4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_mutex (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_mutex (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * sb_lock (fs/fs-writeback.c)
82 * ->mapping->tree_lock (__sync_single_inode)
85 * ->anon_vma.lock (vma_adjust)
88 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
90 * ->page_table_lock or pte_lock
91 * ->swap_lock (try_to_unmap_one)
92 * ->private_lock (try_to_unmap_one)
93 * ->tree_lock (try_to_unmap_one)
94 * ->zone.lru_lock (follow_page->mark_page_accessed)
95 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
98 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
99 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
100 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
101 * ->inode->i_lock (zap_pte_range->set_page_dirty)
102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * ->tasklist_lock (memory_failure, collect_procs_ao)
109 * Delete a page from the page cache and free it. Caller has to make
110 * sure the page is locked and that nobody else uses it - or that usage
111 * is safe. The caller must hold the mapping's tree_lock.
113 void __delete_from_page_cache(struct page
*page
)
115 struct address_space
*mapping
= page
->mapping
;
118 * if we're uptodate, flush out into the cleancache, otherwise
119 * invalidate any existing cleancache entries. We can't leave
120 * stale data around in the cleancache once our page is gone
122 if (PageUptodate(page
) && PageMappedToDisk(page
))
123 cleancache_put_page(page
);
125 cleancache_invalidate_page(mapping
, page
);
127 radix_tree_delete(&mapping
->page_tree
, page
->index
);
128 page
->mapping
= NULL
;
129 /* Leave page->index set: truncation lookup relies upon it */
131 __dec_zone_page_state(page
, NR_FILE_PAGES
);
132 if (PageSwapBacked(page
))
133 __dec_zone_page_state(page
, NR_SHMEM
);
134 BUG_ON(page_mapped(page
));
137 * Some filesystems seem to re-dirty the page even after
138 * the VM has canceled the dirty bit (eg ext3 journaling).
140 * Fix it up by doing a final dirty accounting check after
141 * having removed the page entirely.
143 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
144 dec_zone_page_state(page
, NR_FILE_DIRTY
);
145 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
150 * delete_from_page_cache - delete page from page cache
151 * @page: the page which the kernel is trying to remove from page cache
153 * This must be called only on pages that have been verified to be in the page
154 * cache and locked. It will never put the page into the free list, the caller
155 * has a reference on the page.
157 void delete_from_page_cache(struct page
*page
)
159 struct address_space
*mapping
= page
->mapping
;
160 void (*freepage
)(struct page
*);
162 BUG_ON(!PageLocked(page
));
164 freepage
= mapping
->a_ops
->freepage
;
165 spin_lock_irq(&mapping
->tree_lock
);
166 __delete_from_page_cache(page
);
167 spin_unlock_irq(&mapping
->tree_lock
);
168 mem_cgroup_uncharge_cache_page(page
);
172 page_cache_release(page
);
174 EXPORT_SYMBOL(delete_from_page_cache
);
176 static int sleep_on_page(void *word
)
182 static int sleep_on_page_killable(void *word
)
185 return fatal_signal_pending(current
) ? -EINTR
: 0;
189 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
190 * @mapping: address space structure to write
191 * @start: offset in bytes where the range starts
192 * @end: offset in bytes where the range ends (inclusive)
193 * @sync_mode: enable synchronous operation
195 * Start writeback against all of a mapping's dirty pages that lie
196 * within the byte offsets <start, end> inclusive.
198 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
199 * opposed to a regular memory cleansing writeback. The difference between
200 * these two operations is that if a dirty page/buffer is encountered, it must
201 * be waited upon, and not just skipped over.
203 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
204 loff_t end
, int sync_mode
)
207 struct writeback_control wbc
= {
208 .sync_mode
= sync_mode
,
209 .nr_to_write
= LONG_MAX
,
210 .range_start
= start
,
214 if (!mapping_cap_writeback_dirty(mapping
))
217 ret
= do_writepages(mapping
, &wbc
);
221 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
224 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
227 int filemap_fdatawrite(struct address_space
*mapping
)
229 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
231 EXPORT_SYMBOL(filemap_fdatawrite
);
233 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
236 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
238 EXPORT_SYMBOL(filemap_fdatawrite_range
);
241 * filemap_flush - mostly a non-blocking flush
242 * @mapping: target address_space
244 * This is a mostly non-blocking flush. Not suitable for data-integrity
245 * purposes - I/O may not be started against all dirty pages.
247 int filemap_flush(struct address_space
*mapping
)
249 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
251 EXPORT_SYMBOL(filemap_flush
);
254 * filemap_fdatawait_range - wait for writeback to complete
255 * @mapping: address space structure to wait for
256 * @start_byte: offset in bytes where the range starts
257 * @end_byte: offset in bytes where the range ends (inclusive)
259 * Walk the list of under-writeback pages of the given address space
260 * in the given range and wait for all of them.
262 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
265 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
266 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
271 if (end_byte
< start_byte
)
274 pagevec_init(&pvec
, 0);
275 while ((index
<= end
) &&
276 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
277 PAGECACHE_TAG_WRITEBACK
,
278 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
281 for (i
= 0; i
< nr_pages
; i
++) {
282 struct page
*page
= pvec
.pages
[i
];
284 /* until radix tree lookup accepts end_index */
285 if (page
->index
> end
)
288 wait_on_page_writeback(page
);
289 if (TestClearPageError(page
))
292 pagevec_release(&pvec
);
296 /* Check for outstanding write errors */
297 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
299 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
304 EXPORT_SYMBOL(filemap_fdatawait_range
);
307 * filemap_fdatawait - wait for all under-writeback pages to complete
308 * @mapping: address space structure to wait for
310 * Walk the list of under-writeback pages of the given address space
311 * and wait for all of them.
313 int filemap_fdatawait(struct address_space
*mapping
)
315 loff_t i_size
= i_size_read(mapping
->host
);
320 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
322 EXPORT_SYMBOL(filemap_fdatawait
);
324 int filemap_write_and_wait(struct address_space
*mapping
)
328 if (mapping
->nrpages
) {
329 err
= filemap_fdatawrite(mapping
);
331 * Even if the above returned error, the pages may be
332 * written partially (e.g. -ENOSPC), so we wait for it.
333 * But the -EIO is special case, it may indicate the worst
334 * thing (e.g. bug) happened, so we avoid waiting for it.
337 int err2
= filemap_fdatawait(mapping
);
344 EXPORT_SYMBOL(filemap_write_and_wait
);
347 * filemap_write_and_wait_range - write out & wait on a file range
348 * @mapping: the address_space for the pages
349 * @lstart: offset in bytes where the range starts
350 * @lend: offset in bytes where the range ends (inclusive)
352 * Write out and wait upon file offsets lstart->lend, inclusive.
354 * Note that `lend' is inclusive (describes the last byte to be written) so
355 * that this function can be used to write to the very end-of-file (end = -1).
357 int filemap_write_and_wait_range(struct address_space
*mapping
,
358 loff_t lstart
, loff_t lend
)
362 if (mapping
->nrpages
) {
363 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
365 /* See comment of filemap_write_and_wait() */
367 int err2
= filemap_fdatawait_range(mapping
,
375 EXPORT_SYMBOL(filemap_write_and_wait_range
);
378 * replace_page_cache_page - replace a pagecache page with a new one
379 * @old: page to be replaced
380 * @new: page to replace with
381 * @gfp_mask: allocation mode
383 * This function replaces a page in the pagecache with a new one. On
384 * success it acquires the pagecache reference for the new page and
385 * drops it for the old page. Both the old and new pages must be
386 * locked. This function does not add the new page to the LRU, the
387 * caller must do that.
389 * The remove + add is atomic. The only way this function can fail is
390 * memory allocation failure.
392 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
396 VM_BUG_ON(!PageLocked(old
));
397 VM_BUG_ON(!PageLocked(new));
398 VM_BUG_ON(new->mapping
);
400 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
402 struct address_space
*mapping
= old
->mapping
;
403 void (*freepage
)(struct page
*);
405 pgoff_t offset
= old
->index
;
406 freepage
= mapping
->a_ops
->freepage
;
409 new->mapping
= mapping
;
412 spin_lock_irq(&mapping
->tree_lock
);
413 __delete_from_page_cache(old
);
414 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
417 __inc_zone_page_state(new, NR_FILE_PAGES
);
418 if (PageSwapBacked(new))
419 __inc_zone_page_state(new, NR_SHMEM
);
420 spin_unlock_irq(&mapping
->tree_lock
);
421 /* mem_cgroup codes must not be called under tree_lock */
422 mem_cgroup_replace_page_cache(old
, new);
423 radix_tree_preload_end();
426 page_cache_release(old
);
431 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
434 * add_to_page_cache_locked - add a locked page to the pagecache
436 * @mapping: the page's address_space
437 * @offset: page index
438 * @gfp_mask: page allocation mode
440 * This function is used to add a page to the pagecache. It must be locked.
441 * This function does not add the page to the LRU. The caller must do that.
443 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
444 pgoff_t offset
, gfp_t gfp_mask
)
448 VM_BUG_ON(!PageLocked(page
));
449 VM_BUG_ON(PageSwapBacked(page
));
451 error
= mem_cgroup_cache_charge(page
, current
->mm
,
452 gfp_mask
& GFP_RECLAIM_MASK
);
456 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
458 page_cache_get(page
);
459 page
->mapping
= mapping
;
460 page
->index
= offset
;
462 spin_lock_irq(&mapping
->tree_lock
);
463 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
464 if (likely(!error
)) {
466 __inc_zone_page_state(page
, NR_FILE_PAGES
);
467 spin_unlock_irq(&mapping
->tree_lock
);
469 page
->mapping
= NULL
;
470 /* Leave page->index set: truncation relies upon it */
471 spin_unlock_irq(&mapping
->tree_lock
);
472 mem_cgroup_uncharge_cache_page(page
);
473 page_cache_release(page
);
475 radix_tree_preload_end();
477 mem_cgroup_uncharge_cache_page(page
);
481 EXPORT_SYMBOL(add_to_page_cache_locked
);
483 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
484 pgoff_t offset
, gfp_t gfp_mask
)
488 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
490 lru_cache_add_file(page
);
493 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
496 struct page
*__page_cache_alloc(gfp_t gfp
)
501 if (cpuset_do_page_mem_spread()) {
502 unsigned int cpuset_mems_cookie
;
504 cpuset_mems_cookie
= get_mems_allowed();
505 n
= cpuset_mem_spread_node();
506 page
= alloc_pages_exact_node(n
, gfp
, 0);
507 } while (!put_mems_allowed(cpuset_mems_cookie
) && !page
);
511 return alloc_pages(gfp
, 0);
513 EXPORT_SYMBOL(__page_cache_alloc
);
517 * In order to wait for pages to become available there must be
518 * waitqueues associated with pages. By using a hash table of
519 * waitqueues where the bucket discipline is to maintain all
520 * waiters on the same queue and wake all when any of the pages
521 * become available, and for the woken contexts to check to be
522 * sure the appropriate page became available, this saves space
523 * at a cost of "thundering herd" phenomena during rare hash
526 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
528 const struct zone
*zone
= page_zone(page
);
530 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
533 static inline void wake_up_page(struct page
*page
, int bit
)
535 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
538 void wait_on_page_bit(struct page
*page
, int bit_nr
)
540 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
542 if (test_bit(bit_nr
, &page
->flags
))
543 __wait_on_bit(page_waitqueue(page
), &wait
, sleep_on_page
,
544 TASK_UNINTERRUPTIBLE
);
546 EXPORT_SYMBOL(wait_on_page_bit
);
548 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
550 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
552 if (!test_bit(bit_nr
, &page
->flags
))
555 return __wait_on_bit(page_waitqueue(page
), &wait
,
556 sleep_on_page_killable
, TASK_KILLABLE
);
560 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
561 * @page: Page defining the wait queue of interest
562 * @waiter: Waiter to add to the queue
564 * Add an arbitrary @waiter to the wait queue for the nominated @page.
566 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
568 wait_queue_head_t
*q
= page_waitqueue(page
);
571 spin_lock_irqsave(&q
->lock
, flags
);
572 __add_wait_queue(q
, waiter
);
573 spin_unlock_irqrestore(&q
->lock
, flags
);
575 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
578 * unlock_page - unlock a locked page
581 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
582 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
583 * mechananism between PageLocked pages and PageWriteback pages is shared.
584 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
586 * The mb is necessary to enforce ordering between the clear_bit and the read
587 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
589 void unlock_page(struct page
*page
)
591 VM_BUG_ON(!PageLocked(page
));
592 clear_bit_unlock(PG_locked
, &page
->flags
);
593 smp_mb__after_clear_bit();
594 wake_up_page(page
, PG_locked
);
596 EXPORT_SYMBOL(unlock_page
);
599 * end_page_writeback - end writeback against a page
602 void end_page_writeback(struct page
*page
)
604 if (TestClearPageReclaim(page
))
605 rotate_reclaimable_page(page
);
607 if (!test_clear_page_writeback(page
))
610 smp_mb__after_clear_bit();
611 wake_up_page(page
, PG_writeback
);
613 EXPORT_SYMBOL(end_page_writeback
);
616 * __lock_page - get a lock on the page, assuming we need to sleep to get it
617 * @page: the page to lock
619 void __lock_page(struct page
*page
)
621 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
623 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sleep_on_page
,
624 TASK_UNINTERRUPTIBLE
);
626 EXPORT_SYMBOL(__lock_page
);
628 int __lock_page_killable(struct page
*page
)
630 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
632 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
633 sleep_on_page_killable
, TASK_KILLABLE
);
635 EXPORT_SYMBOL_GPL(__lock_page_killable
);
637 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
640 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
642 * CAUTION! In this case, mmap_sem is not released
643 * even though return 0.
645 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
648 up_read(&mm
->mmap_sem
);
649 if (flags
& FAULT_FLAG_KILLABLE
)
650 wait_on_page_locked_killable(page
);
652 wait_on_page_locked(page
);
655 if (flags
& FAULT_FLAG_KILLABLE
) {
658 ret
= __lock_page_killable(page
);
660 up_read(&mm
->mmap_sem
);
670 * find_get_page - find and get a page reference
671 * @mapping: the address_space to search
672 * @offset: the page index
674 * Is there a pagecache struct page at the given (mapping, offset) tuple?
675 * If yes, increment its refcount and return it; if no, return NULL.
677 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
685 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
687 page
= radix_tree_deref_slot(pagep
);
690 if (radix_tree_exception(page
)) {
691 if (radix_tree_deref_retry(page
))
694 * Otherwise, shmem/tmpfs must be storing a swap entry
695 * here as an exceptional entry: so return it without
696 * attempting to raise page count.
700 if (!page_cache_get_speculative(page
))
704 * Has the page moved?
705 * This is part of the lockless pagecache protocol. See
706 * include/linux/pagemap.h for details.
708 if (unlikely(page
!= *pagep
)) {
709 page_cache_release(page
);
718 EXPORT_SYMBOL(find_get_page
);
721 * find_lock_page - locate, pin and lock a pagecache page
722 * @mapping: the address_space to search
723 * @offset: the page index
725 * Locates the desired pagecache page, locks it, increments its reference
726 * count and returns its address.
728 * Returns zero if the page was not present. find_lock_page() may sleep.
730 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
735 page
= find_get_page(mapping
, offset
);
736 if (page
&& !radix_tree_exception(page
)) {
738 /* Has the page been truncated? */
739 if (unlikely(page
->mapping
!= mapping
)) {
741 page_cache_release(page
);
744 VM_BUG_ON(page
->index
!= offset
);
748 EXPORT_SYMBOL(find_lock_page
);
751 * find_or_create_page - locate or add a pagecache page
752 * @mapping: the page's address_space
753 * @index: the page's index into the mapping
754 * @gfp_mask: page allocation mode
756 * Locates a page in the pagecache. If the page is not present, a new page
757 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
758 * LRU list. The returned page is locked and has its reference count
761 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
764 * find_or_create_page() returns the desired page's address, or zero on
767 struct page
*find_or_create_page(struct address_space
*mapping
,
768 pgoff_t index
, gfp_t gfp_mask
)
773 page
= find_lock_page(mapping
, index
);
775 page
= __page_cache_alloc(gfp_mask
);
779 * We want a regular kernel memory (not highmem or DMA etc)
780 * allocation for the radix tree nodes, but we need to honour
781 * the context-specific requirements the caller has asked for.
782 * GFP_RECLAIM_MASK collects those requirements.
784 err
= add_to_page_cache_lru(page
, mapping
, index
,
785 (gfp_mask
& GFP_RECLAIM_MASK
));
787 page_cache_release(page
);
795 EXPORT_SYMBOL(find_or_create_page
);
798 * find_get_pages - gang pagecache lookup
799 * @mapping: The address_space to search
800 * @start: The starting page index
801 * @nr_pages: The maximum number of pages
802 * @pages: Where the resulting pages are placed
804 * find_get_pages() will search for and return a group of up to
805 * @nr_pages pages in the mapping. The pages are placed at @pages.
806 * find_get_pages() takes a reference against the returned pages.
808 * The search returns a group of mapping-contiguous pages with ascending
809 * indexes. There may be holes in the indices due to not-present pages.
811 * find_get_pages() returns the number of pages which were found.
813 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
814 unsigned int nr_pages
, struct page
**pages
)
818 unsigned int nr_found
, nr_skip
;
822 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
823 (void ***)pages
, NULL
, start
, nr_pages
);
826 for (i
= 0; i
< nr_found
; i
++) {
829 page
= radix_tree_deref_slot((void **)pages
[i
]);
833 if (radix_tree_exception(page
)) {
834 if (radix_tree_deref_retry(page
)) {
836 * Transient condition which can only trigger
837 * when entry at index 0 moves out of or back
838 * to root: none yet gotten, safe to restart.
844 * Otherwise, shmem/tmpfs must be storing a swap entry
845 * here as an exceptional entry: so skip over it -
846 * we only reach this from invalidate_mapping_pages().
852 if (!page_cache_get_speculative(page
))
855 /* Has the page moved? */
856 if (unlikely(page
!= *((void **)pages
[i
]))) {
857 page_cache_release(page
);
866 * If all entries were removed before we could secure them,
867 * try again, because callers stop trying once 0 is returned.
869 if (unlikely(!ret
&& nr_found
> nr_skip
))
876 * find_get_pages_contig - gang contiguous pagecache lookup
877 * @mapping: The address_space to search
878 * @index: The starting page index
879 * @nr_pages: The maximum number of pages
880 * @pages: Where the resulting pages are placed
882 * find_get_pages_contig() works exactly like find_get_pages(), except
883 * that the returned number of pages are guaranteed to be contiguous.
885 * find_get_pages_contig() returns the number of pages which were found.
887 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
888 unsigned int nr_pages
, struct page
**pages
)
892 unsigned int nr_found
;
896 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
897 (void ***)pages
, NULL
, index
, nr_pages
);
899 for (i
= 0; i
< nr_found
; i
++) {
902 page
= radix_tree_deref_slot((void **)pages
[i
]);
906 if (radix_tree_exception(page
)) {
907 if (radix_tree_deref_retry(page
)) {
909 * Transient condition which can only trigger
910 * when entry at index 0 moves out of or back
911 * to root: none yet gotten, safe to restart.
916 * Otherwise, shmem/tmpfs must be storing a swap entry
917 * here as an exceptional entry: so stop looking for
923 if (!page_cache_get_speculative(page
))
926 /* Has the page moved? */
927 if (unlikely(page
!= *((void **)pages
[i
]))) {
928 page_cache_release(page
);
933 * must check mapping and index after taking the ref.
934 * otherwise we can get both false positives and false
935 * negatives, which is just confusing to the caller.
937 if (page
->mapping
== NULL
|| page
->index
!= index
) {
938 page_cache_release(page
);
949 EXPORT_SYMBOL(find_get_pages_contig
);
952 * find_get_pages_tag - find and return pages that match @tag
953 * @mapping: the address_space to search
954 * @index: the starting page index
955 * @tag: the tag index
956 * @nr_pages: the maximum number of pages
957 * @pages: where the resulting pages are placed
959 * Like find_get_pages, except we only return pages which are tagged with
960 * @tag. We update @index to index the next page for the traversal.
962 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
963 int tag
, unsigned int nr_pages
, struct page
**pages
)
967 unsigned int nr_found
;
971 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
972 (void ***)pages
, *index
, nr_pages
, tag
);
974 for (i
= 0; i
< nr_found
; i
++) {
977 page
= radix_tree_deref_slot((void **)pages
[i
]);
981 if (radix_tree_exception(page
)) {
982 if (radix_tree_deref_retry(page
)) {
984 * Transient condition which can only trigger
985 * when entry at index 0 moves out of or back
986 * to root: none yet gotten, safe to restart.
991 * This function is never used on a shmem/tmpfs
992 * mapping, so a swap entry won't be found here.
997 if (!page_cache_get_speculative(page
))
1000 /* Has the page moved? */
1001 if (unlikely(page
!= *((void **)pages
[i
]))) {
1002 page_cache_release(page
);
1011 * If all entries were removed before we could secure them,
1012 * try again, because callers stop trying once 0 is returned.
1014 if (unlikely(!ret
&& nr_found
))
1019 *index
= pages
[ret
- 1]->index
+ 1;
1023 EXPORT_SYMBOL(find_get_pages_tag
);
1026 * grab_cache_page_nowait - returns locked page at given index in given cache
1027 * @mapping: target address_space
1028 * @index: the page index
1030 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1031 * This is intended for speculative data generators, where the data can
1032 * be regenerated if the page couldn't be grabbed. This routine should
1033 * be safe to call while holding the lock for another page.
1035 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1036 * and deadlock against the caller's locked page.
1039 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
1041 struct page
*page
= find_get_page(mapping
, index
);
1044 if (trylock_page(page
))
1046 page_cache_release(page
);
1049 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
1050 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
1051 page_cache_release(page
);
1056 EXPORT_SYMBOL(grab_cache_page_nowait
);
1059 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1060 * a _large_ part of the i/o request. Imagine the worst scenario:
1062 * ---R__________________________________________B__________
1063 * ^ reading here ^ bad block(assume 4k)
1065 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1066 * => failing the whole request => read(R) => read(R+1) =>
1067 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1068 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1069 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1071 * It is going insane. Fix it by quickly scaling down the readahead size.
1073 static void shrink_readahead_size_eio(struct file
*filp
,
1074 struct file_ra_state
*ra
)
1080 * do_generic_file_read - generic file read routine
1081 * @filp: the file to read
1082 * @ppos: current file position
1083 * @desc: read_descriptor
1084 * @actor: read method
1086 * This is a generic file read routine, and uses the
1087 * mapping->a_ops->readpage() function for the actual low-level stuff.
1089 * This is really ugly. But the goto's actually try to clarify some
1090 * of the logic when it comes to error handling etc.
1092 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1093 read_descriptor_t
*desc
, read_actor_t actor
)
1095 struct address_space
*mapping
= filp
->f_mapping
;
1096 struct inode
*inode
= mapping
->host
;
1097 struct file_ra_state
*ra
= &filp
->f_ra
;
1101 unsigned long offset
; /* offset into pagecache page */
1102 unsigned int prev_offset
;
1105 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1106 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1107 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1108 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1109 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1115 unsigned long nr
, ret
;
1119 page
= find_get_page(mapping
, index
);
1121 page_cache_sync_readahead(mapping
,
1123 index
, last_index
- index
);
1124 page
= find_get_page(mapping
, index
);
1125 if (unlikely(page
== NULL
))
1126 goto no_cached_page
;
1128 if (PageReadahead(page
)) {
1129 page_cache_async_readahead(mapping
,
1131 index
, last_index
- index
);
1133 if (!PageUptodate(page
)) {
1134 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1135 !mapping
->a_ops
->is_partially_uptodate
)
1136 goto page_not_up_to_date
;
1137 if (!trylock_page(page
))
1138 goto page_not_up_to_date
;
1139 /* Did it get truncated before we got the lock? */
1141 goto page_not_up_to_date_locked
;
1142 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1144 goto page_not_up_to_date_locked
;
1149 * i_size must be checked after we know the page is Uptodate.
1151 * Checking i_size after the check allows us to calculate
1152 * the correct value for "nr", which means the zero-filled
1153 * part of the page is not copied back to userspace (unless
1154 * another truncate extends the file - this is desired though).
1157 isize
= i_size_read(inode
);
1158 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1159 if (unlikely(!isize
|| index
> end_index
)) {
1160 page_cache_release(page
);
1164 /* nr is the maximum number of bytes to copy from this page */
1165 nr
= PAGE_CACHE_SIZE
;
1166 if (index
== end_index
) {
1167 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1169 page_cache_release(page
);
1175 /* If users can be writing to this page using arbitrary
1176 * virtual addresses, take care about potential aliasing
1177 * before reading the page on the kernel side.
1179 if (mapping_writably_mapped(mapping
))
1180 flush_dcache_page(page
);
1183 * When a sequential read accesses a page several times,
1184 * only mark it as accessed the first time.
1186 if (prev_index
!= index
|| offset
!= prev_offset
)
1187 mark_page_accessed(page
);
1191 * Ok, we have the page, and it's up-to-date, so
1192 * now we can copy it to user space...
1194 * The actor routine returns how many bytes were actually used..
1195 * NOTE! This may not be the same as how much of a user buffer
1196 * we filled up (we may be padding etc), so we can only update
1197 * "pos" here (the actor routine has to update the user buffer
1198 * pointers and the remaining count).
1200 ret
= actor(desc
, page
, offset
, nr
);
1202 index
+= offset
>> PAGE_CACHE_SHIFT
;
1203 offset
&= ~PAGE_CACHE_MASK
;
1204 prev_offset
= offset
;
1206 page_cache_release(page
);
1207 if (ret
== nr
&& desc
->count
)
1211 page_not_up_to_date
:
1212 /* Get exclusive access to the page ... */
1213 error
= lock_page_killable(page
);
1214 if (unlikely(error
))
1215 goto readpage_error
;
1217 page_not_up_to_date_locked
:
1218 /* Did it get truncated before we got the lock? */
1219 if (!page
->mapping
) {
1221 page_cache_release(page
);
1225 /* Did somebody else fill it already? */
1226 if (PageUptodate(page
)) {
1233 * A previous I/O error may have been due to temporary
1234 * failures, eg. multipath errors.
1235 * PG_error will be set again if readpage fails.
1237 ClearPageError(page
);
1238 /* Start the actual read. The read will unlock the page. */
1239 error
= mapping
->a_ops
->readpage(filp
, page
);
1241 if (unlikely(error
)) {
1242 if (error
== AOP_TRUNCATED_PAGE
) {
1243 page_cache_release(page
);
1246 goto readpage_error
;
1249 if (!PageUptodate(page
)) {
1250 error
= lock_page_killable(page
);
1251 if (unlikely(error
))
1252 goto readpage_error
;
1253 if (!PageUptodate(page
)) {
1254 if (page
->mapping
== NULL
) {
1256 * invalidate_mapping_pages got it
1259 page_cache_release(page
);
1263 shrink_readahead_size_eio(filp
, ra
);
1265 goto readpage_error
;
1273 /* UHHUH! A synchronous read error occurred. Report it */
1274 desc
->error
= error
;
1275 page_cache_release(page
);
1280 * Ok, it wasn't cached, so we need to create a new
1283 page
= page_cache_alloc_cold(mapping
);
1285 desc
->error
= -ENOMEM
;
1288 error
= add_to_page_cache_lru(page
, mapping
,
1291 page_cache_release(page
);
1292 if (error
== -EEXIST
)
1294 desc
->error
= error
;
1301 ra
->prev_pos
= prev_index
;
1302 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1303 ra
->prev_pos
|= prev_offset
;
1305 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1306 file_accessed(filp
);
1309 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1310 unsigned long offset
, unsigned long size
)
1313 unsigned long left
, count
= desc
->count
;
1319 * Faults on the destination of a read are common, so do it before
1322 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1323 kaddr
= kmap_atomic(page
);
1324 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1325 kaddr
+ offset
, size
);
1326 kunmap_atomic(kaddr
);
1331 /* Do it the slow way */
1333 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1338 desc
->error
= -EFAULT
;
1341 desc
->count
= count
- size
;
1342 desc
->written
+= size
;
1343 desc
->arg
.buf
+= size
;
1348 * Performs necessary checks before doing a write
1349 * @iov: io vector request
1350 * @nr_segs: number of segments in the iovec
1351 * @count: number of bytes to write
1352 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1354 * Adjust number of segments and amount of bytes to write (nr_segs should be
1355 * properly initialized first). Returns appropriate error code that caller
1356 * should return or zero in case that write should be allowed.
1358 int generic_segment_checks(const struct iovec
*iov
,
1359 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1363 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1364 const struct iovec
*iv
= &iov
[seg
];
1367 * If any segment has a negative length, or the cumulative
1368 * length ever wraps negative then return -EINVAL.
1371 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1373 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1378 cnt
-= iv
->iov_len
; /* This segment is no good */
1384 EXPORT_SYMBOL(generic_segment_checks
);
1387 * generic_file_aio_read - generic filesystem read routine
1388 * @iocb: kernel I/O control block
1389 * @iov: io vector request
1390 * @nr_segs: number of segments in the iovec
1391 * @pos: current file position
1393 * This is the "read()" routine for all filesystems
1394 * that can use the page cache directly.
1397 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1398 unsigned long nr_segs
, loff_t pos
)
1400 struct file
*filp
= iocb
->ki_filp
;
1402 unsigned long seg
= 0;
1404 loff_t
*ppos
= &iocb
->ki_pos
;
1407 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1411 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1412 if (filp
->f_flags
& O_DIRECT
) {
1414 struct address_space
*mapping
;
1415 struct inode
*inode
;
1417 mapping
= filp
->f_mapping
;
1418 inode
= mapping
->host
;
1420 goto out
; /* skip atime */
1421 size
= i_size_read(inode
);
1423 retval
= filemap_write_and_wait_range(mapping
, pos
,
1424 pos
+ iov_length(iov
, nr_segs
) - 1);
1426 struct blk_plug plug
;
1428 blk_start_plug(&plug
);
1429 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1431 blk_finish_plug(&plug
);
1434 *ppos
= pos
+ retval
;
1439 * Btrfs can have a short DIO read if we encounter
1440 * compressed extents, so if there was an error, or if
1441 * we've already read everything we wanted to, or if
1442 * there was a short read because we hit EOF, go ahead
1443 * and return. Otherwise fallthrough to buffered io for
1444 * the rest of the read.
1446 if (retval
< 0 || !count
|| *ppos
>= size
) {
1447 file_accessed(filp
);
1454 for (seg
= 0; seg
< nr_segs
; seg
++) {
1455 read_descriptor_t desc
;
1459 * If we did a short DIO read we need to skip the section of the
1460 * iov that we've already read data into.
1463 if (count
> iov
[seg
].iov_len
) {
1464 count
-= iov
[seg
].iov_len
;
1472 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1473 desc
.count
= iov
[seg
].iov_len
- offset
;
1474 if (desc
.count
== 0)
1477 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1478 retval
+= desc
.written
;
1480 retval
= retval
?: desc
.error
;
1489 EXPORT_SYMBOL(generic_file_aio_read
);
1492 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1493 pgoff_t index
, unsigned long nr
)
1495 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1498 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1502 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1510 if (file
->f_mode
& FMODE_READ
) {
1511 struct address_space
*mapping
= file
->f_mapping
;
1512 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1513 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1514 unsigned long len
= end
- start
+ 1;
1515 ret
= do_readahead(mapping
, file
, start
, len
);
1521 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1522 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1524 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1526 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1531 * page_cache_read - adds requested page to the page cache if not already there
1532 * @file: file to read
1533 * @offset: page index
1535 * This adds the requested page to the page cache if it isn't already there,
1536 * and schedules an I/O to read in its contents from disk.
1538 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1540 struct address_space
*mapping
= file
->f_mapping
;
1545 page
= page_cache_alloc_cold(mapping
);
1549 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1551 ret
= mapping
->a_ops
->readpage(file
, page
);
1552 else if (ret
== -EEXIST
)
1553 ret
= 0; /* losing race to add is OK */
1555 page_cache_release(page
);
1557 } while (ret
== AOP_TRUNCATED_PAGE
);
1562 #define MMAP_LOTSAMISS (100)
1565 * Synchronous readahead happens when we don't even find
1566 * a page in the page cache at all.
1568 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1569 struct file_ra_state
*ra
,
1573 unsigned long ra_pages
;
1574 struct address_space
*mapping
= file
->f_mapping
;
1576 /* If we don't want any read-ahead, don't bother */
1577 if (VM_RandomReadHint(vma
))
1582 if (VM_SequentialReadHint(vma
)) {
1583 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1588 /* Avoid banging the cache line if not needed */
1589 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
1593 * Do we miss much more than hit in this file? If so,
1594 * stop bothering with read-ahead. It will only hurt.
1596 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1602 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1603 ra
->start
= max_t(long, 0, offset
- ra_pages
/ 2);
1604 ra
->size
= ra_pages
;
1605 ra
->async_size
= ra_pages
/ 4;
1606 ra_submit(ra
, mapping
, file
);
1610 * Asynchronous readahead happens when we find the page and PG_readahead,
1611 * so we want to possibly extend the readahead further..
1613 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1614 struct file_ra_state
*ra
,
1619 struct address_space
*mapping
= file
->f_mapping
;
1621 /* If we don't want any read-ahead, don't bother */
1622 if (VM_RandomReadHint(vma
))
1624 if (ra
->mmap_miss
> 0)
1626 if (PageReadahead(page
))
1627 page_cache_async_readahead(mapping
, ra
, file
,
1628 page
, offset
, ra
->ra_pages
);
1632 * filemap_fault - read in file data for page fault handling
1633 * @vma: vma in which the fault was taken
1634 * @vmf: struct vm_fault containing details of the fault
1636 * filemap_fault() is invoked via the vma operations vector for a
1637 * mapped memory region to read in file data during a page fault.
1639 * The goto's are kind of ugly, but this streamlines the normal case of having
1640 * it in the page cache, and handles the special cases reasonably without
1641 * having a lot of duplicated code.
1643 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1646 struct file
*file
= vma
->vm_file
;
1647 struct address_space
*mapping
= file
->f_mapping
;
1648 struct file_ra_state
*ra
= &file
->f_ra
;
1649 struct inode
*inode
= mapping
->host
;
1650 pgoff_t offset
= vmf
->pgoff
;
1655 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1657 return VM_FAULT_SIGBUS
;
1660 * Do we have something in the page cache already?
1662 page
= find_get_page(mapping
, offset
);
1665 * We found the page, so try async readahead before
1666 * waiting for the lock.
1668 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1670 /* No page in the page cache at all */
1671 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1672 count_vm_event(PGMAJFAULT
);
1673 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1674 ret
= VM_FAULT_MAJOR
;
1676 page
= find_get_page(mapping
, offset
);
1678 goto no_cached_page
;
1681 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1682 page_cache_release(page
);
1683 return ret
| VM_FAULT_RETRY
;
1686 /* Did it get truncated? */
1687 if (unlikely(page
->mapping
!= mapping
)) {
1692 VM_BUG_ON(page
->index
!= offset
);
1695 * We have a locked page in the page cache, now we need to check
1696 * that it's up-to-date. If not, it is going to be due to an error.
1698 if (unlikely(!PageUptodate(page
)))
1699 goto page_not_uptodate
;
1702 * Found the page and have a reference on it.
1703 * We must recheck i_size under page lock.
1705 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1706 if (unlikely(offset
>= size
)) {
1708 page_cache_release(page
);
1709 return VM_FAULT_SIGBUS
;
1713 return ret
| VM_FAULT_LOCKED
;
1717 * We're only likely to ever get here if MADV_RANDOM is in
1720 error
= page_cache_read(file
, offset
);
1723 * The page we want has now been added to the page cache.
1724 * In the unlikely event that someone removed it in the
1725 * meantime, we'll just come back here and read it again.
1731 * An error return from page_cache_read can result if the
1732 * system is low on memory, or a problem occurs while trying
1735 if (error
== -ENOMEM
)
1736 return VM_FAULT_OOM
;
1737 return VM_FAULT_SIGBUS
;
1741 * Umm, take care of errors if the page isn't up-to-date.
1742 * Try to re-read it _once_. We do this synchronously,
1743 * because there really aren't any performance issues here
1744 * and we need to check for errors.
1746 ClearPageError(page
);
1747 error
= mapping
->a_ops
->readpage(file
, page
);
1749 wait_on_page_locked(page
);
1750 if (!PageUptodate(page
))
1753 page_cache_release(page
);
1755 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1758 /* Things didn't work out. Return zero to tell the mm layer so. */
1759 shrink_readahead_size_eio(file
, ra
);
1760 return VM_FAULT_SIGBUS
;
1762 EXPORT_SYMBOL(filemap_fault
);
1764 const struct vm_operations_struct generic_file_vm_ops
= {
1765 .fault
= filemap_fault
,
1768 /* This is used for a general mmap of a disk file */
1770 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1772 struct address_space
*mapping
= file
->f_mapping
;
1774 if (!mapping
->a_ops
->readpage
)
1776 file_accessed(file
);
1777 vma
->vm_ops
= &generic_file_vm_ops
;
1778 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1783 * This is for filesystems which do not implement ->writepage.
1785 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1787 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1789 return generic_file_mmap(file
, vma
);
1792 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1796 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1800 #endif /* CONFIG_MMU */
1802 EXPORT_SYMBOL(generic_file_mmap
);
1803 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1805 static struct page
*__read_cache_page(struct address_space
*mapping
,
1807 int (*filler
)(void *, struct page
*),
1814 page
= find_get_page(mapping
, index
);
1816 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1818 return ERR_PTR(-ENOMEM
);
1819 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
1820 if (unlikely(err
)) {
1821 page_cache_release(page
);
1824 /* Presumably ENOMEM for radix tree node */
1825 return ERR_PTR(err
);
1827 err
= filler(data
, page
);
1829 page_cache_release(page
);
1830 page
= ERR_PTR(err
);
1836 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1838 int (*filler
)(void *, struct page
*),
1847 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1850 if (PageUptodate(page
))
1854 if (!page
->mapping
) {
1856 page_cache_release(page
);
1859 if (PageUptodate(page
)) {
1863 err
= filler(data
, page
);
1865 page_cache_release(page
);
1866 return ERR_PTR(err
);
1869 mark_page_accessed(page
);
1874 * read_cache_page_async - read into page cache, fill it if needed
1875 * @mapping: the page's address_space
1876 * @index: the page index
1877 * @filler: function to perform the read
1878 * @data: first arg to filler(data, page) function, often left as NULL
1880 * Same as read_cache_page, but don't wait for page to become unlocked
1881 * after submitting it to the filler.
1883 * Read into the page cache. If a page already exists, and PageUptodate() is
1884 * not set, try to fill the page but don't wait for it to become unlocked.
1886 * If the page does not get brought uptodate, return -EIO.
1888 struct page
*read_cache_page_async(struct address_space
*mapping
,
1890 int (*filler
)(void *, struct page
*),
1893 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1895 EXPORT_SYMBOL(read_cache_page_async
);
1897 static struct page
*wait_on_page_read(struct page
*page
)
1899 if (!IS_ERR(page
)) {
1900 wait_on_page_locked(page
);
1901 if (!PageUptodate(page
)) {
1902 page_cache_release(page
);
1903 page
= ERR_PTR(-EIO
);
1910 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1911 * @mapping: the page's address_space
1912 * @index: the page index
1913 * @gfp: the page allocator flags to use if allocating
1915 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1916 * any new page allocations done using the specified allocation flags.
1918 * If the page does not get brought uptodate, return -EIO.
1920 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1924 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1926 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1928 EXPORT_SYMBOL(read_cache_page_gfp
);
1931 * read_cache_page - read into page cache, fill it if needed
1932 * @mapping: the page's address_space
1933 * @index: the page index
1934 * @filler: function to perform the read
1935 * @data: first arg to filler(data, page) function, often left as NULL
1937 * Read into the page cache. If a page already exists, and PageUptodate() is
1938 * not set, try to fill the page then wait for it to become unlocked.
1940 * If the page does not get brought uptodate, return -EIO.
1942 struct page
*read_cache_page(struct address_space
*mapping
,
1944 int (*filler
)(void *, struct page
*),
1947 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1949 EXPORT_SYMBOL(read_cache_page
);
1952 * The logic we want is
1954 * if suid or (sgid and xgrp)
1957 int should_remove_suid(struct dentry
*dentry
)
1959 umode_t mode
= dentry
->d_inode
->i_mode
;
1962 /* suid always must be killed */
1963 if (unlikely(mode
& S_ISUID
))
1964 kill
= ATTR_KILL_SUID
;
1967 * sgid without any exec bits is just a mandatory locking mark; leave
1968 * it alone. If some exec bits are set, it's a real sgid; kill it.
1970 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1971 kill
|= ATTR_KILL_SGID
;
1973 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1978 EXPORT_SYMBOL(should_remove_suid
);
1980 static int __remove_suid(struct dentry
*dentry
, int kill
)
1982 struct iattr newattrs
;
1984 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1985 return notify_change(dentry
, &newattrs
);
1988 int file_remove_suid(struct file
*file
)
1990 struct dentry
*dentry
= file
->f_path
.dentry
;
1991 struct inode
*inode
= dentry
->d_inode
;
1996 /* Fast path for nothing security related */
1997 if (IS_NOSEC(inode
))
2000 killsuid
= should_remove_suid(dentry
);
2001 killpriv
= security_inode_need_killpriv(dentry
);
2006 error
= security_inode_killpriv(dentry
);
2007 if (!error
&& killsuid
)
2008 error
= __remove_suid(dentry
, killsuid
);
2009 if (!error
&& (inode
->i_sb
->s_flags
& MS_NOSEC
))
2010 inode
->i_flags
|= S_NOSEC
;
2014 EXPORT_SYMBOL(file_remove_suid
);
2016 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
2017 const struct iovec
*iov
, size_t base
, size_t bytes
)
2019 size_t copied
= 0, left
= 0;
2022 char __user
*buf
= iov
->iov_base
+ base
;
2023 int copy
= min(bytes
, iov
->iov_len
- base
);
2026 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
2035 return copied
- left
;
2039 * Copy as much as we can into the page and return the number of bytes which
2040 * were successfully copied. If a fault is encountered then return the number of
2041 * bytes which were copied.
2043 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
2044 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2049 BUG_ON(!in_atomic());
2050 kaddr
= kmap_atomic(page
);
2051 if (likely(i
->nr_segs
== 1)) {
2053 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2054 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
2055 copied
= bytes
- left
;
2057 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2058 i
->iov
, i
->iov_offset
, bytes
);
2060 kunmap_atomic(kaddr
);
2064 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
2067 * This has the same sideeffects and return value as
2068 * iov_iter_copy_from_user_atomic().
2069 * The difference is that it attempts to resolve faults.
2070 * Page must not be locked.
2072 size_t iov_iter_copy_from_user(struct page
*page
,
2073 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2079 if (likely(i
->nr_segs
== 1)) {
2081 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2082 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
2083 copied
= bytes
- left
;
2085 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2086 i
->iov
, i
->iov_offset
, bytes
);
2091 EXPORT_SYMBOL(iov_iter_copy_from_user
);
2093 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
2095 BUG_ON(i
->count
< bytes
);
2097 if (likely(i
->nr_segs
== 1)) {
2098 i
->iov_offset
+= bytes
;
2101 const struct iovec
*iov
= i
->iov
;
2102 size_t base
= i
->iov_offset
;
2103 unsigned long nr_segs
= i
->nr_segs
;
2106 * The !iov->iov_len check ensures we skip over unlikely
2107 * zero-length segments (without overruning the iovec).
2109 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
2112 copy
= min(bytes
, iov
->iov_len
- base
);
2113 BUG_ON(!i
->count
|| i
->count
< copy
);
2117 if (iov
->iov_len
== base
) {
2124 i
->iov_offset
= base
;
2125 i
->nr_segs
= nr_segs
;
2128 EXPORT_SYMBOL(iov_iter_advance
);
2131 * Fault in the first iovec of the given iov_iter, to a maximum length
2132 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2133 * accessed (ie. because it is an invalid address).
2135 * writev-intensive code may want this to prefault several iovecs -- that
2136 * would be possible (callers must not rely on the fact that _only_ the
2137 * first iovec will be faulted with the current implementation).
2139 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2141 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2142 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2143 return fault_in_pages_readable(buf
, bytes
);
2145 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2148 * Return the count of just the current iov_iter segment.
2150 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2152 const struct iovec
*iov
= i
->iov
;
2153 if (i
->nr_segs
== 1)
2156 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2158 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2161 * Performs necessary checks before doing a write
2163 * Can adjust writing position or amount of bytes to write.
2164 * Returns appropriate error code that caller should return or
2165 * zero in case that write should be allowed.
2167 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2169 struct inode
*inode
= file
->f_mapping
->host
;
2170 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2172 if (unlikely(*pos
< 0))
2176 /* FIXME: this is for backwards compatibility with 2.4 */
2177 if (file
->f_flags
& O_APPEND
)
2178 *pos
= i_size_read(inode
);
2180 if (limit
!= RLIM_INFINITY
) {
2181 if (*pos
>= limit
) {
2182 send_sig(SIGXFSZ
, current
, 0);
2185 if (*count
> limit
- (typeof(limit
))*pos
) {
2186 *count
= limit
- (typeof(limit
))*pos
;
2194 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2195 !(file
->f_flags
& O_LARGEFILE
))) {
2196 if (*pos
>= MAX_NON_LFS
) {
2199 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2200 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2205 * Are we about to exceed the fs block limit ?
2207 * If we have written data it becomes a short write. If we have
2208 * exceeded without writing data we send a signal and return EFBIG.
2209 * Linus frestrict idea will clean these up nicely..
2211 if (likely(!isblk
)) {
2212 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2213 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2216 /* zero-length writes at ->s_maxbytes are OK */
2219 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2220 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2224 if (bdev_read_only(I_BDEV(inode
)))
2226 isize
= i_size_read(inode
);
2227 if (*pos
>= isize
) {
2228 if (*count
|| *pos
> isize
)
2232 if (*pos
+ *count
> isize
)
2233 *count
= isize
- *pos
;
2240 EXPORT_SYMBOL(generic_write_checks
);
2242 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2243 loff_t pos
, unsigned len
, unsigned flags
,
2244 struct page
**pagep
, void **fsdata
)
2246 const struct address_space_operations
*aops
= mapping
->a_ops
;
2248 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2251 EXPORT_SYMBOL(pagecache_write_begin
);
2253 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2254 loff_t pos
, unsigned len
, unsigned copied
,
2255 struct page
*page
, void *fsdata
)
2257 const struct address_space_operations
*aops
= mapping
->a_ops
;
2259 mark_page_accessed(page
);
2260 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2262 EXPORT_SYMBOL(pagecache_write_end
);
2265 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2266 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2267 size_t count
, size_t ocount
)
2269 struct file
*file
= iocb
->ki_filp
;
2270 struct address_space
*mapping
= file
->f_mapping
;
2271 struct inode
*inode
= mapping
->host
;
2276 if (count
!= ocount
)
2277 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2279 write_len
= iov_length(iov
, *nr_segs
);
2280 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2282 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2287 * After a write we want buffered reads to be sure to go to disk to get
2288 * the new data. We invalidate clean cached page from the region we're
2289 * about to write. We do this *before* the write so that we can return
2290 * without clobbering -EIOCBQUEUED from ->direct_IO().
2292 if (mapping
->nrpages
) {
2293 written
= invalidate_inode_pages2_range(mapping
,
2294 pos
>> PAGE_CACHE_SHIFT
, end
);
2296 * If a page can not be invalidated, return 0 to fall back
2297 * to buffered write.
2300 if (written
== -EBUSY
)
2306 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2309 * Finally, try again to invalidate clean pages which might have been
2310 * cached by non-direct readahead, or faulted in by get_user_pages()
2311 * if the source of the write was an mmap'ed region of the file
2312 * we're writing. Either one is a pretty crazy thing to do,
2313 * so we don't support it 100%. If this invalidation
2314 * fails, tough, the write still worked...
2316 if (mapping
->nrpages
) {
2317 invalidate_inode_pages2_range(mapping
,
2318 pos
>> PAGE_CACHE_SHIFT
, end
);
2323 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2324 i_size_write(inode
, pos
);
2325 mark_inode_dirty(inode
);
2332 EXPORT_SYMBOL(generic_file_direct_write
);
2335 * Find or create a page at the given pagecache position. Return the locked
2336 * page. This function is specifically for buffered writes.
2338 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2339 pgoff_t index
, unsigned flags
)
2344 gfp_t gfp_notmask
= 0;
2346 gfp_mask
= mapping_gfp_mask(mapping
);
2347 if (mapping_cap_account_dirty(mapping
))
2348 gfp_mask
|= __GFP_WRITE
;
2349 if (flags
& AOP_FLAG_NOFS
)
2350 gfp_notmask
= __GFP_FS
;
2352 page
= find_lock_page(mapping
, index
);
2356 page
= __page_cache_alloc(gfp_mask
& ~gfp_notmask
);
2359 status
= add_to_page_cache_lru(page
, mapping
, index
,
2360 GFP_KERNEL
& ~gfp_notmask
);
2361 if (unlikely(status
)) {
2362 page_cache_release(page
);
2363 if (status
== -EEXIST
)
2368 wait_on_page_writeback(page
);
2371 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2373 static ssize_t
generic_perform_write(struct file
*file
,
2374 struct iov_iter
*i
, loff_t pos
)
2376 struct address_space
*mapping
= file
->f_mapping
;
2377 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2379 ssize_t written
= 0;
2380 unsigned int flags
= 0;
2383 * Copies from kernel address space cannot fail (NFSD is a big user).
2385 if (segment_eq(get_fs(), KERNEL_DS
))
2386 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2390 unsigned long offset
; /* Offset into pagecache page */
2391 unsigned long bytes
; /* Bytes to write to page */
2392 size_t copied
; /* Bytes copied from user */
2395 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2396 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2401 * Bring in the user page that we will copy from _first_.
2402 * Otherwise there's a nasty deadlock on copying from the
2403 * same page as we're writing to, without it being marked
2406 * Not only is this an optimisation, but it is also required
2407 * to check that the address is actually valid, when atomic
2408 * usercopies are used, below.
2410 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2415 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2417 if (unlikely(status
))
2420 if (mapping_writably_mapped(mapping
))
2421 flush_dcache_page(page
);
2423 pagefault_disable();
2424 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2426 flush_dcache_page(page
);
2428 mark_page_accessed(page
);
2429 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2431 if (unlikely(status
< 0))
2437 iov_iter_advance(i
, copied
);
2438 if (unlikely(copied
== 0)) {
2440 * If we were unable to copy any data at all, we must
2441 * fall back to a single segment length write.
2443 * If we didn't fallback here, we could livelock
2444 * because not all segments in the iov can be copied at
2445 * once without a pagefault.
2447 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2448 iov_iter_single_seg_count(i
));
2454 balance_dirty_pages_ratelimited(mapping
);
2455 if (fatal_signal_pending(current
)) {
2459 } while (iov_iter_count(i
));
2461 return written
? written
: status
;
2465 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2466 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2467 size_t count
, ssize_t written
)
2469 struct file
*file
= iocb
->ki_filp
;
2473 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2474 status
= generic_perform_write(file
, &i
, pos
);
2476 if (likely(status
>= 0)) {
2478 *ppos
= pos
+ status
;
2481 return written
? written
: status
;
2483 EXPORT_SYMBOL(generic_file_buffered_write
);
2486 * __generic_file_aio_write - write data to a file
2487 * @iocb: IO state structure (file, offset, etc.)
2488 * @iov: vector with data to write
2489 * @nr_segs: number of segments in the vector
2490 * @ppos: position where to write
2492 * This function does all the work needed for actually writing data to a
2493 * file. It does all basic checks, removes SUID from the file, updates
2494 * modification times and calls proper subroutines depending on whether we
2495 * do direct IO or a standard buffered write.
2497 * It expects i_mutex to be grabbed unless we work on a block device or similar
2498 * object which does not need locking at all.
2500 * This function does *not* take care of syncing data in case of O_SYNC write.
2501 * A caller has to handle it. This is mainly due to the fact that we want to
2502 * avoid syncing under i_mutex.
2504 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2505 unsigned long nr_segs
, loff_t
*ppos
)
2507 struct file
*file
= iocb
->ki_filp
;
2508 struct address_space
* mapping
= file
->f_mapping
;
2509 size_t ocount
; /* original count */
2510 size_t count
; /* after file limit checks */
2511 struct inode
*inode
= mapping
->host
;
2517 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2524 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2526 /* We can write back this queue in page reclaim */
2527 current
->backing_dev_info
= mapping
->backing_dev_info
;
2530 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2537 err
= file_remove_suid(file
);
2541 file_update_time(file
);
2543 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2544 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2546 ssize_t written_buffered
;
2548 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2549 ppos
, count
, ocount
);
2550 if (written
< 0 || written
== count
)
2553 * direct-io write to a hole: fall through to buffered I/O
2554 * for completing the rest of the request.
2558 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2559 nr_segs
, pos
, ppos
, count
,
2562 * If generic_file_buffered_write() retuned a synchronous error
2563 * then we want to return the number of bytes which were
2564 * direct-written, or the error code if that was zero. Note
2565 * that this differs from normal direct-io semantics, which
2566 * will return -EFOO even if some bytes were written.
2568 if (written_buffered
< 0) {
2569 err
= written_buffered
;
2574 * We need to ensure that the page cache pages are written to
2575 * disk and invalidated to preserve the expected O_DIRECT
2578 endbyte
= pos
+ written_buffered
- written
- 1;
2579 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2581 written
= written_buffered
;
2582 invalidate_mapping_pages(mapping
,
2583 pos
>> PAGE_CACHE_SHIFT
,
2584 endbyte
>> PAGE_CACHE_SHIFT
);
2587 * We don't know how much we wrote, so just return
2588 * the number of bytes which were direct-written
2592 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2593 pos
, ppos
, count
, written
);
2596 current
->backing_dev_info
= NULL
;
2597 return written
? written
: err
;
2599 EXPORT_SYMBOL(__generic_file_aio_write
);
2602 * generic_file_aio_write - write data to a file
2603 * @iocb: IO state structure
2604 * @iov: vector with data to write
2605 * @nr_segs: number of segments in the vector
2606 * @pos: position in file where to write
2608 * This is a wrapper around __generic_file_aio_write() to be used by most
2609 * filesystems. It takes care of syncing the file in case of O_SYNC file
2610 * and acquires i_mutex as needed.
2612 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2613 unsigned long nr_segs
, loff_t pos
)
2615 struct file
*file
= iocb
->ki_filp
;
2616 struct inode
*inode
= file
->f_mapping
->host
;
2617 struct blk_plug plug
;
2620 BUG_ON(iocb
->ki_pos
!= pos
);
2622 mutex_lock(&inode
->i_mutex
);
2623 blk_start_plug(&plug
);
2624 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2625 mutex_unlock(&inode
->i_mutex
);
2627 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2630 err
= generic_write_sync(file
, pos
, ret
);
2631 if (err
< 0 && ret
> 0)
2634 blk_finish_plug(&plug
);
2637 EXPORT_SYMBOL(generic_file_aio_write
);
2640 * try_to_release_page() - release old fs-specific metadata on a page
2642 * @page: the page which the kernel is trying to free
2643 * @gfp_mask: memory allocation flags (and I/O mode)
2645 * The address_space is to try to release any data against the page
2646 * (presumably at page->private). If the release was successful, return `1'.
2647 * Otherwise return zero.
2649 * This may also be called if PG_fscache is set on a page, indicating that the
2650 * page is known to the local caching routines.
2652 * The @gfp_mask argument specifies whether I/O may be performed to release
2653 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2656 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2658 struct address_space
* const mapping
= page
->mapping
;
2660 BUG_ON(!PageLocked(page
));
2661 if (PageWriteback(page
))
2664 if (mapping
&& mapping
->a_ops
->releasepage
)
2665 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2666 return try_to_free_buffers(page
);
2669 EXPORT_SYMBOL(try_to_release_page
);