proc: Move proc_fd() to fs/proc/fd.h
[linux-2.6.git] / net / socket.c
blob9663df63e3d166534cbfa71099110fbf89f00478
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use);
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
215 int err;
216 int len;
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
235 return __put_user(klen, ulen);
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 static struct inode *sock_alloc_inode(struct super_block *sb)
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
277 static void init_once(void *foo)
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
281 inode_init_once(&ei->vfs_inode);
284 static int init_inodecache(void)
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
305 * sockfs_dname() is called from d_path().
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
324 static struct vfsmount *sock_mnt __read_mostly;
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
333 * Obtains the first available file descriptor and sets it up for use.
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
349 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
355 if (dname) {
356 name.name = dname;
357 name.len = strlen(name.name);
358 } else if (sock->sk) {
359 name.name = sock->sk->sk_prot_creator->name;
360 name.len = strlen(name.name);
362 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
363 if (unlikely(!path.dentry))
364 return ERR_PTR(-ENOMEM);
365 path.mnt = mntget(sock_mnt);
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(IS_ERR(file))) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 return file;
379 sock->file = file;
380 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
381 file->private_data = sock;
382 return file;
384 EXPORT_SYMBOL(sock_alloc_file);
386 static int sock_map_fd(struct socket *sock, int flags)
388 struct file *newfile;
389 int fd = get_unused_fd_flags(flags);
390 if (unlikely(fd < 0))
391 return fd;
393 newfile = sock_alloc_file(sock, flags, NULL);
394 if (likely(!IS_ERR(newfile))) {
395 fd_install(fd, newfile);
396 return fd;
399 put_unused_fd(fd);
400 return PTR_ERR(newfile);
403 struct socket *sock_from_file(struct file *file, int *err)
405 if (file->f_op == &socket_file_ops)
406 return file->private_data; /* set in sock_map_fd */
408 *err = -ENOTSOCK;
409 return NULL;
411 EXPORT_SYMBOL(sock_from_file);
414 * sockfd_lookup - Go from a file number to its socket slot
415 * @fd: file handle
416 * @err: pointer to an error code return
418 * The file handle passed in is locked and the socket it is bound
419 * too is returned. If an error occurs the err pointer is overwritten
420 * with a negative errno code and NULL is returned. The function checks
421 * for both invalid handles and passing a handle which is not a socket.
423 * On a success the socket object pointer is returned.
426 struct socket *sockfd_lookup(int fd, int *err)
428 struct file *file;
429 struct socket *sock;
431 file = fget(fd);
432 if (!file) {
433 *err = -EBADF;
434 return NULL;
437 sock = sock_from_file(file, err);
438 if (!sock)
439 fput(file);
440 return sock;
442 EXPORT_SYMBOL(sockfd_lookup);
444 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
446 struct file *file;
447 struct socket *sock;
449 *err = -EBADF;
450 file = fget_light(fd, fput_needed);
451 if (file) {
452 sock = sock_from_file(file, err);
453 if (sock)
454 return sock;
455 fput_light(file, *fput_needed);
457 return NULL;
460 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
461 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
462 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
463 static ssize_t sockfs_getxattr(struct dentry *dentry,
464 const char *name, void *value, size_t size)
466 const char *proto_name;
467 size_t proto_size;
468 int error;
470 error = -ENODATA;
471 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
472 proto_name = dentry->d_name.name;
473 proto_size = strlen(proto_name);
475 if (value) {
476 error = -ERANGE;
477 if (proto_size + 1 > size)
478 goto out;
480 strncpy(value, proto_name, proto_size + 1);
482 error = proto_size + 1;
485 out:
486 return error;
489 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
490 size_t size)
492 ssize_t len;
493 ssize_t used = 0;
495 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
496 if (len < 0)
497 return len;
498 used += len;
499 if (buffer) {
500 if (size < used)
501 return -ERANGE;
502 buffer += len;
505 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
506 used += len;
507 if (buffer) {
508 if (size < used)
509 return -ERANGE;
510 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
511 buffer += len;
514 return used;
517 static const struct inode_operations sockfs_inode_ops = {
518 .getxattr = sockfs_getxattr,
519 .listxattr = sockfs_listxattr,
523 * sock_alloc - allocate a socket
525 * Allocate a new inode and socket object. The two are bound together
526 * and initialised. The socket is then returned. If we are out of inodes
527 * NULL is returned.
530 static struct socket *sock_alloc(void)
532 struct inode *inode;
533 struct socket *sock;
535 inode = new_inode_pseudo(sock_mnt->mnt_sb);
536 if (!inode)
537 return NULL;
539 sock = SOCKET_I(inode);
541 kmemcheck_annotate_bitfield(sock, type);
542 inode->i_ino = get_next_ino();
543 inode->i_mode = S_IFSOCK | S_IRWXUGO;
544 inode->i_uid = current_fsuid();
545 inode->i_gid = current_fsgid();
546 inode->i_op = &sockfs_inode_ops;
548 this_cpu_add(sockets_in_use, 1);
549 return sock;
553 * In theory you can't get an open on this inode, but /proc provides
554 * a back door. Remember to keep it shut otherwise you'll let the
555 * creepy crawlies in.
558 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
560 return -ENXIO;
563 const struct file_operations bad_sock_fops = {
564 .owner = THIS_MODULE,
565 .open = sock_no_open,
566 .llseek = noop_llseek,
570 * sock_release - close a socket
571 * @sock: socket to close
573 * The socket is released from the protocol stack if it has a release
574 * callback, and the inode is then released if the socket is bound to
575 * an inode not a file.
578 void sock_release(struct socket *sock)
580 if (sock->ops) {
581 struct module *owner = sock->ops->owner;
583 sock->ops->release(sock);
584 sock->ops = NULL;
585 module_put(owner);
588 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
589 printk(KERN_ERR "sock_release: fasync list not empty!\n");
591 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
592 return;
594 this_cpu_sub(sockets_in_use, 1);
595 if (!sock->file) {
596 iput(SOCK_INODE(sock));
597 return;
599 sock->file = NULL;
601 EXPORT_SYMBOL(sock_release);
603 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
605 *tx_flags = 0;
606 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
607 *tx_flags |= SKBTX_HW_TSTAMP;
608 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
609 *tx_flags |= SKBTX_SW_TSTAMP;
610 if (sock_flag(sk, SOCK_WIFI_STATUS))
611 *tx_flags |= SKBTX_WIFI_STATUS;
612 return 0;
614 EXPORT_SYMBOL(sock_tx_timestamp);
616 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
617 struct msghdr *msg, size_t size)
619 struct sock_iocb *si = kiocb_to_siocb(iocb);
621 si->sock = sock;
622 si->scm = NULL;
623 si->msg = msg;
624 si->size = size;
626 return sock->ops->sendmsg(iocb, sock, msg, size);
629 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
630 struct msghdr *msg, size_t size)
632 int err = security_socket_sendmsg(sock, msg, size);
634 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
637 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
639 struct kiocb iocb;
640 struct sock_iocb siocb;
641 int ret;
643 init_sync_kiocb(&iocb, NULL);
644 iocb.private = &siocb;
645 ret = __sock_sendmsg(&iocb, sock, msg, size);
646 if (-EIOCBQUEUED == ret)
647 ret = wait_on_sync_kiocb(&iocb);
648 return ret;
650 EXPORT_SYMBOL(sock_sendmsg);
652 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
654 struct kiocb iocb;
655 struct sock_iocb siocb;
656 int ret;
658 init_sync_kiocb(&iocb, NULL);
659 iocb.private = &siocb;
660 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
661 if (-EIOCBQUEUED == ret)
662 ret = wait_on_sync_kiocb(&iocb);
663 return ret;
666 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
667 struct kvec *vec, size_t num, size_t size)
669 mm_segment_t oldfs = get_fs();
670 int result;
672 set_fs(KERNEL_DS);
674 * the following is safe, since for compiler definitions of kvec and
675 * iovec are identical, yielding the same in-core layout and alignment
677 msg->msg_iov = (struct iovec *)vec;
678 msg->msg_iovlen = num;
679 result = sock_sendmsg(sock, msg, size);
680 set_fs(oldfs);
681 return result;
683 EXPORT_SYMBOL(kernel_sendmsg);
685 static int ktime2ts(ktime_t kt, struct timespec *ts)
687 if (kt.tv64) {
688 *ts = ktime_to_timespec(kt);
689 return 1;
690 } else {
691 return 0;
696 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
698 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
699 struct sk_buff *skb)
701 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
702 struct timespec ts[3];
703 int empty = 1;
704 struct skb_shared_hwtstamps *shhwtstamps =
705 skb_hwtstamps(skb);
707 /* Race occurred between timestamp enabling and packet
708 receiving. Fill in the current time for now. */
709 if (need_software_tstamp && skb->tstamp.tv64 == 0)
710 __net_timestamp(skb);
712 if (need_software_tstamp) {
713 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
714 struct timeval tv;
715 skb_get_timestamp(skb, &tv);
716 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
717 sizeof(tv), &tv);
718 } else {
719 skb_get_timestampns(skb, &ts[0]);
720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
721 sizeof(ts[0]), &ts[0]);
726 memset(ts, 0, sizeof(ts));
727 if (skb->tstamp.tv64 &&
728 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
729 skb_get_timestampns(skb, ts + 0);
730 empty = 0;
732 if (shhwtstamps) {
733 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
734 ktime2ts(shhwtstamps->syststamp, ts + 1))
735 empty = 0;
736 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
737 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
738 empty = 0;
740 if (!empty)
741 put_cmsg(msg, SOL_SOCKET,
742 SCM_TIMESTAMPING, sizeof(ts), &ts);
744 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
746 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
747 struct sk_buff *skb)
749 int ack;
751 if (!sock_flag(sk, SOCK_WIFI_STATUS))
752 return;
753 if (!skb->wifi_acked_valid)
754 return;
756 ack = skb->wifi_acked;
758 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
760 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
762 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
763 struct sk_buff *skb)
765 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
766 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
767 sizeof(__u32), &skb->dropcount);
770 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
771 struct sk_buff *skb)
773 sock_recv_timestamp(msg, sk, skb);
774 sock_recv_drops(msg, sk, skb);
776 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
778 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
779 struct msghdr *msg, size_t size, int flags)
781 struct sock_iocb *si = kiocb_to_siocb(iocb);
783 si->sock = sock;
784 si->scm = NULL;
785 si->msg = msg;
786 si->size = size;
787 si->flags = flags;
789 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
792 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
793 struct msghdr *msg, size_t size, int flags)
795 int err = security_socket_recvmsg(sock, msg, size, flags);
797 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
800 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
801 size_t size, int flags)
803 struct kiocb iocb;
804 struct sock_iocb siocb;
805 int ret;
807 init_sync_kiocb(&iocb, NULL);
808 iocb.private = &siocb;
809 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
810 if (-EIOCBQUEUED == ret)
811 ret = wait_on_sync_kiocb(&iocb);
812 return ret;
814 EXPORT_SYMBOL(sock_recvmsg);
816 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
817 size_t size, int flags)
819 struct kiocb iocb;
820 struct sock_iocb siocb;
821 int ret;
823 init_sync_kiocb(&iocb, NULL);
824 iocb.private = &siocb;
825 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
826 if (-EIOCBQUEUED == ret)
827 ret = wait_on_sync_kiocb(&iocb);
828 return ret;
832 * kernel_recvmsg - Receive a message from a socket (kernel space)
833 * @sock: The socket to receive the message from
834 * @msg: Received message
835 * @vec: Input s/g array for message data
836 * @num: Size of input s/g array
837 * @size: Number of bytes to read
838 * @flags: Message flags (MSG_DONTWAIT, etc...)
840 * On return the msg structure contains the scatter/gather array passed in the
841 * vec argument. The array is modified so that it consists of the unfilled
842 * portion of the original array.
844 * The returned value is the total number of bytes received, or an error.
846 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
847 struct kvec *vec, size_t num, size_t size, int flags)
849 mm_segment_t oldfs = get_fs();
850 int result;
852 set_fs(KERNEL_DS);
854 * the following is safe, since for compiler definitions of kvec and
855 * iovec are identical, yielding the same in-core layout and alignment
857 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
858 result = sock_recvmsg(sock, msg, size, flags);
859 set_fs(oldfs);
860 return result;
862 EXPORT_SYMBOL(kernel_recvmsg);
864 static void sock_aio_dtor(struct kiocb *iocb)
866 kfree(iocb->private);
869 static ssize_t sock_sendpage(struct file *file, struct page *page,
870 int offset, size_t size, loff_t *ppos, int more)
872 struct socket *sock;
873 int flags;
875 sock = file->private_data;
877 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
878 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
879 flags |= more;
881 return kernel_sendpage(sock, page, offset, size, flags);
884 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
885 struct pipe_inode_info *pipe, size_t len,
886 unsigned int flags)
888 struct socket *sock = file->private_data;
890 if (unlikely(!sock->ops->splice_read))
891 return -EINVAL;
893 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
896 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
897 struct sock_iocb *siocb)
899 if (!is_sync_kiocb(iocb)) {
900 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
901 if (!siocb)
902 return NULL;
903 iocb->ki_dtor = sock_aio_dtor;
906 siocb->kiocb = iocb;
907 iocb->private = siocb;
908 return siocb;
911 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
912 struct file *file, const struct iovec *iov,
913 unsigned long nr_segs)
915 struct socket *sock = file->private_data;
916 size_t size = 0;
917 int i;
919 for (i = 0; i < nr_segs; i++)
920 size += iov[i].iov_len;
922 msg->msg_name = NULL;
923 msg->msg_namelen = 0;
924 msg->msg_control = NULL;
925 msg->msg_controllen = 0;
926 msg->msg_iov = (struct iovec *)iov;
927 msg->msg_iovlen = nr_segs;
928 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
930 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
933 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
934 unsigned long nr_segs, loff_t pos)
936 struct sock_iocb siocb, *x;
938 if (pos != 0)
939 return -ESPIPE;
941 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
942 return 0;
945 x = alloc_sock_iocb(iocb, &siocb);
946 if (!x)
947 return -ENOMEM;
948 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
951 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
952 struct file *file, const struct iovec *iov,
953 unsigned long nr_segs)
955 struct socket *sock = file->private_data;
956 size_t size = 0;
957 int i;
959 for (i = 0; i < nr_segs; i++)
960 size += iov[i].iov_len;
962 msg->msg_name = NULL;
963 msg->msg_namelen = 0;
964 msg->msg_control = NULL;
965 msg->msg_controllen = 0;
966 msg->msg_iov = (struct iovec *)iov;
967 msg->msg_iovlen = nr_segs;
968 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
969 if (sock->type == SOCK_SEQPACKET)
970 msg->msg_flags |= MSG_EOR;
972 return __sock_sendmsg(iocb, sock, msg, size);
975 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
976 unsigned long nr_segs, loff_t pos)
978 struct sock_iocb siocb, *x;
980 if (pos != 0)
981 return -ESPIPE;
983 x = alloc_sock_iocb(iocb, &siocb);
984 if (!x)
985 return -ENOMEM;
987 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
991 * Atomic setting of ioctl hooks to avoid race
992 * with module unload.
995 static DEFINE_MUTEX(br_ioctl_mutex);
996 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
998 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1000 mutex_lock(&br_ioctl_mutex);
1001 br_ioctl_hook = hook;
1002 mutex_unlock(&br_ioctl_mutex);
1004 EXPORT_SYMBOL(brioctl_set);
1006 static DEFINE_MUTEX(vlan_ioctl_mutex);
1007 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1009 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1011 mutex_lock(&vlan_ioctl_mutex);
1012 vlan_ioctl_hook = hook;
1013 mutex_unlock(&vlan_ioctl_mutex);
1015 EXPORT_SYMBOL(vlan_ioctl_set);
1017 static DEFINE_MUTEX(dlci_ioctl_mutex);
1018 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1020 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1022 mutex_lock(&dlci_ioctl_mutex);
1023 dlci_ioctl_hook = hook;
1024 mutex_unlock(&dlci_ioctl_mutex);
1026 EXPORT_SYMBOL(dlci_ioctl_set);
1028 static long sock_do_ioctl(struct net *net, struct socket *sock,
1029 unsigned int cmd, unsigned long arg)
1031 int err;
1032 void __user *argp = (void __user *)arg;
1034 err = sock->ops->ioctl(sock, cmd, arg);
1037 * If this ioctl is unknown try to hand it down
1038 * to the NIC driver.
1040 if (err == -ENOIOCTLCMD)
1041 err = dev_ioctl(net, cmd, argp);
1043 return err;
1047 * With an ioctl, arg may well be a user mode pointer, but we don't know
1048 * what to do with it - that's up to the protocol still.
1051 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1053 struct socket *sock;
1054 struct sock *sk;
1055 void __user *argp = (void __user *)arg;
1056 int pid, err;
1057 struct net *net;
1059 sock = file->private_data;
1060 sk = sock->sk;
1061 net = sock_net(sk);
1062 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1063 err = dev_ioctl(net, cmd, argp);
1064 } else
1065 #ifdef CONFIG_WEXT_CORE
1066 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1067 err = dev_ioctl(net, cmd, argp);
1068 } else
1069 #endif
1070 switch (cmd) {
1071 case FIOSETOWN:
1072 case SIOCSPGRP:
1073 err = -EFAULT;
1074 if (get_user(pid, (int __user *)argp))
1075 break;
1076 err = f_setown(sock->file, pid, 1);
1077 break;
1078 case FIOGETOWN:
1079 case SIOCGPGRP:
1080 err = put_user(f_getown(sock->file),
1081 (int __user *)argp);
1082 break;
1083 case SIOCGIFBR:
1084 case SIOCSIFBR:
1085 case SIOCBRADDBR:
1086 case SIOCBRDELBR:
1087 err = -ENOPKG;
1088 if (!br_ioctl_hook)
1089 request_module("bridge");
1091 mutex_lock(&br_ioctl_mutex);
1092 if (br_ioctl_hook)
1093 err = br_ioctl_hook(net, cmd, argp);
1094 mutex_unlock(&br_ioctl_mutex);
1095 break;
1096 case SIOCGIFVLAN:
1097 case SIOCSIFVLAN:
1098 err = -ENOPKG;
1099 if (!vlan_ioctl_hook)
1100 request_module("8021q");
1102 mutex_lock(&vlan_ioctl_mutex);
1103 if (vlan_ioctl_hook)
1104 err = vlan_ioctl_hook(net, argp);
1105 mutex_unlock(&vlan_ioctl_mutex);
1106 break;
1107 case SIOCADDDLCI:
1108 case SIOCDELDLCI:
1109 err = -ENOPKG;
1110 if (!dlci_ioctl_hook)
1111 request_module("dlci");
1113 mutex_lock(&dlci_ioctl_mutex);
1114 if (dlci_ioctl_hook)
1115 err = dlci_ioctl_hook(cmd, argp);
1116 mutex_unlock(&dlci_ioctl_mutex);
1117 break;
1118 default:
1119 err = sock_do_ioctl(net, sock, cmd, arg);
1120 break;
1122 return err;
1125 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1127 int err;
1128 struct socket *sock = NULL;
1130 err = security_socket_create(family, type, protocol, 1);
1131 if (err)
1132 goto out;
1134 sock = sock_alloc();
1135 if (!sock) {
1136 err = -ENOMEM;
1137 goto out;
1140 sock->type = type;
1141 err = security_socket_post_create(sock, family, type, protocol, 1);
1142 if (err)
1143 goto out_release;
1145 out:
1146 *res = sock;
1147 return err;
1148 out_release:
1149 sock_release(sock);
1150 sock = NULL;
1151 goto out;
1153 EXPORT_SYMBOL(sock_create_lite);
1155 /* No kernel lock held - perfect */
1156 static unsigned int sock_poll(struct file *file, poll_table *wait)
1158 struct socket *sock;
1161 * We can't return errors to poll, so it's either yes or no.
1163 sock = file->private_data;
1164 return sock->ops->poll(file, sock, wait);
1167 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1169 struct socket *sock = file->private_data;
1171 return sock->ops->mmap(file, sock, vma);
1174 static int sock_close(struct inode *inode, struct file *filp)
1176 sock_release(SOCKET_I(inode));
1177 return 0;
1181 * Update the socket async list
1183 * Fasync_list locking strategy.
1185 * 1. fasync_list is modified only under process context socket lock
1186 * i.e. under semaphore.
1187 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1188 * or under socket lock
1191 static int sock_fasync(int fd, struct file *filp, int on)
1193 struct socket *sock = filp->private_data;
1194 struct sock *sk = sock->sk;
1195 struct socket_wq *wq;
1197 if (sk == NULL)
1198 return -EINVAL;
1200 lock_sock(sk);
1201 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1202 fasync_helper(fd, filp, on, &wq->fasync_list);
1204 if (!wq->fasync_list)
1205 sock_reset_flag(sk, SOCK_FASYNC);
1206 else
1207 sock_set_flag(sk, SOCK_FASYNC);
1209 release_sock(sk);
1210 return 0;
1213 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1215 int sock_wake_async(struct socket *sock, int how, int band)
1217 struct socket_wq *wq;
1219 if (!sock)
1220 return -1;
1221 rcu_read_lock();
1222 wq = rcu_dereference(sock->wq);
1223 if (!wq || !wq->fasync_list) {
1224 rcu_read_unlock();
1225 return -1;
1227 switch (how) {
1228 case SOCK_WAKE_WAITD:
1229 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1230 break;
1231 goto call_kill;
1232 case SOCK_WAKE_SPACE:
1233 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1234 break;
1235 /* fall through */
1236 case SOCK_WAKE_IO:
1237 call_kill:
1238 kill_fasync(&wq->fasync_list, SIGIO, band);
1239 break;
1240 case SOCK_WAKE_URG:
1241 kill_fasync(&wq->fasync_list, SIGURG, band);
1243 rcu_read_unlock();
1244 return 0;
1246 EXPORT_SYMBOL(sock_wake_async);
1248 int __sock_create(struct net *net, int family, int type, int protocol,
1249 struct socket **res, int kern)
1251 int err;
1252 struct socket *sock;
1253 const struct net_proto_family *pf;
1256 * Check protocol is in range
1258 if (family < 0 || family >= NPROTO)
1259 return -EAFNOSUPPORT;
1260 if (type < 0 || type >= SOCK_MAX)
1261 return -EINVAL;
1263 /* Compatibility.
1265 This uglymoron is moved from INET layer to here to avoid
1266 deadlock in module load.
1268 if (family == PF_INET && type == SOCK_PACKET) {
1269 static int warned;
1270 if (!warned) {
1271 warned = 1;
1272 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1273 current->comm);
1275 family = PF_PACKET;
1278 err = security_socket_create(family, type, protocol, kern);
1279 if (err)
1280 return err;
1283 * Allocate the socket and allow the family to set things up. if
1284 * the protocol is 0, the family is instructed to select an appropriate
1285 * default.
1287 sock = sock_alloc();
1288 if (!sock) {
1289 net_warn_ratelimited("socket: no more sockets\n");
1290 return -ENFILE; /* Not exactly a match, but its the
1291 closest posix thing */
1294 sock->type = type;
1296 #ifdef CONFIG_MODULES
1297 /* Attempt to load a protocol module if the find failed.
1299 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1300 * requested real, full-featured networking support upon configuration.
1301 * Otherwise module support will break!
1303 if (rcu_access_pointer(net_families[family]) == NULL)
1304 request_module("net-pf-%d", family);
1305 #endif
1307 rcu_read_lock();
1308 pf = rcu_dereference(net_families[family]);
1309 err = -EAFNOSUPPORT;
1310 if (!pf)
1311 goto out_release;
1314 * We will call the ->create function, that possibly is in a loadable
1315 * module, so we have to bump that loadable module refcnt first.
1317 if (!try_module_get(pf->owner))
1318 goto out_release;
1320 /* Now protected by module ref count */
1321 rcu_read_unlock();
1323 err = pf->create(net, sock, protocol, kern);
1324 if (err < 0)
1325 goto out_module_put;
1328 * Now to bump the refcnt of the [loadable] module that owns this
1329 * socket at sock_release time we decrement its refcnt.
1331 if (!try_module_get(sock->ops->owner))
1332 goto out_module_busy;
1335 * Now that we're done with the ->create function, the [loadable]
1336 * module can have its refcnt decremented
1338 module_put(pf->owner);
1339 err = security_socket_post_create(sock, family, type, protocol, kern);
1340 if (err)
1341 goto out_sock_release;
1342 *res = sock;
1344 return 0;
1346 out_module_busy:
1347 err = -EAFNOSUPPORT;
1348 out_module_put:
1349 sock->ops = NULL;
1350 module_put(pf->owner);
1351 out_sock_release:
1352 sock_release(sock);
1353 return err;
1355 out_release:
1356 rcu_read_unlock();
1357 goto out_sock_release;
1359 EXPORT_SYMBOL(__sock_create);
1361 int sock_create(int family, int type, int protocol, struct socket **res)
1363 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1365 EXPORT_SYMBOL(sock_create);
1367 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1369 return __sock_create(&init_net, family, type, protocol, res, 1);
1371 EXPORT_SYMBOL(sock_create_kern);
1373 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1375 int retval;
1376 struct socket *sock;
1377 int flags;
1379 /* Check the SOCK_* constants for consistency. */
1380 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1381 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1382 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1383 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1385 flags = type & ~SOCK_TYPE_MASK;
1386 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1387 return -EINVAL;
1388 type &= SOCK_TYPE_MASK;
1390 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1391 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1393 retval = sock_create(family, type, protocol, &sock);
1394 if (retval < 0)
1395 goto out;
1397 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1398 if (retval < 0)
1399 goto out_release;
1401 out:
1402 /* It may be already another descriptor 8) Not kernel problem. */
1403 return retval;
1405 out_release:
1406 sock_release(sock);
1407 return retval;
1411 * Create a pair of connected sockets.
1414 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1415 int __user *, usockvec)
1417 struct socket *sock1, *sock2;
1418 int fd1, fd2, err;
1419 struct file *newfile1, *newfile2;
1420 int flags;
1422 flags = type & ~SOCK_TYPE_MASK;
1423 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1424 return -EINVAL;
1425 type &= SOCK_TYPE_MASK;
1427 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1428 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1431 * Obtain the first socket and check if the underlying protocol
1432 * supports the socketpair call.
1435 err = sock_create(family, type, protocol, &sock1);
1436 if (err < 0)
1437 goto out;
1439 err = sock_create(family, type, protocol, &sock2);
1440 if (err < 0)
1441 goto out_release_1;
1443 err = sock1->ops->socketpair(sock1, sock2);
1444 if (err < 0)
1445 goto out_release_both;
1447 fd1 = get_unused_fd_flags(flags);
1448 if (unlikely(fd1 < 0)) {
1449 err = fd1;
1450 goto out_release_both;
1452 fd2 = get_unused_fd_flags(flags);
1453 if (unlikely(fd2 < 0)) {
1454 err = fd2;
1455 put_unused_fd(fd1);
1456 goto out_release_both;
1459 newfile1 = sock_alloc_file(sock1, flags, NULL);
1460 if (unlikely(IS_ERR(newfile1))) {
1461 err = PTR_ERR(newfile1);
1462 put_unused_fd(fd1);
1463 put_unused_fd(fd2);
1464 goto out_release_both;
1467 newfile2 = sock_alloc_file(sock2, flags, NULL);
1468 if (IS_ERR(newfile2)) {
1469 err = PTR_ERR(newfile2);
1470 fput(newfile1);
1471 put_unused_fd(fd1);
1472 put_unused_fd(fd2);
1473 sock_release(sock2);
1474 goto out;
1477 audit_fd_pair(fd1, fd2);
1478 fd_install(fd1, newfile1);
1479 fd_install(fd2, newfile2);
1480 /* fd1 and fd2 may be already another descriptors.
1481 * Not kernel problem.
1484 err = put_user(fd1, &usockvec[0]);
1485 if (!err)
1486 err = put_user(fd2, &usockvec[1]);
1487 if (!err)
1488 return 0;
1490 sys_close(fd2);
1491 sys_close(fd1);
1492 return err;
1494 out_release_both:
1495 sock_release(sock2);
1496 out_release_1:
1497 sock_release(sock1);
1498 out:
1499 return err;
1503 * Bind a name to a socket. Nothing much to do here since it's
1504 * the protocol's responsibility to handle the local address.
1506 * We move the socket address to kernel space before we call
1507 * the protocol layer (having also checked the address is ok).
1510 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1512 struct socket *sock;
1513 struct sockaddr_storage address;
1514 int err, fput_needed;
1516 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1517 if (sock) {
1518 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1519 if (err >= 0) {
1520 err = security_socket_bind(sock,
1521 (struct sockaddr *)&address,
1522 addrlen);
1523 if (!err)
1524 err = sock->ops->bind(sock,
1525 (struct sockaddr *)
1526 &address, addrlen);
1528 fput_light(sock->file, fput_needed);
1530 return err;
1534 * Perform a listen. Basically, we allow the protocol to do anything
1535 * necessary for a listen, and if that works, we mark the socket as
1536 * ready for listening.
1539 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1541 struct socket *sock;
1542 int err, fput_needed;
1543 int somaxconn;
1545 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1546 if (sock) {
1547 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1548 if ((unsigned int)backlog > somaxconn)
1549 backlog = somaxconn;
1551 err = security_socket_listen(sock, backlog);
1552 if (!err)
1553 err = sock->ops->listen(sock, backlog);
1555 fput_light(sock->file, fput_needed);
1557 return err;
1561 * For accept, we attempt to create a new socket, set up the link
1562 * with the client, wake up the client, then return the new
1563 * connected fd. We collect the address of the connector in kernel
1564 * space and move it to user at the very end. This is unclean because
1565 * we open the socket then return an error.
1567 * 1003.1g adds the ability to recvmsg() to query connection pending
1568 * status to recvmsg. We need to add that support in a way thats
1569 * clean when we restucture accept also.
1572 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1573 int __user *, upeer_addrlen, int, flags)
1575 struct socket *sock, *newsock;
1576 struct file *newfile;
1577 int err, len, newfd, fput_needed;
1578 struct sockaddr_storage address;
1580 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1581 return -EINVAL;
1583 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1584 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1586 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1587 if (!sock)
1588 goto out;
1590 err = -ENFILE;
1591 newsock = sock_alloc();
1592 if (!newsock)
1593 goto out_put;
1595 newsock->type = sock->type;
1596 newsock->ops = sock->ops;
1599 * We don't need try_module_get here, as the listening socket (sock)
1600 * has the protocol module (sock->ops->owner) held.
1602 __module_get(newsock->ops->owner);
1604 newfd = get_unused_fd_flags(flags);
1605 if (unlikely(newfd < 0)) {
1606 err = newfd;
1607 sock_release(newsock);
1608 goto out_put;
1610 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1611 if (unlikely(IS_ERR(newfile))) {
1612 err = PTR_ERR(newfile);
1613 put_unused_fd(newfd);
1614 sock_release(newsock);
1615 goto out_put;
1618 err = security_socket_accept(sock, newsock);
1619 if (err)
1620 goto out_fd;
1622 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1623 if (err < 0)
1624 goto out_fd;
1626 if (upeer_sockaddr) {
1627 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1628 &len, 2) < 0) {
1629 err = -ECONNABORTED;
1630 goto out_fd;
1632 err = move_addr_to_user(&address,
1633 len, upeer_sockaddr, upeer_addrlen);
1634 if (err < 0)
1635 goto out_fd;
1638 /* File flags are not inherited via accept() unlike another OSes. */
1640 fd_install(newfd, newfile);
1641 err = newfd;
1643 out_put:
1644 fput_light(sock->file, fput_needed);
1645 out:
1646 return err;
1647 out_fd:
1648 fput(newfile);
1649 put_unused_fd(newfd);
1650 goto out_put;
1653 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1654 int __user *, upeer_addrlen)
1656 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1660 * Attempt to connect to a socket with the server address. The address
1661 * is in user space so we verify it is OK and move it to kernel space.
1663 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1664 * break bindings
1666 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1667 * other SEQPACKET protocols that take time to connect() as it doesn't
1668 * include the -EINPROGRESS status for such sockets.
1671 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1672 int, addrlen)
1674 struct socket *sock;
1675 struct sockaddr_storage address;
1676 int err, fput_needed;
1678 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1679 if (!sock)
1680 goto out;
1681 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1682 if (err < 0)
1683 goto out_put;
1685 err =
1686 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1687 if (err)
1688 goto out_put;
1690 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1691 sock->file->f_flags);
1692 out_put:
1693 fput_light(sock->file, fput_needed);
1694 out:
1695 return err;
1699 * Get the local address ('name') of a socket object. Move the obtained
1700 * name to user space.
1703 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1704 int __user *, usockaddr_len)
1706 struct socket *sock;
1707 struct sockaddr_storage address;
1708 int len, err, fput_needed;
1710 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1711 if (!sock)
1712 goto out;
1714 err = security_socket_getsockname(sock);
1715 if (err)
1716 goto out_put;
1718 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1719 if (err)
1720 goto out_put;
1721 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1723 out_put:
1724 fput_light(sock->file, fput_needed);
1725 out:
1726 return err;
1730 * Get the remote address ('name') of a socket object. Move the obtained
1731 * name to user space.
1734 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1735 int __user *, usockaddr_len)
1737 struct socket *sock;
1738 struct sockaddr_storage address;
1739 int len, err, fput_needed;
1741 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1742 if (sock != NULL) {
1743 err = security_socket_getpeername(sock);
1744 if (err) {
1745 fput_light(sock->file, fput_needed);
1746 return err;
1749 err =
1750 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1752 if (!err)
1753 err = move_addr_to_user(&address, len, usockaddr,
1754 usockaddr_len);
1755 fput_light(sock->file, fput_needed);
1757 return err;
1761 * Send a datagram to a given address. We move the address into kernel
1762 * space and check the user space data area is readable before invoking
1763 * the protocol.
1766 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1767 unsigned int, flags, struct sockaddr __user *, addr,
1768 int, addr_len)
1770 struct socket *sock;
1771 struct sockaddr_storage address;
1772 int err;
1773 struct msghdr msg;
1774 struct iovec iov;
1775 int fput_needed;
1777 if (len > INT_MAX)
1778 len = INT_MAX;
1779 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1780 if (!sock)
1781 goto out;
1783 iov.iov_base = buff;
1784 iov.iov_len = len;
1785 msg.msg_name = NULL;
1786 msg.msg_iov = &iov;
1787 msg.msg_iovlen = 1;
1788 msg.msg_control = NULL;
1789 msg.msg_controllen = 0;
1790 msg.msg_namelen = 0;
1791 if (addr) {
1792 err = move_addr_to_kernel(addr, addr_len, &address);
1793 if (err < 0)
1794 goto out_put;
1795 msg.msg_name = (struct sockaddr *)&address;
1796 msg.msg_namelen = addr_len;
1798 if (sock->file->f_flags & O_NONBLOCK)
1799 flags |= MSG_DONTWAIT;
1800 msg.msg_flags = flags;
1801 err = sock_sendmsg(sock, &msg, len);
1803 out_put:
1804 fput_light(sock->file, fput_needed);
1805 out:
1806 return err;
1810 * Send a datagram down a socket.
1813 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1814 unsigned int, flags)
1816 return sys_sendto(fd, buff, len, flags, NULL, 0);
1820 * Receive a frame from the socket and optionally record the address of the
1821 * sender. We verify the buffers are writable and if needed move the
1822 * sender address from kernel to user space.
1825 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1826 unsigned int, flags, struct sockaddr __user *, addr,
1827 int __user *, addr_len)
1829 struct socket *sock;
1830 struct iovec iov;
1831 struct msghdr msg;
1832 struct sockaddr_storage address;
1833 int err, err2;
1834 int fput_needed;
1836 if (size > INT_MAX)
1837 size = INT_MAX;
1838 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1839 if (!sock)
1840 goto out;
1842 msg.msg_control = NULL;
1843 msg.msg_controllen = 0;
1844 msg.msg_iovlen = 1;
1845 msg.msg_iov = &iov;
1846 iov.iov_len = size;
1847 iov.iov_base = ubuf;
1848 msg.msg_name = (struct sockaddr *)&address;
1849 msg.msg_namelen = sizeof(address);
1850 if (sock->file->f_flags & O_NONBLOCK)
1851 flags |= MSG_DONTWAIT;
1852 err = sock_recvmsg(sock, &msg, size, flags);
1854 if (err >= 0 && addr != NULL) {
1855 err2 = move_addr_to_user(&address,
1856 msg.msg_namelen, addr, addr_len);
1857 if (err2 < 0)
1858 err = err2;
1861 fput_light(sock->file, fput_needed);
1862 out:
1863 return err;
1867 * Receive a datagram from a socket.
1870 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1871 unsigned int flags)
1873 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1877 * Set a socket option. Because we don't know the option lengths we have
1878 * to pass the user mode parameter for the protocols to sort out.
1881 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1882 char __user *, optval, int, optlen)
1884 int err, fput_needed;
1885 struct socket *sock;
1887 if (optlen < 0)
1888 return -EINVAL;
1890 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1891 if (sock != NULL) {
1892 err = security_socket_setsockopt(sock, level, optname);
1893 if (err)
1894 goto out_put;
1896 if (level == SOL_SOCKET)
1897 err =
1898 sock_setsockopt(sock, level, optname, optval,
1899 optlen);
1900 else
1901 err =
1902 sock->ops->setsockopt(sock, level, optname, optval,
1903 optlen);
1904 out_put:
1905 fput_light(sock->file, fput_needed);
1907 return err;
1911 * Get a socket option. Because we don't know the option lengths we have
1912 * to pass a user mode parameter for the protocols to sort out.
1915 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1916 char __user *, optval, int __user *, optlen)
1918 int err, fput_needed;
1919 struct socket *sock;
1921 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1922 if (sock != NULL) {
1923 err = security_socket_getsockopt(sock, level, optname);
1924 if (err)
1925 goto out_put;
1927 if (level == SOL_SOCKET)
1928 err =
1929 sock_getsockopt(sock, level, optname, optval,
1930 optlen);
1931 else
1932 err =
1933 sock->ops->getsockopt(sock, level, optname, optval,
1934 optlen);
1935 out_put:
1936 fput_light(sock->file, fput_needed);
1938 return err;
1942 * Shutdown a socket.
1945 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1947 int err, fput_needed;
1948 struct socket *sock;
1950 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1951 if (sock != NULL) {
1952 err = security_socket_shutdown(sock, how);
1953 if (!err)
1954 err = sock->ops->shutdown(sock, how);
1955 fput_light(sock->file, fput_needed);
1957 return err;
1960 /* A couple of helpful macros for getting the address of the 32/64 bit
1961 * fields which are the same type (int / unsigned) on our platforms.
1963 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1964 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1965 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1967 struct used_address {
1968 struct sockaddr_storage name;
1969 unsigned int name_len;
1972 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1973 struct msghdr *msg_sys, unsigned int flags,
1974 struct used_address *used_address)
1976 struct compat_msghdr __user *msg_compat =
1977 (struct compat_msghdr __user *)msg;
1978 struct sockaddr_storage address;
1979 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1980 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1981 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1982 /* 20 is size of ipv6_pktinfo */
1983 unsigned char *ctl_buf = ctl;
1984 int err, ctl_len, total_len;
1986 err = -EFAULT;
1987 if (MSG_CMSG_COMPAT & flags) {
1988 if (get_compat_msghdr(msg_sys, msg_compat))
1989 return -EFAULT;
1990 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1991 return -EFAULT;
1993 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1994 err = -EMSGSIZE;
1995 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1996 goto out;
1997 err = -ENOMEM;
1998 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1999 GFP_KERNEL);
2000 if (!iov)
2001 goto out;
2004 /* This will also move the address data into kernel space */
2005 if (MSG_CMSG_COMPAT & flags) {
2006 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2007 } else
2008 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2009 if (err < 0)
2010 goto out_freeiov;
2011 total_len = err;
2013 err = -ENOBUFS;
2015 if (msg_sys->msg_controllen > INT_MAX)
2016 goto out_freeiov;
2017 ctl_len = msg_sys->msg_controllen;
2018 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2019 err =
2020 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2021 sizeof(ctl));
2022 if (err)
2023 goto out_freeiov;
2024 ctl_buf = msg_sys->msg_control;
2025 ctl_len = msg_sys->msg_controllen;
2026 } else if (ctl_len) {
2027 if (ctl_len > sizeof(ctl)) {
2028 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2029 if (ctl_buf == NULL)
2030 goto out_freeiov;
2032 err = -EFAULT;
2034 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2035 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2036 * checking falls down on this.
2038 if (copy_from_user(ctl_buf,
2039 (void __user __force *)msg_sys->msg_control,
2040 ctl_len))
2041 goto out_freectl;
2042 msg_sys->msg_control = ctl_buf;
2044 msg_sys->msg_flags = flags;
2046 if (sock->file->f_flags & O_NONBLOCK)
2047 msg_sys->msg_flags |= MSG_DONTWAIT;
2049 * If this is sendmmsg() and current destination address is same as
2050 * previously succeeded address, omit asking LSM's decision.
2051 * used_address->name_len is initialized to UINT_MAX so that the first
2052 * destination address never matches.
2054 if (used_address && msg_sys->msg_name &&
2055 used_address->name_len == msg_sys->msg_namelen &&
2056 !memcmp(&used_address->name, msg_sys->msg_name,
2057 used_address->name_len)) {
2058 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2059 goto out_freectl;
2061 err = sock_sendmsg(sock, msg_sys, total_len);
2063 * If this is sendmmsg() and sending to current destination address was
2064 * successful, remember it.
2066 if (used_address && err >= 0) {
2067 used_address->name_len = msg_sys->msg_namelen;
2068 if (msg_sys->msg_name)
2069 memcpy(&used_address->name, msg_sys->msg_name,
2070 used_address->name_len);
2073 out_freectl:
2074 if (ctl_buf != ctl)
2075 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2076 out_freeiov:
2077 if (iov != iovstack)
2078 kfree(iov);
2079 out:
2080 return err;
2084 * BSD sendmsg interface
2087 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2089 int fput_needed, err;
2090 struct msghdr msg_sys;
2091 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2093 if (!sock)
2094 goto out;
2096 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2098 fput_light(sock->file, fput_needed);
2099 out:
2100 return err;
2104 * Linux sendmmsg interface
2107 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2108 unsigned int flags)
2110 int fput_needed, err, datagrams;
2111 struct socket *sock;
2112 struct mmsghdr __user *entry;
2113 struct compat_mmsghdr __user *compat_entry;
2114 struct msghdr msg_sys;
2115 struct used_address used_address;
2117 if (vlen > UIO_MAXIOV)
2118 vlen = UIO_MAXIOV;
2120 datagrams = 0;
2122 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2123 if (!sock)
2124 return err;
2126 used_address.name_len = UINT_MAX;
2127 entry = mmsg;
2128 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2129 err = 0;
2131 while (datagrams < vlen) {
2132 if (MSG_CMSG_COMPAT & flags) {
2133 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2134 &msg_sys, flags, &used_address);
2135 if (err < 0)
2136 break;
2137 err = __put_user(err, &compat_entry->msg_len);
2138 ++compat_entry;
2139 } else {
2140 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2141 &msg_sys, flags, &used_address);
2142 if (err < 0)
2143 break;
2144 err = put_user(err, &entry->msg_len);
2145 ++entry;
2148 if (err)
2149 break;
2150 ++datagrams;
2153 fput_light(sock->file, fput_needed);
2155 /* We only return an error if no datagrams were able to be sent */
2156 if (datagrams != 0)
2157 return datagrams;
2159 return err;
2162 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2163 unsigned int, vlen, unsigned int, flags)
2165 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2168 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2169 struct msghdr *msg_sys, unsigned int flags, int nosec)
2171 struct compat_msghdr __user *msg_compat =
2172 (struct compat_msghdr __user *)msg;
2173 struct iovec iovstack[UIO_FASTIOV];
2174 struct iovec *iov = iovstack;
2175 unsigned long cmsg_ptr;
2176 int err, total_len, len;
2178 /* kernel mode address */
2179 struct sockaddr_storage addr;
2181 /* user mode address pointers */
2182 struct sockaddr __user *uaddr;
2183 int __user *uaddr_len;
2185 if (MSG_CMSG_COMPAT & flags) {
2186 if (get_compat_msghdr(msg_sys, msg_compat))
2187 return -EFAULT;
2188 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2189 return -EFAULT;
2191 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2192 err = -EMSGSIZE;
2193 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2194 goto out;
2195 err = -ENOMEM;
2196 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2197 GFP_KERNEL);
2198 if (!iov)
2199 goto out;
2203 * Save the user-mode address (verify_iovec will change the
2204 * kernel msghdr to use the kernel address space)
2207 uaddr = (__force void __user *)msg_sys->msg_name;
2208 uaddr_len = COMPAT_NAMELEN(msg);
2209 if (MSG_CMSG_COMPAT & flags) {
2210 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2211 } else
2212 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2213 if (err < 0)
2214 goto out_freeiov;
2215 total_len = err;
2217 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2218 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2220 if (sock->file->f_flags & O_NONBLOCK)
2221 flags |= MSG_DONTWAIT;
2222 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2223 total_len, flags);
2224 if (err < 0)
2225 goto out_freeiov;
2226 len = err;
2228 if (uaddr != NULL) {
2229 err = move_addr_to_user(&addr,
2230 msg_sys->msg_namelen, uaddr,
2231 uaddr_len);
2232 if (err < 0)
2233 goto out_freeiov;
2235 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2236 COMPAT_FLAGS(msg));
2237 if (err)
2238 goto out_freeiov;
2239 if (MSG_CMSG_COMPAT & flags)
2240 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2241 &msg_compat->msg_controllen);
2242 else
2243 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2244 &msg->msg_controllen);
2245 if (err)
2246 goto out_freeiov;
2247 err = len;
2249 out_freeiov:
2250 if (iov != iovstack)
2251 kfree(iov);
2252 out:
2253 return err;
2257 * BSD recvmsg interface
2260 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2261 unsigned int, flags)
2263 int fput_needed, err;
2264 struct msghdr msg_sys;
2265 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2267 if (!sock)
2268 goto out;
2270 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2272 fput_light(sock->file, fput_needed);
2273 out:
2274 return err;
2278 * Linux recvmmsg interface
2281 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2282 unsigned int flags, struct timespec *timeout)
2284 int fput_needed, err, datagrams;
2285 struct socket *sock;
2286 struct mmsghdr __user *entry;
2287 struct compat_mmsghdr __user *compat_entry;
2288 struct msghdr msg_sys;
2289 struct timespec end_time;
2291 if (timeout &&
2292 poll_select_set_timeout(&end_time, timeout->tv_sec,
2293 timeout->tv_nsec))
2294 return -EINVAL;
2296 datagrams = 0;
2298 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2299 if (!sock)
2300 return err;
2302 err = sock_error(sock->sk);
2303 if (err)
2304 goto out_put;
2306 entry = mmsg;
2307 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2309 while (datagrams < vlen) {
2311 * No need to ask LSM for more than the first datagram.
2313 if (MSG_CMSG_COMPAT & flags) {
2314 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2315 &msg_sys, flags & ~MSG_WAITFORONE,
2316 datagrams);
2317 if (err < 0)
2318 break;
2319 err = __put_user(err, &compat_entry->msg_len);
2320 ++compat_entry;
2321 } else {
2322 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2323 &msg_sys, flags & ~MSG_WAITFORONE,
2324 datagrams);
2325 if (err < 0)
2326 break;
2327 err = put_user(err, &entry->msg_len);
2328 ++entry;
2331 if (err)
2332 break;
2333 ++datagrams;
2335 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2336 if (flags & MSG_WAITFORONE)
2337 flags |= MSG_DONTWAIT;
2339 if (timeout) {
2340 ktime_get_ts(timeout);
2341 *timeout = timespec_sub(end_time, *timeout);
2342 if (timeout->tv_sec < 0) {
2343 timeout->tv_sec = timeout->tv_nsec = 0;
2344 break;
2347 /* Timeout, return less than vlen datagrams */
2348 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2349 break;
2352 /* Out of band data, return right away */
2353 if (msg_sys.msg_flags & MSG_OOB)
2354 break;
2357 out_put:
2358 fput_light(sock->file, fput_needed);
2360 if (err == 0)
2361 return datagrams;
2363 if (datagrams != 0) {
2365 * We may return less entries than requested (vlen) if the
2366 * sock is non block and there aren't enough datagrams...
2368 if (err != -EAGAIN) {
2370 * ... or if recvmsg returns an error after we
2371 * received some datagrams, where we record the
2372 * error to return on the next call or if the
2373 * app asks about it using getsockopt(SO_ERROR).
2375 sock->sk->sk_err = -err;
2378 return datagrams;
2381 return err;
2384 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2385 unsigned int, vlen, unsigned int, flags,
2386 struct timespec __user *, timeout)
2388 int datagrams;
2389 struct timespec timeout_sys;
2391 if (!timeout)
2392 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2394 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2395 return -EFAULT;
2397 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2399 if (datagrams > 0 &&
2400 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2401 datagrams = -EFAULT;
2403 return datagrams;
2406 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2407 /* Argument list sizes for sys_socketcall */
2408 #define AL(x) ((x) * sizeof(unsigned long))
2409 static const unsigned char nargs[21] = {
2410 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2411 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2412 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2413 AL(4), AL(5), AL(4)
2416 #undef AL
2419 * System call vectors.
2421 * Argument checking cleaned up. Saved 20% in size.
2422 * This function doesn't need to set the kernel lock because
2423 * it is set by the callees.
2426 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2428 unsigned long a[6];
2429 unsigned long a0, a1;
2430 int err;
2431 unsigned int len;
2433 if (call < 1 || call > SYS_SENDMMSG)
2434 return -EINVAL;
2436 len = nargs[call];
2437 if (len > sizeof(a))
2438 return -EINVAL;
2440 /* copy_from_user should be SMP safe. */
2441 if (copy_from_user(a, args, len))
2442 return -EFAULT;
2444 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2446 a0 = a[0];
2447 a1 = a[1];
2449 switch (call) {
2450 case SYS_SOCKET:
2451 err = sys_socket(a0, a1, a[2]);
2452 break;
2453 case SYS_BIND:
2454 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2455 break;
2456 case SYS_CONNECT:
2457 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2458 break;
2459 case SYS_LISTEN:
2460 err = sys_listen(a0, a1);
2461 break;
2462 case SYS_ACCEPT:
2463 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2464 (int __user *)a[2], 0);
2465 break;
2466 case SYS_GETSOCKNAME:
2467 err =
2468 sys_getsockname(a0, (struct sockaddr __user *)a1,
2469 (int __user *)a[2]);
2470 break;
2471 case SYS_GETPEERNAME:
2472 err =
2473 sys_getpeername(a0, (struct sockaddr __user *)a1,
2474 (int __user *)a[2]);
2475 break;
2476 case SYS_SOCKETPAIR:
2477 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2478 break;
2479 case SYS_SEND:
2480 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2481 break;
2482 case SYS_SENDTO:
2483 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2484 (struct sockaddr __user *)a[4], a[5]);
2485 break;
2486 case SYS_RECV:
2487 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2488 break;
2489 case SYS_RECVFROM:
2490 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2491 (struct sockaddr __user *)a[4],
2492 (int __user *)a[5]);
2493 break;
2494 case SYS_SHUTDOWN:
2495 err = sys_shutdown(a0, a1);
2496 break;
2497 case SYS_SETSOCKOPT:
2498 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2499 break;
2500 case SYS_GETSOCKOPT:
2501 err =
2502 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2503 (int __user *)a[4]);
2504 break;
2505 case SYS_SENDMSG:
2506 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2507 break;
2508 case SYS_SENDMMSG:
2509 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2510 break;
2511 case SYS_RECVMSG:
2512 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2513 break;
2514 case SYS_RECVMMSG:
2515 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2516 (struct timespec __user *)a[4]);
2517 break;
2518 case SYS_ACCEPT4:
2519 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2520 (int __user *)a[2], a[3]);
2521 break;
2522 default:
2523 err = -EINVAL;
2524 break;
2526 return err;
2529 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2532 * sock_register - add a socket protocol handler
2533 * @ops: description of protocol
2535 * This function is called by a protocol handler that wants to
2536 * advertise its address family, and have it linked into the
2537 * socket interface. The value ops->family coresponds to the
2538 * socket system call protocol family.
2540 int sock_register(const struct net_proto_family *ops)
2542 int err;
2544 if (ops->family >= NPROTO) {
2545 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2546 NPROTO);
2547 return -ENOBUFS;
2550 spin_lock(&net_family_lock);
2551 if (rcu_dereference_protected(net_families[ops->family],
2552 lockdep_is_held(&net_family_lock)))
2553 err = -EEXIST;
2554 else {
2555 rcu_assign_pointer(net_families[ops->family], ops);
2556 err = 0;
2558 spin_unlock(&net_family_lock);
2560 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2561 return err;
2563 EXPORT_SYMBOL(sock_register);
2566 * sock_unregister - remove a protocol handler
2567 * @family: protocol family to remove
2569 * This function is called by a protocol handler that wants to
2570 * remove its address family, and have it unlinked from the
2571 * new socket creation.
2573 * If protocol handler is a module, then it can use module reference
2574 * counts to protect against new references. If protocol handler is not
2575 * a module then it needs to provide its own protection in
2576 * the ops->create routine.
2578 void sock_unregister(int family)
2580 BUG_ON(family < 0 || family >= NPROTO);
2582 spin_lock(&net_family_lock);
2583 RCU_INIT_POINTER(net_families[family], NULL);
2584 spin_unlock(&net_family_lock);
2586 synchronize_rcu();
2588 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2590 EXPORT_SYMBOL(sock_unregister);
2592 static int __init sock_init(void)
2594 int err;
2596 * Initialize the network sysctl infrastructure.
2598 err = net_sysctl_init();
2599 if (err)
2600 goto out;
2603 * Initialize skbuff SLAB cache
2605 skb_init();
2608 * Initialize the protocols module.
2611 init_inodecache();
2613 err = register_filesystem(&sock_fs_type);
2614 if (err)
2615 goto out_fs;
2616 sock_mnt = kern_mount(&sock_fs_type);
2617 if (IS_ERR(sock_mnt)) {
2618 err = PTR_ERR(sock_mnt);
2619 goto out_mount;
2622 /* The real protocol initialization is performed in later initcalls.
2625 #ifdef CONFIG_NETFILTER
2626 netfilter_init();
2627 #endif
2629 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2630 skb_timestamping_init();
2631 #endif
2633 out:
2634 return err;
2636 out_mount:
2637 unregister_filesystem(&sock_fs_type);
2638 out_fs:
2639 goto out;
2642 core_initcall(sock_init); /* early initcall */
2644 #ifdef CONFIG_PROC_FS
2645 void socket_seq_show(struct seq_file *seq)
2647 int cpu;
2648 int counter = 0;
2650 for_each_possible_cpu(cpu)
2651 counter += per_cpu(sockets_in_use, cpu);
2653 /* It can be negative, by the way. 8) */
2654 if (counter < 0)
2655 counter = 0;
2657 seq_printf(seq, "sockets: used %d\n", counter);
2659 #endif /* CONFIG_PROC_FS */
2661 #ifdef CONFIG_COMPAT
2662 static int do_siocgstamp(struct net *net, struct socket *sock,
2663 unsigned int cmd, void __user *up)
2665 mm_segment_t old_fs = get_fs();
2666 struct timeval ktv;
2667 int err;
2669 set_fs(KERNEL_DS);
2670 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2671 set_fs(old_fs);
2672 if (!err)
2673 err = compat_put_timeval(&ktv, up);
2675 return err;
2678 static int do_siocgstampns(struct net *net, struct socket *sock,
2679 unsigned int cmd, void __user *up)
2681 mm_segment_t old_fs = get_fs();
2682 struct timespec kts;
2683 int err;
2685 set_fs(KERNEL_DS);
2686 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2687 set_fs(old_fs);
2688 if (!err)
2689 err = compat_put_timespec(&kts, up);
2691 return err;
2694 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2696 struct ifreq __user *uifr;
2697 int err;
2699 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2700 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2701 return -EFAULT;
2703 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2704 if (err)
2705 return err;
2707 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2708 return -EFAULT;
2710 return 0;
2713 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2715 struct compat_ifconf ifc32;
2716 struct ifconf ifc;
2717 struct ifconf __user *uifc;
2718 struct compat_ifreq __user *ifr32;
2719 struct ifreq __user *ifr;
2720 unsigned int i, j;
2721 int err;
2723 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2724 return -EFAULT;
2726 memset(&ifc, 0, sizeof(ifc));
2727 if (ifc32.ifcbuf == 0) {
2728 ifc32.ifc_len = 0;
2729 ifc.ifc_len = 0;
2730 ifc.ifc_req = NULL;
2731 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2732 } else {
2733 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2734 sizeof(struct ifreq);
2735 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2736 ifc.ifc_len = len;
2737 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2738 ifr32 = compat_ptr(ifc32.ifcbuf);
2739 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2740 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2741 return -EFAULT;
2742 ifr++;
2743 ifr32++;
2746 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2747 return -EFAULT;
2749 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2750 if (err)
2751 return err;
2753 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2754 return -EFAULT;
2756 ifr = ifc.ifc_req;
2757 ifr32 = compat_ptr(ifc32.ifcbuf);
2758 for (i = 0, j = 0;
2759 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2760 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2761 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2762 return -EFAULT;
2763 ifr32++;
2764 ifr++;
2767 if (ifc32.ifcbuf == 0) {
2768 /* Translate from 64-bit structure multiple to
2769 * a 32-bit one.
2771 i = ifc.ifc_len;
2772 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2773 ifc32.ifc_len = i;
2774 } else {
2775 ifc32.ifc_len = i;
2777 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2778 return -EFAULT;
2780 return 0;
2783 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2785 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2786 bool convert_in = false, convert_out = false;
2787 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2788 struct ethtool_rxnfc __user *rxnfc;
2789 struct ifreq __user *ifr;
2790 u32 rule_cnt = 0, actual_rule_cnt;
2791 u32 ethcmd;
2792 u32 data;
2793 int ret;
2795 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2796 return -EFAULT;
2798 compat_rxnfc = compat_ptr(data);
2800 if (get_user(ethcmd, &compat_rxnfc->cmd))
2801 return -EFAULT;
2803 /* Most ethtool structures are defined without padding.
2804 * Unfortunately struct ethtool_rxnfc is an exception.
2806 switch (ethcmd) {
2807 default:
2808 break;
2809 case ETHTOOL_GRXCLSRLALL:
2810 /* Buffer size is variable */
2811 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2812 return -EFAULT;
2813 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2814 return -ENOMEM;
2815 buf_size += rule_cnt * sizeof(u32);
2816 /* fall through */
2817 case ETHTOOL_GRXRINGS:
2818 case ETHTOOL_GRXCLSRLCNT:
2819 case ETHTOOL_GRXCLSRULE:
2820 case ETHTOOL_SRXCLSRLINS:
2821 convert_out = true;
2822 /* fall through */
2823 case ETHTOOL_SRXCLSRLDEL:
2824 buf_size += sizeof(struct ethtool_rxnfc);
2825 convert_in = true;
2826 break;
2829 ifr = compat_alloc_user_space(buf_size);
2830 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2832 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2833 return -EFAULT;
2835 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2836 &ifr->ifr_ifru.ifru_data))
2837 return -EFAULT;
2839 if (convert_in) {
2840 /* We expect there to be holes between fs.m_ext and
2841 * fs.ring_cookie and at the end of fs, but nowhere else.
2843 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2844 sizeof(compat_rxnfc->fs.m_ext) !=
2845 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2846 sizeof(rxnfc->fs.m_ext));
2847 BUILD_BUG_ON(
2848 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2849 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2850 offsetof(struct ethtool_rxnfc, fs.location) -
2851 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2853 if (copy_in_user(rxnfc, compat_rxnfc,
2854 (void __user *)(&rxnfc->fs.m_ext + 1) -
2855 (void __user *)rxnfc) ||
2856 copy_in_user(&rxnfc->fs.ring_cookie,
2857 &compat_rxnfc->fs.ring_cookie,
2858 (void __user *)(&rxnfc->fs.location + 1) -
2859 (void __user *)&rxnfc->fs.ring_cookie) ||
2860 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2861 sizeof(rxnfc->rule_cnt)))
2862 return -EFAULT;
2865 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2866 if (ret)
2867 return ret;
2869 if (convert_out) {
2870 if (copy_in_user(compat_rxnfc, rxnfc,
2871 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2872 (const void __user *)rxnfc) ||
2873 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2874 &rxnfc->fs.ring_cookie,
2875 (const void __user *)(&rxnfc->fs.location + 1) -
2876 (const void __user *)&rxnfc->fs.ring_cookie) ||
2877 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2878 sizeof(rxnfc->rule_cnt)))
2879 return -EFAULT;
2881 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2882 /* As an optimisation, we only copy the actual
2883 * number of rules that the underlying
2884 * function returned. Since Mallory might
2885 * change the rule count in user memory, we
2886 * check that it is less than the rule count
2887 * originally given (as the user buffer size),
2888 * which has been range-checked.
2890 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2891 return -EFAULT;
2892 if (actual_rule_cnt < rule_cnt)
2893 rule_cnt = actual_rule_cnt;
2894 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2895 &rxnfc->rule_locs[0],
2896 rule_cnt * sizeof(u32)))
2897 return -EFAULT;
2901 return 0;
2904 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2906 void __user *uptr;
2907 compat_uptr_t uptr32;
2908 struct ifreq __user *uifr;
2910 uifr = compat_alloc_user_space(sizeof(*uifr));
2911 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2912 return -EFAULT;
2914 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2915 return -EFAULT;
2917 uptr = compat_ptr(uptr32);
2919 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2920 return -EFAULT;
2922 return dev_ioctl(net, SIOCWANDEV, uifr);
2925 static int bond_ioctl(struct net *net, unsigned int cmd,
2926 struct compat_ifreq __user *ifr32)
2928 struct ifreq kifr;
2929 struct ifreq __user *uifr;
2930 mm_segment_t old_fs;
2931 int err;
2932 u32 data;
2933 void __user *datap;
2935 switch (cmd) {
2936 case SIOCBONDENSLAVE:
2937 case SIOCBONDRELEASE:
2938 case SIOCBONDSETHWADDR:
2939 case SIOCBONDCHANGEACTIVE:
2940 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2941 return -EFAULT;
2943 old_fs = get_fs();
2944 set_fs(KERNEL_DS);
2945 err = dev_ioctl(net, cmd,
2946 (struct ifreq __user __force *) &kifr);
2947 set_fs(old_fs);
2949 return err;
2950 case SIOCBONDSLAVEINFOQUERY:
2951 case SIOCBONDINFOQUERY:
2952 uifr = compat_alloc_user_space(sizeof(*uifr));
2953 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2954 return -EFAULT;
2956 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2957 return -EFAULT;
2959 datap = compat_ptr(data);
2960 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2961 return -EFAULT;
2963 return dev_ioctl(net, cmd, uifr);
2964 default:
2965 return -ENOIOCTLCMD;
2969 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2970 struct compat_ifreq __user *u_ifreq32)
2972 struct ifreq __user *u_ifreq64;
2973 char tmp_buf[IFNAMSIZ];
2974 void __user *data64;
2975 u32 data32;
2977 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2978 IFNAMSIZ))
2979 return -EFAULT;
2980 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2981 return -EFAULT;
2982 data64 = compat_ptr(data32);
2984 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2986 /* Don't check these user accesses, just let that get trapped
2987 * in the ioctl handler instead.
2989 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2990 IFNAMSIZ))
2991 return -EFAULT;
2992 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2993 return -EFAULT;
2995 return dev_ioctl(net, cmd, u_ifreq64);
2998 static int dev_ifsioc(struct net *net, struct socket *sock,
2999 unsigned int cmd, struct compat_ifreq __user *uifr32)
3001 struct ifreq __user *uifr;
3002 int err;
3004 uifr = compat_alloc_user_space(sizeof(*uifr));
3005 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3006 return -EFAULT;
3008 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3010 if (!err) {
3011 switch (cmd) {
3012 case SIOCGIFFLAGS:
3013 case SIOCGIFMETRIC:
3014 case SIOCGIFMTU:
3015 case SIOCGIFMEM:
3016 case SIOCGIFHWADDR:
3017 case SIOCGIFINDEX:
3018 case SIOCGIFADDR:
3019 case SIOCGIFBRDADDR:
3020 case SIOCGIFDSTADDR:
3021 case SIOCGIFNETMASK:
3022 case SIOCGIFPFLAGS:
3023 case SIOCGIFTXQLEN:
3024 case SIOCGMIIPHY:
3025 case SIOCGMIIREG:
3026 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3027 err = -EFAULT;
3028 break;
3031 return err;
3034 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3035 struct compat_ifreq __user *uifr32)
3037 struct ifreq ifr;
3038 struct compat_ifmap __user *uifmap32;
3039 mm_segment_t old_fs;
3040 int err;
3042 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3043 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3044 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3045 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3046 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3047 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3048 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3049 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3050 if (err)
3051 return -EFAULT;
3053 old_fs = get_fs();
3054 set_fs(KERNEL_DS);
3055 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3056 set_fs(old_fs);
3058 if (cmd == SIOCGIFMAP && !err) {
3059 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3060 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3061 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3062 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3063 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3064 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3065 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3066 if (err)
3067 err = -EFAULT;
3069 return err;
3072 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3074 void __user *uptr;
3075 compat_uptr_t uptr32;
3076 struct ifreq __user *uifr;
3078 uifr = compat_alloc_user_space(sizeof(*uifr));
3079 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3080 return -EFAULT;
3082 if (get_user(uptr32, &uifr32->ifr_data))
3083 return -EFAULT;
3085 uptr = compat_ptr(uptr32);
3087 if (put_user(uptr, &uifr->ifr_data))
3088 return -EFAULT;
3090 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3093 struct rtentry32 {
3094 u32 rt_pad1;
3095 struct sockaddr rt_dst; /* target address */
3096 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3097 struct sockaddr rt_genmask; /* target network mask (IP) */
3098 unsigned short rt_flags;
3099 short rt_pad2;
3100 u32 rt_pad3;
3101 unsigned char rt_tos;
3102 unsigned char rt_class;
3103 short rt_pad4;
3104 short rt_metric; /* +1 for binary compatibility! */
3105 /* char * */ u32 rt_dev; /* forcing the device at add */
3106 u32 rt_mtu; /* per route MTU/Window */
3107 u32 rt_window; /* Window clamping */
3108 unsigned short rt_irtt; /* Initial RTT */
3111 struct in6_rtmsg32 {
3112 struct in6_addr rtmsg_dst;
3113 struct in6_addr rtmsg_src;
3114 struct in6_addr rtmsg_gateway;
3115 u32 rtmsg_type;
3116 u16 rtmsg_dst_len;
3117 u16 rtmsg_src_len;
3118 u32 rtmsg_metric;
3119 u32 rtmsg_info;
3120 u32 rtmsg_flags;
3121 s32 rtmsg_ifindex;
3124 static int routing_ioctl(struct net *net, struct socket *sock,
3125 unsigned int cmd, void __user *argp)
3127 int ret;
3128 void *r = NULL;
3129 struct in6_rtmsg r6;
3130 struct rtentry r4;
3131 char devname[16];
3132 u32 rtdev;
3133 mm_segment_t old_fs = get_fs();
3135 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3136 struct in6_rtmsg32 __user *ur6 = argp;
3137 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3138 3 * sizeof(struct in6_addr));
3139 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3140 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3141 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3142 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3143 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3144 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3145 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3147 r = (void *) &r6;
3148 } else { /* ipv4 */
3149 struct rtentry32 __user *ur4 = argp;
3150 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3151 3 * sizeof(struct sockaddr));
3152 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3153 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3154 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3155 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3156 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3157 ret |= __get_user(rtdev, &(ur4->rt_dev));
3158 if (rtdev) {
3159 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3160 r4.rt_dev = (char __user __force *)devname;
3161 devname[15] = 0;
3162 } else
3163 r4.rt_dev = NULL;
3165 r = (void *) &r4;
3168 if (ret) {
3169 ret = -EFAULT;
3170 goto out;
3173 set_fs(KERNEL_DS);
3174 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3175 set_fs(old_fs);
3177 out:
3178 return ret;
3181 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3182 * for some operations; this forces use of the newer bridge-utils that
3183 * use compatible ioctls
3185 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3187 compat_ulong_t tmp;
3189 if (get_user(tmp, argp))
3190 return -EFAULT;
3191 if (tmp == BRCTL_GET_VERSION)
3192 return BRCTL_VERSION + 1;
3193 return -EINVAL;
3196 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3197 unsigned int cmd, unsigned long arg)
3199 void __user *argp = compat_ptr(arg);
3200 struct sock *sk = sock->sk;
3201 struct net *net = sock_net(sk);
3203 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3204 return siocdevprivate_ioctl(net, cmd, argp);
3206 switch (cmd) {
3207 case SIOCSIFBR:
3208 case SIOCGIFBR:
3209 return old_bridge_ioctl(argp);
3210 case SIOCGIFNAME:
3211 return dev_ifname32(net, argp);
3212 case SIOCGIFCONF:
3213 return dev_ifconf(net, argp);
3214 case SIOCETHTOOL:
3215 return ethtool_ioctl(net, argp);
3216 case SIOCWANDEV:
3217 return compat_siocwandev(net, argp);
3218 case SIOCGIFMAP:
3219 case SIOCSIFMAP:
3220 return compat_sioc_ifmap(net, cmd, argp);
3221 case SIOCBONDENSLAVE:
3222 case SIOCBONDRELEASE:
3223 case SIOCBONDSETHWADDR:
3224 case SIOCBONDSLAVEINFOQUERY:
3225 case SIOCBONDINFOQUERY:
3226 case SIOCBONDCHANGEACTIVE:
3227 return bond_ioctl(net, cmd, argp);
3228 case SIOCADDRT:
3229 case SIOCDELRT:
3230 return routing_ioctl(net, sock, cmd, argp);
3231 case SIOCGSTAMP:
3232 return do_siocgstamp(net, sock, cmd, argp);
3233 case SIOCGSTAMPNS:
3234 return do_siocgstampns(net, sock, cmd, argp);
3235 case SIOCSHWTSTAMP:
3236 return compat_siocshwtstamp(net, argp);
3238 case FIOSETOWN:
3239 case SIOCSPGRP:
3240 case FIOGETOWN:
3241 case SIOCGPGRP:
3242 case SIOCBRADDBR:
3243 case SIOCBRDELBR:
3244 case SIOCGIFVLAN:
3245 case SIOCSIFVLAN:
3246 case SIOCADDDLCI:
3247 case SIOCDELDLCI:
3248 return sock_ioctl(file, cmd, arg);
3250 case SIOCGIFFLAGS:
3251 case SIOCSIFFLAGS:
3252 case SIOCGIFMETRIC:
3253 case SIOCSIFMETRIC:
3254 case SIOCGIFMTU:
3255 case SIOCSIFMTU:
3256 case SIOCGIFMEM:
3257 case SIOCSIFMEM:
3258 case SIOCGIFHWADDR:
3259 case SIOCSIFHWADDR:
3260 case SIOCADDMULTI:
3261 case SIOCDELMULTI:
3262 case SIOCGIFINDEX:
3263 case SIOCGIFADDR:
3264 case SIOCSIFADDR:
3265 case SIOCSIFHWBROADCAST:
3266 case SIOCDIFADDR:
3267 case SIOCGIFBRDADDR:
3268 case SIOCSIFBRDADDR:
3269 case SIOCGIFDSTADDR:
3270 case SIOCSIFDSTADDR:
3271 case SIOCGIFNETMASK:
3272 case SIOCSIFNETMASK:
3273 case SIOCSIFPFLAGS:
3274 case SIOCGIFPFLAGS:
3275 case SIOCGIFTXQLEN:
3276 case SIOCSIFTXQLEN:
3277 case SIOCBRADDIF:
3278 case SIOCBRDELIF:
3279 case SIOCSIFNAME:
3280 case SIOCGMIIPHY:
3281 case SIOCGMIIREG:
3282 case SIOCSMIIREG:
3283 return dev_ifsioc(net, sock, cmd, argp);
3285 case SIOCSARP:
3286 case SIOCGARP:
3287 case SIOCDARP:
3288 case SIOCATMARK:
3289 return sock_do_ioctl(net, sock, cmd, arg);
3292 return -ENOIOCTLCMD;
3295 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3296 unsigned long arg)
3298 struct socket *sock = file->private_data;
3299 int ret = -ENOIOCTLCMD;
3300 struct sock *sk;
3301 struct net *net;
3303 sk = sock->sk;
3304 net = sock_net(sk);
3306 if (sock->ops->compat_ioctl)
3307 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3309 if (ret == -ENOIOCTLCMD &&
3310 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3311 ret = compat_wext_handle_ioctl(net, cmd, arg);
3313 if (ret == -ENOIOCTLCMD)
3314 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3316 return ret;
3318 #endif
3320 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3322 return sock->ops->bind(sock, addr, addrlen);
3324 EXPORT_SYMBOL(kernel_bind);
3326 int kernel_listen(struct socket *sock, int backlog)
3328 return sock->ops->listen(sock, backlog);
3330 EXPORT_SYMBOL(kernel_listen);
3332 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3334 struct sock *sk = sock->sk;
3335 int err;
3337 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3338 newsock);
3339 if (err < 0)
3340 goto done;
3342 err = sock->ops->accept(sock, *newsock, flags);
3343 if (err < 0) {
3344 sock_release(*newsock);
3345 *newsock = NULL;
3346 goto done;
3349 (*newsock)->ops = sock->ops;
3350 __module_get((*newsock)->ops->owner);
3352 done:
3353 return err;
3355 EXPORT_SYMBOL(kernel_accept);
3357 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3358 int flags)
3360 return sock->ops->connect(sock, addr, addrlen, flags);
3362 EXPORT_SYMBOL(kernel_connect);
3364 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3365 int *addrlen)
3367 return sock->ops->getname(sock, addr, addrlen, 0);
3369 EXPORT_SYMBOL(kernel_getsockname);
3371 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3372 int *addrlen)
3374 return sock->ops->getname(sock, addr, addrlen, 1);
3376 EXPORT_SYMBOL(kernel_getpeername);
3378 int kernel_getsockopt(struct socket *sock, int level, int optname,
3379 char *optval, int *optlen)
3381 mm_segment_t oldfs = get_fs();
3382 char __user *uoptval;
3383 int __user *uoptlen;
3384 int err;
3386 uoptval = (char __user __force *) optval;
3387 uoptlen = (int __user __force *) optlen;
3389 set_fs(KERNEL_DS);
3390 if (level == SOL_SOCKET)
3391 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3392 else
3393 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3394 uoptlen);
3395 set_fs(oldfs);
3396 return err;
3398 EXPORT_SYMBOL(kernel_getsockopt);
3400 int kernel_setsockopt(struct socket *sock, int level, int optname,
3401 char *optval, unsigned int optlen)
3403 mm_segment_t oldfs = get_fs();
3404 char __user *uoptval;
3405 int err;
3407 uoptval = (char __user __force *) optval;
3409 set_fs(KERNEL_DS);
3410 if (level == SOL_SOCKET)
3411 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3412 else
3413 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3414 optlen);
3415 set_fs(oldfs);
3416 return err;
3418 EXPORT_SYMBOL(kernel_setsockopt);
3420 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3421 size_t size, int flags)
3423 if (sock->ops->sendpage)
3424 return sock->ops->sendpage(sock, page, offset, size, flags);
3426 return sock_no_sendpage(sock, page, offset, size, flags);
3428 EXPORT_SYMBOL(kernel_sendpage);
3430 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3432 mm_segment_t oldfs = get_fs();
3433 int err;
3435 set_fs(KERNEL_DS);
3436 err = sock->ops->ioctl(sock, cmd, arg);
3437 set_fs(oldfs);
3439 return err;
3441 EXPORT_SYMBOL(kernel_sock_ioctl);
3443 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3445 return sock->ops->shutdown(sock, how);
3447 EXPORT_SYMBOL(kernel_sock_shutdown);