (xfs_daddr_t)0) {
289 imap.im_blkno = bno;
290 error = xfs_imap(mp, tp, ip->i_ino, &imap,
291 XFS_IMAP_LOOKUP | imap_flags);
292 if (error)
293 return error;
296 * Fill in the fields in the inode that will be used to
297 * map the inode to its buffer from now on.
299 ip->i_blkno = imap.im_blkno;
300 ip->i_len = imap.im_len;
301 ip->i_boffset = imap.im_boffset;
302 } else {
304 * We've already mapped the inode once, so just use the
305 * mapping that we saved the first time.
307 imap.im_blkno = ip->i_blkno;
308 imap.im_len = ip->i_len;
309 imap.im_boffset = ip->i_boffset;
311 ASSERT(bno == 0 || bno == imap.im_blkno);
313 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
314 if (error)
315 return error;
317 if (!bp) {
318 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
319 ASSERT(tp == NULL);
320 *bpp = NULL;
321 return EAGAIN;
324 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
325 *bpp = bp;
326 return 0;
330 * Move inode type and inode format specific information from the
331 * on-disk inode to the in-core inode. For fifos, devs, and sockets
332 * this means set if_rdev to the proper value. For files, directories,
333 * and symlinks this means to bring in the in-line data or extent
334 * pointers. For a file in B-tree format, only the root is immediately
335 * brought in-core. The rest will be in-lined in if_extents when it
336 * is first referenced (see xfs_iread_extents()).
338 STATIC int
339 xfs_iformat(
340 xfs_inode_t *ip,
341 xfs_dinode_t *dip)
343 xfs_attr_shortform_t *atp;
344 int size;
345 int error;
346 xfs_fsize_t di_size;
347 ip->i_df.if_ext_max =
348 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
349 error = 0;
351 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
352 be16_to_cpu(dip->di_core.di_anextents) >
353 be64_to_cpu(dip->di_core.di_nblocks))) {
354 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
355 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
356 (unsigned long long)ip->i_ino,
357 (int)(be32_to_cpu(dip->di_core.di_nextents) +
358 be16_to_cpu(dip->di_core.di_anextents)),
359 (unsigned long long)
360 be64_to_cpu(dip->di_core.di_nblocks));
361 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
362 ip->i_mount, dip);
363 return XFS_ERROR(EFSCORRUPTED);
366 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
367 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
368 "corrupt dinode %Lu, forkoff = 0x%x.",
369 (unsigned long long)ip->i_ino,
370 dip->di_core.di_forkoff);
371 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
372 ip->i_mount, dip);
373 return XFS_ERROR(EFSCORRUPTED);
376 switch (ip->i_d.di_mode & S_IFMT) {
377 case S_IFIFO:
378 case S_IFCHR:
379 case S_IFBLK:
380 case S_IFSOCK:
381 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
382 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
383 ip->i_mount, dip);
384 return XFS_ERROR(EFSCORRUPTED);
386 ip->i_d.di_size = 0;
387 ip->i_size = 0;
388 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
389 break;
391 case S_IFREG:
392 case S_IFLNK:
393 case S_IFDIR:
394 switch (dip->di_core.di_format) {
395 case XFS_DINODE_FMT_LOCAL:
397 * no local regular files yet
399 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
400 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
401 "corrupt inode %Lu "
402 "(local format for regular file).",
403 (unsigned long long) ip->i_ino);
404 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
405 XFS_ERRLEVEL_LOW,
406 ip->i_mount, dip);
407 return XFS_ERROR(EFSCORRUPTED);
410 di_size = be64_to_cpu(dip->di_core.di_size);
411 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
412 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
413 "corrupt inode %Lu "
414 "(bad size %Ld for local inode).",
415 (unsigned long long) ip->i_ino,
416 (long long) di_size);
417 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
418 XFS_ERRLEVEL_LOW,
419 ip->i_mount, dip);
420 return XFS_ERROR(EFSCORRUPTED);
423 size = (int)di_size;
424 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
425 break;
426 case XFS_DINODE_FMT_EXTENTS:
427 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
428 break;
429 case XFS_DINODE_FMT_BTREE:
430 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
431 break;
432 default:
433 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
434 ip->i_mount);
435 return XFS_ERROR(EFSCORRUPTED);
437 break;
439 default:
440 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
441 return XFS_ERROR(EFSCORRUPTED);
443 if (error) {
444 return error;
446 if (!XFS_DFORK_Q(dip))
447 return 0;
448 ASSERT(ip->i_afp == NULL);
449 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
450 ip->i_afp->if_ext_max =
451 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
452 switch (dip->di_core.di_aformat) {
453 case XFS_DINODE_FMT_LOCAL:
454 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
455 size = be16_to_cpu(atp->hdr.totsize);
456 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
457 break;
458 case XFS_DINODE_FMT_EXTENTS:
459 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
460 break;
461 case XFS_DINODE_FMT_BTREE:
462 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
463 break;
464 default:
465 error = XFS_ERROR(EFSCORRUPTED);
466 break;
468 if (error) {
469 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
470 ip->i_afp = NULL;
471 xfs_idestroy_fork(ip, XFS_DATA_FORK);
473 return error;
477 * The file is in-lined in the on-disk inode.
478 * If it fits into if_inline_data, then copy
479 * it there, otherwise allocate a buffer for it
480 * and copy the data there. Either way, set
481 * if_data to point at the data.
482 * If we allocate a buffer for the data, make
483 * sure that its size is a multiple of 4 and
484 * record the real size in i_real_bytes.
486 STATIC int
487 xfs_iformat_local(
488 xfs_inode_t *ip,
489 xfs_dinode_t *dip,
490 int whichfork,
491 int size)
493 xfs_ifork_t *ifp;
494 int real_size;
497 * If the size is unreasonable, then something
498 * is wrong and we just bail out rather than crash in
499 * kmem_alloc() or memcpy() below.
501 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
502 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
503 "corrupt inode %Lu "
504 "(bad size %d for local fork, size = %d).",
505 (unsigned long long) ip->i_ino, size,
506 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
507 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
508 ip->i_mount, dip);
509 return XFS_ERROR(EFSCORRUPTED);
511 ifp = XFS_IFORK_PTR(ip, whichfork);
512 real_size = 0;
513 if (size == 0)
514 ifp->if_u1.if_data = NULL;
515 else if (size <= sizeof(ifp->if_u2.if_inline_data))
516 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
517 else {
518 real_size = roundup(size, 4);
519 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
521 ifp->if_bytes = size;
522 ifp->if_real_bytes = real_size;
523 if (size)
524 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
525 ifp->if_flags &= ~XFS_IFEXTENTS;
526 ifp->if_flags |= XFS_IFINLINE;
527 return 0;
531 * The file consists of a set of extents all
532 * of which fit into the on-disk inode.
533 * If there are few enough extents to fit into
534 * the if_inline_ext, then copy them there.
535 * Otherwise allocate a buffer for them and copy
536 * them into it. Either way, set if_extents
537 * to point at the extents.
539 STATIC int
540 xfs_iformat_extents(
541 xfs_inode_t *ip,
542 xfs_dinode_t *dip,
543 int whichfork)
545 xfs_bmbt_rec_t *dp;
546 xfs_ifork_t *ifp;
547 int nex;
548 int size;
549 int i;
551 ifp = XFS_IFORK_PTR(ip, whichfork);
552 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
553 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
556 * If the number of extents is unreasonable, then something
557 * is wrong and we just bail out rather than crash in
558 * kmem_alloc() or memcpy() below.
560 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
561 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
562 "corrupt inode %Lu ((a)extents = %d).",
563 (unsigned long long) ip->i_ino, nex);
564 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
565 ip->i_mount, dip);
566 return XFS_ERROR(EFSCORRUPTED);
569 ifp->if_real_bytes = 0;
570 if (nex == 0)
571 ifp->if_u1.if_extents = NULL;
572 else if (nex <= XFS_INLINE_EXTS)
573 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
574 else
575 xfs_iext_add(ifp, 0, nex);
577 ifp->if_bytes = size;
578 if (size) {
579 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
580 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
581 for (i = 0; i < nex; i++, dp++) {
582 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
583 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
584 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
586 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
587 if (whichfork != XFS_DATA_FORK ||
588 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
589 if (unlikely(xfs_check_nostate_extents(
590 ifp, 0, nex))) {
591 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
592 XFS_ERRLEVEL_LOW,
593 ip->i_mount);
594 return XFS_ERROR(EFSCORRUPTED);
597 ifp->if_flags |= XFS_IFEXTENTS;
598 return 0;
602 * The file has too many extents to fit into
603 * the inode, so they are in B-tree format.
604 * Allocate a buffer for the root of the B-tree
605 * and copy the root into it. The i_extents
606 * field will remain NULL until all of the
607 * extents are read in (when they are needed).
609 STATIC int
610 xfs_iformat_btree(
611 xfs_inode_t *ip,
612 xfs_dinode_t *dip,
613 int whichfork)
615 xfs_bmdr_block_t *dfp;
616 xfs_ifork_t *ifp;
617 /* REFERENCED */
618 int nrecs;
619 int size;
621 ifp = XFS_IFORK_PTR(ip, whichfork);
622 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
623 size = XFS_BMAP_BROOT_SPACE(dfp);
624 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
627 * blow out if -- fork has less extents than can fit in
628 * fork (fork shouldn't be a btree format), root btree
629 * block has more records than can fit into the fork,
630 * or the number of extents is greater than the number of
631 * blocks.
633 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
634 || XFS_BMDR_SPACE_CALC(nrecs) >
635 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
636 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
637 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
638 "corrupt inode %Lu (btree).",
639 (unsigned long long) ip->i_ino);
640 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
641 ip->i_mount);
642 return XFS_ERROR(EFSCORRUPTED);
645 ifp->if_broot_bytes = size;
646 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
647 ASSERT(ifp->if_broot != NULL);
649 * Copy and convert from the on-disk structure
650 * to the in-memory structure.
652 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
653 ifp->if_broot, size);
654 ifp->if_flags &= ~XFS_IFEXTENTS;
655 ifp->if_flags |= XFS_IFBROOT;
657 return 0;
660 void
661 xfs_dinode_from_disk(
662 xfs_icdinode_t *to,
663 xfs_dinode_core_t *from)
665 to->di_magic = be16_to_cpu(from->di_magic);
666 to->di_mode = be16_to_cpu(from->di_mode);
667 to->di_version = from ->di_version;
668 to->di_format = from->di_format;
669 to->di_onlink = be16_to_cpu(from->di_onlink);
670 to->di_uid = be32_to_cpu(from->di_uid);
671 to->di_gid = be32_to_cpu(from->di_gid);
672 to->di_nlink = be32_to_cpu(from->di_nlink);
673 to->di_projid = be16_to_cpu(from->di_projid);
674 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
675 to->di_flushiter = be16_to_cpu(from->di_flushiter);
676 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
677 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
678 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
679 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
680 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
681 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
682 to->di_size = be64_to_cpu(from->di_size);
683 to->di_nblocks = be64_to_cpu(from->di_nblocks);
684 to->di_extsize = be32_to_cpu(from->di_extsize);
685 to->di_nextents = be32_to_cpu(from->di_nextents);
686 to->di_anextents = be16_to_cpu(from->di_anextents);
687 to->di_forkoff = from->di_forkoff;
688 to->di_aformat = from->di_aformat;
689 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
690 to->di_dmstate = be16_to_cpu(from->di_dmstate);
691 to->di_flags = be16_to_cpu(from->di_flags);
692 to->di_gen = be32_to_cpu(from->di_gen);
695 void
696 xfs_dinode_to_disk(
697 xfs_dinode_core_t *to,
698 xfs_icdinode_t *from)
700 to->di_magic = cpu_to_be16(from->di_magic);
701 to->di_mode = cpu_to_be16(from->di_mode);
702 to->di_version = from ->di_version;
703 to->di_format = from->di_format;
704 to->di_onlink = cpu_to_be16(from->di_onlink);
705 to->di_uid = cpu_to_be32(from->di_uid);
706 to->di_gid = cpu_to_be32(from->di_gid);
707 to->di_nlink = cpu_to_be32(from->di_nlink);
708 to->di_projid = cpu_to_be16(from->di_projid);
709 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
710 to->di_flushiter = cpu_to_be16(from->di_flushiter);
711 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
712 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
713 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
714 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
715 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
716 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
717 to->di_size = cpu_to_be64(from->di_size);
718 to->di_nblocks = cpu_to_be64(from->di_nblocks);
719 to->di_extsize = cpu_to_be32(from->di_extsize);
720 to->di_nextents = cpu_to_be32(from->di_nextents);
721 to->di_anextents = cpu_to_be16(from->di_anextents);
722 to->di_forkoff = from->di_forkoff;
723 to->di_aformat = from->di_aformat;
724 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
725 to->di_dmstate = cpu_to_be16(from->di_dmstate);
726 to->di_flags = cpu_to_be16(from->di_flags);
727 to->di_gen = cpu_to_be32(from->di_gen);
730 STATIC uint
731 _xfs_dic2xflags(
732 __uint16_t di_flags)
734 uint flags = 0;
736 if (di_flags & XFS_DIFLAG_ANY) {
737 if (di_flags & XFS_DIFLAG_REALTIME)
738 flags |= XFS_XFLAG_REALTIME;
739 if (di_flags & XFS_DIFLAG_PREALLOC)
740 flags |= XFS_XFLAG_PREALLOC;
741 if (di_flags & XFS_DIFLAG_IMMUTABLE)
742 flags |= XFS_XFLAG_IMMUTABLE;
743 if (di_flags & XFS_DIFLAG_APPEND)
744 flags |= XFS_XFLAG_APPEND;
745 if (di_flags & XFS_DIFLAG_SYNC)
746 flags |= XFS_XFLAG_SYNC;
747 if (di_flags & XFS_DIFLAG_NOATIME)
748 flags |= XFS_XFLAG_NOATIME;
749 if (di_flags & XFS_DIFLAG_NODUMP)
750 flags |= XFS_XFLAG_NODUMP;
751 if (di_flags & XFS_DIFLAG_RTINHERIT)
752 flags |= XFS_XFLAG_RTINHERIT;
753 if (di_flags & XFS_DIFLAG_PROJINHERIT)
754 flags |= XFS_XFLAG_PROJINHERIT;
755 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
756 flags |= XFS_XFLAG_NOSYMLINKS;
757 if (di_flags & XFS_DIFLAG_EXTSIZE)
758 flags |= XFS_XFLAG_EXTSIZE;
759 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
760 flags |= XFS_XFLAG_EXTSZINHERIT;
761 if (di_flags & XFS_DIFLAG_NODEFRAG)
762 flags |= XFS_XFLAG_NODEFRAG;
763 if (di_flags & XFS_DIFLAG_FILESTREAM)
764 flags |= XFS_XFLAG_FILESTREAM;
767 return flags;
770 uint
771 xfs_ip2xflags(
772 xfs_inode_t *ip)
774 xfs_icdinode_t *dic = &ip->i_d;
776 return _xfs_dic2xflags(dic->di_flags) |
777 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
780 uint
781 xfs_dic2xflags(
782 xfs_dinode_t *dip)
784 xfs_dinode_core_t *dic = &dip->di_core;
786 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
787 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
791 * Given a mount structure and an inode number, return a pointer
792 * to a newly allocated in-core inode corresponding to the given
793 * inode number.
795 * Initialize the inode's attributes and extent pointers if it
796 * already has them (it will not if the inode has no links).
799 xfs_iread(
800 xfs_mount_t *mp,
801 xfs_trans_t *tp,
802 xfs_ino_t ino,
803 xfs_inode_t **ipp,
804 xfs_daddr_t bno,
805 uint imap_flags)
807 xfs_buf_t *bp;
808 xfs_dinode_t *dip;
809 xfs_inode_t *ip;
810 int error;
812 ASSERT(xfs_inode_zone != NULL);
814 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
815 ip->i_ino = ino;
816 ip->i_mount = mp;
817 atomic_set(&ip->i_iocount, 0);
818 spin_lock_init(&ip->i_flags_lock);
821 * Get pointer's to the on-disk inode and the buffer containing it.
822 * If the inode number refers to a block outside the file system
823 * then xfs_itobp() will return NULL. In this case we should
824 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
825 * know that this is a new incore inode.
827 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
828 if (error) {
829 kmem_zone_free(xfs_inode_zone, ip);
830 return error;
834 * Initialize inode's trace buffers.
835 * Do this before xfs_iformat in case it adds entries.
837 #ifdef XFS_INODE_TRACE
838 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
839 #endif
840 #ifdef XFS_BMAP_TRACE
841 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
842 #endif
843 #ifdef XFS_BMBT_TRACE
844 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
845 #endif
846 #ifdef XFS_RW_TRACE
847 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
848 #endif
849 #ifdef XFS_ILOCK_TRACE
850 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
851 #endif
852 #ifdef XFS_DIR2_TRACE
853 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
854 #endif
857 * If we got something that isn't an inode it means someone
858 * (nfs or dmi) has a stale handle.
860 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
861 kmem_zone_free(xfs_inode_zone, ip);
862 xfs_trans_brelse(tp, bp);
863 #ifdef DEBUG
864 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
865 "dip->di_core.di_magic (0x%x) != "
866 "XFS_DINODE_MAGIC (0x%x)",
867 be16_to_cpu(dip->di_core.di_magic),
868 XFS_DINODE_MAGIC);
869 #endif /* DEBUG */
870 return XFS_ERROR(EINVAL);
874 * If the on-disk inode is already linked to a directory
875 * entry, copy all of the inode into the in-core inode.
876 * xfs_iformat() handles copying in the inode format
877 * specific information.
878 * Otherwise, just get the truly permanent information.
880 if (dip->di_core.di_mode) {
881 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
882 error = xfs_iformat(ip, dip);
883 if (error) {
884 kmem_zone_free(xfs_inode_zone, ip);
885 xfs_trans_brelse(tp, bp);
886 #ifdef DEBUG
887 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
888 "xfs_iformat() returned error %d",
889 error);
890 #endif /* DEBUG */
891 return error;
893 } else {
894 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
895 ip->i_d.di_version = dip->di_core.di_version;
896 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
897 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
899 * Make sure to pull in the mode here as well in
900 * case the inode is released without being used.
901 * This ensures that xfs_inactive() will see that
902 * the inode is already free and not try to mess
903 * with the uninitialized part of it.
905 ip->i_d.di_mode = 0;
907 * Initialize the per-fork minima and maxima for a new
908 * inode here. xfs_iformat will do it for old inodes.
910 ip->i_df.if_ext_max =
911 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
914 INIT_LIST_HEAD(&ip->i_reclaim);
917 * The inode format changed when we moved the link count and
918 * made it 32 bits long. If this is an old format inode,
919 * convert it in memory to look like a new one. If it gets
920 * flushed to disk we will convert back before flushing or
921 * logging it. We zero out the new projid field and the old link
922 * count field. We'll handle clearing the pad field (the remains
923 * of the old uuid field) when we actually convert the inode to
924 * the new format. We don't change the version number so that we
925 * can distinguish this from a real new format inode.
927 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
928 ip->i_d.di_nlink = ip->i_d.di_onlink;
929 ip->i_d.di_onlink = 0;
930 ip->i_d.di_projid = 0;
933 ip->i_delayed_blks = 0;
934 ip->i_size = ip->i_d.di_size;
937 * Mark the buffer containing the inode as something to keep
938 * around for a while. This helps to keep recently accessed
939 * meta-data in-core longer.
941 XFS_BUF_SET_REF(bp, XFS_INO_REF);
944 * Use xfs_trans_brelse() to release the buffer containing the
945 * on-disk inode, because it was acquired with xfs_trans_read_buf()
946 * in xfs_itobp() above. If tp is NULL, this is just a normal
947 * brelse(). If we're within a transaction, then xfs_trans_brelse()
948 * will only release the buffer if it is not dirty within the
949 * transaction. It will be OK to release the buffer in this case,
950 * because inodes on disk are never destroyed and we will be
951 * locking the new in-core inode before putting it in the hash
952 * table where other processes can find it. Thus we don't have
953 * to worry about the inode being changed just because we released
954 * the buffer.
956 xfs_trans_brelse(tp, bp);
957 *ipp = ip;
958 return 0;
962 * Read in extents from a btree-format inode.
963 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
966 xfs_iread_extents(
967 xfs_trans_t *tp,
968 xfs_inode_t *ip,
969 int whichfork)
971 int error;
972 xfs_ifork_t *ifp;
973 xfs_extnum_t nextents;
974 size_t size;
976 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
977 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
978 ip->i_mount);
979 return XFS_ERROR(EFSCORRUPTED);
981 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
982 size = nextents * sizeof(xfs_bmbt_rec_t);
983 ifp = XFS_IFORK_PTR(ip, whichfork);
986 * We know that the size is valid (it's checked in iformat_btree)
988 ifp->if_lastex = NULLEXTNUM;
989 ifp->if_bytes = ifp->if_real_bytes = 0;
990 ifp->if_flags |= XFS_IFEXTENTS;
991 xfs_iext_add(ifp, 0, nextents);
992 error = xfs_bmap_read_extents(tp, ip, whichfork);
993 if (error) {
994 xfs_iext_destroy(ifp);
995 ifp->if_flags &= ~XFS_IFEXTENTS;
996 return error;
998 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
999 return 0;
1003 * Allocate an inode on disk and return a copy of its in-core version.
1004 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1005 * appropriately within the inode. The uid and gid for the inode are
1006 * set according to the contents of the given cred structure.
1008 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1009 * has a free inode available, call xfs_iget()
1010 * to obtain the in-core version of the allocated inode. Finally,
1011 * fill in the inode and log its initial contents. In this case,
1012 * ialloc_context would be set to NULL and call_again set to false.
1014 * If xfs_dialloc() does not have an available inode,
1015 * it will replenish its supply by doing an allocation. Since we can
1016 * only do one allocation within a transaction without deadlocks, we
1017 * must commit the current transaction before returning the inode itself.
1018 * In this case, therefore, we will set call_again to true and return.
1019 * The caller should then commit the current transaction, start a new
1020 * transaction, and call xfs_ialloc() again to actually get the inode.
1022 * To ensure that some other process does not grab the inode that
1023 * was allocated during the first call to xfs_ialloc(), this routine
1024 * also returns the [locked] bp pointing to the head of the freelist
1025 * as ialloc_context. The caller should hold this buffer across
1026 * the commit and pass it back into this routine on the second call.
1028 * If we are allocating quota inodes, we do not have a parent inode
1029 * to attach to or associate with (i.e. pip == NULL) because they
1030 * are not linked into the directory structure - they are attached
1031 * directly to the superblock - and so have no parent.
1034 xfs_ialloc(
1035 xfs_trans_t *tp,
1036 xfs_inode_t *pip,
1037 mode_t mode,
1038 xfs_nlink_t nlink,
1039 xfs_dev_t rdev,
1040 cred_t *cr,
1041 xfs_prid_t prid,
1042 int okalloc,
1043 xfs_buf_t **ialloc_context,
1044 boolean_t *call_again,
1045 xfs_inode_t **ipp)
1047 xfs_ino_t ino;
1048 xfs_inode_t *ip;
1049 bhv_vnode_t *vp;
1050 uint flags;
1051 int error;
1054 * Call the space management code to pick
1055 * the on-disk inode to be allocated.
1057 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1058 ialloc_context, call_again, &ino);
1059 if (error != 0) {
1060 return error;
1062 if (*call_again || ino == NULLFSINO) {
1063 *ipp = NULL;
1064 return 0;
1066 ASSERT(*ialloc_context == NULL);
1069 * Get the in-core inode with the lock held exclusively.
1070 * This is because we're setting fields here we need
1071 * to prevent others from looking at until we're done.
1073 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1074 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1075 if (error != 0) {
1076 return error;
1078 ASSERT(ip != NULL);
1080 vp = XFS_ITOV(ip);
1081 ip->i_d.di_mode = (__uint16_t)mode;
1082 ip->i_d.di_onlink = 0;
1083 ip->i_d.di_nlink = nlink;
1084 ASSERT(ip->i_d.di_nlink == nlink);
1085 ip->i_d.di_uid = current_fsuid(cr);
1086 ip->i_d.di_gid = current_fsgid(cr);
1087 ip->i_d.di_projid = prid;
1088 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1091 * If the superblock version is up to where we support new format
1092 * inodes and this is currently an old format inode, then change
1093 * the inode version number now. This way we only do the conversion
1094 * here rather than here and in the flush/logging code.
1096 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1097 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1098 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1100 * We've already zeroed the old link count, the projid field,
1101 * and the pad field.
1106 * Project ids won't be stored on disk if we are using a version 1 inode.
1108 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1109 xfs_bump_ino_vers2(tp, ip);
1111 if (pip && XFS_INHERIT_GID(pip)) {
1112 ip->i_d.di_gid = pip->i_d.di_gid;
1113 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1114 ip->i_d.di_mode |= S_ISGID;
1119 * If the group ID of the new file does not match the effective group
1120 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1121 * (and only if the irix_sgid_inherit compatibility variable is set).
1123 if ((irix_sgid_inherit) &&
1124 (ip->i_d.di_mode & S_ISGID) &&
1125 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1126 ip->i_d.di_mode &= ~S_ISGID;
1129 ip->i_d.di_size = 0;
1130 ip->i_size = 0;
1131 ip->i_d.di_nextents = 0;
1132 ASSERT(ip->i_d.di_nblocks == 0);
1133 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1135 * di_gen will have been taken care of in xfs_iread.
1137 ip->i_d.di_extsize = 0;
1138 ip->i_d.di_dmevmask = 0;
1139 ip->i_d.di_dmstate = 0;
1140 ip->i_d.di_flags = 0;
1141 flags = XFS_ILOG_CORE;
1142 switch (mode & S_IFMT) {
1143 case S_IFIFO:
1144 case S_IFCHR:
1145 case S_IFBLK:
1146 case S_IFSOCK:
1147 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1148 ip->i_df.if_u2.if_rdev = rdev;
1149 ip->i_df.if_flags = 0;
1150 flags |= XFS_ILOG_DEV;
1151 break;
1152 case S_IFREG:
1153 if (pip && xfs_inode_is_filestream(pip)) {
1154 error = xfs_filestream_associate(pip, ip);
1155 if (error < 0)
1156 return -error;
1157 if (!error)
1158 xfs_iflags_set(ip, XFS_IFILESTREAM);
1160 /* fall through */
1161 case S_IFDIR:
1162 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1163 uint di_flags = 0;
1165 if ((mode & S_IFMT) == S_IFDIR) {
1166 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1167 di_flags |= XFS_DIFLAG_RTINHERIT;
1168 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1169 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1170 ip->i_d.di_extsize = pip->i_d.di_extsize;
1172 } else if ((mode & S_IFMT) == S_IFREG) {
1173 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1174 di_flags |= XFS_DIFLAG_REALTIME;
1175 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1176 di_flags |= XFS_DIFLAG_EXTSIZE;
1177 ip->i_d.di_extsize = pip->i_d.di_extsize;
1180 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1181 xfs_inherit_noatime)
1182 di_flags |= XFS_DIFLAG_NOATIME;
1183 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1184 xfs_inherit_nodump)
1185 di_flags |= XFS_DIFLAG_NODUMP;
1186 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1187 xfs_inherit_sync)
1188 di_flags |= XFS_DIFLAG_SYNC;
1189 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1190 xfs_inherit_nosymlinks)
1191 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1192 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1193 di_flags |= XFS_DIFLAG_PROJINHERIT;
1194 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1195 xfs_inherit_nodefrag)
1196 di_flags |= XFS_DIFLAG_NODEFRAG;
1197 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1198 di_flags |= XFS_DIFLAG_FILESTREAM;
1199 ip->i_d.di_flags |= di_flags;
1201 /* FALLTHROUGH */
1202 case S_IFLNK:
1203 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1204 ip->i_df.if_flags = XFS_IFEXTENTS;
1205 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1206 ip->i_df.if_u1.if_extents = NULL;
1207 break;
1208 default:
1209 ASSERT(0);
1212 * Attribute fork settings for new inode.
1214 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1215 ip->i_d.di_anextents = 0;
1218 * Log the new values stuffed into the inode.
1220 xfs_trans_log_inode(tp, ip, flags);
1222 /* now that we have an i_mode we can setup inode ops and unlock */
1223 xfs_initialize_vnode(tp->t_mountp, vp, ip);
1225 *ipp = ip;
1226 return 0;
1230 * Check to make sure that there are no blocks allocated to the
1231 * file beyond the size of the file. We don't check this for
1232 * files with fixed size extents or real time extents, but we
1233 * at least do it for regular files.
1235 #ifdef DEBUG
1236 void
1237 xfs_isize_check(
1238 xfs_mount_t *mp,
1239 xfs_inode_t *ip,
1240 xfs_fsize_t isize)
1242 xfs_fileoff_t map_first;
1243 int nimaps;
1244 xfs_bmbt_irec_t imaps[2];
1246 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1247 return;
1249 if (XFS_IS_REALTIME_INODE(ip))
1250 return;
1252 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1253 return;
1255 nimaps = 2;
1256 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1258 * The filesystem could be shutting down, so bmapi may return
1259 * an error.
1261 if (xfs_bmapi(NULL, ip, map_first,
1262 (XFS_B_TO_FSB(mp,
1263 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1264 map_first),
1265 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1266 NULL, NULL))
1267 return;
1268 ASSERT(nimaps == 1);
1269 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1271 #endif /* DEBUG */
1274 * Calculate the last possible buffered byte in a file. This must
1275 * include data that was buffered beyond the EOF by the write code.
1276 * This also needs to deal with overflowing the xfs_fsize_t type
1277 * which can happen for sizes near the limit.
1279 * We also need to take into account any blocks beyond the EOF. It
1280 * may be the case that they were buffered by a write which failed.
1281 * In that case the pages will still be in memory, but the inode size
1282 * will never have been updated.
1284 xfs_fsize_t
1285 xfs_file_last_byte(
1286 xfs_inode_t *ip)
1288 xfs_mount_t *mp;
1289 xfs_fsize_t last_byte;
1290 xfs_fileoff_t last_block;
1291 xfs_fileoff_t size_last_block;
1292 int error;
1294 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1296 mp = ip->i_mount;
1298 * Only check for blocks beyond the EOF if the extents have
1299 * been read in. This eliminates the need for the inode lock,
1300 * and it also saves us from looking when it really isn't
1301 * necessary.
1303 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1304 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1305 XFS_DATA_FORK);
1306 if (error) {
1307 last_block = 0;
1309 } else {
1310 last_block = 0;
1312 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1313 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1315 last_byte = XFS_FSB_TO_B(mp, last_block);
1316 if (last_byte < 0) {
1317 return XFS_MAXIOFFSET(mp);
1319 last_byte += (1 << mp->m_writeio_log);
1320 if (last_byte < 0) {
1321 return XFS_MAXIOFFSET(mp);
1323 return last_byte;
1326 #if defined(XFS_RW_TRACE)
1327 STATIC void
1328 xfs_itrunc_trace(
1329 int tag,
1330 xfs_inode_t *ip,
1331 int flag,
1332 xfs_fsize_t new_size,
1333 xfs_off_t toss_start,
1334 xfs_off_t toss_finish)
1336 if (ip->i_rwtrace == NULL) {
1337 return;
1340 ktrace_enter(ip->i_rwtrace,
1341 (void*)((long)tag),
1342 (void*)ip,
1343 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1344 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1345 (void*)((long)flag),
1346 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1347 (void*)(unsigned long)(new_size & 0xffffffff),
1348 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1349 (void*)(unsigned long)(toss_start & 0xffffffff),
1350 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1351 (void*)(unsigned long)(toss_finish & 0xffffffff),
1352 (void*)(unsigned long)current_cpu(),
1353 (void*)(unsigned long)current_pid(),
1354 (void*)NULL,
1355 (void*)NULL,
1356 (void*)NULL);
1358 #else
1359 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1360 #endif
1363 * Start the truncation of the file to new_size. The new size
1364 * must be smaller than the current size. This routine will
1365 * clear the buffer and page caches of file data in the removed
1366 * range, and xfs_itruncate_finish() will remove the underlying
1367 * disk blocks.
1369 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1370 * must NOT have the inode lock held at all. This is because we're
1371 * calling into the buffer/page cache code and we can't hold the
1372 * inode lock when we do so.
1374 * We need to wait for any direct I/Os in flight to complete before we
1375 * proceed with the truncate. This is needed to prevent the extents
1376 * being read or written by the direct I/Os from being removed while the
1377 * I/O is in flight as there is no other method of synchronising
1378 * direct I/O with the truncate operation. Also, because we hold
1379 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1380 * started until the truncate completes and drops the lock. Essentially,
1381 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1382 * between direct I/Os and the truncate operation.
1384 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1385 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1386 * in the case that the caller is locking things out of order and
1387 * may not be able to call xfs_itruncate_finish() with the inode lock
1388 * held without dropping the I/O lock. If the caller must drop the
1389 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1390 * must be called again with all the same restrictions as the initial
1391 * call.
1394 xfs_itruncate_start(
1395 xfs_inode_t *ip,
1396 uint flags,
1397 xfs_fsize_t new_size)
1399 xfs_fsize_t last_byte;
1400 xfs_off_t toss_start;
1401 xfs_mount_t *mp;
1402 bhv_vnode_t *vp;
1403 int error = 0;
1405 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1406 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1407 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1408 (flags == XFS_ITRUNC_MAYBE));
1410 mp = ip->i_mount;
1411 vp = XFS_ITOV(ip);
1413 /* wait for the completion of any pending DIOs */
1414 if (new_size < ip->i_size)
1415 vn_iowait(ip);
1418 * Call toss_pages or flushinval_pages to get rid of pages
1419 * overlapping the region being removed. We have to use
1420 * the less efficient flushinval_pages in the case that the
1421 * caller may not be able to finish the truncate without
1422 * dropping the inode's I/O lock. Make sure
1423 * to catch any pages brought in by buffers overlapping
1424 * the EOF by searching out beyond the isize by our
1425 * block size. We round new_size up to a block boundary
1426 * so that we don't toss things on the same block as
1427 * new_size but before it.
1429 * Before calling toss_page or flushinval_pages, make sure to
1430 * call remapf() over the same region if the file is mapped.
1431 * This frees up mapped file references to the pages in the
1432 * given range and for the flushinval_pages case it ensures
1433 * that we get the latest mapped changes flushed out.
1435 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1436 toss_start = XFS_FSB_TO_B(mp, toss_start);
1437 if (toss_start < 0) {
1439 * The place to start tossing is beyond our maximum
1440 * file size, so there is no way that the data extended
1441 * out there.
1443 return 0;
1445 last_byte = xfs_file_last_byte(ip);
1446 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1447 last_byte);
1448 if (last_byte > toss_start) {
1449 if (flags & XFS_ITRUNC_DEFINITE) {
1450 xfs_tosspages(ip, toss_start,
1451 -1, FI_REMAPF_LOCKED);
1452 } else {
1453 error = xfs_flushinval_pages(ip, toss_start,
1454 -1, FI_REMAPF_LOCKED);
1458 #ifdef DEBUG
1459 if (new_size == 0) {
1460 ASSERT(VN_CACHED(vp) == 0);
1462 #endif
1463 return error;
1467 * Shrink the file to the given new_size. The new size must be smaller than
1468 * the current size. This will free up the underlying blocks in the removed
1469 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1471 * The transaction passed to this routine must have made a permanent log
1472 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1473 * given transaction and start new ones, so make sure everything involved in
1474 * the transaction is tidy before calling here. Some transaction will be
1475 * returned to the caller to be committed. The incoming transaction must
1476 * already include the inode, and both inode locks must be held exclusively.
1477 * The inode must also be "held" within the transaction. On return the inode
1478 * will be "held" within the returned transaction. This routine does NOT
1479 * require any disk space to be reserved for it within the transaction.
1481 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1482 * indicates the fork which is to be truncated. For the attribute fork we only
1483 * support truncation to size 0.
1485 * We use the sync parameter to indicate whether or not the first transaction
1486 * we perform might have to be synchronous. For the attr fork, it needs to be
1487 * so if the unlink of the inode is not yet known to be permanent in the log.
1488 * This keeps us from freeing and reusing the blocks of the attribute fork
1489 * before the unlink of the inode becomes permanent.
1491 * For the data fork, we normally have to run synchronously if we're being
1492 * called out of the inactive path or we're being called out of the create path
1493 * where we're truncating an existing file. Either way, the truncate needs to
1494 * be sync so blocks don't reappear in the file with altered data in case of a
1495 * crash. wsync filesystems can run the first case async because anything that
1496 * shrinks the inode has to run sync so by the time we're called here from
1497 * inactive, the inode size is permanently set to 0.
1499 * Calls from the truncate path always need to be sync unless we're in a wsync
1500 * filesystem and the file has already been unlinked.
1502 * The caller is responsible for correctly setting the sync parameter. It gets
1503 * too hard for us to guess here which path we're being called out of just
1504 * based on inode state.
1506 * If we get an error, we must return with the inode locked and linked into the
1507 * current transaction. This keeps things simple for the higher level code,
1508 * because it always knows that the inode is locked and held in the transaction
1509 * that returns to it whether errors occur or not. We don't mark the inode
1510 * dirty on error so that transactions can be easily aborted if possible.
1513 xfs_itruncate_finish(
1514 xfs_trans_t **tp,
1515 xfs_inode_t *ip,
1516 xfs_fsize_t new_size,
1517 int fork,
1518 int sync)
1520 xfs_fsblock_t first_block;
1521 xfs_fileoff_t first_unmap_block;
1522 xfs_fileoff_t last_block;
1523 xfs_filblks_t unmap_len=0;
1524 xfs_mount_t *mp;
1525 xfs_trans_t *ntp;
1526 int done;
1527 int committed;
1528 xfs_bmap_free_t free_list;
1529 int error;
1531 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1532 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1533 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1534 ASSERT(*tp != NULL);
1535 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1536 ASSERT(ip->i_transp == *tp);
1537 ASSERT(ip->i_itemp != NULL);
1538 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1541 ntp = *tp;
1542 mp = (ntp)->t_mountp;
1543 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1546 * We only support truncating the entire attribute fork.
1548 if (fork == XFS_ATTR_FORK) {
1549 new_size = 0LL;
1551 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1552 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1554 * The first thing we do is set the size to new_size permanently
1555 * on disk. This way we don't have to worry about anyone ever
1556 * being able to look at the data being freed even in the face
1557 * of a crash. What we're getting around here is the case where
1558 * we free a block, it is allocated to another file, it is written
1559 * to, and then we crash. If the new data gets written to the
1560 * file but the log buffers containing the free and reallocation
1561 * don't, then we'd end up with garbage in the blocks being freed.
1562 * As long as we make the new_size permanent before actually
1563 * freeing any blocks it doesn't matter if they get writtten to.
1565 * The callers must signal into us whether or not the size
1566 * setting here must be synchronous. There are a few cases
1567 * where it doesn't have to be synchronous. Those cases
1568 * occur if the file is unlinked and we know the unlink is
1569 * permanent or if the blocks being truncated are guaranteed
1570 * to be beyond the inode eof (regardless of the link count)
1571 * and the eof value is permanent. Both of these cases occur
1572 * only on wsync-mounted filesystems. In those cases, we're
1573 * guaranteed that no user will ever see the data in the blocks
1574 * that are being truncated so the truncate can run async.
1575 * In the free beyond eof case, the file may wind up with
1576 * more blocks allocated to it than it needs if we crash
1577 * and that won't get fixed until the next time the file
1578 * is re-opened and closed but that's ok as that shouldn't
1579 * be too many blocks.
1581 * However, we can't just make all wsync xactions run async
1582 * because there's one call out of the create path that needs
1583 * to run sync where it's truncating an existing file to size
1584 * 0 whose size is > 0.
1586 * It's probably possible to come up with a test in this
1587 * routine that would correctly distinguish all the above
1588 * cases from the values of the function parameters and the
1589 * inode state but for sanity's sake, I've decided to let the
1590 * layers above just tell us. It's simpler to correctly figure
1591 * out in the layer above exactly under what conditions we
1592 * can run async and I think it's easier for others read and
1593 * follow the logic in case something has to be changed.
1594 * cscope is your friend -- rcc.
1596 * The attribute fork is much simpler.
1598 * For the attribute fork we allow the caller to tell us whether
1599 * the unlink of the inode that led to this call is yet permanent
1600 * in the on disk log. If it is not and we will be freeing extents
1601 * in this inode then we make the first transaction synchronous
1602 * to make sure that the unlink is permanent by the time we free
1603 * the blocks.
1605 if (fork == XFS_DATA_FORK) {
1606 if (ip->i_d.di_nextents > 0) {
1608 * If we are not changing the file size then do
1609 * not update the on-disk file size - we may be
1610 * called from xfs_inactive_free_eofblocks(). If we
1611 * update the on-disk file size and then the system
1612 * crashes before the contents of the file are
1613 * flushed to disk then the files may be full of
1614 * holes (ie NULL files bug).
1616 if (ip->i_size != new_size) {
1617 ip->i_d.di_size = new_size;
1618 ip->i_size = new_size;
1619 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1622 } else if (sync) {
1623 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1624 if (ip->i_d.di_anextents > 0)
1625 xfs_trans_set_sync(ntp);
1627 ASSERT(fork == XFS_DATA_FORK ||
1628 (fork == XFS_ATTR_FORK &&
1629 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1630 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1633 * Since it is possible for space to become allocated beyond
1634 * the end of the file (in a crash where the space is allocated
1635 * but the inode size is not yet updated), simply remove any
1636 * blocks which show up between the new EOF and the maximum
1637 * possible file size. If the first block to be removed is
1638 * beyond the maximum file size (ie it is the same as last_block),
1639 * then there is nothing to do.
1641 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1642 ASSERT(first_unmap_block <= last_block);
1643 done = 0;
1644 if (last_block == first_unmap_block) {
1645 done = 1;
1646 } else {
1647 unmap_len = last_block - first_unmap_block + 1;
1649 while (!done) {
1651 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1652 * will tell us whether it freed the entire range or
1653 * not. If this is a synchronous mount (wsync),
1654 * then we can tell bunmapi to keep all the
1655 * transactions asynchronous since the unlink
1656 * transaction that made this inode inactive has
1657 * already hit the disk. There's no danger of
1658 * the freed blocks being reused, there being a
1659 * crash, and the reused blocks suddenly reappearing
1660 * in this file with garbage in them once recovery
1661 * runs.
1663 XFS_BMAP_INIT(&free_list, &first_block);
1664 error = xfs_bunmapi(ntp, ip,
1665 first_unmap_block, unmap_len,
1666 XFS_BMAPI_AFLAG(fork) |
1667 (sync ? 0 : XFS_BMAPI_ASYNC),
1668 XFS_ITRUNC_MAX_EXTENTS,
1669 &first_block, &free_list,
1670 NULL, &done);
1671 if (error) {
1673 * If the bunmapi call encounters an error,
1674 * return to the caller where the transaction
1675 * can be properly aborted. We just need to
1676 * make sure we're not holding any resources
1677 * that we were not when we came in.
1679 xfs_bmap_cancel(&free_list);
1680 return error;
1684 * Duplicate the transaction that has the permanent
1685 * reservation and commit the old transaction.
1687 error = xfs_bmap_finish(tp, &free_list, &committed);
1688 ntp = *tp;
1689 if (committed) {
1690 /* link the inode into the next xact in the chain */
1691 xfs_trans_ijoin(ntp, ip,
1692 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1693 xfs_trans_ihold(ntp, ip);
1696 if (error) {
1698 * If the bmap finish call encounters an error, return
1699 * to the caller where the transaction can be properly
1700 * aborted. We just need to make sure we're not
1701 * holding any resources that we were not when we came
1702 * in.
1704 * Aborting from this point might lose some blocks in
1705 * the file system, but oh well.
1707 xfs_bmap_cancel(&free_list);
1708 return error;
1711 if (committed) {
1713 * Mark the inode dirty so it will be logged and
1714 * moved forward in the log as part of every commit.
1716 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1719 ntp = xfs_trans_dup(ntp);
1720 error = xfs_trans_commit(*tp, 0);
1721 *tp = ntp;
1723 /* link the inode into the next transaction in the chain */
1724 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1725 xfs_trans_ihold(ntp, ip);
1727 if (!error)
1728 error = xfs_trans_reserve(ntp, 0,
1729 XFS_ITRUNCATE_LOG_RES(mp), 0,
1730 XFS_TRANS_PERM_LOG_RES,
1731 XFS_ITRUNCATE_LOG_COUNT);
1732 if (error)
1733 return error;
1736 * Only update the size in the case of the data fork, but
1737 * always re-log the inode so that our permanent transaction
1738 * can keep on rolling it forward in the log.
1740 if (fork == XFS_DATA_FORK) {
1741 xfs_isize_check(mp, ip, new_size);
1743 * If we are not changing the file size then do
1744 * not update the on-disk file size - we may be
1745 * called from xfs_inactive_free_eofblocks(). If we
1746 * update the on-disk file size and then the system
1747 * crashes before the contents of the file are
1748 * flushed to disk then the files may be full of
1749 * holes (ie NULL files bug).
1751 if (ip->i_size != new_size) {
1752 ip->i_d.di_size = new_size;
1753 ip->i_size = new_size;
1756 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1757 ASSERT((new_size != 0) ||
1758 (fork == XFS_ATTR_FORK) ||
1759 (ip->i_delayed_blks == 0));
1760 ASSERT((new_size != 0) ||
1761 (fork == XFS_ATTR_FORK) ||
1762 (ip->i_d.di_nextents == 0));
1763 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1764 return 0;
1769 * xfs_igrow_start
1771 * Do the first part of growing a file: zero any data in the last
1772 * block that is beyond the old EOF. We need to do this before
1773 * the inode is joined to the transaction to modify the i_size.
1774 * That way we can drop the inode lock and call into the buffer
1775 * cache to get the buffer mapping the EOF.
1778 xfs_igrow_start(
1779 xfs_inode_t *ip,
1780 xfs_fsize_t new_size,
1781 cred_t *credp)
1783 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1784 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1785 ASSERT(new_size > ip->i_size);
1788 * Zero any pages that may have been created by
1789 * xfs_write_file() beyond the end of the file
1790 * and any blocks between the old and new file sizes.
1792 return xfs_zero_eof(ip, new_size, ip->i_size);
1796 * xfs_igrow_finish
1798 * This routine is called to extend the size of a file.
1799 * The inode must have both the iolock and the ilock locked
1800 * for update and it must be a part of the current transaction.
1801 * The xfs_igrow_start() function must have been called previously.
1802 * If the change_flag is not zero, the inode change timestamp will
1803 * be updated.
1805 void
1806 xfs_igrow_finish(
1807 xfs_trans_t *tp,
1808 xfs_inode_t *ip,
1809 xfs_fsize_t new_size,
1810 int change_flag)
1812 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1813 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1814 ASSERT(ip->i_transp == tp);
1815 ASSERT(new_size > ip->i_size);
1818 * Update the file size. Update the inode change timestamp
1819 * if change_flag set.
1821 ip->i_d.di_size = new_size;
1822 ip->i_size = new_size;
1823 if (change_flag)
1824 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1825 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1831 * This is called when the inode's link count goes to 0.
1832 * We place the on-disk inode on a list in the AGI. It
1833 * will be pulled from this list when the inode is freed.
1836 xfs_iunlink(
1837 xfs_trans_t *tp,
1838 xfs_inode_t *ip)
1840 xfs_mount_t *mp;
1841 xfs_agi_t *agi;
1842 xfs_dinode_t *dip;
1843 xfs_buf_t *agibp;
1844 xfs_buf_t *ibp;
1845 xfs_agnumber_t agno;
1846 xfs_daddr_t agdaddr;
1847 xfs_agino_t agino;
1848 short bucket_index;
1849 int offset;
1850 int error;
1851 int agi_ok;
1853 ASSERT(ip->i_d.di_nlink == 0);
1854 ASSERT(ip->i_d.di_mode != 0);
1855 ASSERT(ip->i_transp == tp);
1857 mp = tp->t_mountp;
1859 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1860 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1863 * Get the agi buffer first. It ensures lock ordering
1864 * on the list.
1866 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1867 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1868 if (error)
1869 return error;
1872 * Validate the magic number of the agi block.
1874 agi = XFS_BUF_TO_AGI(agibp);
1875 agi_ok =
1876 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1877 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1878 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1879 XFS_RANDOM_IUNLINK))) {
1880 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1881 xfs_trans_brelse(tp, agibp);
1882 return XFS_ERROR(EFSCORRUPTED);
1885 * Get the index into the agi hash table for the
1886 * list this inode will go on.
1888 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1889 ASSERT(agino != 0);
1890 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1891 ASSERT(agi->agi_unlinked[bucket_index]);
1892 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1894 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1896 * There is already another inode in the bucket we need
1897 * to add ourselves to. Add us at the front of the list.
1898 * Here we put the head pointer into our next pointer,
1899 * and then we fall through to point the head at us.
1901 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1902 if (error)
1903 return error;
1905 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1906 /* both on-disk, don't endian flip twice */
1907 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1908 offset = ip->i_boffset +
1909 offsetof(xfs_dinode_t, di_next_unlinked);
1910 xfs_trans_inode_buf(tp, ibp);
1911 xfs_trans_log_buf(tp, ibp, offset,
1912 (offset + sizeof(xfs_agino_t) - 1));
1913 xfs_inobp_check(mp, ibp);
1917 * Point the bucket head pointer at the inode being inserted.
1919 ASSERT(agino != 0);
1920 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1921 offset = offsetof(xfs_agi_t, agi_unlinked) +
1922 (sizeof(xfs_agino_t) * bucket_index);
1923 xfs_trans_log_buf(tp, agibp, offset,
1924 (offset + sizeof(xfs_agino_t) - 1));
1925 return 0;
1929 * Pull the on-disk inode from the AGI unlinked list.
1931 STATIC int
1932 xfs_iunlink_remove(
1933 xfs_trans_t *tp,
1934 xfs_inode_t *ip)
1936 xfs_ino_t next_ino;
1937 xfs_mount_t *mp;
1938 xfs_agi_t *agi;
1939 xfs_dinode_t *dip;
1940 xfs_buf_t *agibp;
1941 xfs_buf_t *ibp;
1942 xfs_agnumber_t agno;
1943 xfs_daddr_t agdaddr;
1944 xfs_agino_t agino;
1945 xfs_agino_t next_agino;
1946 xfs_buf_t *last_ibp;
1947 xfs_dinode_t *last_dip = NULL;
1948 short bucket_index;
1949 int offset, last_offset = 0;
1950 int error;
1951 int agi_ok;
1954 * First pull the on-disk inode from the AGI unlinked list.
1956 mp = tp->t_mountp;
1958 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1959 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1962 * Get the agi buffer first. It ensures lock ordering
1963 * on the list.
1965 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1966 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1967 if (error) {
1968 cmn_err(CE_WARN,
1969 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1970 error, mp->m_fsname);
1971 return error;
1974 * Validate the magic number of the agi block.
1976 agi = XFS_BUF_TO_AGI(agibp);
1977 agi_ok =
1978 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1979 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1980 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1981 XFS_RANDOM_IUNLINK_REMOVE))) {
1982 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1983 mp, agi);
1984 xfs_trans_brelse(tp, agibp);
1985 cmn_err(CE_WARN,
1986 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1987 mp->m_fsname);
1988 return XFS_ERROR(EFSCORRUPTED);
1991 * Get the index into the agi hash table for the
1992 * list this inode will go on.
1994 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1995 ASSERT(agino != 0);
1996 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1997 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1998 ASSERT(agi->agi_unlinked[bucket_index]);
2000 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2002 * We're at the head of the list. Get the inode's
2003 * on-disk buffer to see if there is anyone after us
2004 * on the list. Only modify our next pointer if it
2005 * is not already NULLAGINO. This saves us the overhead
2006 * of dealing with the buffer when there is no need to
2007 * change it.
2009 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2010 if (error) {
2011 cmn_err(CE_WARN,
2012 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2013 error, mp->m_fsname);
2014 return error;
2016 next_agino = be32_to_cpu(dip->di_next_unlinked);
2017 ASSERT(next_agino != 0);
2018 if (next_agino != NULLAGINO) {
2019 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2020 offset = ip->i_boffset +
2021 offsetof(xfs_dinode_t, di_next_unlinked);
2022 xfs_trans_inode_buf(tp, ibp);
2023 xfs_trans_log_buf(tp, ibp, offset,
2024 (offset + sizeof(xfs_agino_t) - 1));
2025 xfs_inobp_check(mp, ibp);
2026 } else {
2027 xfs_trans_brelse(tp, ibp);
2030 * Point the bucket head pointer at the next inode.
2032 ASSERT(next_agino != 0);
2033 ASSERT(next_agino != agino);
2034 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2035 offset = offsetof(xfs_agi_t, agi_unlinked) +
2036 (sizeof(xfs_agino_t) * bucket_index);
2037 xfs_trans_log_buf(tp, agibp, offset,
2038 (offset + sizeof(xfs_agino_t) - 1));
2039 } else {
2041 * We need to search the list for the inode being freed.
2043 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2044 last_ibp = NULL;
2045 while (next_agino != agino) {
2047 * If the last inode wasn't the one pointing to
2048 * us, then release its buffer since we're not
2049 * going to do anything with it.
2051 if (last_ibp != NULL) {
2052 xfs_trans_brelse(tp, last_ibp);
2054 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2055 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2056 &last_ibp, &last_offset);
2057 if (error) {
2058 cmn_err(CE_WARN,
2059 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2060 error, mp->m_fsname);
2061 return error;
2063 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2064 ASSERT(next_agino != NULLAGINO);
2065 ASSERT(next_agino != 0);
2068 * Now last_ibp points to the buffer previous to us on
2069 * the unlinked list. Pull us from the list.
2071 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2072 if (error) {
2073 cmn_err(CE_WARN,
2074 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2075 error, mp->m_fsname);
2076 return error;
2078 next_agino = be32_to_cpu(dip->di_next_unlinked);
2079 ASSERT(next_agino != 0);
2080 ASSERT(next_agino != agino);
2081 if (next_agino != NULLAGINO) {
2082 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2083 offset = ip->i_boffset +
2084 offsetof(xfs_dinode_t, di_next_unlinked);
2085 xfs_trans_inode_buf(tp, ibp);
2086 xfs_trans_log_buf(tp, ibp, offset,
2087 (offset + sizeof(xfs_agino_t) - 1));
2088 xfs_inobp_check(mp, ibp);
2089 } else {
2090 xfs_trans_brelse(tp, ibp);
2093 * Point the previous inode on the list to the next inode.
2095 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2096 ASSERT(next_agino != 0);
2097 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2098 xfs_trans_inode_buf(tp, last_ibp);
2099 xfs_trans_log_buf(tp, last_ibp, offset,
2100 (offset + sizeof(xfs_agino_t) - 1));
2101 xfs_inobp_check(mp, last_ibp);
2103 return 0;
2106 STATIC void
2107 xfs_ifree_cluster(
2108 xfs_inode_t *free_ip,
2109 xfs_trans_t *tp,
2110 xfs_ino_t inum)
2112 xfs_mount_t *mp = free_ip->i_mount;
2113 int blks_per_cluster;
2114 int nbufs;
2115 int ninodes;
2116 int i, j, found, pre_flushed;
2117 xfs_daddr_t blkno;
2118 xfs_buf_t *bp;
2119 xfs_inode_t *ip, **ip_found;
2120 xfs_inode_log_item_t *iip;
2121 xfs_log_item_t *lip;
2122 xfs_perag_t *pag = xfs_get_perag(mp, inum);
2124 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2125 blks_per_cluster = 1;
2126 ninodes = mp->m_sb.sb_inopblock;
2127 nbufs = XFS_IALLOC_BLOCKS(mp);
2128 } else {
2129 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2130 mp->m_sb.sb_blocksize;
2131 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2132 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2135 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2137 for (j = 0; j < nbufs; j++, inum += ninodes) {
2138 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2139 XFS_INO_TO_AGBNO(mp, inum));
2143 * Look for each inode in memory and attempt to lock it,
2144 * we can be racing with flush and tail pushing here.
2145 * any inode we get the locks on, add to an array of
2146 * inode items to process later.
2148 * The get the buffer lock, we could beat a flush
2149 * or tail pushing thread to the lock here, in which
2150 * case they will go looking for the inode buffer
2151 * and fail, we need some other form of interlock
2152 * here.
2154 found = 0;
2155 for (i = 0; i < ninodes; i++) {
2156 read_lock(&pag->pag_ici_lock);
2157 ip = radix_tree_lookup(&pag->pag_ici_root,
2158 XFS_INO_TO_AGINO(mp, (inum + i)));
2160 /* Inode not in memory or we found it already,
2161 * nothing to do
2163 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2164 read_unlock(&pag->pag_ici_lock);
2165 continue;
2168 if (xfs_inode_clean(ip)) {
2169 read_unlock(&pag->pag_ici_lock);
2170 continue;
2173 /* If we can get the locks then add it to the
2174 * list, otherwise by the time we get the bp lock
2175 * below it will already be attached to the
2176 * inode buffer.
2179 /* This inode will already be locked - by us, lets
2180 * keep it that way.
2183 if (ip == free_ip) {
2184 if (xfs_iflock_nowait(ip)) {
2185 xfs_iflags_set(ip, XFS_ISTALE);
2186 if (xfs_inode_clean(ip)) {
2187 xfs_ifunlock(ip);
2188 } else {
2189 ip_found[found++] = ip;
2192 read_unlock(&pag->pag_ici_lock);
2193 continue;
2196 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2197 if (xfs_iflock_nowait(ip)) {
2198 xfs_iflags_set(ip, XFS_ISTALE);
2200 if (xfs_inode_clean(ip)) {
2201 xfs_ifunlock(ip);
2202 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2203 } else {
2204 ip_found[found++] = ip;
2206 } else {
2207 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2210 read_unlock(&pag->pag_ici_lock);
2213 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2214 mp->m_bsize * blks_per_cluster,
2215 XFS_BUF_LOCK);
2217 pre_flushed = 0;
2218 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2219 while (lip) {
2220 if (lip->li_type == XFS_LI_INODE) {
2221 iip = (xfs_inode_log_item_t *)lip;
2222 ASSERT(iip->ili_logged == 1);
2223 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2224 spin_lock(&mp->m_ail_lock);
2225 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2226 spin_unlock(&mp->m_ail_lock);
2227 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2228 pre_flushed++;
2230 lip = lip->li_bio_list;
2233 for (i = 0; i < found; i++) {
2234 ip = ip_found[i];
2235 iip = ip->i_itemp;
2237 if (!iip) {
2238 ip->i_update_core = 0;
2239 xfs_ifunlock(ip);
2240 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2241 continue;
2244 iip->ili_last_fields = iip->ili_format.ilf_fields;
2245 iip->ili_format.ilf_fields = 0;
2246 iip->ili_logged = 1;
2247 spin_lock(&mp->m_ail_lock);
2248 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2249 spin_unlock(&mp->m_ail_lock);
2251 xfs_buf_attach_iodone(bp,
2252 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2253 xfs_istale_done, (xfs_log_item_t *)iip);
2254 if (ip != free_ip) {
2255 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2259 if (found || pre_flushed)
2260 xfs_trans_stale_inode_buf(tp, bp);
2261 xfs_trans_binval(tp, bp);
2264 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2265 xfs_put_perag(mp, pag);
2269 * This is called to return an inode to the inode free list.
2270 * The inode should already be truncated to 0 length and have
2271 * no pages associated with it. This routine also assumes that
2272 * the inode is already a part of the transaction.
2274 * The on-disk copy of the inode will have been added to the list
2275 * of unlinked inodes in the AGI. We need to remove the inode from
2276 * that list atomically with respect to freeing it here.
2279 xfs_ifree(
2280 xfs_trans_t *tp,
2281 xfs_inode_t *ip,
2282 xfs_bmap_free_t *flist)
2284 int error;
2285 int delete;
2286 xfs_ino_t first_ino;
2287 xfs_dinode_t *dip;
2288 xfs_buf_t *ibp;
2290 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2291 ASSERT(ip->i_transp == tp);
2292 ASSERT(ip->i_d.di_nlink == 0);
2293 ASSERT(ip->i_d.di_nextents == 0);
2294 ASSERT(ip->i_d.di_anextents == 0);
2295 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2296 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2297 ASSERT(ip->i_d.di_nblocks == 0);
2300 * Pull the on-disk inode from the AGI unlinked list.
2302 error = xfs_iunlink_remove(tp, ip);
2303 if (error != 0) {
2304 return error;
2307 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2308 if (error != 0) {
2309 return error;
2311 ip->i_d.di_mode = 0; /* mark incore inode as free */
2312 ip->i_d.di_flags = 0;
2313 ip->i_d.di_dmevmask = 0;
2314 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2315 ip->i_df.if_ext_max =
2316 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2317 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2318 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2320 * Bump the generation count so no one will be confused
2321 * by reincarnations of this inode.
2323 ip->i_d.di_gen++;
2325 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2327 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2328 if (error)
2329 return error;
2332 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2333 * from picking up this inode when it is reclaimed (its incore state
2334 * initialzed but not flushed to disk yet). The in-core di_mode is
2335 * already cleared and a corresponding transaction logged.
2336 * The hack here just synchronizes the in-core to on-disk
2337 * di_mode value in advance before the actual inode sync to disk.
2338 * This is OK because the inode is already unlinked and would never
2339 * change its di_mode again for this inode generation.
2340 * This is a temporary hack that would require a proper fix
2341 * in the future.
2343 dip->di_core.di_mode = 0;
2345 if (delete) {
2346 xfs_ifree_cluster(ip, tp, first_ino);
2349 return 0;
2353 * Reallocate the space for if_broot based on the number of records
2354 * being added or deleted as indicated in rec_diff. Move the records
2355 * and pointers in if_broot to fit the new size. When shrinking this
2356 * will eliminate holes between the records and pointers created by
2357 * the caller. When growing this will create holes to be filled in
2358 * by the caller.
2360 * The caller must not request to add more records than would fit in
2361 * the on-disk inode root. If the if_broot is currently NULL, then
2362 * if we adding records one will be allocated. The caller must also
2363 * not request that the number of records go below zero, although
2364 * it can go to zero.
2366 * ip -- the inode whose if_broot area is changing
2367 * ext_diff -- the change in the number of records, positive or negative,
2368 * requested for the if_broot array.
2370 void
2371 xfs_iroot_realloc(
2372 xfs_inode_t *ip,
2373 int rec_diff,
2374 int whichfork)
2376 int cur_max;
2377 xfs_ifork_t *ifp;
2378 xfs_bmbt_block_t *new_broot;
2379 int new_max;
2380 size_t new_size;
2381 char *np;
2382 char *op;
2385 * Handle the degenerate case quietly.
2387 if (rec_diff == 0) {
2388 return;
2391 ifp = XFS_IFORK_PTR(ip, whichfork);
2392 if (rec_diff > 0) {
2394 * If there wasn't any memory allocated before, just
2395 * allocate it now and get out.
2397 if (ifp->if_broot_bytes == 0) {
2398 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2399 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2400 KM_SLEEP);
2401 ifp->if_broot_bytes = (int)new_size;
2402 return;
2406 * If there is already an existing if_broot, then we need
2407 * to realloc() it and shift the pointers to their new
2408 * location. The records don't change location because
2409 * they are kept butted up against the btree block header.
2411 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2412 new_max = cur_max + rec_diff;
2413 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2414 ifp->if_broot = (xfs_bmbt_block_t *)
2415 kmem_realloc(ifp->if_broot,
2416 new_size,
2417 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2418 KM_SLEEP);
2419 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2420 ifp->if_broot_bytes);
2421 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2422 (int)new_size);
2423 ifp->if_broot_bytes = (int)new_size;
2424 ASSERT(ifp->if_broot_bytes <=
2425 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2426 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2427 return;
2431 * rec_diff is less than 0. In this case, we are shrinking the
2432 * if_broot buffer. It must already exist. If we go to zero
2433 * records, just get rid of the root and clear the status bit.
2435 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2436 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2437 new_max = cur_max + rec_diff;
2438 ASSERT(new_max >= 0);
2439 if (new_max > 0)
2440 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2441 else
2442 new_size = 0;
2443 if (new_size > 0) {
2444 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2446 * First copy over the btree block header.
2448 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2449 } else {
2450 new_broot = NULL;
2451 ifp->if_flags &= ~XFS_IFBROOT;
2455 * Only copy the records and pointers if there are any.
2457 if (new_max > 0) {
2459 * First copy the records.
2461 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2462 ifp->if_broot_bytes);
2463 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2464 (int)new_size);
2465 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2468 * Then copy the pointers.
2470 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2471 ifp->if_broot_bytes);
2472 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2473 (int)new_size);
2474 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2476 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2477 ifp->if_broot = new_broot;
2478 ifp->if_broot_bytes = (int)new_size;
2479 ASSERT(ifp->if_broot_bytes <=
2480 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2481 return;
2486 * This is called when the amount of space needed for if_data
2487 * is increased or decreased. The change in size is indicated by
2488 * the number of bytes that need to be added or deleted in the
2489 * byte_diff parameter.
2491 * If the amount of space needed has decreased below the size of the
2492 * inline buffer, then switch to using the inline buffer. Otherwise,
2493 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2494 * to what is needed.
2496 * ip -- the inode whose if_data area is changing
2497 * byte_diff -- the change in the number of bytes, positive or negative,
2498 * requested for the if_data array.
2500 void
2501 xfs_idata_realloc(
2502 xfs_inode_t *ip,
2503 int byte_diff,
2504 int whichfork)
2506 xfs_ifork_t *ifp;
2507 int new_size;
2508 int real_size;
2510 if (byte_diff == 0) {
2511 return;
2514 ifp = XFS_IFORK_PTR(ip, whichfork);
2515 new_size = (int)ifp->if_bytes + byte_diff;
2516 ASSERT(new_size >= 0);
2518 if (new_size == 0) {
2519 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2520 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2522 ifp->if_u1.if_data = NULL;
2523 real_size = 0;
2524 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2526 * If the valid extents/data can fit in if_inline_ext/data,
2527 * copy them from the malloc'd vector and free it.
2529 if (ifp->if_u1.if_data == NULL) {
2530 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2531 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2532 ASSERT(ifp->if_real_bytes != 0);
2533 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2534 new_size);
2535 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2536 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2538 real_size = 0;
2539 } else {
2541 * Stuck with malloc/realloc.
2542 * For inline data, the underlying buffer must be
2543 * a multiple of 4 bytes in size so that it can be
2544 * logged and stay on word boundaries. We enforce
2545 * that here.
2547 real_size = roundup(new_size, 4);
2548 if (ifp->if_u1.if_data == NULL) {
2549 ASSERT(ifp->if_real_bytes == 0);
2550 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2551 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2553 * Only do the realloc if the underlying size
2554 * is really changing.
2556 if (ifp->if_real_bytes != real_size) {
2557 ifp->if_u1.if_data =
2558 kmem_realloc(ifp->if_u1.if_data,
2559 real_size,
2560 ifp->if_real_bytes,
2561 KM_SLEEP);
2563 } else {
2564 ASSERT(ifp->if_real_bytes == 0);
2565 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2566 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2567 ifp->if_bytes);
2570 ifp->if_real_bytes = real_size;
2571 ifp->if_bytes = new_size;
2572 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2579 * Map inode to disk block and offset.
2581 * mp -- the mount point structure for the current file system
2582 * tp -- the current transaction
2583 * ino -- the inode number of the inode to be located
2584 * imap -- this structure is filled in with the information necessary
2585 * to retrieve the given inode from disk
2586 * flags -- flags to pass to xfs_dilocate indicating whether or not
2587 * lookups in the inode btree were OK or not
2590 xfs_imap(
2591 xfs_mount_t *mp,
2592 xfs_trans_t *tp,
2593 xfs_ino_t ino,
2594 xfs_imap_t *imap,
2595 uint flags)
2597 xfs_fsblock_t fsbno;
2598 int len;
2599 int off;
2600 int error;
2602 fsbno = imap->im_blkno ?
2603 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2604 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2605 if (error)
2606 return error;
2608 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2609 imap->im_len = XFS_FSB_TO_BB(mp, len);
2610 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2611 imap->im_ioffset = (ushort)off;
2612 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2615 * If the inode number maps to a block outside the bounds
2616 * of the file system then return NULL rather than calling
2617 * read_buf and panicing when we get an error from the
2618 * driver.
2620 if ((imap->im_blkno + imap->im_len) >
2621 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2622 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2623 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2624 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2625 (unsigned long long) imap->im_blkno,
2626 (unsigned long long) imap->im_len,
2627 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2628 return EINVAL;
2630 return 0;
2633 void
2634 xfs_idestroy_fork(
2635 xfs_inode_t *ip,
2636 int whichfork)
2638 xfs_ifork_t *ifp;
2640 ifp = XFS_IFORK_PTR(ip, whichfork);
2641 if (ifp->if_broot != NULL) {
2642 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2643 ifp->if_broot = NULL;
2647 * If the format is local, then we can't have an extents
2648 * array so just look for an inline data array. If we're
2649 * not local then we may or may not have an extents list,
2650 * so check and free it up if we do.
2652 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2653 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2654 (ifp->if_u1.if_data != NULL)) {
2655 ASSERT(ifp->if_real_bytes != 0);
2656 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2657 ifp->if_u1.if_data = NULL;
2658 ifp->if_real_bytes = 0;
2660 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2661 ((ifp->if_flags & XFS_IFEXTIREC) ||
2662 ((ifp->if_u1.if_extents != NULL) &&
2663 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2664 ASSERT(ifp->if_real_bytes != 0);
2665 xfs_iext_destroy(ifp);
2667 ASSERT(ifp->if_u1.if_extents == NULL ||
2668 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2669 ASSERT(ifp->if_real_bytes == 0);
2670 if (whichfork == XFS_ATTR_FORK) {
2671 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2672 ip->i_afp = NULL;
2677 * This is called free all the memory associated with an inode.
2678 * It must free the inode itself and any buffers allocated for
2679 * if_extents/if_data and if_broot. It must also free the lock
2680 * associated with the inode.
2682 void
2683 xfs_idestroy(
2684 xfs_inode_t *ip)
2686 switch (ip->i_d.di_mode & S_IFMT) {
2687 case S_IFREG:
2688 case S_IFDIR:
2689 case S_IFLNK:
2690 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2691 break;
2693 if (ip->i_afp)
2694 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2695 mrfree(&ip->i_lock);
2696 mrfree(&ip->i_iolock);
2697 freesema(&ip->i_flock);
2699 #ifdef XFS_INODE_TRACE
2700 ktrace_free(ip->i_trace);
2701 #endif
2702 #ifdef XFS_BMAP_TRACE
2703 ktrace_free(ip->i_xtrace);
2704 #endif
2705 #ifdef XFS_BMBT_TRACE
2706 ktrace_free(ip->i_btrace);
2707 #endif
2708 #ifdef XFS_RW_TRACE
2709 ktrace_free(ip->i_rwtrace);
2710 #endif
2711 #ifdef XFS_ILOCK_TRACE
2712 ktrace_free(ip->i_lock_trace);
2713 #endif
2714 #ifdef XFS_DIR2_TRACE
2715 ktrace_free(ip->i_dir_trace);
2716 #endif
2717 if (ip->i_itemp) {
2719 * Only if we are shutting down the fs will we see an
2720 * inode still in the AIL. If it is there, we should remove
2721 * it to prevent a use-after-free from occurring.
2723 xfs_mount_t *mp = ip->i_mount;
2724 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2726 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2727 XFS_FORCED_SHUTDOWN(ip->i_mount));
2728 if (lip->li_flags & XFS_LI_IN_AIL) {
2729 spin_lock(&mp->m_ail_lock);
2730 if (lip->li_flags & XFS_LI_IN_AIL)
2731 xfs_trans_delete_ail(mp, lip);
2732 else
2733 spin_unlock(&mp->m_ail_lock);
2735 xfs_inode_item_destroy(ip);
2737 kmem_zone_free(xfs_inode_zone, ip);
2742 * Increment the pin count of the given buffer.
2743 * This value is protected by ipinlock spinlock in the mount structure.
2745 void
2746 xfs_ipin(
2747 xfs_inode_t *ip)
2749 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2751 atomic_inc(&ip->i_pincount);
2755 * Decrement the pin count of the given inode, and wake up
2756 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2757 * inode must have been previously pinned with a call to xfs_ipin().
2759 void
2760 xfs_iunpin(
2761 xfs_inode_t *ip)
2763 ASSERT(atomic_read(&ip->i_pincount) > 0);
2765 if (atomic_dec_and_test(&ip->i_pincount))
2766 wake_up(&ip->i_ipin_wait);
2770 * This is called to unpin an inode. It can be directed to wait or to return
2771 * immediately without waiting for the inode to be unpinned. The caller must
2772 * have the inode locked in at least shared mode so that the buffer cannot be
2773 * subsequently pinned once someone is waiting for it to be unpinned.
2775 STATIC void
2776 __xfs_iunpin_wait(
2777 xfs_inode_t *ip,
2778 int wait)
2780 xfs_inode_log_item_t *iip = ip->i_itemp;
2782 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2783 if (atomic_read(&ip->i_pincount) == 0)
2784 return;
2786 /* Give the log a push to start the unpinning I/O */
2787 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2788 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2789 if (wait)
2790 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2793 static inline void
2794 xfs_iunpin_wait(
2795 xfs_inode_t *ip)
2797 __xfs_iunpin_wait(ip, 1);
2800 static inline void
2801 xfs_iunpin_nowait(
2802 xfs_inode_t *ip)
2804 __xfs_iunpin_wait(ip, 0);
2809 * xfs_iextents_copy()
2811 * This is called to copy the REAL extents (as opposed to the delayed
2812 * allocation extents) from the inode into the given buffer. It
2813 * returns the number of bytes copied into the buffer.
2815 * If there are no delayed allocation extents, then we can just
2816 * memcpy() the extents into the buffer. Otherwise, we need to
2817 * examine each extent in turn and skip those which are delayed.
2820 xfs_iextents_copy(
2821 xfs_inode_t *ip,
2822 xfs_bmbt_rec_t *dp,
2823 int whichfork)
2825 int copied;
2826 int i;
2827 xfs_ifork_t *ifp;
2828 int nrecs;
2829 xfs_fsblock_t start_block;
2831 ifp = XFS_IFORK_PTR(ip, whichfork);
2832 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2833 ASSERT(ifp->if_bytes > 0);
2835 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2836 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2837 ASSERT(nrecs > 0);
2840 * There are some delayed allocation extents in the
2841 * inode, so copy the extents one at a time and skip
2842 * the delayed ones. There must be at least one
2843 * non-delayed extent.
2845 copied = 0;
2846 for (i = 0; i < nrecs; i++) {
2847 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2848 start_block = xfs_bmbt_get_startblock(ep);
2849 if (ISNULLSTARTBLOCK(start_block)) {
2851 * It's a delayed allocation extent, so skip it.
2853 continue;
2856 /* Translate to on disk format */
2857 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2858 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2859 dp++;
2860 copied++;
2862 ASSERT(copied != 0);
2863 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2865 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2869 * Each of the following cases stores data into the same region
2870 * of the on-disk inode, so only one of them can be valid at
2871 * any given time. While it is possible to have conflicting formats
2872 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2873 * in EXTENTS format, this can only happen when the fork has
2874 * changed formats after being modified but before being flushed.
2875 * In these cases, the format always takes precedence, because the
2876 * format indicates the current state of the fork.
2878 /*ARGSUSED*/
2879 STATIC void
2880 xfs_iflush_fork(
2881 xfs_inode_t *ip,
2882 xfs_dinode_t *dip,
2883 xfs_inode_log_item_t *iip,
2884 int whichfork,
2885 xfs_buf_t *bp)
2887 char *cp;
2888 xfs_ifork_t *ifp;
2889 xfs_mount_t *mp;
2890 #ifdef XFS_TRANS_DEBUG
2891 int first;
2892 #endif
2893 static const short brootflag[2] =
2894 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2895 static const short dataflag[2] =
2896 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2897 static const short extflag[2] =
2898 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2900 if (!iip)
2901 return;
2902 ifp = XFS_IFORK_PTR(ip, whichfork);
2904 * This can happen if we gave up in iformat in an error path,
2905 * for the attribute fork.
2907 if (!ifp) {
2908 ASSERT(whichfork == XFS_ATTR_FORK);
2909 return;
2911 cp = XFS_DFORK_PTR(dip, whichfork);
2912 mp = ip->i_mount;
2913 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2914 case XFS_DINODE_FMT_LOCAL:
2915 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2916 (ifp->if_bytes > 0)) {
2917 ASSERT(ifp->if_u1.if_data != NULL);
2918 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2919 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2921 break;
2923 case XFS_DINODE_FMT_EXTENTS:
2924 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2925 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2926 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2927 (ifp->if_bytes == 0));
2928 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2929 (ifp->if_bytes > 0));
2930 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2931 (ifp->if_bytes > 0)) {
2932 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2933 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2934 whichfork);
2936 break;
2938 case XFS_DINODE_FMT_BTREE:
2939 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2940 (ifp->if_broot_bytes > 0)) {
2941 ASSERT(ifp->if_broot != NULL);
2942 ASSERT(ifp->if_broot_bytes <=
2943 (XFS_IFORK_SIZE(ip, whichfork) +
2944 XFS_BROOT_SIZE_ADJ));
2945 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2946 (xfs_bmdr_block_t *)cp,
2947 XFS_DFORK_SIZE(dip, mp, whichfork));
2949 break;
2951 case XFS_DINODE_FMT_DEV:
2952 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2953 ASSERT(whichfork == XFS_DATA_FORK);
2954 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
2956 break;
2958 case XFS_DINODE_FMT_UUID:
2959 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2960 ASSERT(whichfork == XFS_DATA_FORK);
2961 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2962 sizeof(uuid_t));
2964 break;
2966 default:
2967 ASSERT(0);
2968 break;
2972 STATIC int
2973 xfs_iflush_cluster(
2974 xfs_inode_t *ip,
2975 xfs_buf_t *bp)
2977 xfs_mount_t *mp = ip->i_mount;
2978 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2979 unsigned long first_index, mask;
2980 int ilist_size;
2981 xfs_inode_t **ilist;
2982 xfs_inode_t *iq;
2983 int nr_found;
2984 int clcount = 0;
2985 int bufwasdelwri;
2986 int i;
2988 ASSERT(pag->pagi_inodeok);
2989 ASSERT(pag->pag_ici_init);
2991 ilist_size = XFS_INODE_CLUSTER_SIZE(mp) * sizeof(xfs_inode_t *);
2992 ilist = kmem_alloc(ilist_size, KM_MAYFAIL);
2993 if (!ilist)
2994 return 0;
2996 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2997 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2998 read_lock(&pag->pag_ici_lock);
2999 /* really need a gang lookup range call here */
3000 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3001 first_index,
3002 XFS_INODE_CLUSTER_SIZE(mp));
3003 if (nr_found == 0)
3004 goto out_free;
3006 for (i = 0; i < nr_found; i++) {
3007 iq = ilist[i];
3008 if (iq == ip)
3009 continue;
3010 /* if the inode lies outside this cluster, we're done. */
3011 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
3012 break;
3014 * Do an un-protected check to see if the inode is dirty and
3015 * is a candidate for flushing. These checks will be repeated
3016 * later after the appropriate locks are acquired.
3018 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3019 continue;
3022 * Try to get locks. If any are unavailable or it is pinned,
3023 * then this inode cannot be flushed and is skipped.
3026 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3027 continue;
3028 if (!xfs_iflock_nowait(iq)) {
3029 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3030 continue;
3032 if (xfs_ipincount(iq)) {
3033 xfs_ifunlock(iq);
3034 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3035 continue;
3039 * arriving here means that this inode can be flushed. First
3040 * re-check that it's dirty before flushing.
3042 if (!xfs_inode_clean(iq)) {
3043 int error;
3044 error = xfs_iflush_int(iq, bp);
3045 if (error) {
3046 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3047 goto cluster_corrupt_out;
3049 clcount++;
3050 } else {
3051 xfs_ifunlock(iq);
3053 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3056 if (clcount) {
3057 XFS_STATS_INC(xs_icluster_flushcnt);
3058 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3061 out_free:
3062 read_unlock(&pag->pag_ici_lock);
3063 kmem_free(ilist, ilist_size);
3064 return 0;
3067 cluster_corrupt_out:
3069 * Corruption detected in the clustering loop. Invalidate the
3070 * inode buffer and shut down the filesystem.
3072 read_unlock(&pag->pag_ici_lock);
3074 * Clean up the buffer. If it was B_DELWRI, just release it --
3075 * brelse can handle it with no problems. If not, shut down the
3076 * filesystem before releasing the buffer.
3078 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3079 if (bufwasdelwri)
3080 xfs_buf_relse(bp);
3082 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3084 if (!bufwasdelwri) {
3086 * Just like incore_relse: if we have b_iodone functions,
3087 * mark the buffer as an error and call them. Otherwise
3088 * mark it as stale and brelse.
3090 if (XFS_BUF_IODONE_FUNC(bp)) {
3091 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3092 XFS_BUF_UNDONE(bp);
3093 XFS_BUF_STALE(bp);
3094 XFS_BUF_SHUT(bp);
3095 XFS_BUF_ERROR(bp,EIO);
3096 xfs_biodone(bp);
3097 } else {
3098 XFS_BUF_STALE(bp);
3099 xfs_buf_relse(bp);
3104 * Unlocks the flush lock
3106 xfs_iflush_abort(iq);
3107 kmem_free(ilist, ilist_size);
3108 return XFS_ERROR(EFSCORRUPTED);
3112 * xfs_iflush() will write a modified inode's changes out to the
3113 * inode's on disk home. The caller must have the inode lock held
3114 * in at least shared mode and the inode flush semaphore must be
3115 * held as well. The inode lock will still be held upon return from
3116 * the call and the caller is free to unlock it.
3117 * The inode flush lock will be unlocked when the inode reaches the disk.
3118 * The flags indicate how the inode's buffer should be written out.
3121 xfs_iflush(
3122 xfs_inode_t *ip,
3123 uint flags)
3125 xfs_inode_log_item_t *iip;
3126 xfs_buf_t *bp;
3127 xfs_dinode_t *dip;
3128 xfs_mount_t *mp;
3129 int error;
3130 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
3131 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3133 XFS_STATS_INC(xs_iflush_count);
3135 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3136 ASSERT(issemalocked(&(ip->i_flock)));
3137 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3138 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3140 iip = ip->i_itemp;
3141 mp = ip->i_mount;
3144 * If the inode isn't dirty, then just release the inode
3145 * flush lock and do nothing.
3147 if (xfs_inode_clean(ip)) {
3148 ASSERT((iip != NULL) ?
3149 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3150 xfs_ifunlock(ip);
3151 return 0;
3155 * We can't flush the inode until it is unpinned, so wait for it if we
3156 * are allowed to block. We know noone new can pin it, because we are
3157 * holding the inode lock shared and you need to hold it exclusively to
3158 * pin the inode.
3160 * If we are not allowed to block, force the log out asynchronously so
3161 * that when we come back the inode will be unpinned. If other inodes
3162 * in the same cluster are dirty, they will probably write the inode
3163 * out for us if they occur after the log force completes.
3165 if (noblock && xfs_ipincount(ip)) {
3166 xfs_iunpin_nowait(ip);
3167 xfs_ifunlock(ip);
3168 return EAGAIN;
3170 xfs_iunpin_wait(ip);
3173 * This may have been unpinned because the filesystem is shutting
3174 * down forcibly. If that's the case we must not write this inode
3175 * to disk, because the log record didn't make it to disk!
3177 if (XFS_FORCED_SHUTDOWN(mp)) {
3178 ip->i_update_core = 0;
3179 if (iip)
3180 iip->ili_format.ilf_fields = 0;
3181 xfs_ifunlock(ip);
3182 return XFS_ERROR(EIO);
3186 * Decide how buffer will be flushed out. This is done before
3187 * the call to xfs_iflush_int because this field is zeroed by it.
3189 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3191 * Flush out the inode buffer according to the directions
3192 * of the caller. In the cases where the caller has given
3193 * us a choice choose the non-delwri case. This is because
3194 * the inode is in the AIL and we need to get it out soon.
3196 switch (flags) {
3197 case XFS_IFLUSH_SYNC:
3198 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3199 flags = 0;
3200 break;
3201 case XFS_IFLUSH_ASYNC_NOBLOCK:
3202 case XFS_IFLUSH_ASYNC:
3203 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3204 flags = INT_ASYNC;
3205 break;
3206 case XFS_IFLUSH_DELWRI:
3207 flags = INT_DELWRI;
3208 break;
3209 default:
3210 ASSERT(0);
3211 flags = 0;
3212 break;
3214 } else {
3215 switch (flags) {
3216 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3217 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3218 case XFS_IFLUSH_DELWRI:
3219 flags = INT_DELWRI;
3220 break;
3221 case XFS_IFLUSH_ASYNC_NOBLOCK:
3222 case XFS_IFLUSH_ASYNC:
3223 flags = INT_ASYNC;
3224 break;
3225 case XFS_IFLUSH_SYNC:
3226 flags = 0;
3227 break;
3228 default:
3229 ASSERT(0);
3230 flags = 0;
3231 break;
3236 * Get the buffer containing the on-disk inode.
3238 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3239 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3240 if (error || !bp) {
3241 xfs_ifunlock(ip);
3242 return error;
3246 * First flush out the inode that xfs_iflush was called with.
3248 error = xfs_iflush_int(ip, bp);
3249 if (error)
3250 goto corrupt_out;
3253 * If the buffer is pinned then push on the log now so we won't
3254 * get stuck waiting in the write for too long.
3256 if (XFS_BUF_ISPINNED(bp))
3257 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3260 * inode clustering:
3261 * see if other inodes can be gathered into this write
3263 error = xfs_iflush_cluster(ip, bp);
3264 if (error)
3265 goto cluster_corrupt_out;
3267 if (flags & INT_DELWRI) {
3268 xfs_bdwrite(mp, bp);
3269 } else if (flags & INT_ASYNC) {
3270 error = xfs_bawrite(mp, bp);
3271 } else {
3272 error = xfs_bwrite(mp, bp);
3274 return error;
3276 corrupt_out:
3277 xfs_buf_relse(bp);
3278 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3279 cluster_corrupt_out:
3281 * Unlocks the flush lock
3283 xfs_iflush_abort(ip);
3284 return XFS_ERROR(EFSCORRUPTED);
3288 STATIC int
3289 xfs_iflush_int(
3290 xfs_inode_t *ip,
3291 xfs_buf_t *bp)
3293 xfs_inode_log_item_t *iip;
3294 xfs_dinode_t *dip;
3295 xfs_mount_t *mp;
3296 #ifdef XFS_TRANS_DEBUG
3297 int first;
3298 #endif
3300 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3301 ASSERT(issemalocked(&(ip->i_flock)));
3302 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3303 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3305 iip = ip->i_itemp;
3306 mp = ip->i_mount;
3310 * If the inode isn't dirty, then just release the inode
3311 * flush lock and do nothing.
3313 if (xfs_inode_clean(ip)) {
3314 xfs_ifunlock(ip);
3315 return 0;
3318 /* set *dip = inode's place in the buffer */
3319 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3322 * Clear i_update_core before copying out the data.
3323 * This is for coordination with our timestamp updates
3324 * that don't hold the inode lock. They will always
3325 * update the timestamps BEFORE setting i_update_core,
3326 * so if we clear i_update_core after they set it we
3327 * are guaranteed to see their updates to the timestamps.
3328 * I believe that this depends on strongly ordered memory
3329 * semantics, but we have that. We use the SYNCHRONIZE
3330 * macro to make sure that the compiler does not reorder
3331 * the i_update_core access below the data copy below.
3333 ip->i_update_core = 0;
3334 SYNCHRONIZE();
3337 * Make sure to get the latest atime from the Linux inode.
3339 xfs_synchronize_atime(ip);
3341 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3342 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3343 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3344 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3345 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3346 goto corrupt_out;
3348 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3349 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3350 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3351 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3352 ip->i_ino, ip, ip->i_d.di_magic);
3353 goto corrupt_out;
3355 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3356 if (XFS_TEST_ERROR(
3357 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3358 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3359 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3360 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3361 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3362 ip->i_ino, ip);
3363 goto corrupt_out;
3365 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3366 if (XFS_TEST_ERROR(
3367 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3368 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3369 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3370 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3371 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3372 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3373 ip->i_ino, ip);
3374 goto corrupt_out;
3377 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3378 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3379 XFS_RANDOM_IFLUSH_5)) {
3380 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3381 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3382 ip->i_ino,
3383 ip->i_d.di_nextents + ip->i_d.di_anextents,
3384 ip->i_d.di_nblocks,
3385 ip);
3386 goto corrupt_out;
3388 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3389 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3390 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3391 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3392 ip->i_ino, ip->i_d.di_forkoff, ip);
3393 goto corrupt_out;
3396 * bump the flush iteration count, used to detect flushes which
3397 * postdate a log record during recovery.
3400 ip->i_d.di_flushiter++;
3403 * Copy the dirty parts of the inode into the on-disk
3404 * inode. We always copy out the core of the inode,
3405 * because if the inode is dirty at all the core must
3406 * be.
3408 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3410 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3411 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3412 ip->i_d.di_flushiter = 0;
3415 * If this is really an old format inode and the superblock version
3416 * has not been updated to support only new format inodes, then
3417 * convert back to the old inode format. If the superblock version
3418 * has been updated, then make the conversion permanent.
3420 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3421 xfs_sb_version_hasnlink(&mp->m_sb));
3422 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3423 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3425 * Convert it back.
3427 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3428 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3429 } else {
3431 * The superblock version has already been bumped,
3432 * so just make the conversion to the new inode
3433 * format permanent.
3435 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3436 dip->di_core.di_version = XFS_DINODE_VERSION_2;
3437 ip->i_d.di_onlink = 0;
3438 dip->di_core.di_onlink = 0;
3439 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3440 memset(&(dip->di_core.di_pad[0]), 0,
3441 sizeof(dip->di_core.di_pad));
3442 ASSERT(ip->i_d.di_projid == 0);
3446 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3447 if (XFS_IFORK_Q(ip))
3448 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3449 xfs_inobp_check(mp, bp);
3452 * We've recorded everything logged in the inode, so we'd
3453 * like to clear the ilf_fields bits so we don't log and
3454 * flush things unnecessarily. However, we can't stop
3455 * logging all this information until the data we've copied
3456 * into the disk buffer is written to disk. If we did we might
3457 * overwrite the copy of the inode in the log with all the
3458 * data after re-logging only part of it, and in the face of
3459 * a crash we wouldn't have all the data we need to recover.
3461 * What we do is move the bits to the ili_last_fields field.
3462 * When logging the inode, these bits are moved back to the
3463 * ilf_fields field. In the xfs_iflush_done() routine we
3464 * clear ili_last_fields, since we know that the information
3465 * those bits represent is permanently on disk. As long as
3466 * the flush completes before the inode is logged again, then
3467 * both ilf_fields and ili_last_fields will be cleared.
3469 * We can play with the ilf_fields bits here, because the inode
3470 * lock must be held exclusively in order to set bits there
3471 * and the flush lock protects the ili_last_fields bits.
3472 * Set ili_logged so the flush done
3473 * routine can tell whether or not to look in the AIL.
3474 * Also, store the current LSN of the inode so that we can tell
3475 * whether the item has moved in the AIL from xfs_iflush_done().
3476 * In order to read the lsn we need the AIL lock, because
3477 * it is a 64 bit value that cannot be read atomically.
3479 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3480 iip->ili_last_fields = iip->ili_format.ilf_fields;
3481 iip->ili_format.ilf_fields = 0;
3482 iip->ili_logged = 1;
3484 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3485 spin_lock(&mp->m_ail_lock);
3486 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3487 spin_unlock(&mp->m_ail_lock);
3490 * Attach the function xfs_iflush_done to the inode's
3491 * buffer. This will remove the inode from the AIL
3492 * and unlock the inode's flush lock when the inode is
3493 * completely written to disk.
3495 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3496 xfs_iflush_done, (xfs_log_item_t *)iip);
3498 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3499 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3500 } else {
3502 * We're flushing an inode which is not in the AIL and has
3503 * not been logged but has i_update_core set. For this
3504 * case we can use a B_DELWRI flush and immediately drop
3505 * the inode flush lock because we can avoid the whole
3506 * AIL state thing. It's OK to drop the flush lock now,
3507 * because we've already locked the buffer and to do anything
3508 * you really need both.
3510 if (iip != NULL) {
3511 ASSERT(iip->ili_logged == 0);
3512 ASSERT(iip->ili_last_fields == 0);
3513 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3515 xfs_ifunlock(ip);
3518 return 0;
3520 corrupt_out:
3521 return XFS_ERROR(EFSCORRUPTED);
3526 * Flush all inactive inodes in mp.
3528 void
3529 xfs_iflush_all(
3530 xfs_mount_t *mp)
3532 xfs_inode_t *ip;
3533 bhv_vnode_t *vp;
3535 again:
3536 XFS_MOUNT_ILOCK(mp);
3537 ip = mp->m_inodes;
3538 if (ip == NULL)
3539 goto out;
3541 do {
3542 /* Make sure we skip markers inserted by sync */
3543 if (ip->i_mount == NULL) {
3544 ip = ip->i_mnext;
3545 continue;
3548 vp = XFS_ITOV_NULL(ip);
3549 if (!vp) {
3550 XFS_MOUNT_IUNLOCK(mp);
3551 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3552 goto again;
3555 ASSERT(vn_count(vp) == 0);
3557 ip = ip->i_mnext;
3558 } while (ip != mp->m_inodes);
3559 out:
3560 XFS_MOUNT_IUNLOCK(mp);
3563 #ifdef XFS_ILOCK_TRACE
3564 ktrace_t *xfs_ilock_trace_buf;
3566 void
3567 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3569 ktrace_enter(ip->i_lock_trace,
3570 (void *)ip,
3571 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3572 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3573 (void *)ra, /* caller of ilock */
3574 (void *)(unsigned long)current_cpu(),
3575 (void *)(unsigned long)current_pid(),
3576 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3578 #endif
3581 * Return a pointer to the extent record at file index idx.
3583 xfs_bmbt_rec_host_t *
3584 xfs_iext_get_ext(
3585 xfs_ifork_t *ifp, /* inode fork pointer */
3586 xfs_extnum_t idx) /* index of target extent */
3588 ASSERT(idx >= 0);
3589 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3590 return ifp->if_u1.if_ext_irec->er_extbuf;
3591 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3592 xfs_ext_irec_t *erp; /* irec pointer */
3593 int erp_idx = 0; /* irec index */
3594 xfs_extnum_t page_idx = idx; /* ext index in target list */
3596 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3597 return &erp->er_extbuf[page_idx];
3598 } else if (ifp->if_bytes) {
3599 return &ifp->if_u1.if_extents[idx];
3600 } else {
3601 return NULL;
3606 * Insert new item(s) into the extent records for incore inode
3607 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3609 void
3610 xfs_iext_insert(
3611 xfs_ifork_t *ifp, /* inode fork pointer */
3612 xfs_extnum_t idx, /* starting index of new items */
3613 xfs_extnum_t count, /* number of inserted items */
3614 xfs_bmbt_irec_t *new) /* items to insert */
3616 xfs_extnum_t i; /* extent record index */
3618 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3619 xfs_iext_add(ifp, idx, count);
3620 for (i = idx; i < idx + count; i++, new++)
3621 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3625 * This is called when the amount of space required for incore file
3626 * extents needs to be increased. The ext_diff parameter stores the
3627 * number of new extents being added and the idx parameter contains
3628 * the extent index where the new extents will be added. If the new
3629 * extents are being appended, then we just need to (re)allocate and
3630 * initialize the space. Otherwise, if the new extents are being
3631 * inserted into the middle of the existing entries, a bit more work
3632 * is required to make room for the new extents to be inserted. The
3633 * caller is responsible for filling in the new extent entries upon
3634 * return.
3636 void
3637 xfs_iext_add(
3638 xfs_ifork_t *ifp, /* inode fork pointer */
3639 xfs_extnum_t idx, /* index to begin adding exts */
3640 int ext_diff) /* number of extents to add */
3642 int byte_diff; /* new bytes being added */
3643 int new_size; /* size of extents after adding */
3644 xfs_extnum_t nextents; /* number of extents in file */
3646 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3647 ASSERT((idx >= 0) && (idx <= nextents));
3648 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3649 new_size = ifp->if_bytes + byte_diff;
3651 * If the new number of extents (nextents + ext_diff)
3652 * fits inside the inode, then continue to use the inline
3653 * extent buffer.
3655 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3656 if (idx < nextents) {
3657 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3658 &ifp->if_u2.if_inline_ext[idx],
3659 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3660 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3662 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3663 ifp->if_real_bytes = 0;
3664 ifp->if_lastex = nextents + ext_diff;
3667 * Otherwise use a linear (direct) extent list.
3668 * If the extents are currently inside the inode,
3669 * xfs_iext_realloc_direct will switch us from
3670 * inline to direct extent allocation mode.
3672 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3673 xfs_iext_realloc_direct(ifp, new_size);
3674 if (idx < nextents) {
3675 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3676 &ifp->if_u1.if_extents[idx],
3677 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3678 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3681 /* Indirection array */
3682 else {
3683 xfs_ext_irec_t *erp;
3684 int erp_idx = 0;
3685 int page_idx = idx;
3687 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3688 if (ifp->if_flags & XFS_IFEXTIREC) {
3689 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3690 } else {
3691 xfs_iext_irec_init(ifp);
3692 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3693 erp = ifp->if_u1.if_ext_irec;
3695 /* Extents fit in target extent page */
3696 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3697 if (page_idx < erp->er_extcount) {
3698 memmove(&erp->er_extbuf[page_idx + ext_diff],
3699 &erp->er_extbuf[page_idx],
3700 (erp->er_extcount - page_idx) *
3701 sizeof(xfs_bmbt_rec_t));
3702 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3704 erp->er_extcount += ext_diff;
3705 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3707 /* Insert a new extent page */
3708 else if (erp) {
3709 xfs_iext_add_indirect_multi(ifp,
3710 erp_idx, page_idx, ext_diff);
3713 * If extent(s) are being appended to the last page in
3714 * the indirection array and the new extent(s) don't fit
3715 * in the page, then erp is NULL and erp_idx is set to
3716 * the next index needed in the indirection array.
3718 else {
3719 int count = ext_diff;
3721 while (count) {
3722 erp = xfs_iext_irec_new(ifp, erp_idx);
3723 erp->er_extcount = count;
3724 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3725 if (count) {
3726 erp_idx++;
3731 ifp->if_bytes = new_size;
3735 * This is called when incore extents are being added to the indirection
3736 * array and the new extents do not fit in the target extent list. The
3737 * erp_idx parameter contains the irec index for the target extent list
3738 * in the indirection array, and the idx parameter contains the extent
3739 * index within the list. The number of extents being added is stored
3740 * in the count parameter.
3742 * |-------| |-------|
3743 * | | | | idx - number of extents before idx
3744 * | idx | | count |
3745 * | | | | count - number of extents being inserted at idx
3746 * |-------| |-------|
3747 * | count | | nex2 | nex2 - number of extents after idx + count
3748 * |-------| |-------|
3750 void
3751 xfs_iext_add_indirect_multi(
3752 xfs_ifork_t *ifp, /* inode fork pointer */
3753 int erp_idx, /* target extent irec index */
3754 xfs_extnum_t idx, /* index within target list */
3755 int count) /* new extents being added */
3757 int byte_diff; /* new bytes being added */
3758 xfs_ext_irec_t *erp; /* pointer to irec entry */
3759 xfs_extnum_t ext_diff; /* number of extents to add */
3760 xfs_extnum_t ext_cnt; /* new extents still needed */
3761 xfs_extnum_t nex2; /* extents after idx + count */
3762 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3763 int nlists; /* number of irec's (lists) */
3765 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3766 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3767 nex2 = erp->er_extcount - idx;
3768 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3771 * Save second part of target extent list
3772 * (all extents past */
3773 if (nex2) {
3774 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3775 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3776 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3777 erp->er_extcount -= nex2;
3778 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3779 memset(&erp->er_extbuf[idx], 0, byte_diff);
3783 * Add the new extents to the end of the target
3784 * list, then allocate new irec record(s) and
3785 * extent buffer(s) as needed to store the rest
3786 * of the new extents.
3788 ext_cnt = count;
3789 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3790 if (ext_diff) {
3791 erp->er_extcount += ext_diff;
3792 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3793 ext_cnt -= ext_diff;
3795 while (ext_cnt) {
3796 erp_idx++;
3797 erp = xfs_iext_irec_new(ifp, erp_idx);
3798 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3799 erp->er_extcount = ext_diff;
3800 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3801 ext_cnt -= ext_diff;
3804 /* Add nex2 extents back to indirection array */
3805 if (nex2) {
3806 xfs_extnum_t ext_avail;
3807 int i;
3809 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3810 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3811 i = 0;
3813 * If nex2 extents fit in the current page, append
3814 * nex2_ep after the new extents.
3816 if (nex2 <= ext_avail) {
3817 i = erp->er_extcount;
3820 * Otherwise, check if space is available in the
3821 * next page.
3823 else if ((erp_idx < nlists - 1) &&
3824 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3825 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3826 erp_idx++;
3827 erp++;
3828 /* Create a hole for nex2 extents */
3829 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3830 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3833 * Final choice, create a new extent page for
3834 * nex2 extents.
3836 else {
3837 erp_idx++;
3838 erp = xfs_iext_irec_new(ifp, erp_idx);
3840 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3841 kmem_free(nex2_ep, byte_diff);
3842 erp->er_extcount += nex2;
3843 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3848 * This is called when the amount of space required for incore file
3849 * extents needs to be decreased. The ext_diff parameter stores the
3850 * number of extents to be removed and the idx parameter contains
3851 * the extent index where the extents will be removed from.
3853 * If the amount of space needed has decreased below the linear
3854 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3855 * extent array. Otherwise, use kmem_realloc() to adjust the
3856 * size to what is needed.
3858 void
3859 xfs_iext_remove(
3860 xfs_ifork_t *ifp, /* inode fork pointer */
3861 xfs_extnum_t idx, /* index to begin removing exts */
3862 int ext_diff) /* number of extents to remove */
3864 xfs_extnum_t nextents; /* number of extents in file */
3865 int new_size; /* size of extents after removal */
3867 ASSERT(ext_diff > 0);
3868 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3869 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3871 if (new_size == 0) {
3872 xfs_iext_destroy(ifp);
3873 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3874 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3875 } else if (ifp->if_real_bytes) {
3876 xfs_iext_remove_direct(ifp, idx, ext_diff);
3877 } else {
3878 xfs_iext_remove_inline(ifp, idx, ext_diff);
3880 ifp->if_bytes = new_size;
3884 * This removes ext_diff extents from the inline buffer, beginning
3885 * at extent index idx.
3887 void
3888 xfs_iext_remove_inline(
3889 xfs_ifork_t *ifp, /* inode fork pointer */
3890 xfs_extnum_t idx, /* index to begin removing exts */
3891 int ext_diff) /* number of extents to remove */
3893 int nextents; /* number of extents in file */
3895 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3896 ASSERT(idx < XFS_INLINE_EXTS);
3897 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3898 ASSERT(((nextents - ext_diff) > 0) &&
3899 (nextents - ext_diff) < XFS_INLINE_EXTS);
3901 if (idx + ext_diff < nextents) {
3902 memmove(&ifp->if_u2.if_inline_ext[idx],
3903 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3904 (nextents - (idx + ext_diff)) *
3905 sizeof(xfs_bmbt_rec_t));
3906 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3907 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3908 } else {
3909 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3910 ext_diff * sizeof(xfs_bmbt_rec_t));
3915 * This removes ext_diff extents from a linear (direct) extent list,
3916 * beginning at extent index idx. If the extents are being removed
3917 * from the end of the list (ie. truncate) then we just need to re-
3918 * allocate the list to remove the extra space. Otherwise, if the
3919 * extents are being removed from the middle of the existing extent
3920 * entries, then we first need to move the extent records beginning
3921 * at idx + ext_diff up in the list to overwrite the records being
3922 * removed, then remove the extra space via kmem_realloc.
3924 void
3925 xfs_iext_remove_direct(
3926 xfs_ifork_t *ifp, /* inode fork pointer */
3927 xfs_extnum_t idx, /* index to begin removing exts */
3928 int ext_diff) /* number of extents to remove */
3930 xfs_extnum_t nextents; /* number of extents in file */
3931 int new_size; /* size of extents after removal */
3933 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3934 new_size = ifp->if_bytes -
3935 (ext_diff * sizeof(xfs_bmbt_rec_t));
3936 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3938 if (new_size == 0) {
3939 xfs_iext_destroy(ifp);
3940 return;
3942 /* Move extents up in the list (if needed) */
3943 if (idx + ext_diff < nextents) {
3944 memmove(&ifp->if_u1.if_extents[idx],
3945 &ifp->if_u1.if_extents[idx + ext_diff],
3946 (nextents - (idx + ext_diff)) *
3947 sizeof(xfs_bmbt_rec_t));
3949 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3950 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3952 * Reallocate the direct extent list. If the extents
3953 * will fit inside the inode then xfs_iext_realloc_direct
3954 * will switch from direct to inline extent allocation
3955 * mode for us.
3957 xfs_iext_realloc_direct(ifp, new_size);
3958 ifp->if_bytes = new_size;
3962 * This is called when incore extents are being removed from the
3963 * indirection array and the extents being removed span multiple extent
3964 * buffers. The idx parameter contains the file extent index where we
3965 * want to begin removing extents, and the count parameter contains
3966 * how many extents need to be removed.
3968 * |-------| |-------|
3969 * | nex1 | | | nex1 - number of extents before idx
3970 * |-------| | count |
3971 * | | | | count - number of extents being removed at idx
3972 * | count | |-------|
3973 * | | | nex2 | nex2 - number of extents after idx + count
3974 * |-------| |-------|
3976 void
3977 xfs_iext_remove_indirect(
3978 xfs_ifork_t *ifp, /* inode fork pointer */
3979 xfs_extnum_t idx, /* index to begin removing extents */
3980 int count) /* number of extents to remove */
3982 xfs_ext_irec_t *erp; /* indirection array pointer */
3983 int erp_idx = 0; /* indirection array index */
3984 xfs_extnum_t ext_cnt; /* extents left to remove */
3985 xfs_extnum_t ext_diff; /* extents to remove in current list */
3986 xfs_extnum_t nex1; /* number of extents before idx */
3987 xfs_extnum_t nex2; /* extents after idx + count */
3988 int nlists; /* entries in indirection array */
3989 int page_idx = idx; /* index in target extent list */
3991 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3992 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3993 ASSERT(erp != NULL);
3994 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3995 nex1 = page_idx;
3996 ext_cnt = count;
3997 while (ext_cnt) {
3998 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3999 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4001 * Check for deletion of entire list;
4002 * xfs_iext_irec_remove() updates extent offsets.
4004 if (ext_diff == erp->er_extcount) {
4005 xfs_iext_irec_remove(ifp, erp_idx);
4006 ext_cnt -= ext_diff;
4007 nex1 = 0;
4008 if (ext_cnt) {
4009 ASSERT(erp_idx < ifp->if_real_bytes /
4010 XFS_IEXT_BUFSZ);
4011 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4012 nex1 = 0;
4013 continue;
4014 } else {
4015 break;
4018 /* Move extents up (if needed) */
4019 if (nex2) {
4020 memmove(&erp->er_extbuf[nex1],
4021 &erp->er_extbuf[nex1 + ext_diff],
4022 nex2 * sizeof(xfs_bmbt_rec_t));
4024 /* Zero out rest of page */
4025 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4026 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4027 /* Update remaining counters */
4028 erp->er_extcount -= ext_diff;
4029 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4030 ext_cnt -= ext_diff;
4031 nex1 = 0;
4032 erp_idx++;
4033 erp++;
4035 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4036 xfs_iext_irec_compact(ifp);
4040 * Create, destroy, or resize a linear (direct) block of extents.
4042 void
4043 xfs_iext_realloc_direct(
4044 xfs_ifork_t *ifp, /* inode fork pointer */
4045 int new_size) /* new size of extents */
4047 int rnew_size; /* real new size of extents */
4049 rnew_size = new_size;
4051 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4052 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4053 (new_size != ifp->if_real_bytes)));
4055 /* Free extent records */
4056 if (new_size == 0) {
4057 xfs_iext_destroy(ifp);
4059 /* Resize direct extent list and zero any new bytes */
4060 else if (ifp->if_real_bytes) {
4061 /* Check if extents will fit inside the inode */
4062 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4063 xfs_iext_direct_to_inline(ifp, new_size /
4064 (uint)sizeof(xfs_bmbt_rec_t));
4065 ifp->if_bytes = new_size;
4066 return;
4068 if (!is_power_of_2(new_size)){
4069 rnew_size = roundup_pow_of_two(new_size);
4071 if (rnew_size != ifp->if_real_bytes) {
4072 ifp->if_u1.if_extents =
4073 kmem_realloc(ifp->if_u1.if_extents,
4074 rnew_size,
4075 ifp->if_real_bytes,
4076 KM_SLEEP);
4078 if (rnew_size > ifp->if_real_bytes) {
4079 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4080 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4081 rnew_size - ifp->if_real_bytes);
4085 * Switch from the inline extent buffer to a direct
4086 * extent list. Be sure to include the inline extent
4087 * bytes in new_size.
4089 else {
4090 new_size += ifp->if_bytes;
4091 if (!is_power_of_2(new_size)) {
4092 rnew_size = roundup_pow_of_two(new_size);
4094 xfs_iext_inline_to_direct(ifp, rnew_size);
4096 ifp->if_real_bytes = rnew_size;
4097 ifp->if_bytes = new_size;
4101 * Switch from linear (direct) extent records to inline buffer.
4103 void
4104 xfs_iext_direct_to_inline(
4105 xfs_ifork_t *ifp, /* inode fork pointer */
4106 xfs_extnum_t nextents) /* number of extents in file */
4108 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4109 ASSERT(nextents <= XFS_INLINE_EXTS);
4111 * The inline buffer was zeroed when we switched
4112 * from inline to direct extent allocation mode,
4113 * so we don't need to clear it here.
4115 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4116 nextents * sizeof(xfs_bmbt_rec_t));
4117 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4118 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4119 ifp->if_real_bytes = 0;
4123 * Switch from inline buffer to linear (direct) extent records.
4124 * new_size should already be rounded up to the next power of 2
4125 * by the caller (when appropriate), so use new_size as it is.
4126 * However, since new_size may be rounded up, we can't update
4127 * if_bytes here. It is the caller's responsibility to update
4128 * if_bytes upon return.
4130 void
4131 xfs_iext_inline_to_direct(
4132 xfs_ifork_t *ifp, /* inode fork pointer */
4133 int new_size) /* number of extents in file */
4135 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4136 memset(ifp->if_u1.if_extents, 0, new_size);
4137 if (ifp->if_bytes) {
4138 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4139 ifp->if_bytes);
4140 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4141 sizeof(xfs_bmbt_rec_t));
4143 ifp->if_real_bytes = new_size;
4147 * Resize an extent indirection array to new_size bytes.
4149 void
4150 xfs_iext_realloc_indirect(
4151 xfs_ifork_t *ifp, /* inode fork pointer */
4152 int new_size) /* new indirection array size */
4154 int nlists; /* number of irec's (ex lists) */
4155 int size; /* current indirection array size */
4157 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4158 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4159 size = nlists * sizeof(xfs_ext_irec_t);
4160 ASSERT(ifp->if_real_bytes);
4161 ASSERT((new_size >= 0) && (new_size != size));
4162 if (new_size == 0) {
4163 xfs_iext_destroy(ifp);
4164 } else {
4165 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4166 kmem_realloc(ifp->if_u1.if_ext_irec,
4167 new_size, size, KM_SLEEP);
4172 * Switch from indirection array to linear (direct) extent allocations.
4174 void
4175 xfs_iext_indirect_to_direct(
4176 xfs_ifork_t *ifp) /* inode fork pointer */
4178 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4179 xfs_extnum_t nextents; /* number of extents in file */
4180 int size; /* size of file extents */
4182 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4183 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4184 ASSERT(nextents <= XFS_LINEAR_EXTS);
4185 size = nextents * sizeof(xfs_bmbt_rec_t);
4187 xfs_iext_irec_compact_full(ifp);
4188 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4190 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4191 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4192 ifp->if_flags &= ~XFS_IFEXTIREC;
4193 ifp->if_u1.if_extents = ep;
4194 ifp->if_bytes = size;
4195 if (nextents < XFS_LINEAR_EXTS) {
4196 xfs_iext_realloc_direct(ifp, size);
4201 * Free incore file extents.
4203 void
4204 xfs_iext_destroy(
4205 xfs_ifork_t *ifp) /* inode fork pointer */
4207 if (ifp->if_flags & XFS_IFEXTIREC) {
4208 int erp_idx;
4209 int nlists;
4211 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4212 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4213 xfs_iext_irec_remove(ifp, erp_idx);
4215 ifp->if_flags &= ~XFS_IFEXTIREC;
4216 } else if (ifp->if_real_bytes) {
4217 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4218 } else if (ifp->if_bytes) {
4219 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4220 sizeof(xfs_bmbt_rec_t));
4222 ifp->if_u1.if_extents = NULL;
4223 ifp->if_real_bytes = 0;
4224 ifp->if_bytes = 0;
4228 * Return a pointer to the extent record for file system block bno.
4230 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4231 xfs_iext_bno_to_ext(
4232 xfs_ifork_t *ifp, /* inode fork pointer */
4233 xfs_fileoff_t bno, /* block number to search for */
4234 xfs_extnum_t *idxp) /* index of target extent */
4236 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4237 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4238 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4239 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4240 int high; /* upper boundary in search */
4241 xfs_extnum_t idx = 0; /* index of target extent */
4242 int low; /* lower boundary in search */
4243 xfs_extnum_t nextents; /* number of file extents */
4244 xfs_fileoff_t startoff = 0; /* start offset of extent */
4246 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4247 if (nextents == 0) {
4248 *idxp = 0;
4249 return NULL;
4251 low = 0;
4252 if (ifp->if_flags & XFS_IFEXTIREC) {
4253 /* Find target extent list */
4254 int erp_idx = 0;
4255 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4256 base = erp->er_extbuf;
4257 high = erp->er_extcount - 1;
4258 } else {
4259 base = ifp->if_u1.if_extents;
4260 high = nextents - 1;
4262 /* Binary search extent records */
4263 while (low <= high) {
4264 idx = (low + high) >> 1;
4265 ep = base + idx;
4266 startoff = xfs_bmbt_get_startoff(ep);
4267 blockcount = xfs_bmbt_get_blockcount(ep);
4268 if (bno < startoff) {
4269 high = idx - 1;
4270 } else if (bno >= startoff + blockcount) {
4271 low = idx + 1;
4272 } else {
4273 /* Convert back to file-based extent index */
4274 if (ifp->if_flags & XFS_IFEXTIREC) {
4275 idx += erp->er_extoff;
4277 *idxp = idx;
4278 return ep;
4281 /* Convert back to file-based extent index */
4282 if (ifp->if_flags & XFS_IFEXTIREC) {
4283 idx += erp->er_extoff;
4285 if (bno >= startoff + blockcount) {
4286 if (++idx == nextents) {
4287 ep = NULL;
4288 } else {
4289 ep = xfs_iext_get_ext(ifp, idx);
4292 *idxp = idx;
4293 return ep;
4297 * Return a pointer to the indirection array entry containing the
4298 * extent record for filesystem block bno. Store the index of the
4299 * target irec in *erp_idxp.
4301 xfs_ext_irec_t * /* pointer to found extent record */
4302 xfs_iext_bno_to_irec(
4303 xfs_ifork_t *ifp, /* inode fork pointer */
4304 xfs_fileoff_t bno, /* block number to search for */
4305 int *erp_idxp) /* irec index of target ext list */
4307 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4308 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4309 int erp_idx; /* indirection array index */
4310 int nlists; /* number of extent irec's (lists) */
4311 int high; /* binary search upper limit */
4312 int low; /* binary search lower limit */
4314 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4315 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4316 erp_idx = 0;
4317 low = 0;
4318 high = nlists - 1;
4319 while (low <= high) {
4320 erp_idx = (low + high) >> 1;
4321 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4322 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4323 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4324 high = erp_idx - 1;
4325 } else if (erp_next && bno >=
4326 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4327 low = erp_idx + 1;
4328 } else {
4329 break;
4332 *erp_idxp = erp_idx;
4333 return erp;
4337 * Return a pointer to the indirection array entry containing the
4338 * extent record at file extent index *idxp. Store the index of the
4339 * target irec in *erp_idxp and store the page index of the target
4340 * extent record in *idxp.
4342 xfs_ext_irec_t *
4343 xfs_iext_idx_to_irec(
4344 xfs_ifork_t *ifp, /* inode fork pointer */
4345 xfs_extnum_t *idxp, /* extent index (file -> page) */
4346 int *erp_idxp, /* pointer to target irec */
4347 int realloc) /* new bytes were just added */
4349 xfs_ext_irec_t *prev; /* pointer to previous irec */
4350 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4351 int erp_idx; /* indirection array index */
4352 int nlists; /* number of irec's (ex lists) */
4353 int high; /* binary search upper limit */
4354 int low; /* binary search lower limit */
4355 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4357 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4358 ASSERT(page_idx >= 0 && page_idx <=
4359 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4360 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4361 erp_idx = 0;
4362 low = 0;
4363 high = nlists - 1;
4365 /* Binary search extent irec's */
4366 while (low <= high) {
4367 erp_idx = (low + high) >> 1;
4368 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4369 prev = erp_idx > 0 ? erp - 1 : NULL;
4370 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4371 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4372 high = erp_idx - 1;
4373 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4374 (page_idx == erp->er_extoff + erp->er_extcount &&
4375 !realloc)) {
4376 low = erp_idx + 1;
4377 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4378 erp->er_extcount == XFS_LINEAR_EXTS) {
4379 ASSERT(realloc);
4380 page_idx = 0;
4381 erp_idx++;
4382 erp = erp_idx < nlists ? erp + 1 : NULL;
4383 break;
4384 } else {
4385 page_idx -= erp->er_extoff;
4386 break;
4389 *idxp = page_idx;
4390 *erp_idxp = erp_idx;
4391 return(erp);
4395 * Allocate and initialize an indirection array once the space needed
4396 * for incore extents increases above XFS_IEXT_BUFSZ.
4398 void
4399 xfs_iext_irec_init(
4400 xfs_ifork_t *ifp) /* inode fork pointer */
4402 xfs_ext_irec_t *erp; /* indirection array pointer */
4403 xfs_extnum_t nextents; /* number of extents in file */
4405 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4406 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4407 ASSERT(nextents <= XFS_LINEAR_EXTS);
4409 erp = (xfs_ext_irec_t *)
4410 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4412 if (nextents == 0) {
4413 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4414 } else if (!ifp->if_real_bytes) {
4415 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4416 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4417 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4419 erp->er_extbuf = ifp->if_u1.if_extents;
4420 erp->er_extcount = nextents;
4421 erp->er_extoff = 0;
4423 ifp->if_flags |= XFS_IFEXTIREC;
4424 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4425 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4426 ifp->if_u1.if_ext_irec = erp;
4428 return;
4432 * Allocate and initialize a new entry in the indirection array.
4434 xfs_ext_irec_t *
4435 xfs_iext_irec_new(
4436 xfs_ifork_t *ifp, /* inode fork pointer */
4437 int erp_idx) /* index for new irec */
4439 xfs_ext_irec_t *erp; /* indirection array pointer */
4440 int i; /* loop counter */
4441 int nlists; /* number of irec's (ex lists) */
4443 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4444 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4446 /* Resize indirection array */
4447 xfs_iext_realloc_indirect(ifp, ++nlists *
4448 sizeof(xfs_ext_irec_t));
4450 * Move records down in the array so the
4451 * new page can use erp_idx.
4453 erp = ifp->if_u1.if_ext_irec;
4454 for (i = nlists - 1; i > erp_idx; i--) {
4455 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4457 ASSERT(i == erp_idx);
4459 /* Initialize new extent record */
4460 erp = ifp->if_u1.if_ext_irec;
4461 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4462 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4463 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4464 erp[erp_idx].er_extcount = 0;
4465 erp[erp_idx].er_extoff = erp_idx > 0 ?
4466 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4467 return (&erp[erp_idx]);
4471 * Remove a record from the indirection array.
4473 void
4474 xfs_iext_irec_remove(
4475 xfs_ifork_t *ifp, /* inode fork pointer */
4476 int erp_idx) /* irec index to remove */
4478 xfs_ext_irec_t *erp; /* indirection array pointer */
4479 int i; /* loop counter */
4480 int nlists; /* number of irec's (ex lists) */
4482 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4483 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4484 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4485 if (erp->er_extbuf) {
4486 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4487 -erp->er_extcount);
4488 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4490 /* Compact extent records */
4491 erp = ifp->if_u1.if_ext_irec;
4492 for (i = erp_idx; i < nlists - 1; i++) {
4493 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4496 * Manually free the last extent record from the indirection
4497 * array. A call to xfs_iext_realloc_indirect() with a size
4498 * of zero would result in a call to xfs_iext_destroy() which
4499 * would in turn call this function again, creating a nasty
4500 * infinite loop.
4502 if (--nlists) {
4503 xfs_iext_realloc_indirect(ifp,
4504 nlists * sizeof(xfs_ext_irec_t));
4505 } else {
4506 kmem_free(ifp->if_u1.if_ext_irec,
4507 sizeof(xfs_ext_irec_t));
4509 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4513 * This is called to clean up large amounts of unused memory allocated
4514 * by the indirection array. Before compacting anything though, verify
4515 * that the indirection array is still needed and switch back to the
4516 * linear extent list (or even the inline buffer) if possible. The
4517 * compaction policy is as follows:
4519 * Full Compaction: Extents fit into a single page (or inline buffer)
4520 * Full Compaction: Extents occupy less than 10% of allocated space
4521 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4522 * No Compaction: Extents occupy at least 50% of allocated space
4524 void
4525 xfs_iext_irec_compact(
4526 xfs_ifork_t *ifp) /* inode fork pointer */
4528 xfs_extnum_t nextents; /* number of extents in file */
4529 int nlists; /* number of irec's (ex lists) */
4531 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4532 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4533 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4535 if (nextents == 0) {
4536 xfs_iext_destroy(ifp);
4537 } else if (nextents <= XFS_INLINE_EXTS) {
4538 xfs_iext_indirect_to_direct(ifp);
4539 xfs_iext_direct_to_inline(ifp, nextents);
4540 } else if (nextents <= XFS_LINEAR_EXTS) {
4541 xfs_iext_indirect_to_direct(ifp);
4542 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4543 xfs_iext_irec_compact_full(ifp);
4544 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4545 xfs_iext_irec_compact_pages(ifp);
4550 * Combine extents from neighboring extent pages.
4552 void
4553 xfs_iext_irec_compact_pages(
4554 xfs_ifork_t *ifp) /* inode fork pointer */
4556 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4557 int erp_idx = 0; /* indirection array index */
4558 int nlists; /* number of irec's (ex lists) */
4560 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4561 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4562 while (erp_idx < nlists - 1) {
4563 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4564 erp_next = erp + 1;
4565 if (erp_next->er_extcount <=
4566 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4567 memmove(&erp->er_extbuf[erp->er_extcount],
4568 erp_next->er_extbuf, erp_next->er_extcount *
4569 sizeof(xfs_bmbt_rec_t));
4570 erp->er_extcount += erp_next->er_extcount;
4572 * Free page before removing extent record
4573 * so er_extoffs don't get modified in
4574 * xfs_iext_irec_remove.
4576 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4577 erp_next->er_extbuf = NULL;
4578 xfs_iext_irec_remove(ifp, erp_idx + 1);
4579 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4580 } else {
4581 erp_idx++;
4587 * Fully compact the extent records managed by the indirection array.
4589 void
4590 xfs_iext_irec_compact_full(
4591 xfs_ifork_t *ifp) /* inode fork pointer */
4593 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4594 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4595 int erp_idx = 0; /* extent irec index */
4596 int ext_avail; /* empty entries in ex list */
4597 int ext_diff; /* number of exts to add */
4598 int nlists; /* number of irec's (ex lists) */
4600 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4601 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4602 erp = ifp->if_u1.if_ext_irec;
4603 ep = &erp->er_extbuf[erp->er_extcount];
4604 erp_next = erp + 1;
4605 ep_next = erp_next->er_extbuf;
4606 while (erp_idx < nlists - 1) {
4607 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4608 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4609 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4610 erp->er_extcount += ext_diff;
4611 erp_next->er_extcount -= ext_diff;
4612 /* Remove next page */
4613 if (erp_next->er_extcount == 0) {
4615 * Free page before removing extent record
4616 * so er_extoffs don't get modified in
4617 * xfs_iext_irec_remove.
4619 kmem_free(erp_next->er_extbuf,
4620 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4621 erp_next->er_extbuf = NULL;
4622 xfs_iext_irec_remove(ifp, erp_idx + 1);
4623 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4624 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4625 /* Update next page */
4626 } else {
4627 /* Move rest of page up to become next new page */
4628 memmove(erp_next->er_extbuf, ep_next,
4629 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4630 ep_next = erp_next->er_extbuf;
4631 memset(&ep_next[erp_next->er_extcount], 0,
4632 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4633 sizeof(xfs_bmbt_rec_t));
4635 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4636 erp_idx++;
4637 if (erp_idx < nlists)
4638 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4639 else
4640 break;
4642 ep = &erp->er_extbuf[erp->er_extcount];
4643 erp_next = erp + 1;
4644 ep_next = erp_next->er_extbuf;
4649 * This is called to update the er_extoff field in the indirection
4650 * array when extents have been added or removed from one of the
4651 * extent lists. erp_idx contains the irec index to begin updating
4652 * at and ext_diff contains the number of extents that were added
4653 * or removed.
4655 void
4656 xfs_iext_irec_update_extoffs(
4657 xfs_ifork_t *ifp, /* inode fork pointer */
4658 int erp_idx, /* irec index to update */
4659 int ext_diff) /* number of new extents */
4661 int i; /* loop counter */
4662 int nlists; /* number of irec's (ex lists */
4664 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4665 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4666 for (i = erp_idx; i < nlists; i++) {
4667 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;