2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/sched/rt.h>
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node
);
69 EXPORT_PER_CPU_SYMBOL(numa_node
);
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
79 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
84 * Array of node states.
86 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
87 [N_POSSIBLE
] = NODE_MASK_ALL
,
88 [N_ONLINE
] = { { [0] = 1UL } },
90 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
92 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
94 #ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY
] = { { [0] = 1UL } },
97 [N_CPU
] = { { [0] = 1UL } },
100 EXPORT_SYMBOL(node_states
);
102 unsigned long totalram_pages __read_mostly
;
103 unsigned long totalreserve_pages __read_mostly
;
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
110 unsigned long dirty_balance_reserve __read_mostly
;
112 int percpu_pagelist_fraction
;
113 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
115 #ifdef CONFIG_PM_SLEEP
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
125 static gfp_t saved_gfp_mask
;
127 void pm_restore_gfp_mask(void)
129 WARN_ON(!mutex_is_locked(&pm_mutex
));
130 if (saved_gfp_mask
) {
131 gfp_allowed_mask
= saved_gfp_mask
;
136 void pm_restrict_gfp_mask(void)
138 WARN_ON(!mutex_is_locked(&pm_mutex
));
139 WARN_ON(saved_gfp_mask
);
140 saved_gfp_mask
= gfp_allowed_mask
;
141 gfp_allowed_mask
&= ~GFP_IOFS
;
144 bool pm_suspended_storage(void)
146 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
150 #endif /* CONFIG_PM_SLEEP */
152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153 int pageblock_order __read_mostly
;
156 static void __free_pages_ok(struct page
*page
, unsigned int order
);
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
169 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
170 #ifdef CONFIG_ZONE_DMA
173 #ifdef CONFIG_ZONE_DMA32
176 #ifdef CONFIG_HIGHMEM
182 EXPORT_SYMBOL(totalram_pages
);
184 static char * const zone_names
[MAX_NR_ZONES
] = {
185 #ifdef CONFIG_ZONE_DMA
188 #ifdef CONFIG_ZONE_DMA32
192 #ifdef CONFIG_HIGHMEM
198 int min_free_kbytes
= 1024;
200 static unsigned long __meminitdata nr_kernel_pages
;
201 static unsigned long __meminitdata nr_all_pages
;
202 static unsigned long __meminitdata dma_reserve
;
204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
206 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
207 static unsigned long __initdata required_kernelcore
;
208 static unsigned long __initdata required_movablecore
;
209 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
211 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
213 EXPORT_SYMBOL(movable_zone
);
214 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
217 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
218 int nr_online_nodes __read_mostly
= 1;
219 EXPORT_SYMBOL(nr_node_ids
);
220 EXPORT_SYMBOL(nr_online_nodes
);
223 int page_group_by_mobility_disabled __read_mostly
;
225 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
228 if (unlikely(page_group_by_mobility_disabled
))
229 migratetype
= MIGRATE_UNMOVABLE
;
231 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
232 PB_migrate
, PB_migrate_end
);
235 bool oom_killer_disabled __read_mostly
;
237 #ifdef CONFIG_DEBUG_VM
238 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
242 unsigned long pfn
= page_to_pfn(page
);
243 unsigned long sp
, start_pfn
;
246 seq
= zone_span_seqbegin(zone
);
247 start_pfn
= zone
->zone_start_pfn
;
248 sp
= zone
->spanned_pages
;
249 if (!zone_spans_pfn(zone
, pfn
))
251 } while (zone_span_seqretry(zone
, seq
));
254 pr_err("page %lu outside zone [ %lu - %lu ]\n",
255 pfn
, start_pfn
, start_pfn
+ sp
);
260 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
262 if (!pfn_valid_within(page_to_pfn(page
)))
264 if (zone
!= page_zone(page
))
270 * Temporary debugging check for pages not lying within a given zone.
272 static int bad_range(struct zone
*zone
, struct page
*page
)
274 if (page_outside_zone_boundaries(zone
, page
))
276 if (!page_is_consistent(zone
, page
))
282 static inline int bad_range(struct zone
*zone
, struct page
*page
)
288 static void bad_page(struct page
*page
)
290 static unsigned long resume
;
291 static unsigned long nr_shown
;
292 static unsigned long nr_unshown
;
294 /* Don't complain about poisoned pages */
295 if (PageHWPoison(page
)) {
296 page_mapcount_reset(page
); /* remove PageBuddy */
301 * Allow a burst of 60 reports, then keep quiet for that minute;
302 * or allow a steady drip of one report per second.
304 if (nr_shown
== 60) {
305 if (time_before(jiffies
, resume
)) {
311 "BUG: Bad page state: %lu messages suppressed\n",
318 resume
= jiffies
+ 60 * HZ
;
320 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
321 current
->comm
, page_to_pfn(page
));
327 /* Leave bad fields for debug, except PageBuddy could make trouble */
328 page_mapcount_reset(page
); /* remove PageBuddy */
329 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
333 * Higher-order pages are called "compound pages". They are structured thusly:
335 * The first PAGE_SIZE page is called the "head page".
337 * The remaining PAGE_SIZE pages are called "tail pages".
339 * All pages have PG_compound set. All tail pages have their ->first_page
340 * pointing at the head page.
342 * The first tail page's ->lru.next holds the address of the compound page's
343 * put_page() function. Its ->lru.prev holds the order of allocation.
344 * This usage means that zero-order pages may not be compound.
347 static void free_compound_page(struct page
*page
)
349 __free_pages_ok(page
, compound_order(page
));
352 void prep_compound_page(struct page
*page
, unsigned long order
)
355 int nr_pages
= 1 << order
;
357 set_compound_page_dtor(page
, free_compound_page
);
358 set_compound_order(page
, order
);
360 for (i
= 1; i
< nr_pages
; i
++) {
361 struct page
*p
= page
+ i
;
363 set_page_count(p
, 0);
364 p
->first_page
= page
;
368 /* update __split_huge_page_refcount if you change this function */
369 static int destroy_compound_page(struct page
*page
, unsigned long order
)
372 int nr_pages
= 1 << order
;
375 if (unlikely(compound_order(page
) != order
)) {
380 __ClearPageHead(page
);
382 for (i
= 1; i
< nr_pages
; i
++) {
383 struct page
*p
= page
+ i
;
385 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
395 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
400 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
401 * and __GFP_HIGHMEM from hard or soft interrupt context.
403 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
404 for (i
= 0; i
< (1 << order
); i
++)
405 clear_highpage(page
+ i
);
408 #ifdef CONFIG_DEBUG_PAGEALLOC
409 unsigned int _debug_guardpage_minorder
;
411 static int __init
debug_guardpage_minorder_setup(char *buf
)
415 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
416 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
419 _debug_guardpage_minorder
= res
;
420 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
423 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
425 static inline void set_page_guard_flag(struct page
*page
)
427 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
430 static inline void clear_page_guard_flag(struct page
*page
)
432 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
435 static inline void set_page_guard_flag(struct page
*page
) { }
436 static inline void clear_page_guard_flag(struct page
*page
) { }
439 static inline void set_page_order(struct page
*page
, int order
)
441 set_page_private(page
, order
);
442 __SetPageBuddy(page
);
445 static inline void rmv_page_order(struct page
*page
)
447 __ClearPageBuddy(page
);
448 set_page_private(page
, 0);
452 * Locate the struct page for both the matching buddy in our
453 * pair (buddy1) and the combined O(n+1) page they form (page).
455 * 1) Any buddy B1 will have an order O twin B2 which satisfies
456 * the following equation:
458 * For example, if the starting buddy (buddy2) is #8 its order
460 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
462 * 2) Any buddy B will have an order O+1 parent P which
463 * satisfies the following equation:
466 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
468 static inline unsigned long
469 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
471 return page_idx
^ (1 << order
);
475 * This function checks whether a page is free && is the buddy
476 * we can do coalesce a page and its buddy if
477 * (a) the buddy is not in a hole &&
478 * (b) the buddy is in the buddy system &&
479 * (c) a page and its buddy have the same order &&
480 * (d) a page and its buddy are in the same zone.
482 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
483 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
485 * For recording page's order, we use page_private(page).
487 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
490 if (!pfn_valid_within(page_to_pfn(buddy
)))
493 if (page_zone_id(page
) != page_zone_id(buddy
))
496 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
497 VM_BUG_ON(page_count(buddy
) != 0);
501 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
502 VM_BUG_ON(page_count(buddy
) != 0);
509 * Freeing function for a buddy system allocator.
511 * The concept of a buddy system is to maintain direct-mapped table
512 * (containing bit values) for memory blocks of various "orders".
513 * The bottom level table contains the map for the smallest allocatable
514 * units of memory (here, pages), and each level above it describes
515 * pairs of units from the levels below, hence, "buddies".
516 * At a high level, all that happens here is marking the table entry
517 * at the bottom level available, and propagating the changes upward
518 * as necessary, plus some accounting needed to play nicely with other
519 * parts of the VM system.
520 * At each level, we keep a list of pages, which are heads of continuous
521 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
522 * order is recorded in page_private(page) field.
523 * So when we are allocating or freeing one, we can derive the state of the
524 * other. That is, if we allocate a small block, and both were
525 * free, the remainder of the region must be split into blocks.
526 * If a block is freed, and its buddy is also free, then this
527 * triggers coalescing into a block of larger size.
532 static inline void __free_one_page(struct page
*page
,
533 struct zone
*zone
, unsigned int order
,
536 unsigned long page_idx
;
537 unsigned long combined_idx
;
538 unsigned long uninitialized_var(buddy_idx
);
541 VM_BUG_ON(!zone_is_initialized(zone
));
543 if (unlikely(PageCompound(page
)))
544 if (unlikely(destroy_compound_page(page
, order
)))
547 VM_BUG_ON(migratetype
== -1);
549 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
551 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
552 VM_BUG_ON(bad_range(zone
, page
));
554 while (order
< MAX_ORDER
-1) {
555 buddy_idx
= __find_buddy_index(page_idx
, order
);
556 buddy
= page
+ (buddy_idx
- page_idx
);
557 if (!page_is_buddy(page
, buddy
, order
))
560 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
561 * merge with it and move up one order.
563 if (page_is_guard(buddy
)) {
564 clear_page_guard_flag(buddy
);
565 set_page_private(page
, 0);
566 __mod_zone_freepage_state(zone
, 1 << order
,
569 list_del(&buddy
->lru
);
570 zone
->free_area
[order
].nr_free
--;
571 rmv_page_order(buddy
);
573 combined_idx
= buddy_idx
& page_idx
;
574 page
= page
+ (combined_idx
- page_idx
);
575 page_idx
= combined_idx
;
578 set_page_order(page
, order
);
581 * If this is not the largest possible page, check if the buddy
582 * of the next-highest order is free. If it is, it's possible
583 * that pages are being freed that will coalesce soon. In case,
584 * that is happening, add the free page to the tail of the list
585 * so it's less likely to be used soon and more likely to be merged
586 * as a higher order page
588 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
589 struct page
*higher_page
, *higher_buddy
;
590 combined_idx
= buddy_idx
& page_idx
;
591 higher_page
= page
+ (combined_idx
- page_idx
);
592 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
593 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
594 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
595 list_add_tail(&page
->lru
,
596 &zone
->free_area
[order
].free_list
[migratetype
]);
601 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
603 zone
->free_area
[order
].nr_free
++;
606 static inline int free_pages_check(struct page
*page
)
608 if (unlikely(page_mapcount(page
) |
609 (page
->mapping
!= NULL
) |
610 (atomic_read(&page
->_count
) != 0) |
611 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
612 (mem_cgroup_bad_page_check(page
)))) {
616 page_nid_reset_last(page
);
617 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
618 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
623 * Frees a number of pages from the PCP lists
624 * Assumes all pages on list are in same zone, and of same order.
625 * count is the number of pages to free.
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
633 static void free_pcppages_bulk(struct zone
*zone
, int count
,
634 struct per_cpu_pages
*pcp
)
640 spin_lock(&zone
->lock
);
641 zone
->all_unreclaimable
= 0;
642 zone
->pages_scanned
= 0;
646 struct list_head
*list
;
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
657 if (++migratetype
== MIGRATE_PCPTYPES
)
659 list
= &pcp
->lists
[migratetype
];
660 } while (list_empty(list
));
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free
== MIGRATE_PCPTYPES
)
664 batch_free
= to_free
;
667 int mt
; /* migratetype of the to-be-freed page */
669 page
= list_entry(list
->prev
, struct page
, lru
);
670 /* must delete as __free_one_page list manipulates */
671 list_del(&page
->lru
);
672 mt
= get_freepage_migratetype(page
);
673 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
674 __free_one_page(page
, zone
, 0, mt
);
675 trace_mm_page_pcpu_drain(page
, 0, mt
);
676 if (likely(!is_migrate_isolate_page(page
))) {
677 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
678 if (is_migrate_cma(mt
))
679 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
681 } while (--to_free
&& --batch_free
&& !list_empty(list
));
683 spin_unlock(&zone
->lock
);
686 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
689 spin_lock(&zone
->lock
);
690 zone
->all_unreclaimable
= 0;
691 zone
->pages_scanned
= 0;
693 __free_one_page(page
, zone
, order
, migratetype
);
694 if (unlikely(!is_migrate_isolate(migratetype
)))
695 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
696 spin_unlock(&zone
->lock
);
699 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
704 trace_mm_page_free(page
, order
);
705 kmemcheck_free_shadow(page
, order
);
708 page
->mapping
= NULL
;
709 for (i
= 0; i
< (1 << order
); i
++)
710 bad
+= free_pages_check(page
+ i
);
714 if (!PageHighMem(page
)) {
715 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
716 debug_check_no_obj_freed(page_address(page
),
719 arch_free_page(page
, order
);
720 kernel_map_pages(page
, 1 << order
, 0);
725 static void __free_pages_ok(struct page
*page
, unsigned int order
)
730 if (!free_pages_prepare(page
, order
))
733 local_irq_save(flags
);
734 __count_vm_events(PGFREE
, 1 << order
);
735 migratetype
= get_pageblock_migratetype(page
);
736 set_freepage_migratetype(page
, migratetype
);
737 free_one_page(page_zone(page
), page
, order
, migratetype
);
738 local_irq_restore(flags
);
742 * Read access to zone->managed_pages is safe because it's unsigned long,
743 * but we still need to serialize writers. Currently all callers of
744 * __free_pages_bootmem() except put_page_bootmem() should only be used
745 * at boot time. So for shorter boot time, we shift the burden to
746 * put_page_bootmem() to serialize writers.
748 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
750 unsigned int nr_pages
= 1 << order
;
754 for (loop
= 0; loop
< nr_pages
; loop
++) {
755 struct page
*p
= &page
[loop
];
757 if (loop
+ 1 < nr_pages
)
759 __ClearPageReserved(p
);
760 set_page_count(p
, 0);
763 page_zone(page
)->managed_pages
+= 1 << order
;
764 set_page_refcounted(page
);
765 __free_pages(page
, order
);
769 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
770 void __init
init_cma_reserved_pageblock(struct page
*page
)
772 unsigned i
= pageblock_nr_pages
;
773 struct page
*p
= page
;
776 __ClearPageReserved(p
);
777 set_page_count(p
, 0);
780 set_page_refcounted(page
);
781 set_pageblock_migratetype(page
, MIGRATE_CMA
);
782 __free_pages(page
, pageblock_order
);
783 totalram_pages
+= pageblock_nr_pages
;
784 #ifdef CONFIG_HIGHMEM
785 if (PageHighMem(page
))
786 totalhigh_pages
+= pageblock_nr_pages
;
792 * The order of subdivision here is critical for the IO subsystem.
793 * Please do not alter this order without good reasons and regression
794 * testing. Specifically, as large blocks of memory are subdivided,
795 * the order in which smaller blocks are delivered depends on the order
796 * they're subdivided in this function. This is the primary factor
797 * influencing the order in which pages are delivered to the IO
798 * subsystem according to empirical testing, and this is also justified
799 * by considering the behavior of a buddy system containing a single
800 * large block of memory acted on by a series of small allocations.
801 * This behavior is a critical factor in sglist merging's success.
805 static inline void expand(struct zone
*zone
, struct page
*page
,
806 int low
, int high
, struct free_area
*area
,
809 unsigned long size
= 1 << high
;
815 VM_BUG_ON(bad_range(zone
, &page
[size
]));
817 #ifdef CONFIG_DEBUG_PAGEALLOC
818 if (high
< debug_guardpage_minorder()) {
820 * Mark as guard pages (or page), that will allow to
821 * merge back to allocator when buddy will be freed.
822 * Corresponding page table entries will not be touched,
823 * pages will stay not present in virtual address space
825 INIT_LIST_HEAD(&page
[size
].lru
);
826 set_page_guard_flag(&page
[size
]);
827 set_page_private(&page
[size
], high
);
828 /* Guard pages are not available for any usage */
829 __mod_zone_freepage_state(zone
, -(1 << high
),
834 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
836 set_page_order(&page
[size
], high
);
841 * This page is about to be returned from the page allocator
843 static inline int check_new_page(struct page
*page
)
845 if (unlikely(page_mapcount(page
) |
846 (page
->mapping
!= NULL
) |
847 (atomic_read(&page
->_count
) != 0) |
848 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
849 (mem_cgroup_bad_page_check(page
)))) {
856 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
860 for (i
= 0; i
< (1 << order
); i
++) {
861 struct page
*p
= page
+ i
;
862 if (unlikely(check_new_page(p
)))
866 set_page_private(page
, 0);
867 set_page_refcounted(page
);
869 arch_alloc_page(page
, order
);
870 kernel_map_pages(page
, 1 << order
, 1);
872 if (gfp_flags
& __GFP_ZERO
)
873 prep_zero_page(page
, order
, gfp_flags
);
875 if (order
&& (gfp_flags
& __GFP_COMP
))
876 prep_compound_page(page
, order
);
882 * Go through the free lists for the given migratetype and remove
883 * the smallest available page from the freelists
886 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
889 unsigned int current_order
;
890 struct free_area
* area
;
893 /* Find a page of the appropriate size in the preferred list */
894 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
895 area
= &(zone
->free_area
[current_order
]);
896 if (list_empty(&area
->free_list
[migratetype
]))
899 page
= list_entry(area
->free_list
[migratetype
].next
,
901 list_del(&page
->lru
);
902 rmv_page_order(page
);
904 expand(zone
, page
, order
, current_order
, area
, migratetype
);
913 * This array describes the order lists are fallen back to when
914 * the free lists for the desirable migrate type are depleted
916 static int fallbacks
[MIGRATE_TYPES
][4] = {
917 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
918 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
920 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
921 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
923 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
925 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
926 #ifdef CONFIG_MEMORY_ISOLATION
927 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
932 * Move the free pages in a range to the free lists of the requested type.
933 * Note that start_page and end_pages are not aligned on a pageblock
934 * boundary. If alignment is required, use move_freepages_block()
936 int move_freepages(struct zone
*zone
,
937 struct page
*start_page
, struct page
*end_page
,
944 #ifndef CONFIG_HOLES_IN_ZONE
946 * page_zone is not safe to call in this context when
947 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
948 * anyway as we check zone boundaries in move_freepages_block().
949 * Remove at a later date when no bug reports exist related to
950 * grouping pages by mobility
952 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
955 for (page
= start_page
; page
<= end_page
;) {
956 /* Make sure we are not inadvertently changing nodes */
957 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
959 if (!pfn_valid_within(page_to_pfn(page
))) {
964 if (!PageBuddy(page
)) {
969 order
= page_order(page
);
970 list_move(&page
->lru
,
971 &zone
->free_area
[order
].free_list
[migratetype
]);
972 set_freepage_migratetype(page
, migratetype
);
974 pages_moved
+= 1 << order
;
980 int move_freepages_block(struct zone
*zone
, struct page
*page
,
983 unsigned long start_pfn
, end_pfn
;
984 struct page
*start_page
, *end_page
;
986 start_pfn
= page_to_pfn(page
);
987 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
988 start_page
= pfn_to_page(start_pfn
);
989 end_page
= start_page
+ pageblock_nr_pages
- 1;
990 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
992 /* Do not cross zone boundaries */
993 if (!zone_spans_pfn(zone
, start_pfn
))
995 if (!zone_spans_pfn(zone
, end_pfn
))
998 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1001 static void change_pageblock_range(struct page
*pageblock_page
,
1002 int start_order
, int migratetype
)
1004 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1006 while (nr_pageblocks
--) {
1007 set_pageblock_migratetype(pageblock_page
, migratetype
);
1008 pageblock_page
+= pageblock_nr_pages
;
1012 /* Remove an element from the buddy allocator from the fallback list */
1013 static inline struct page
*
1014 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
1016 struct free_area
* area
;
1021 /* Find the largest possible block of pages in the other list */
1022 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
1025 migratetype
= fallbacks
[start_migratetype
][i
];
1027 /* MIGRATE_RESERVE handled later if necessary */
1028 if (migratetype
== MIGRATE_RESERVE
)
1031 area
= &(zone
->free_area
[current_order
]);
1032 if (list_empty(&area
->free_list
[migratetype
]))
1035 page
= list_entry(area
->free_list
[migratetype
].next
,
1040 * If breaking a large block of pages, move all free
1041 * pages to the preferred allocation list. If falling
1042 * back for a reclaimable kernel allocation, be more
1043 * aggressive about taking ownership of free pages
1045 * On the other hand, never change migration
1046 * type of MIGRATE_CMA pageblocks nor move CMA
1047 * pages on different free lists. We don't
1048 * want unmovable pages to be allocated from
1049 * MIGRATE_CMA areas.
1051 if (!is_migrate_cma(migratetype
) &&
1052 (unlikely(current_order
>= pageblock_order
/ 2) ||
1053 start_migratetype
== MIGRATE_RECLAIMABLE
||
1054 page_group_by_mobility_disabled
)) {
1056 pages
= move_freepages_block(zone
, page
,
1059 /* Claim the whole block if over half of it is free */
1060 if (pages
>= (1 << (pageblock_order
-1)) ||
1061 page_group_by_mobility_disabled
)
1062 set_pageblock_migratetype(page
,
1065 migratetype
= start_migratetype
;
1068 /* Remove the page from the freelists */
1069 list_del(&page
->lru
);
1070 rmv_page_order(page
);
1072 /* Take ownership for orders >= pageblock_order */
1073 if (current_order
>= pageblock_order
&&
1074 !is_migrate_cma(migratetype
))
1075 change_pageblock_range(page
, current_order
,
1078 expand(zone
, page
, order
, current_order
, area
,
1079 is_migrate_cma(migratetype
)
1080 ? migratetype
: start_migratetype
);
1082 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1083 start_migratetype
, migratetype
);
1093 * Do the hard work of removing an element from the buddy allocator.
1094 * Call me with the zone->lock already held.
1096 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1102 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1104 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1105 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1108 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1109 * is used because __rmqueue_smallest is an inline function
1110 * and we want just one call site
1113 migratetype
= MIGRATE_RESERVE
;
1118 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1123 * Obtain a specified number of elements from the buddy allocator, all under
1124 * a single hold of the lock, for efficiency. Add them to the supplied list.
1125 * Returns the number of new pages which were placed at *list.
1127 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1128 unsigned long count
, struct list_head
*list
,
1129 int migratetype
, int cold
)
1131 int mt
= migratetype
, i
;
1133 spin_lock(&zone
->lock
);
1134 for (i
= 0; i
< count
; ++i
) {
1135 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1136 if (unlikely(page
== NULL
))
1140 * Split buddy pages returned by expand() are received here
1141 * in physical page order. The page is added to the callers and
1142 * list and the list head then moves forward. From the callers
1143 * perspective, the linked list is ordered by page number in
1144 * some conditions. This is useful for IO devices that can
1145 * merge IO requests if the physical pages are ordered
1148 if (likely(cold
== 0))
1149 list_add(&page
->lru
, list
);
1151 list_add_tail(&page
->lru
, list
);
1152 if (IS_ENABLED(CONFIG_CMA
)) {
1153 mt
= get_pageblock_migratetype(page
);
1154 if (!is_migrate_cma(mt
) && !is_migrate_isolate(mt
))
1157 set_freepage_migratetype(page
, mt
);
1159 if (is_migrate_cma(mt
))
1160 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1163 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1164 spin_unlock(&zone
->lock
);
1170 * Called from the vmstat counter updater to drain pagesets of this
1171 * currently executing processor on remote nodes after they have
1174 * Note that this function must be called with the thread pinned to
1175 * a single processor.
1177 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1179 unsigned long flags
;
1182 local_irq_save(flags
);
1183 if (pcp
->count
>= pcp
->batch
)
1184 to_drain
= pcp
->batch
;
1186 to_drain
= pcp
->count
;
1188 free_pcppages_bulk(zone
, to_drain
, pcp
);
1189 pcp
->count
-= to_drain
;
1191 local_irq_restore(flags
);
1196 * Drain pages of the indicated processor.
1198 * The processor must either be the current processor and the
1199 * thread pinned to the current processor or a processor that
1202 static void drain_pages(unsigned int cpu
)
1204 unsigned long flags
;
1207 for_each_populated_zone(zone
) {
1208 struct per_cpu_pageset
*pset
;
1209 struct per_cpu_pages
*pcp
;
1211 local_irq_save(flags
);
1212 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1216 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1219 local_irq_restore(flags
);
1224 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1226 void drain_local_pages(void *arg
)
1228 drain_pages(smp_processor_id());
1232 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1234 * Note that this code is protected against sending an IPI to an offline
1235 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1236 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1237 * nothing keeps CPUs from showing up after we populated the cpumask and
1238 * before the call to on_each_cpu_mask().
1240 void drain_all_pages(void)
1243 struct per_cpu_pageset
*pcp
;
1247 * Allocate in the BSS so we wont require allocation in
1248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1250 static cpumask_t cpus_with_pcps
;
1253 * We don't care about racing with CPU hotplug event
1254 * as offline notification will cause the notified
1255 * cpu to drain that CPU pcps and on_each_cpu_mask
1256 * disables preemption as part of its processing
1258 for_each_online_cpu(cpu
) {
1259 bool has_pcps
= false;
1260 for_each_populated_zone(zone
) {
1261 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1262 if (pcp
->pcp
.count
) {
1268 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1270 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1272 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1275 #ifdef CONFIG_HIBERNATION
1277 void mark_free_pages(struct zone
*zone
)
1279 unsigned long pfn
, max_zone_pfn
;
1280 unsigned long flags
;
1282 struct list_head
*curr
;
1284 if (!zone
->spanned_pages
)
1287 spin_lock_irqsave(&zone
->lock
, flags
);
1289 max_zone_pfn
= zone_end_pfn(zone
);
1290 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1291 if (pfn_valid(pfn
)) {
1292 struct page
*page
= pfn_to_page(pfn
);
1294 if (!swsusp_page_is_forbidden(page
))
1295 swsusp_unset_page_free(page
);
1298 for_each_migratetype_order(order
, t
) {
1299 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1302 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1303 for (i
= 0; i
< (1UL << order
); i
++)
1304 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1307 spin_unlock_irqrestore(&zone
->lock
, flags
);
1309 #endif /* CONFIG_PM */
1312 * Free a 0-order page
1313 * cold == 1 ? free a cold page : free a hot page
1315 void free_hot_cold_page(struct page
*page
, int cold
)
1317 struct zone
*zone
= page_zone(page
);
1318 struct per_cpu_pages
*pcp
;
1319 unsigned long flags
;
1322 if (!free_pages_prepare(page
, 0))
1325 migratetype
= get_pageblock_migratetype(page
);
1326 set_freepage_migratetype(page
, migratetype
);
1327 local_irq_save(flags
);
1328 __count_vm_event(PGFREE
);
1331 * We only track unmovable, reclaimable and movable on pcp lists.
1332 * Free ISOLATE pages back to the allocator because they are being
1333 * offlined but treat RESERVE as movable pages so we can get those
1334 * areas back if necessary. Otherwise, we may have to free
1335 * excessively into the page allocator
1337 if (migratetype
>= MIGRATE_PCPTYPES
) {
1338 if (unlikely(is_migrate_isolate(migratetype
))) {
1339 free_one_page(zone
, page
, 0, migratetype
);
1342 migratetype
= MIGRATE_MOVABLE
;
1345 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1347 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1349 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1351 if (pcp
->count
>= pcp
->high
) {
1352 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1353 pcp
->count
-= pcp
->batch
;
1357 local_irq_restore(flags
);
1361 * Free a list of 0-order pages
1363 void free_hot_cold_page_list(struct list_head
*list
, int cold
)
1365 struct page
*page
, *next
;
1367 list_for_each_entry_safe(page
, next
, list
, lru
) {
1368 trace_mm_page_free_batched(page
, cold
);
1369 free_hot_cold_page(page
, cold
);
1374 * split_page takes a non-compound higher-order page, and splits it into
1375 * n (1<<order) sub-pages: page[0..n]
1376 * Each sub-page must be freed individually.
1378 * Note: this is probably too low level an operation for use in drivers.
1379 * Please consult with lkml before using this in your driver.
1381 void split_page(struct page
*page
, unsigned int order
)
1385 VM_BUG_ON(PageCompound(page
));
1386 VM_BUG_ON(!page_count(page
));
1388 #ifdef CONFIG_KMEMCHECK
1390 * Split shadow pages too, because free(page[0]) would
1391 * otherwise free the whole shadow.
1393 if (kmemcheck_page_is_tracked(page
))
1394 split_page(virt_to_page(page
[0].shadow
), order
);
1397 for (i
= 1; i
< (1 << order
); i
++)
1398 set_page_refcounted(page
+ i
);
1401 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1403 unsigned long watermark
;
1407 BUG_ON(!PageBuddy(page
));
1409 zone
= page_zone(page
);
1410 mt
= get_pageblock_migratetype(page
);
1412 if (!is_migrate_isolate(mt
)) {
1413 /* Obey watermarks as if the page was being allocated */
1414 watermark
= low_wmark_pages(zone
) + (1 << order
);
1415 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1418 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1421 /* Remove page from free list */
1422 list_del(&page
->lru
);
1423 zone
->free_area
[order
].nr_free
--;
1424 rmv_page_order(page
);
1426 /* Set the pageblock if the isolated page is at least a pageblock */
1427 if (order
>= pageblock_order
- 1) {
1428 struct page
*endpage
= page
+ (1 << order
) - 1;
1429 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1430 int mt
= get_pageblock_migratetype(page
);
1431 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1432 set_pageblock_migratetype(page
,
1437 return 1UL << order
;
1441 * Similar to split_page except the page is already free. As this is only
1442 * being used for migration, the migratetype of the block also changes.
1443 * As this is called with interrupts disabled, the caller is responsible
1444 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447 * Note: this is probably too low level an operation for use in drivers.
1448 * Please consult with lkml before using this in your driver.
1450 int split_free_page(struct page
*page
)
1455 order
= page_order(page
);
1457 nr_pages
= __isolate_free_page(page
, order
);
1461 /* Split into individual pages */
1462 set_page_refcounted(page
);
1463 split_page(page
, order
);
1468 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1469 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1473 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1474 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1477 unsigned long flags
;
1479 int cold
= !!(gfp_flags
& __GFP_COLD
);
1482 if (likely(order
== 0)) {
1483 struct per_cpu_pages
*pcp
;
1484 struct list_head
*list
;
1486 local_irq_save(flags
);
1487 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1488 list
= &pcp
->lists
[migratetype
];
1489 if (list_empty(list
)) {
1490 pcp
->count
+= rmqueue_bulk(zone
, 0,
1493 if (unlikely(list_empty(list
)))
1498 page
= list_entry(list
->prev
, struct page
, lru
);
1500 page
= list_entry(list
->next
, struct page
, lru
);
1502 list_del(&page
->lru
);
1505 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1507 * __GFP_NOFAIL is not to be used in new code.
1509 * All __GFP_NOFAIL callers should be fixed so that they
1510 * properly detect and handle allocation failures.
1512 * We most definitely don't want callers attempting to
1513 * allocate greater than order-1 page units with
1516 WARN_ON_ONCE(order
> 1);
1518 spin_lock_irqsave(&zone
->lock
, flags
);
1519 page
= __rmqueue(zone
, order
, migratetype
);
1520 spin_unlock(&zone
->lock
);
1523 __mod_zone_freepage_state(zone
, -(1 << order
),
1524 get_pageblock_migratetype(page
));
1527 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1528 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1529 local_irq_restore(flags
);
1531 VM_BUG_ON(bad_range(zone
, page
));
1532 if (prep_new_page(page
, order
, gfp_flags
))
1537 local_irq_restore(flags
);
1541 #ifdef CONFIG_FAIL_PAGE_ALLOC
1544 struct fault_attr attr
;
1546 u32 ignore_gfp_highmem
;
1547 u32 ignore_gfp_wait
;
1549 } fail_page_alloc
= {
1550 .attr
= FAULT_ATTR_INITIALIZER
,
1551 .ignore_gfp_wait
= 1,
1552 .ignore_gfp_highmem
= 1,
1556 static int __init
setup_fail_page_alloc(char *str
)
1558 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1560 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1562 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1564 if (order
< fail_page_alloc
.min_order
)
1566 if (gfp_mask
& __GFP_NOFAIL
)
1568 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1570 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1573 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1576 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1578 static int __init
fail_page_alloc_debugfs(void)
1580 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1583 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1584 &fail_page_alloc
.attr
);
1586 return PTR_ERR(dir
);
1588 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1589 &fail_page_alloc
.ignore_gfp_wait
))
1591 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1592 &fail_page_alloc
.ignore_gfp_highmem
))
1594 if (!debugfs_create_u32("min-order", mode
, dir
,
1595 &fail_page_alloc
.min_order
))
1600 debugfs_remove_recursive(dir
);
1605 late_initcall(fail_page_alloc_debugfs
);
1607 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1609 #else /* CONFIG_FAIL_PAGE_ALLOC */
1611 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1616 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1619 * Return true if free pages are above 'mark'. This takes into account the order
1620 * of the allocation.
1622 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1623 int classzone_idx
, int alloc_flags
, long free_pages
)
1625 /* free_pages my go negative - that's OK */
1627 long lowmem_reserve
= z
->lowmem_reserve
[classzone_idx
];
1630 free_pages
-= (1 << order
) - 1;
1631 if (alloc_flags
& ALLOC_HIGH
)
1633 if (alloc_flags
& ALLOC_HARDER
)
1636 /* If allocation can't use CMA areas don't use free CMA pages */
1637 if (!(alloc_flags
& ALLOC_CMA
))
1638 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1640 if (free_pages
<= min
+ lowmem_reserve
)
1642 for (o
= 0; o
< order
; o
++) {
1643 /* At the next order, this order's pages become unavailable */
1644 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1646 /* Require fewer higher order pages to be free */
1649 if (free_pages
<= min
)
1655 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1656 int classzone_idx
, int alloc_flags
)
1658 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1659 zone_page_state(z
, NR_FREE_PAGES
));
1662 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1663 int classzone_idx
, int alloc_flags
)
1665 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1667 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1668 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1670 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1676 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1677 * skip over zones that are not allowed by the cpuset, or that have
1678 * been recently (in last second) found to be nearly full. See further
1679 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1680 * that have to skip over a lot of full or unallowed zones.
1682 * If the zonelist cache is present in the passed in zonelist, then
1683 * returns a pointer to the allowed node mask (either the current
1684 * tasks mems_allowed, or node_states[N_MEMORY].)
1686 * If the zonelist cache is not available for this zonelist, does
1687 * nothing and returns NULL.
1689 * If the fullzones BITMAP in the zonelist cache is stale (more than
1690 * a second since last zap'd) then we zap it out (clear its bits.)
1692 * We hold off even calling zlc_setup, until after we've checked the
1693 * first zone in the zonelist, on the theory that most allocations will
1694 * be satisfied from that first zone, so best to examine that zone as
1695 * quickly as we can.
1697 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1699 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1700 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1702 zlc
= zonelist
->zlcache_ptr
;
1706 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1707 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1708 zlc
->last_full_zap
= jiffies
;
1711 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1712 &cpuset_current_mems_allowed
:
1713 &node_states
[N_MEMORY
];
1714 return allowednodes
;
1718 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1719 * if it is worth looking at further for free memory:
1720 * 1) Check that the zone isn't thought to be full (doesn't have its
1721 * bit set in the zonelist_cache fullzones BITMAP).
1722 * 2) Check that the zones node (obtained from the zonelist_cache
1723 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1724 * Return true (non-zero) if zone is worth looking at further, or
1725 * else return false (zero) if it is not.
1727 * This check -ignores- the distinction between various watermarks,
1728 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1729 * found to be full for any variation of these watermarks, it will
1730 * be considered full for up to one second by all requests, unless
1731 * we are so low on memory on all allowed nodes that we are forced
1732 * into the second scan of the zonelist.
1734 * In the second scan we ignore this zonelist cache and exactly
1735 * apply the watermarks to all zones, even it is slower to do so.
1736 * We are low on memory in the second scan, and should leave no stone
1737 * unturned looking for a free page.
1739 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1740 nodemask_t
*allowednodes
)
1742 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1743 int i
; /* index of *z in zonelist zones */
1744 int n
; /* node that zone *z is on */
1746 zlc
= zonelist
->zlcache_ptr
;
1750 i
= z
- zonelist
->_zonerefs
;
1753 /* This zone is worth trying if it is allowed but not full */
1754 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1758 * Given 'z' scanning a zonelist, set the corresponding bit in
1759 * zlc->fullzones, so that subsequent attempts to allocate a page
1760 * from that zone don't waste time re-examining it.
1762 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1764 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1765 int i
; /* index of *z in zonelist zones */
1767 zlc
= zonelist
->zlcache_ptr
;
1771 i
= z
- zonelist
->_zonerefs
;
1773 set_bit(i
, zlc
->fullzones
);
1777 * clear all zones full, called after direct reclaim makes progress so that
1778 * a zone that was recently full is not skipped over for up to a second
1780 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1782 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1784 zlc
= zonelist
->zlcache_ptr
;
1788 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1791 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1793 return node_isset(local_zone
->node
, zone
->zone_pgdat
->reclaim_nodes
);
1796 static void __paginginit
init_zone_allows_reclaim(int nid
)
1800 for_each_online_node(i
)
1801 if (node_distance(nid
, i
) <= RECLAIM_DISTANCE
)
1802 node_set(i
, NODE_DATA(nid
)->reclaim_nodes
);
1804 zone_reclaim_mode
= 1;
1807 #else /* CONFIG_NUMA */
1809 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1814 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1815 nodemask_t
*allowednodes
)
1820 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1824 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1828 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1833 static inline void init_zone_allows_reclaim(int nid
)
1836 #endif /* CONFIG_NUMA */
1839 * get_page_from_freelist goes through the zonelist trying to allocate
1842 static struct page
*
1843 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1844 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1845 struct zone
*preferred_zone
, int migratetype
)
1848 struct page
*page
= NULL
;
1851 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1852 int zlc_active
= 0; /* set if using zonelist_cache */
1853 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1855 classzone_idx
= zone_idx(preferred_zone
);
1858 * Scan zonelist, looking for a zone with enough free.
1859 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1861 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1862 high_zoneidx
, nodemask
) {
1863 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1864 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1866 if ((alloc_flags
& ALLOC_CPUSET
) &&
1867 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1870 * When allocating a page cache page for writing, we
1871 * want to get it from a zone that is within its dirty
1872 * limit, such that no single zone holds more than its
1873 * proportional share of globally allowed dirty pages.
1874 * The dirty limits take into account the zone's
1875 * lowmem reserves and high watermark so that kswapd
1876 * should be able to balance it without having to
1877 * write pages from its LRU list.
1879 * This may look like it could increase pressure on
1880 * lower zones by failing allocations in higher zones
1881 * before they are full. But the pages that do spill
1882 * over are limited as the lower zones are protected
1883 * by this very same mechanism. It should not become
1884 * a practical burden to them.
1886 * XXX: For now, allow allocations to potentially
1887 * exceed the per-zone dirty limit in the slowpath
1888 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1889 * which is important when on a NUMA setup the allowed
1890 * zones are together not big enough to reach the
1891 * global limit. The proper fix for these situations
1892 * will require awareness of zones in the
1893 * dirty-throttling and the flusher threads.
1895 if ((alloc_flags
& ALLOC_WMARK_LOW
) &&
1896 (gfp_mask
& __GFP_WRITE
) && !zone_dirty_ok(zone
))
1897 goto this_zone_full
;
1899 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1900 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1904 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1905 if (zone_watermark_ok(zone
, order
, mark
,
1906 classzone_idx
, alloc_flags
))
1909 if (IS_ENABLED(CONFIG_NUMA
) &&
1910 !did_zlc_setup
&& nr_online_nodes
> 1) {
1912 * we do zlc_setup if there are multiple nodes
1913 * and before considering the first zone allowed
1916 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1921 if (zone_reclaim_mode
== 0 ||
1922 !zone_allows_reclaim(preferred_zone
, zone
))
1923 goto this_zone_full
;
1926 * As we may have just activated ZLC, check if the first
1927 * eligible zone has failed zone_reclaim recently.
1929 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1930 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1933 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1935 case ZONE_RECLAIM_NOSCAN
:
1938 case ZONE_RECLAIM_FULL
:
1939 /* scanned but unreclaimable */
1942 /* did we reclaim enough */
1943 if (!zone_watermark_ok(zone
, order
, mark
,
1944 classzone_idx
, alloc_flags
))
1945 goto this_zone_full
;
1950 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1951 gfp_mask
, migratetype
);
1955 if (IS_ENABLED(CONFIG_NUMA
))
1956 zlc_mark_zone_full(zonelist
, z
);
1959 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && page
== NULL
&& zlc_active
)) {
1960 /* Disable zlc cache for second zonelist scan */
1967 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1968 * necessary to allocate the page. The expectation is
1969 * that the caller is taking steps that will free more
1970 * memory. The caller should avoid the page being used
1971 * for !PFMEMALLOC purposes.
1973 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
1979 * Large machines with many possible nodes should not always dump per-node
1980 * meminfo in irq context.
1982 static inline bool should_suppress_show_mem(void)
1987 ret
= in_interrupt();
1992 static DEFINE_RATELIMIT_STATE(nopage_rs
,
1993 DEFAULT_RATELIMIT_INTERVAL
,
1994 DEFAULT_RATELIMIT_BURST
);
1996 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
1998 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2000 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2001 debug_guardpage_minorder() > 0)
2005 * This documents exceptions given to allocations in certain
2006 * contexts that are allowed to allocate outside current's set
2009 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2010 if (test_thread_flag(TIF_MEMDIE
) ||
2011 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2012 filter
&= ~SHOW_MEM_FILTER_NODES
;
2013 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2014 filter
&= ~SHOW_MEM_FILTER_NODES
;
2017 struct va_format vaf
;
2020 va_start(args
, fmt
);
2025 pr_warn("%pV", &vaf
);
2030 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2031 current
->comm
, order
, gfp_mask
);
2034 if (!should_suppress_show_mem())
2039 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2040 unsigned long did_some_progress
,
2041 unsigned long pages_reclaimed
)
2043 /* Do not loop if specifically requested */
2044 if (gfp_mask
& __GFP_NORETRY
)
2047 /* Always retry if specifically requested */
2048 if (gfp_mask
& __GFP_NOFAIL
)
2052 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2053 * making forward progress without invoking OOM. Suspend also disables
2054 * storage devices so kswapd will not help. Bail if we are suspending.
2056 if (!did_some_progress
&& pm_suspended_storage())
2060 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2061 * means __GFP_NOFAIL, but that may not be true in other
2064 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2068 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2069 * specified, then we retry until we no longer reclaim any pages
2070 * (above), or we've reclaimed an order of pages at least as
2071 * large as the allocation's order. In both cases, if the
2072 * allocation still fails, we stop retrying.
2074 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2080 static inline struct page
*
2081 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2082 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2083 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2088 /* Acquire the OOM killer lock for the zones in zonelist */
2089 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2090 schedule_timeout_uninterruptible(1);
2095 * Go through the zonelist yet one more time, keep very high watermark
2096 * here, this is only to catch a parallel oom killing, we must fail if
2097 * we're still under heavy pressure.
2099 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2100 order
, zonelist
, high_zoneidx
,
2101 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2102 preferred_zone
, migratetype
);
2106 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2107 /* The OOM killer will not help higher order allocs */
2108 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2110 /* The OOM killer does not needlessly kill tasks for lowmem */
2111 if (high_zoneidx
< ZONE_NORMAL
)
2114 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2115 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2116 * The caller should handle page allocation failure by itself if
2117 * it specifies __GFP_THISNODE.
2118 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2120 if (gfp_mask
& __GFP_THISNODE
)
2123 /* Exhausted what can be done so it's blamo time */
2124 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2127 clear_zonelist_oom(zonelist
, gfp_mask
);
2131 #ifdef CONFIG_COMPACTION
2132 /* Try memory compaction for high-order allocations before reclaim */
2133 static struct page
*
2134 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2135 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2136 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2137 int migratetype
, bool sync_migration
,
2138 bool *contended_compaction
, bool *deferred_compaction
,
2139 unsigned long *did_some_progress
)
2144 if (compaction_deferred(preferred_zone
, order
)) {
2145 *deferred_compaction
= true;
2149 current
->flags
|= PF_MEMALLOC
;
2150 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2151 nodemask
, sync_migration
,
2152 contended_compaction
);
2153 current
->flags
&= ~PF_MEMALLOC
;
2155 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2158 /* Page migration frees to the PCP lists but we want merging */
2159 drain_pages(get_cpu());
2162 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2163 order
, zonelist
, high_zoneidx
,
2164 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2165 preferred_zone
, migratetype
);
2167 preferred_zone
->compact_blockskip_flush
= false;
2168 preferred_zone
->compact_considered
= 0;
2169 preferred_zone
->compact_defer_shift
= 0;
2170 if (order
>= preferred_zone
->compact_order_failed
)
2171 preferred_zone
->compact_order_failed
= order
+ 1;
2172 count_vm_event(COMPACTSUCCESS
);
2177 * It's bad if compaction run occurs and fails.
2178 * The most likely reason is that pages exist,
2179 * but not enough to satisfy watermarks.
2181 count_vm_event(COMPACTFAIL
);
2184 * As async compaction considers a subset of pageblocks, only
2185 * defer if the failure was a sync compaction failure.
2188 defer_compaction(preferred_zone
, order
);
2196 static inline struct page
*
2197 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2198 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2199 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2200 int migratetype
, bool sync_migration
,
2201 bool *contended_compaction
, bool *deferred_compaction
,
2202 unsigned long *did_some_progress
)
2206 #endif /* CONFIG_COMPACTION */
2208 /* Perform direct synchronous page reclaim */
2210 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2211 nodemask_t
*nodemask
)
2213 struct reclaim_state reclaim_state
;
2218 /* We now go into synchronous reclaim */
2219 cpuset_memory_pressure_bump();
2220 current
->flags
|= PF_MEMALLOC
;
2221 lockdep_set_current_reclaim_state(gfp_mask
);
2222 reclaim_state
.reclaimed_slab
= 0;
2223 current
->reclaim_state
= &reclaim_state
;
2225 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2227 current
->reclaim_state
= NULL
;
2228 lockdep_clear_current_reclaim_state();
2229 current
->flags
&= ~PF_MEMALLOC
;
2236 /* The really slow allocator path where we enter direct reclaim */
2237 static inline struct page
*
2238 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2239 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2240 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2241 int migratetype
, unsigned long *did_some_progress
)
2243 struct page
*page
= NULL
;
2244 bool drained
= false;
2246 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2248 if (unlikely(!(*did_some_progress
)))
2251 /* After successful reclaim, reconsider all zones for allocation */
2252 if (IS_ENABLED(CONFIG_NUMA
))
2253 zlc_clear_zones_full(zonelist
);
2256 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2257 zonelist
, high_zoneidx
,
2258 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2259 preferred_zone
, migratetype
);
2262 * If an allocation failed after direct reclaim, it could be because
2263 * pages are pinned on the per-cpu lists. Drain them and try again
2265 if (!page
&& !drained
) {
2275 * This is called in the allocator slow-path if the allocation request is of
2276 * sufficient urgency to ignore watermarks and take other desperate measures
2278 static inline struct page
*
2279 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2280 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2281 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2287 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2288 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2289 preferred_zone
, migratetype
);
2291 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2292 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2293 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2299 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2300 enum zone_type high_zoneidx
,
2301 enum zone_type classzone_idx
)
2306 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2307 wakeup_kswapd(zone
, order
, classzone_idx
);
2311 gfp_to_alloc_flags(gfp_t gfp_mask
)
2313 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2314 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2316 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2317 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2320 * The caller may dip into page reserves a bit more if the caller
2321 * cannot run direct reclaim, or if the caller has realtime scheduling
2322 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2323 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2325 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2329 * Not worth trying to allocate harder for
2330 * __GFP_NOMEMALLOC even if it can't schedule.
2332 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2333 alloc_flags
|= ALLOC_HARDER
;
2335 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2336 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2338 alloc_flags
&= ~ALLOC_CPUSET
;
2339 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2340 alloc_flags
|= ALLOC_HARDER
;
2342 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2343 if (gfp_mask
& __GFP_MEMALLOC
)
2344 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2345 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2346 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2347 else if (!in_interrupt() &&
2348 ((current
->flags
& PF_MEMALLOC
) ||
2349 unlikely(test_thread_flag(TIF_MEMDIE
))))
2350 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2353 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2354 alloc_flags
|= ALLOC_CMA
;
2359 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2361 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2364 static inline struct page
*
2365 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2366 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2367 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2370 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2371 struct page
*page
= NULL
;
2373 unsigned long pages_reclaimed
= 0;
2374 unsigned long did_some_progress
;
2375 bool sync_migration
= false;
2376 bool deferred_compaction
= false;
2377 bool contended_compaction
= false;
2380 * In the slowpath, we sanity check order to avoid ever trying to
2381 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2382 * be using allocators in order of preference for an area that is
2385 if (order
>= MAX_ORDER
) {
2386 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2391 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2392 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2393 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2394 * using a larger set of nodes after it has established that the
2395 * allowed per node queues are empty and that nodes are
2398 if (IS_ENABLED(CONFIG_NUMA
) &&
2399 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2403 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2404 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2405 zone_idx(preferred_zone
));
2408 * OK, we're below the kswapd watermark and have kicked background
2409 * reclaim. Now things get more complex, so set up alloc_flags according
2410 * to how we want to proceed.
2412 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2415 * Find the true preferred zone if the allocation is unconstrained by
2418 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2419 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2423 /* This is the last chance, in general, before the goto nopage. */
2424 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2425 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2426 preferred_zone
, migratetype
);
2430 /* Allocate without watermarks if the context allows */
2431 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2433 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2434 * the allocation is high priority and these type of
2435 * allocations are system rather than user orientated
2437 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2439 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2440 zonelist
, high_zoneidx
, nodemask
,
2441 preferred_zone
, migratetype
);
2447 /* Atomic allocations - we can't balance anything */
2451 /* Avoid recursion of direct reclaim */
2452 if (current
->flags
& PF_MEMALLOC
)
2455 /* Avoid allocations with no watermarks from looping endlessly */
2456 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2460 * Try direct compaction. The first pass is asynchronous. Subsequent
2461 * attempts after direct reclaim are synchronous
2463 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2464 zonelist
, high_zoneidx
,
2466 alloc_flags
, preferred_zone
,
2467 migratetype
, sync_migration
,
2468 &contended_compaction
,
2469 &deferred_compaction
,
2470 &did_some_progress
);
2473 sync_migration
= true;
2476 * If compaction is deferred for high-order allocations, it is because
2477 * sync compaction recently failed. In this is the case and the caller
2478 * requested a movable allocation that does not heavily disrupt the
2479 * system then fail the allocation instead of entering direct reclaim.
2481 if ((deferred_compaction
|| contended_compaction
) &&
2482 (gfp_mask
& __GFP_NO_KSWAPD
))
2485 /* Try direct reclaim and then allocating */
2486 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2487 zonelist
, high_zoneidx
,
2489 alloc_flags
, preferred_zone
,
2490 migratetype
, &did_some_progress
);
2495 * If we failed to make any progress reclaiming, then we are
2496 * running out of options and have to consider going OOM
2498 if (!did_some_progress
) {
2499 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2500 if (oom_killer_disabled
)
2502 /* Coredumps can quickly deplete all memory reserves */
2503 if ((current
->flags
& PF_DUMPCORE
) &&
2504 !(gfp_mask
& __GFP_NOFAIL
))
2506 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2507 zonelist
, high_zoneidx
,
2508 nodemask
, preferred_zone
,
2513 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2515 * The oom killer is not called for high-order
2516 * allocations that may fail, so if no progress
2517 * is being made, there are no other options and
2518 * retrying is unlikely to help.
2520 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2523 * The oom killer is not called for lowmem
2524 * allocations to prevent needlessly killing
2527 if (high_zoneidx
< ZONE_NORMAL
)
2535 /* Check if we should retry the allocation */
2536 pages_reclaimed
+= did_some_progress
;
2537 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2539 /* Wait for some write requests to complete then retry */
2540 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2544 * High-order allocations do not necessarily loop after
2545 * direct reclaim and reclaim/compaction depends on compaction
2546 * being called after reclaim so call directly if necessary
2548 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2549 zonelist
, high_zoneidx
,
2551 alloc_flags
, preferred_zone
,
2552 migratetype
, sync_migration
,
2553 &contended_compaction
,
2554 &deferred_compaction
,
2555 &did_some_progress
);
2561 warn_alloc_failed(gfp_mask
, order
, NULL
);
2564 if (kmemcheck_enabled
)
2565 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2571 * This is the 'heart' of the zoned buddy allocator.
2574 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2575 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2577 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2578 struct zone
*preferred_zone
;
2579 struct page
*page
= NULL
;
2580 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2581 unsigned int cpuset_mems_cookie
;
2582 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
;
2583 struct mem_cgroup
*memcg
= NULL
;
2585 gfp_mask
&= gfp_allowed_mask
;
2587 lockdep_trace_alloc(gfp_mask
);
2589 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2591 if (should_fail_alloc_page(gfp_mask
, order
))
2595 * Check the zones suitable for the gfp_mask contain at least one
2596 * valid zone. It's possible to have an empty zonelist as a result
2597 * of GFP_THISNODE and a memoryless node
2599 if (unlikely(!zonelist
->_zonerefs
->zone
))
2603 * Will only have any effect when __GFP_KMEMCG is set. This is
2604 * verified in the (always inline) callee
2606 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2610 cpuset_mems_cookie
= get_mems_allowed();
2612 /* The preferred zone is used for statistics later */
2613 first_zones_zonelist(zonelist
, high_zoneidx
,
2614 nodemask
? : &cpuset_current_mems_allowed
,
2616 if (!preferred_zone
)
2620 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2621 alloc_flags
|= ALLOC_CMA
;
2623 /* First allocation attempt */
2624 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2625 zonelist
, high_zoneidx
, alloc_flags
,
2626 preferred_zone
, migratetype
);
2627 if (unlikely(!page
)) {
2629 * Runtime PM, block IO and its error handling path
2630 * can deadlock because I/O on the device might not
2633 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2634 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2635 zonelist
, high_zoneidx
, nodemask
,
2636 preferred_zone
, migratetype
);
2639 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2643 * When updating a task's mems_allowed, it is possible to race with
2644 * parallel threads in such a way that an allocation can fail while
2645 * the mask is being updated. If a page allocation is about to fail,
2646 * check if the cpuset changed during allocation and if so, retry.
2648 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
2651 memcg_kmem_commit_charge(page
, memcg
, order
);
2655 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2658 * Common helper functions.
2660 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2665 * __get_free_pages() returns a 32-bit address, which cannot represent
2668 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2670 page
= alloc_pages(gfp_mask
, order
);
2673 return (unsigned long) page_address(page
);
2675 EXPORT_SYMBOL(__get_free_pages
);
2677 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2679 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2681 EXPORT_SYMBOL(get_zeroed_page
);
2683 void __free_pages(struct page
*page
, unsigned int order
)
2685 if (put_page_testzero(page
)) {
2687 free_hot_cold_page(page
, 0);
2689 __free_pages_ok(page
, order
);
2693 EXPORT_SYMBOL(__free_pages
);
2695 void free_pages(unsigned long addr
, unsigned int order
)
2698 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2699 __free_pages(virt_to_page((void *)addr
), order
);
2703 EXPORT_SYMBOL(free_pages
);
2706 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2707 * pages allocated with __GFP_KMEMCG.
2709 * Those pages are accounted to a particular memcg, embedded in the
2710 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2711 * for that information only to find out that it is NULL for users who have no
2712 * interest in that whatsoever, we provide these functions.
2714 * The caller knows better which flags it relies on.
2716 void __free_memcg_kmem_pages(struct page
*page
, unsigned int order
)
2718 memcg_kmem_uncharge_pages(page
, order
);
2719 __free_pages(page
, order
);
2722 void free_memcg_kmem_pages(unsigned long addr
, unsigned int order
)
2725 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2726 __free_memcg_kmem_pages(virt_to_page((void *)addr
), order
);
2730 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2733 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2734 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2736 split_page(virt_to_page((void *)addr
), order
);
2737 while (used
< alloc_end
) {
2742 return (void *)addr
;
2746 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2747 * @size: the number of bytes to allocate
2748 * @gfp_mask: GFP flags for the allocation
2750 * This function is similar to alloc_pages(), except that it allocates the
2751 * minimum number of pages to satisfy the request. alloc_pages() can only
2752 * allocate memory in power-of-two pages.
2754 * This function is also limited by MAX_ORDER.
2756 * Memory allocated by this function must be released by free_pages_exact().
2758 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2760 unsigned int order
= get_order(size
);
2763 addr
= __get_free_pages(gfp_mask
, order
);
2764 return make_alloc_exact(addr
, order
, size
);
2766 EXPORT_SYMBOL(alloc_pages_exact
);
2769 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2771 * @nid: the preferred node ID where memory should be allocated
2772 * @size: the number of bytes to allocate
2773 * @gfp_mask: GFP flags for the allocation
2775 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2777 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2780 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2782 unsigned order
= get_order(size
);
2783 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2786 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2788 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2791 * free_pages_exact - release memory allocated via alloc_pages_exact()
2792 * @virt: the value returned by alloc_pages_exact.
2793 * @size: size of allocation, same value as passed to alloc_pages_exact().
2795 * Release the memory allocated by a previous call to alloc_pages_exact.
2797 void free_pages_exact(void *virt
, size_t size
)
2799 unsigned long addr
= (unsigned long)virt
;
2800 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2802 while (addr
< end
) {
2807 EXPORT_SYMBOL(free_pages_exact
);
2810 * nr_free_zone_pages - count number of pages beyond high watermark
2811 * @offset: The zone index of the highest zone
2813 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2814 * high watermark within all zones at or below a given zone index. For each
2815 * zone, the number of pages is calculated as:
2816 * present_pages - high_pages
2818 static unsigned long nr_free_zone_pages(int offset
)
2823 /* Just pick one node, since fallback list is circular */
2824 unsigned long sum
= 0;
2826 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2828 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2829 unsigned long size
= zone
->managed_pages
;
2830 unsigned long high
= high_wmark_pages(zone
);
2839 * nr_free_buffer_pages - count number of pages beyond high watermark
2841 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2842 * watermark within ZONE_DMA and ZONE_NORMAL.
2844 unsigned long nr_free_buffer_pages(void)
2846 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2848 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2851 * nr_free_pagecache_pages - count number of pages beyond high watermark
2853 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2854 * high watermark within all zones.
2856 unsigned long nr_free_pagecache_pages(void)
2858 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2861 static inline void show_node(struct zone
*zone
)
2863 if (IS_ENABLED(CONFIG_NUMA
))
2864 printk("Node %d ", zone_to_nid(zone
));
2867 void si_meminfo(struct sysinfo
*val
)
2869 val
->totalram
= totalram_pages
;
2871 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2872 val
->bufferram
= nr_blockdev_pages();
2873 val
->totalhigh
= totalhigh_pages
;
2874 val
->freehigh
= nr_free_highpages();
2875 val
->mem_unit
= PAGE_SIZE
;
2878 EXPORT_SYMBOL(si_meminfo
);
2881 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2883 pg_data_t
*pgdat
= NODE_DATA(nid
);
2885 val
->totalram
= pgdat
->node_present_pages
;
2886 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2887 #ifdef CONFIG_HIGHMEM
2888 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
2889 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2895 val
->mem_unit
= PAGE_SIZE
;
2900 * Determine whether the node should be displayed or not, depending on whether
2901 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2903 bool skip_free_areas_node(unsigned int flags
, int nid
)
2906 unsigned int cpuset_mems_cookie
;
2908 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2912 cpuset_mems_cookie
= get_mems_allowed();
2913 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2914 } while (!put_mems_allowed(cpuset_mems_cookie
));
2919 #define K(x) ((x) << (PAGE_SHIFT-10))
2921 static void show_migration_types(unsigned char type
)
2923 static const char types
[MIGRATE_TYPES
] = {
2924 [MIGRATE_UNMOVABLE
] = 'U',
2925 [MIGRATE_RECLAIMABLE
] = 'E',
2926 [MIGRATE_MOVABLE
] = 'M',
2927 [MIGRATE_RESERVE
] = 'R',
2929 [MIGRATE_CMA
] = 'C',
2931 #ifdef CONFIG_MEMORY_ISOLATION
2932 [MIGRATE_ISOLATE
] = 'I',
2935 char tmp
[MIGRATE_TYPES
+ 1];
2939 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
2940 if (type
& (1 << i
))
2945 printk("(%s) ", tmp
);
2949 * Show free area list (used inside shift_scroll-lock stuff)
2950 * We also calculate the percentage fragmentation. We do this by counting the
2951 * memory on each free list with the exception of the first item on the list.
2952 * Suppresses nodes that are not allowed by current's cpuset if
2953 * SHOW_MEM_FILTER_NODES is passed.
2955 void show_free_areas(unsigned int filter
)
2960 for_each_populated_zone(zone
) {
2961 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2964 printk("%s per-cpu:\n", zone
->name
);
2966 for_each_online_cpu(cpu
) {
2967 struct per_cpu_pageset
*pageset
;
2969 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2971 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2972 cpu
, pageset
->pcp
.high
,
2973 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2977 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2978 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2980 " dirty:%lu writeback:%lu unstable:%lu\n"
2981 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2982 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2984 global_page_state(NR_ACTIVE_ANON
),
2985 global_page_state(NR_INACTIVE_ANON
),
2986 global_page_state(NR_ISOLATED_ANON
),
2987 global_page_state(NR_ACTIVE_FILE
),
2988 global_page_state(NR_INACTIVE_FILE
),
2989 global_page_state(NR_ISOLATED_FILE
),
2990 global_page_state(NR_UNEVICTABLE
),
2991 global_page_state(NR_FILE_DIRTY
),
2992 global_page_state(NR_WRITEBACK
),
2993 global_page_state(NR_UNSTABLE_NFS
),
2994 global_page_state(NR_FREE_PAGES
),
2995 global_page_state(NR_SLAB_RECLAIMABLE
),
2996 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2997 global_page_state(NR_FILE_MAPPED
),
2998 global_page_state(NR_SHMEM
),
2999 global_page_state(NR_PAGETABLE
),
3000 global_page_state(NR_BOUNCE
),
3001 global_page_state(NR_FREE_CMA_PAGES
));
3003 for_each_populated_zone(zone
) {
3006 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3014 " active_anon:%lukB"
3015 " inactive_anon:%lukB"
3016 " active_file:%lukB"
3017 " inactive_file:%lukB"
3018 " unevictable:%lukB"
3019 " isolated(anon):%lukB"
3020 " isolated(file):%lukB"
3028 " slab_reclaimable:%lukB"
3029 " slab_unreclaimable:%lukB"
3030 " kernel_stack:%lukB"
3035 " writeback_tmp:%lukB"
3036 " pages_scanned:%lu"
3037 " all_unreclaimable? %s"
3040 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3041 K(min_wmark_pages(zone
)),
3042 K(low_wmark_pages(zone
)),
3043 K(high_wmark_pages(zone
)),
3044 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3045 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3046 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3047 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3048 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3049 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3050 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3051 K(zone
->present_pages
),
3052 K(zone
->managed_pages
),
3053 K(zone_page_state(zone
, NR_MLOCK
)),
3054 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3055 K(zone_page_state(zone
, NR_WRITEBACK
)),
3056 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3057 K(zone_page_state(zone
, NR_SHMEM
)),
3058 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3059 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3060 zone_page_state(zone
, NR_KERNEL_STACK
) *
3062 K(zone_page_state(zone
, NR_PAGETABLE
)),
3063 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3064 K(zone_page_state(zone
, NR_BOUNCE
)),
3065 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3066 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3067 zone
->pages_scanned
,
3068 (zone
->all_unreclaimable
? "yes" : "no")
3070 printk("lowmem_reserve[]:");
3071 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3072 printk(" %lu", zone
->lowmem_reserve
[i
]);
3076 for_each_populated_zone(zone
) {
3077 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3078 unsigned char types
[MAX_ORDER
];
3080 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3083 printk("%s: ", zone
->name
);
3085 spin_lock_irqsave(&zone
->lock
, flags
);
3086 for (order
= 0; order
< MAX_ORDER
; order
++) {
3087 struct free_area
*area
= &zone
->free_area
[order
];
3090 nr
[order
] = area
->nr_free
;
3091 total
+= nr
[order
] << order
;
3094 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3095 if (!list_empty(&area
->free_list
[type
]))
3096 types
[order
] |= 1 << type
;
3099 spin_unlock_irqrestore(&zone
->lock
, flags
);
3100 for (order
= 0; order
< MAX_ORDER
; order
++) {
3101 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3103 show_migration_types(types
[order
]);
3105 printk("= %lukB\n", K(total
));
3108 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3110 show_swap_cache_info();
3113 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3115 zoneref
->zone
= zone
;
3116 zoneref
->zone_idx
= zone_idx(zone
);
3120 * Builds allocation fallback zone lists.
3122 * Add all populated zones of a node to the zonelist.
3124 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3125 int nr_zones
, enum zone_type zone_type
)
3129 BUG_ON(zone_type
>= MAX_NR_ZONES
);
3134 zone
= pgdat
->node_zones
+ zone_type
;
3135 if (populated_zone(zone
)) {
3136 zoneref_set_zone(zone
,
3137 &zonelist
->_zonerefs
[nr_zones
++]);
3138 check_highest_zone(zone_type
);
3141 } while (zone_type
);
3148 * 0 = automatic detection of better ordering.
3149 * 1 = order by ([node] distance, -zonetype)
3150 * 2 = order by (-zonetype, [node] distance)
3152 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3153 * the same zonelist. So only NUMA can configure this param.
3155 #define ZONELIST_ORDER_DEFAULT 0
3156 #define ZONELIST_ORDER_NODE 1
3157 #define ZONELIST_ORDER_ZONE 2
3159 /* zonelist order in the kernel.
3160 * set_zonelist_order() will set this to NODE or ZONE.
3162 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3163 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3167 /* The value user specified ....changed by config */
3168 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3169 /* string for sysctl */
3170 #define NUMA_ZONELIST_ORDER_LEN 16
3171 char numa_zonelist_order
[16] = "default";
3174 * interface for configure zonelist ordering.
3175 * command line option "numa_zonelist_order"
3176 * = "[dD]efault - default, automatic configuration.
3177 * = "[nN]ode - order by node locality, then by zone within node
3178 * = "[zZ]one - order by zone, then by locality within zone
3181 static int __parse_numa_zonelist_order(char *s
)
3183 if (*s
== 'd' || *s
== 'D') {
3184 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3185 } else if (*s
== 'n' || *s
== 'N') {
3186 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3187 } else if (*s
== 'z' || *s
== 'Z') {
3188 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3191 "Ignoring invalid numa_zonelist_order value: "
3198 static __init
int setup_numa_zonelist_order(char *s
)
3205 ret
= __parse_numa_zonelist_order(s
);
3207 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3211 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3214 * sysctl handler for numa_zonelist_order
3216 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
3217 void __user
*buffer
, size_t *length
,
3220 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3222 static DEFINE_MUTEX(zl_order_mutex
);
3224 mutex_lock(&zl_order_mutex
);
3226 strcpy(saved_string
, (char*)table
->data
);
3227 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3231 int oldval
= user_zonelist_order
;
3232 if (__parse_numa_zonelist_order((char*)table
->data
)) {
3234 * bogus value. restore saved string
3236 strncpy((char*)table
->data
, saved_string
,
3237 NUMA_ZONELIST_ORDER_LEN
);
3238 user_zonelist_order
= oldval
;
3239 } else if (oldval
!= user_zonelist_order
) {
3240 mutex_lock(&zonelists_mutex
);
3241 build_all_zonelists(NULL
, NULL
);
3242 mutex_unlock(&zonelists_mutex
);
3246 mutex_unlock(&zl_order_mutex
);
3251 #define MAX_NODE_LOAD (nr_online_nodes)
3252 static int node_load
[MAX_NUMNODES
];
3255 * find_next_best_node - find the next node that should appear in a given node's fallback list
3256 * @node: node whose fallback list we're appending
3257 * @used_node_mask: nodemask_t of already used nodes
3259 * We use a number of factors to determine which is the next node that should
3260 * appear on a given node's fallback list. The node should not have appeared
3261 * already in @node's fallback list, and it should be the next closest node
3262 * according to the distance array (which contains arbitrary distance values
3263 * from each node to each node in the system), and should also prefer nodes
3264 * with no CPUs, since presumably they'll have very little allocation pressure
3265 * on them otherwise.
3266 * It returns -1 if no node is found.
3268 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3271 int min_val
= INT_MAX
;
3272 int best_node
= NUMA_NO_NODE
;
3273 const struct cpumask
*tmp
= cpumask_of_node(0);
3275 /* Use the local node if we haven't already */
3276 if (!node_isset(node
, *used_node_mask
)) {
3277 node_set(node
, *used_node_mask
);
3281 for_each_node_state(n
, N_MEMORY
) {
3283 /* Don't want a node to appear more than once */
3284 if (node_isset(n
, *used_node_mask
))
3287 /* Use the distance array to find the distance */
3288 val
= node_distance(node
, n
);
3290 /* Penalize nodes under us ("prefer the next node") */
3293 /* Give preference to headless and unused nodes */
3294 tmp
= cpumask_of_node(n
);
3295 if (!cpumask_empty(tmp
))
3296 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3298 /* Slight preference for less loaded node */
3299 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3300 val
+= node_load
[n
];
3302 if (val
< min_val
) {
3309 node_set(best_node
, *used_node_mask
);
3316 * Build zonelists ordered by node and zones within node.
3317 * This results in maximum locality--normal zone overflows into local
3318 * DMA zone, if any--but risks exhausting DMA zone.
3320 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3323 struct zonelist
*zonelist
;
3325 zonelist
= &pgdat
->node_zonelists
[0];
3326 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3328 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3330 zonelist
->_zonerefs
[j
].zone
= NULL
;
3331 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3335 * Build gfp_thisnode zonelists
3337 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3340 struct zonelist
*zonelist
;
3342 zonelist
= &pgdat
->node_zonelists
[1];
3343 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3344 zonelist
->_zonerefs
[j
].zone
= NULL
;
3345 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3349 * Build zonelists ordered by zone and nodes within zones.
3350 * This results in conserving DMA zone[s] until all Normal memory is
3351 * exhausted, but results in overflowing to remote node while memory
3352 * may still exist in local DMA zone.
3354 static int node_order
[MAX_NUMNODES
];
3356 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3359 int zone_type
; /* needs to be signed */
3361 struct zonelist
*zonelist
;
3363 zonelist
= &pgdat
->node_zonelists
[0];
3365 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3366 for (j
= 0; j
< nr_nodes
; j
++) {
3367 node
= node_order
[j
];
3368 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3369 if (populated_zone(z
)) {
3371 &zonelist
->_zonerefs
[pos
++]);
3372 check_highest_zone(zone_type
);
3376 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3377 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3380 static int default_zonelist_order(void)
3383 unsigned long low_kmem_size
,total_size
;
3387 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3388 * If they are really small and used heavily, the system can fall
3389 * into OOM very easily.
3390 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3392 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3395 for_each_online_node(nid
) {
3396 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3397 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3398 if (populated_zone(z
)) {
3399 if (zone_type
< ZONE_NORMAL
)
3400 low_kmem_size
+= z
->present_pages
;
3401 total_size
+= z
->present_pages
;
3402 } else if (zone_type
== ZONE_NORMAL
) {
3404 * If any node has only lowmem, then node order
3405 * is preferred to allow kernel allocations
3406 * locally; otherwise, they can easily infringe
3407 * on other nodes when there is an abundance of
3408 * lowmem available to allocate from.
3410 return ZONELIST_ORDER_NODE
;
3414 if (!low_kmem_size
|| /* there are no DMA area. */
3415 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3416 return ZONELIST_ORDER_NODE
;
3418 * look into each node's config.
3419 * If there is a node whose DMA/DMA32 memory is very big area on
3420 * local memory, NODE_ORDER may be suitable.
3422 average_size
= total_size
/
3423 (nodes_weight(node_states
[N_MEMORY
]) + 1);
3424 for_each_online_node(nid
) {
3427 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3428 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3429 if (populated_zone(z
)) {
3430 if (zone_type
< ZONE_NORMAL
)
3431 low_kmem_size
+= z
->present_pages
;
3432 total_size
+= z
->present_pages
;
3435 if (low_kmem_size
&&
3436 total_size
> average_size
&& /* ignore small node */
3437 low_kmem_size
> total_size
* 70/100)
3438 return ZONELIST_ORDER_NODE
;
3440 return ZONELIST_ORDER_ZONE
;
3443 static void set_zonelist_order(void)
3445 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3446 current_zonelist_order
= default_zonelist_order();
3448 current_zonelist_order
= user_zonelist_order
;
3451 static void build_zonelists(pg_data_t
*pgdat
)
3455 nodemask_t used_mask
;
3456 int local_node
, prev_node
;
3457 struct zonelist
*zonelist
;
3458 int order
= current_zonelist_order
;
3460 /* initialize zonelists */
3461 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3462 zonelist
= pgdat
->node_zonelists
+ i
;
3463 zonelist
->_zonerefs
[0].zone
= NULL
;
3464 zonelist
->_zonerefs
[0].zone_idx
= 0;
3467 /* NUMA-aware ordering of nodes */
3468 local_node
= pgdat
->node_id
;
3469 load
= nr_online_nodes
;
3470 prev_node
= local_node
;
3471 nodes_clear(used_mask
);
3473 memset(node_order
, 0, sizeof(node_order
));
3476 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3478 * We don't want to pressure a particular node.
3479 * So adding penalty to the first node in same
3480 * distance group to make it round-robin.
3482 if (node_distance(local_node
, node
) !=
3483 node_distance(local_node
, prev_node
))
3484 node_load
[node
] = load
;
3488 if (order
== ZONELIST_ORDER_NODE
)
3489 build_zonelists_in_node_order(pgdat
, node
);
3491 node_order
[j
++] = node
; /* remember order */
3494 if (order
== ZONELIST_ORDER_ZONE
) {
3495 /* calculate node order -- i.e., DMA last! */
3496 build_zonelists_in_zone_order(pgdat
, j
);
3499 build_thisnode_zonelists(pgdat
);
3502 /* Construct the zonelist performance cache - see further mmzone.h */
3503 static void build_zonelist_cache(pg_data_t
*pgdat
)
3505 struct zonelist
*zonelist
;
3506 struct zonelist_cache
*zlc
;
3509 zonelist
= &pgdat
->node_zonelists
[0];
3510 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3511 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3512 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3513 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3516 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3518 * Return node id of node used for "local" allocations.
3519 * I.e., first node id of first zone in arg node's generic zonelist.
3520 * Used for initializing percpu 'numa_mem', which is used primarily
3521 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3523 int local_memory_node(int node
)
3527 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3528 gfp_zone(GFP_KERNEL
),
3535 #else /* CONFIG_NUMA */
3537 static void set_zonelist_order(void)
3539 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3542 static void build_zonelists(pg_data_t
*pgdat
)
3544 int node
, local_node
;
3546 struct zonelist
*zonelist
;
3548 local_node
= pgdat
->node_id
;
3550 zonelist
= &pgdat
->node_zonelists
[0];
3551 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3554 * Now we build the zonelist so that it contains the zones
3555 * of all the other nodes.
3556 * We don't want to pressure a particular node, so when
3557 * building the zones for node N, we make sure that the
3558 * zones coming right after the local ones are those from
3559 * node N+1 (modulo N)
3561 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3562 if (!node_online(node
))
3564 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3567 for (node
= 0; node
< local_node
; node
++) {
3568 if (!node_online(node
))
3570 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3574 zonelist
->_zonerefs
[j
].zone
= NULL
;
3575 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3578 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3579 static void build_zonelist_cache(pg_data_t
*pgdat
)
3581 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3584 #endif /* CONFIG_NUMA */
3587 * Boot pageset table. One per cpu which is going to be used for all
3588 * zones and all nodes. The parameters will be set in such a way
3589 * that an item put on a list will immediately be handed over to
3590 * the buddy list. This is safe since pageset manipulation is done
3591 * with interrupts disabled.
3593 * The boot_pagesets must be kept even after bootup is complete for
3594 * unused processors and/or zones. They do play a role for bootstrapping
3595 * hotplugged processors.
3597 * zoneinfo_show() and maybe other functions do
3598 * not check if the processor is online before following the pageset pointer.
3599 * Other parts of the kernel may not check if the zone is available.
3601 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3602 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3603 static void setup_zone_pageset(struct zone
*zone
);
3606 * Global mutex to protect against size modification of zonelists
3607 * as well as to serialize pageset setup for the new populated zone.
3609 DEFINE_MUTEX(zonelists_mutex
);
3611 /* return values int ....just for stop_machine() */
3612 static int __build_all_zonelists(void *data
)
3616 pg_data_t
*self
= data
;
3619 memset(node_load
, 0, sizeof(node_load
));
3622 if (self
&& !node_online(self
->node_id
)) {
3623 build_zonelists(self
);
3624 build_zonelist_cache(self
);
3627 for_each_online_node(nid
) {
3628 pg_data_t
*pgdat
= NODE_DATA(nid
);
3630 build_zonelists(pgdat
);
3631 build_zonelist_cache(pgdat
);
3635 * Initialize the boot_pagesets that are going to be used
3636 * for bootstrapping processors. The real pagesets for
3637 * each zone will be allocated later when the per cpu
3638 * allocator is available.
3640 * boot_pagesets are used also for bootstrapping offline
3641 * cpus if the system is already booted because the pagesets
3642 * are needed to initialize allocators on a specific cpu too.
3643 * F.e. the percpu allocator needs the page allocator which
3644 * needs the percpu allocator in order to allocate its pagesets
3645 * (a chicken-egg dilemma).
3647 for_each_possible_cpu(cpu
) {
3648 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3650 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3652 * We now know the "local memory node" for each node--
3653 * i.e., the node of the first zone in the generic zonelist.
3654 * Set up numa_mem percpu variable for on-line cpus. During
3655 * boot, only the boot cpu should be on-line; we'll init the
3656 * secondary cpus' numa_mem as they come on-line. During
3657 * node/memory hotplug, we'll fixup all on-line cpus.
3659 if (cpu_online(cpu
))
3660 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3668 * Called with zonelists_mutex held always
3669 * unless system_state == SYSTEM_BOOTING.
3671 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3673 set_zonelist_order();
3675 if (system_state
== SYSTEM_BOOTING
) {
3676 __build_all_zonelists(NULL
);
3677 mminit_verify_zonelist();
3678 cpuset_init_current_mems_allowed();
3680 /* we have to stop all cpus to guarantee there is no user
3682 #ifdef CONFIG_MEMORY_HOTPLUG
3684 setup_zone_pageset(zone
);
3686 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3687 /* cpuset refresh routine should be here */
3689 vm_total_pages
= nr_free_pagecache_pages();
3691 * Disable grouping by mobility if the number of pages in the
3692 * system is too low to allow the mechanism to work. It would be
3693 * more accurate, but expensive to check per-zone. This check is
3694 * made on memory-hotadd so a system can start with mobility
3695 * disabled and enable it later
3697 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3698 page_group_by_mobility_disabled
= 1;
3700 page_group_by_mobility_disabled
= 0;
3702 printk("Built %i zonelists in %s order, mobility grouping %s. "
3703 "Total pages: %ld\n",
3705 zonelist_order_name
[current_zonelist_order
],
3706 page_group_by_mobility_disabled
? "off" : "on",
3709 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3714 * Helper functions to size the waitqueue hash table.
3715 * Essentially these want to choose hash table sizes sufficiently
3716 * large so that collisions trying to wait on pages are rare.
3717 * But in fact, the number of active page waitqueues on typical
3718 * systems is ridiculously low, less than 200. So this is even
3719 * conservative, even though it seems large.
3721 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3722 * waitqueues, i.e. the size of the waitq table given the number of pages.
3724 #define PAGES_PER_WAITQUEUE 256
3726 #ifndef CONFIG_MEMORY_HOTPLUG
3727 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3729 unsigned long size
= 1;
3731 pages
/= PAGES_PER_WAITQUEUE
;
3733 while (size
< pages
)
3737 * Once we have dozens or even hundreds of threads sleeping
3738 * on IO we've got bigger problems than wait queue collision.
3739 * Limit the size of the wait table to a reasonable size.
3741 size
= min(size
, 4096UL);
3743 return max(size
, 4UL);
3747 * A zone's size might be changed by hot-add, so it is not possible to determine
3748 * a suitable size for its wait_table. So we use the maximum size now.
3750 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3752 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3753 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3754 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3756 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3757 * or more by the traditional way. (See above). It equals:
3759 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3760 * ia64(16K page size) : = ( 8G + 4M)byte.
3761 * powerpc (64K page size) : = (32G +16M)byte.
3763 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3770 * This is an integer logarithm so that shifts can be used later
3771 * to extract the more random high bits from the multiplicative
3772 * hash function before the remainder is taken.
3774 static inline unsigned long wait_table_bits(unsigned long size
)
3779 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3782 * Check if a pageblock contains reserved pages
3784 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3788 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3789 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3796 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3797 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3798 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3799 * higher will lead to a bigger reserve which will get freed as contiguous
3800 * blocks as reclaim kicks in
3802 static void setup_zone_migrate_reserve(struct zone
*zone
)
3804 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3806 unsigned long block_migratetype
;
3810 * Get the start pfn, end pfn and the number of blocks to reserve
3811 * We have to be careful to be aligned to pageblock_nr_pages to
3812 * make sure that we always check pfn_valid for the first page in
3815 start_pfn
= zone
->zone_start_pfn
;
3816 end_pfn
= zone_end_pfn(zone
);
3817 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3818 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3822 * Reserve blocks are generally in place to help high-order atomic
3823 * allocations that are short-lived. A min_free_kbytes value that
3824 * would result in more than 2 reserve blocks for atomic allocations
3825 * is assumed to be in place to help anti-fragmentation for the
3826 * future allocation of hugepages at runtime.
3828 reserve
= min(2, reserve
);
3830 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3831 if (!pfn_valid(pfn
))
3833 page
= pfn_to_page(pfn
);
3835 /* Watch out for overlapping nodes */
3836 if (page_to_nid(page
) != zone_to_nid(zone
))
3839 block_migratetype
= get_pageblock_migratetype(page
);
3841 /* Only test what is necessary when the reserves are not met */
3844 * Blocks with reserved pages will never free, skip
3847 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3848 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3851 /* If this block is reserved, account for it */
3852 if (block_migratetype
== MIGRATE_RESERVE
) {
3857 /* Suitable for reserving if this block is movable */
3858 if (block_migratetype
== MIGRATE_MOVABLE
) {
3859 set_pageblock_migratetype(page
,
3861 move_freepages_block(zone
, page
,
3869 * If the reserve is met and this is a previous reserved block,
3872 if (block_migratetype
== MIGRATE_RESERVE
) {
3873 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3874 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3880 * Initially all pages are reserved - free ones are freed
3881 * up by free_all_bootmem() once the early boot process is
3882 * done. Non-atomic initialization, single-pass.
3884 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3885 unsigned long start_pfn
, enum memmap_context context
)
3888 unsigned long end_pfn
= start_pfn
+ size
;
3892 if (highest_memmap_pfn
< end_pfn
- 1)
3893 highest_memmap_pfn
= end_pfn
- 1;
3895 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3896 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3898 * There can be holes in boot-time mem_map[]s
3899 * handed to this function. They do not
3900 * exist on hotplugged memory.
3902 if (context
== MEMMAP_EARLY
) {
3903 if (!early_pfn_valid(pfn
))
3905 if (!early_pfn_in_nid(pfn
, nid
))
3908 page
= pfn_to_page(pfn
);
3909 set_page_links(page
, zone
, nid
, pfn
);
3910 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3911 init_page_count(page
);
3912 page_mapcount_reset(page
);
3913 page_nid_reset_last(page
);
3914 SetPageReserved(page
);
3916 * Mark the block movable so that blocks are reserved for
3917 * movable at startup. This will force kernel allocations
3918 * to reserve their blocks rather than leaking throughout
3919 * the address space during boot when many long-lived
3920 * kernel allocations are made. Later some blocks near
3921 * the start are marked MIGRATE_RESERVE by
3922 * setup_zone_migrate_reserve()
3924 * bitmap is created for zone's valid pfn range. but memmap
3925 * can be created for invalid pages (for alignment)
3926 * check here not to call set_pageblock_migratetype() against
3929 if ((z
->zone_start_pfn
<= pfn
)
3930 && (pfn
< zone_end_pfn(z
))
3931 && !(pfn
& (pageblock_nr_pages
- 1)))
3932 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3934 INIT_LIST_HEAD(&page
->lru
);
3935 #ifdef WANT_PAGE_VIRTUAL
3936 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3937 if (!is_highmem_idx(zone
))
3938 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3943 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3946 for_each_migratetype_order(order
, t
) {
3947 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3948 zone
->free_area
[order
].nr_free
= 0;
3952 #ifndef __HAVE_ARCH_MEMMAP_INIT
3953 #define memmap_init(size, nid, zone, start_pfn) \
3954 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3957 static int __meminit
zone_batchsize(struct zone
*zone
)
3963 * The per-cpu-pages pools are set to around 1000th of the
3964 * size of the zone. But no more than 1/2 of a meg.
3966 * OK, so we don't know how big the cache is. So guess.
3968 batch
= zone
->managed_pages
/ 1024;
3969 if (batch
* PAGE_SIZE
> 512 * 1024)
3970 batch
= (512 * 1024) / PAGE_SIZE
;
3971 batch
/= 4; /* We effectively *= 4 below */
3976 * Clamp the batch to a 2^n - 1 value. Having a power
3977 * of 2 value was found to be more likely to have
3978 * suboptimal cache aliasing properties in some cases.
3980 * For example if 2 tasks are alternately allocating
3981 * batches of pages, one task can end up with a lot
3982 * of pages of one half of the possible page colors
3983 * and the other with pages of the other colors.
3985 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3990 /* The deferral and batching of frees should be suppressed under NOMMU
3993 * The problem is that NOMMU needs to be able to allocate large chunks
3994 * of contiguous memory as there's no hardware page translation to
3995 * assemble apparent contiguous memory from discontiguous pages.
3997 * Queueing large contiguous runs of pages for batching, however,
3998 * causes the pages to actually be freed in smaller chunks. As there
3999 * can be a significant delay between the individual batches being
4000 * recycled, this leads to the once large chunks of space being
4001 * fragmented and becoming unavailable for high-order allocations.
4007 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4009 struct per_cpu_pages
*pcp
;
4012 memset(p
, 0, sizeof(*p
));
4016 pcp
->high
= 6 * batch
;
4017 pcp
->batch
= max(1UL, 1 * batch
);
4018 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4019 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4023 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4024 * to the value high for the pageset p.
4027 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
4030 struct per_cpu_pages
*pcp
;
4034 pcp
->batch
= max(1UL, high
/4);
4035 if ((high
/4) > (PAGE_SHIFT
* 8))
4036 pcp
->batch
= PAGE_SHIFT
* 8;
4039 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4043 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4045 for_each_possible_cpu(cpu
) {
4046 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4048 setup_pageset(pcp
, zone_batchsize(zone
));
4050 if (percpu_pagelist_fraction
)
4051 setup_pagelist_highmark(pcp
,
4052 (zone
->managed_pages
/
4053 percpu_pagelist_fraction
));
4058 * Allocate per cpu pagesets and initialize them.
4059 * Before this call only boot pagesets were available.
4061 void __init
setup_per_cpu_pageset(void)
4065 for_each_populated_zone(zone
)
4066 setup_zone_pageset(zone
);
4069 static noinline __init_refok
4070 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4073 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4077 * The per-page waitqueue mechanism uses hashed waitqueues
4080 zone
->wait_table_hash_nr_entries
=
4081 wait_table_hash_nr_entries(zone_size_pages
);
4082 zone
->wait_table_bits
=
4083 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4084 alloc_size
= zone
->wait_table_hash_nr_entries
4085 * sizeof(wait_queue_head_t
);
4087 if (!slab_is_available()) {
4088 zone
->wait_table
= (wait_queue_head_t
*)
4089 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
4092 * This case means that a zone whose size was 0 gets new memory
4093 * via memory hot-add.
4094 * But it may be the case that a new node was hot-added. In
4095 * this case vmalloc() will not be able to use this new node's
4096 * memory - this wait_table must be initialized to use this new
4097 * node itself as well.
4098 * To use this new node's memory, further consideration will be
4101 zone
->wait_table
= vmalloc(alloc_size
);
4103 if (!zone
->wait_table
)
4106 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4107 init_waitqueue_head(zone
->wait_table
+ i
);
4112 static __meminit
void zone_pcp_init(struct zone
*zone
)
4115 * per cpu subsystem is not up at this point. The following code
4116 * relies on the ability of the linker to provide the
4117 * offset of a (static) per cpu variable into the per cpu area.
4119 zone
->pageset
= &boot_pageset
;
4121 if (zone
->present_pages
)
4122 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4123 zone
->name
, zone
->present_pages
,
4124 zone_batchsize(zone
));
4127 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4128 unsigned long zone_start_pfn
,
4130 enum memmap_context context
)
4132 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4134 ret
= zone_wait_table_init(zone
, size
);
4137 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4139 zone
->zone_start_pfn
= zone_start_pfn
;
4141 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4142 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4144 (unsigned long)zone_idx(zone
),
4145 zone_start_pfn
, (zone_start_pfn
+ size
));
4147 zone_init_free_lists(zone
);
4152 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4153 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4155 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4156 * Architectures may implement their own version but if add_active_range()
4157 * was used and there are no special requirements, this is a convenient
4160 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4162 unsigned long start_pfn
, end_pfn
;
4165 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
4166 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
4168 /* This is a memory hole */
4171 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4173 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4177 nid
= __early_pfn_to_nid(pfn
);
4180 /* just returns 0 */
4184 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4185 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4189 nid
= __early_pfn_to_nid(pfn
);
4190 if (nid
>= 0 && nid
!= node
)
4197 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4198 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4199 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4201 * If an architecture guarantees that all ranges registered with
4202 * add_active_ranges() contain no holes and may be freed, this
4203 * this function may be used instead of calling free_bootmem() manually.
4205 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4207 unsigned long start_pfn
, end_pfn
;
4210 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4211 start_pfn
= min(start_pfn
, max_low_pfn
);
4212 end_pfn
= min(end_pfn
, max_low_pfn
);
4214 if (start_pfn
< end_pfn
)
4215 free_bootmem_node(NODE_DATA(this_nid
),
4216 PFN_PHYS(start_pfn
),
4217 (end_pfn
- start_pfn
) << PAGE_SHIFT
);
4222 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4223 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4225 * If an architecture guarantees that all ranges registered with
4226 * add_active_ranges() contain no holes and may be freed, this
4227 * function may be used instead of calling memory_present() manually.
4229 void __init
sparse_memory_present_with_active_regions(int nid
)
4231 unsigned long start_pfn
, end_pfn
;
4234 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4235 memory_present(this_nid
, start_pfn
, end_pfn
);
4239 * get_pfn_range_for_nid - Return the start and end page frames for a node
4240 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4241 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4242 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4244 * It returns the start and end page frame of a node based on information
4245 * provided by an arch calling add_active_range(). If called for a node
4246 * with no available memory, a warning is printed and the start and end
4249 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4250 unsigned long *start_pfn
, unsigned long *end_pfn
)
4252 unsigned long this_start_pfn
, this_end_pfn
;
4258 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4259 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4260 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4263 if (*start_pfn
== -1UL)
4268 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4269 * assumption is made that zones within a node are ordered in monotonic
4270 * increasing memory addresses so that the "highest" populated zone is used
4272 static void __init
find_usable_zone_for_movable(void)
4275 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4276 if (zone_index
== ZONE_MOVABLE
)
4279 if (arch_zone_highest_possible_pfn
[zone_index
] >
4280 arch_zone_lowest_possible_pfn
[zone_index
])
4284 VM_BUG_ON(zone_index
== -1);
4285 movable_zone
= zone_index
;
4289 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4290 * because it is sized independent of architecture. Unlike the other zones,
4291 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4292 * in each node depending on the size of each node and how evenly kernelcore
4293 * is distributed. This helper function adjusts the zone ranges
4294 * provided by the architecture for a given node by using the end of the
4295 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4296 * zones within a node are in order of monotonic increases memory addresses
4298 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4299 unsigned long zone_type
,
4300 unsigned long node_start_pfn
,
4301 unsigned long node_end_pfn
,
4302 unsigned long *zone_start_pfn
,
4303 unsigned long *zone_end_pfn
)
4305 /* Only adjust if ZONE_MOVABLE is on this node */
4306 if (zone_movable_pfn
[nid
]) {
4307 /* Size ZONE_MOVABLE */
4308 if (zone_type
== ZONE_MOVABLE
) {
4309 *zone_start_pfn
= zone_movable_pfn
[nid
];
4310 *zone_end_pfn
= min(node_end_pfn
,
4311 arch_zone_highest_possible_pfn
[movable_zone
]);
4313 /* Adjust for ZONE_MOVABLE starting within this range */
4314 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4315 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4316 *zone_end_pfn
= zone_movable_pfn
[nid
];
4318 /* Check if this whole range is within ZONE_MOVABLE */
4319 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4320 *zone_start_pfn
= *zone_end_pfn
;
4325 * Return the number of pages a zone spans in a node, including holes
4326 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4328 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4329 unsigned long zone_type
,
4330 unsigned long *ignored
)
4332 unsigned long node_start_pfn
, node_end_pfn
;
4333 unsigned long zone_start_pfn
, zone_end_pfn
;
4335 /* Get the start and end of the node and zone */
4336 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4337 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4338 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4339 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4340 node_start_pfn
, node_end_pfn
,
4341 &zone_start_pfn
, &zone_end_pfn
);
4343 /* Check that this node has pages within the zone's required range */
4344 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4347 /* Move the zone boundaries inside the node if necessary */
4348 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4349 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4351 /* Return the spanned pages */
4352 return zone_end_pfn
- zone_start_pfn
;
4356 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4357 * then all holes in the requested range will be accounted for.
4359 unsigned long __meminit
__absent_pages_in_range(int nid
,
4360 unsigned long range_start_pfn
,
4361 unsigned long range_end_pfn
)
4363 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4364 unsigned long start_pfn
, end_pfn
;
4367 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4368 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4369 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4370 nr_absent
-= end_pfn
- start_pfn
;
4376 * absent_pages_in_range - Return number of page frames in holes within a range
4377 * @start_pfn: The start PFN to start searching for holes
4378 * @end_pfn: The end PFN to stop searching for holes
4380 * It returns the number of pages frames in memory holes within a range.
4382 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4383 unsigned long end_pfn
)
4385 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4388 /* Return the number of page frames in holes in a zone on a node */
4389 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4390 unsigned long zone_type
,
4391 unsigned long *ignored
)
4393 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4394 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4395 unsigned long node_start_pfn
, node_end_pfn
;
4396 unsigned long zone_start_pfn
, zone_end_pfn
;
4398 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4399 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4400 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4402 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4403 node_start_pfn
, node_end_pfn
,
4404 &zone_start_pfn
, &zone_end_pfn
);
4405 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4408 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4409 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4410 unsigned long zone_type
,
4411 unsigned long *zones_size
)
4413 return zones_size
[zone_type
];
4416 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4417 unsigned long zone_type
,
4418 unsigned long *zholes_size
)
4423 return zholes_size
[zone_type
];
4426 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4428 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4429 unsigned long *zones_size
, unsigned long *zholes_size
)
4431 unsigned long realtotalpages
, totalpages
= 0;
4434 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4435 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4437 pgdat
->node_spanned_pages
= totalpages
;
4439 realtotalpages
= totalpages
;
4440 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4442 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4444 pgdat
->node_present_pages
= realtotalpages
;
4445 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4449 #ifndef CONFIG_SPARSEMEM
4451 * Calculate the size of the zone->blockflags rounded to an unsigned long
4452 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4453 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4454 * round what is now in bits to nearest long in bits, then return it in
4457 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4459 unsigned long usemapsize
;
4461 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4462 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4463 usemapsize
= usemapsize
>> pageblock_order
;
4464 usemapsize
*= NR_PAGEBLOCK_BITS
;
4465 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4467 return usemapsize
/ 8;
4470 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4472 unsigned long zone_start_pfn
,
4473 unsigned long zonesize
)
4475 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4476 zone
->pageblock_flags
= NULL
;
4478 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4482 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4483 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4484 #endif /* CONFIG_SPARSEMEM */
4486 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4488 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4489 void __init
set_pageblock_order(void)
4493 /* Check that pageblock_nr_pages has not already been setup */
4494 if (pageblock_order
)
4497 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4498 order
= HUGETLB_PAGE_ORDER
;
4500 order
= MAX_ORDER
- 1;
4503 * Assume the largest contiguous order of interest is a huge page.
4504 * This value may be variable depending on boot parameters on IA64 and
4507 pageblock_order
= order
;
4509 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4512 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4513 * is unused as pageblock_order is set at compile-time. See
4514 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4517 void __init
set_pageblock_order(void)
4521 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4523 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4524 unsigned long present_pages
)
4526 unsigned long pages
= spanned_pages
;
4529 * Provide a more accurate estimation if there are holes within
4530 * the zone and SPARSEMEM is in use. If there are holes within the
4531 * zone, each populated memory region may cost us one or two extra
4532 * memmap pages due to alignment because memmap pages for each
4533 * populated regions may not naturally algined on page boundary.
4534 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4536 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4537 IS_ENABLED(CONFIG_SPARSEMEM
))
4538 pages
= present_pages
;
4540 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4544 * Set up the zone data structures:
4545 * - mark all pages reserved
4546 * - mark all memory queues empty
4547 * - clear the memory bitmaps
4549 * NOTE: pgdat should get zeroed by caller.
4551 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4552 unsigned long *zones_size
, unsigned long *zholes_size
)
4555 int nid
= pgdat
->node_id
;
4556 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4559 pgdat_resize_init(pgdat
);
4560 #ifdef CONFIG_NUMA_BALANCING
4561 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4562 pgdat
->numabalancing_migrate_nr_pages
= 0;
4563 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4565 init_waitqueue_head(&pgdat
->kswapd_wait
);
4566 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4567 pgdat_page_cgroup_init(pgdat
);
4569 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4570 struct zone
*zone
= pgdat
->node_zones
+ j
;
4571 unsigned long size
, realsize
, freesize
, memmap_pages
;
4573 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4574 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4578 * Adjust freesize so that it accounts for how much memory
4579 * is used by this zone for memmap. This affects the watermark
4580 * and per-cpu initialisations
4582 memmap_pages
= calc_memmap_size(size
, realsize
);
4583 if (freesize
>= memmap_pages
) {
4584 freesize
-= memmap_pages
;
4587 " %s zone: %lu pages used for memmap\n",
4588 zone_names
[j
], memmap_pages
);
4591 " %s zone: %lu pages exceeds freesize %lu\n",
4592 zone_names
[j
], memmap_pages
, freesize
);
4594 /* Account for reserved pages */
4595 if (j
== 0 && freesize
> dma_reserve
) {
4596 freesize
-= dma_reserve
;
4597 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4598 zone_names
[0], dma_reserve
);
4601 if (!is_highmem_idx(j
))
4602 nr_kernel_pages
+= freesize
;
4603 /* Charge for highmem memmap if there are enough kernel pages */
4604 else if (nr_kernel_pages
> memmap_pages
* 2)
4605 nr_kernel_pages
-= memmap_pages
;
4606 nr_all_pages
+= freesize
;
4608 zone
->spanned_pages
= size
;
4609 zone
->present_pages
= realsize
;
4611 * Set an approximate value for lowmem here, it will be adjusted
4612 * when the bootmem allocator frees pages into the buddy system.
4613 * And all highmem pages will be managed by the buddy system.
4615 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4618 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4620 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4622 zone
->name
= zone_names
[j
];
4623 spin_lock_init(&zone
->lock
);
4624 spin_lock_init(&zone
->lru_lock
);
4625 zone_seqlock_init(zone
);
4626 zone
->zone_pgdat
= pgdat
;
4628 zone_pcp_init(zone
);
4629 lruvec_init(&zone
->lruvec
);
4633 set_pageblock_order();
4634 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4635 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4636 size
, MEMMAP_EARLY
);
4638 memmap_init(size
, nid
, j
, zone_start_pfn
);
4639 zone_start_pfn
+= size
;
4643 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4645 /* Skip empty nodes */
4646 if (!pgdat
->node_spanned_pages
)
4649 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4650 /* ia64 gets its own node_mem_map, before this, without bootmem */
4651 if (!pgdat
->node_mem_map
) {
4652 unsigned long size
, start
, end
;
4656 * The zone's endpoints aren't required to be MAX_ORDER
4657 * aligned but the node_mem_map endpoints must be in order
4658 * for the buddy allocator to function correctly.
4660 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4661 end
= pgdat_end_pfn(pgdat
);
4662 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4663 size
= (end
- start
) * sizeof(struct page
);
4664 map
= alloc_remap(pgdat
->node_id
, size
);
4666 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4667 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4669 #ifndef CONFIG_NEED_MULTIPLE_NODES
4671 * With no DISCONTIG, the global mem_map is just set as node 0's
4673 if (pgdat
== NODE_DATA(0)) {
4674 mem_map
= NODE_DATA(0)->node_mem_map
;
4675 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4676 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4677 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4678 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4681 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4684 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4685 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4687 pg_data_t
*pgdat
= NODE_DATA(nid
);
4689 /* pg_data_t should be reset to zero when it's allocated */
4690 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4692 pgdat
->node_id
= nid
;
4693 pgdat
->node_start_pfn
= node_start_pfn
;
4694 init_zone_allows_reclaim(nid
);
4695 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4697 alloc_node_mem_map(pgdat
);
4698 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4699 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4700 nid
, (unsigned long)pgdat
,
4701 (unsigned long)pgdat
->node_mem_map
);
4704 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4707 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4709 #if MAX_NUMNODES > 1
4711 * Figure out the number of possible node ids.
4713 static void __init
setup_nr_node_ids(void)
4716 unsigned int highest
= 0;
4718 for_each_node_mask(node
, node_possible_map
)
4720 nr_node_ids
= highest
+ 1;
4723 static inline void setup_nr_node_ids(void)
4729 * node_map_pfn_alignment - determine the maximum internode alignment
4731 * This function should be called after node map is populated and sorted.
4732 * It calculates the maximum power of two alignment which can distinguish
4735 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4736 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4737 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4738 * shifted, 1GiB is enough and this function will indicate so.
4740 * This is used to test whether pfn -> nid mapping of the chosen memory
4741 * model has fine enough granularity to avoid incorrect mapping for the
4742 * populated node map.
4744 * Returns the determined alignment in pfn's. 0 if there is no alignment
4745 * requirement (single node).
4747 unsigned long __init
node_map_pfn_alignment(void)
4749 unsigned long accl_mask
= 0, last_end
= 0;
4750 unsigned long start
, end
, mask
;
4754 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
4755 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4762 * Start with a mask granular enough to pin-point to the
4763 * start pfn and tick off bits one-by-one until it becomes
4764 * too coarse to separate the current node from the last.
4766 mask
= ~((1 << __ffs(start
)) - 1);
4767 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4770 /* accumulate all internode masks */
4774 /* convert mask to number of pages */
4775 return ~accl_mask
+ 1;
4778 /* Find the lowest pfn for a node */
4779 static unsigned long __init
find_min_pfn_for_node(int nid
)
4781 unsigned long min_pfn
= ULONG_MAX
;
4782 unsigned long start_pfn
;
4785 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
4786 min_pfn
= min(min_pfn
, start_pfn
);
4788 if (min_pfn
== ULONG_MAX
) {
4790 "Could not find start_pfn for node %d\n", nid
);
4798 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4800 * It returns the minimum PFN based on information provided via
4801 * add_active_range().
4803 unsigned long __init
find_min_pfn_with_active_regions(void)
4805 return find_min_pfn_for_node(MAX_NUMNODES
);
4809 * early_calculate_totalpages()
4810 * Sum pages in active regions for movable zone.
4811 * Populate N_MEMORY for calculating usable_nodes.
4813 static unsigned long __init
early_calculate_totalpages(void)
4815 unsigned long totalpages
= 0;
4816 unsigned long start_pfn
, end_pfn
;
4819 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
4820 unsigned long pages
= end_pfn
- start_pfn
;
4822 totalpages
+= pages
;
4824 node_set_state(nid
, N_MEMORY
);
4830 * Find the PFN the Movable zone begins in each node. Kernel memory
4831 * is spread evenly between nodes as long as the nodes have enough
4832 * memory. When they don't, some nodes will have more kernelcore than
4835 static void __init
find_zone_movable_pfns_for_nodes(void)
4838 unsigned long usable_startpfn
;
4839 unsigned long kernelcore_node
, kernelcore_remaining
;
4840 /* save the state before borrow the nodemask */
4841 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
4842 unsigned long totalpages
= early_calculate_totalpages();
4843 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
4846 * If movablecore was specified, calculate what size of
4847 * kernelcore that corresponds so that memory usable for
4848 * any allocation type is evenly spread. If both kernelcore
4849 * and movablecore are specified, then the value of kernelcore
4850 * will be used for required_kernelcore if it's greater than
4851 * what movablecore would have allowed.
4853 if (required_movablecore
) {
4854 unsigned long corepages
;
4857 * Round-up so that ZONE_MOVABLE is at least as large as what
4858 * was requested by the user
4860 required_movablecore
=
4861 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4862 corepages
= totalpages
- required_movablecore
;
4864 required_kernelcore
= max(required_kernelcore
, corepages
);
4867 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4868 if (!required_kernelcore
)
4871 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4872 find_usable_zone_for_movable();
4873 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4876 /* Spread kernelcore memory as evenly as possible throughout nodes */
4877 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4878 for_each_node_state(nid
, N_MEMORY
) {
4879 unsigned long start_pfn
, end_pfn
;
4882 * Recalculate kernelcore_node if the division per node
4883 * now exceeds what is necessary to satisfy the requested
4884 * amount of memory for the kernel
4886 if (required_kernelcore
< kernelcore_node
)
4887 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4890 * As the map is walked, we track how much memory is usable
4891 * by the kernel using kernelcore_remaining. When it is
4892 * 0, the rest of the node is usable by ZONE_MOVABLE
4894 kernelcore_remaining
= kernelcore_node
;
4896 /* Go through each range of PFNs within this node */
4897 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4898 unsigned long size_pages
;
4900 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
4901 if (start_pfn
>= end_pfn
)
4904 /* Account for what is only usable for kernelcore */
4905 if (start_pfn
< usable_startpfn
) {
4906 unsigned long kernel_pages
;
4907 kernel_pages
= min(end_pfn
, usable_startpfn
)
4910 kernelcore_remaining
-= min(kernel_pages
,
4911 kernelcore_remaining
);
4912 required_kernelcore
-= min(kernel_pages
,
4913 required_kernelcore
);
4915 /* Continue if range is now fully accounted */
4916 if (end_pfn
<= usable_startpfn
) {
4919 * Push zone_movable_pfn to the end so
4920 * that if we have to rebalance
4921 * kernelcore across nodes, we will
4922 * not double account here
4924 zone_movable_pfn
[nid
] = end_pfn
;
4927 start_pfn
= usable_startpfn
;
4931 * The usable PFN range for ZONE_MOVABLE is from
4932 * start_pfn->end_pfn. Calculate size_pages as the
4933 * number of pages used as kernelcore
4935 size_pages
= end_pfn
- start_pfn
;
4936 if (size_pages
> kernelcore_remaining
)
4937 size_pages
= kernelcore_remaining
;
4938 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4941 * Some kernelcore has been met, update counts and
4942 * break if the kernelcore for this node has been
4945 required_kernelcore
-= min(required_kernelcore
,
4947 kernelcore_remaining
-= size_pages
;
4948 if (!kernelcore_remaining
)
4954 * If there is still required_kernelcore, we do another pass with one
4955 * less node in the count. This will push zone_movable_pfn[nid] further
4956 * along on the nodes that still have memory until kernelcore is
4960 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4963 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4964 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4965 zone_movable_pfn
[nid
] =
4966 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4969 /* restore the node_state */
4970 node_states
[N_MEMORY
] = saved_node_state
;
4973 /* Any regular or high memory on that node ? */
4974 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
4976 enum zone_type zone_type
;
4978 if (N_MEMORY
== N_NORMAL_MEMORY
)
4981 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
4982 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4983 if (zone
->present_pages
) {
4984 node_set_state(nid
, N_HIGH_MEMORY
);
4985 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
4986 zone_type
<= ZONE_NORMAL
)
4987 node_set_state(nid
, N_NORMAL_MEMORY
);
4994 * free_area_init_nodes - Initialise all pg_data_t and zone data
4995 * @max_zone_pfn: an array of max PFNs for each zone
4997 * This will call free_area_init_node() for each active node in the system.
4998 * Using the page ranges provided by add_active_range(), the size of each
4999 * zone in each node and their holes is calculated. If the maximum PFN
5000 * between two adjacent zones match, it is assumed that the zone is empty.
5001 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5002 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5003 * starts where the previous one ended. For example, ZONE_DMA32 starts
5004 * at arch_max_dma_pfn.
5006 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5008 unsigned long start_pfn
, end_pfn
;
5011 /* Record where the zone boundaries are */
5012 memset(arch_zone_lowest_possible_pfn
, 0,
5013 sizeof(arch_zone_lowest_possible_pfn
));
5014 memset(arch_zone_highest_possible_pfn
, 0,
5015 sizeof(arch_zone_highest_possible_pfn
));
5016 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5017 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5018 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5019 if (i
== ZONE_MOVABLE
)
5021 arch_zone_lowest_possible_pfn
[i
] =
5022 arch_zone_highest_possible_pfn
[i
-1];
5023 arch_zone_highest_possible_pfn
[i
] =
5024 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5026 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5027 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5029 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5030 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5031 find_zone_movable_pfns_for_nodes();
5033 /* Print out the zone ranges */
5034 printk("Zone ranges:\n");
5035 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5036 if (i
== ZONE_MOVABLE
)
5038 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5039 if (arch_zone_lowest_possible_pfn
[i
] ==
5040 arch_zone_highest_possible_pfn
[i
])
5041 printk(KERN_CONT
"empty\n");
5043 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5044 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5045 (arch_zone_highest_possible_pfn
[i
]
5046 << PAGE_SHIFT
) - 1);
5049 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5050 printk("Movable zone start for each node\n");
5051 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5052 if (zone_movable_pfn
[i
])
5053 printk(" Node %d: %#010lx\n", i
,
5054 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5057 /* Print out the early node map */
5058 printk("Early memory node ranges\n");
5059 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5060 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5061 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5063 /* Initialise every node */
5064 mminit_verify_pageflags_layout();
5065 setup_nr_node_ids();
5066 for_each_online_node(nid
) {
5067 pg_data_t
*pgdat
= NODE_DATA(nid
);
5068 free_area_init_node(nid
, NULL
,
5069 find_min_pfn_for_node(nid
), NULL
);
5071 /* Any memory on that node */
5072 if (pgdat
->node_present_pages
)
5073 node_set_state(nid
, N_MEMORY
);
5074 check_for_memory(pgdat
, nid
);
5078 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5080 unsigned long long coremem
;
5084 coremem
= memparse(p
, &p
);
5085 *core
= coremem
>> PAGE_SHIFT
;
5087 /* Paranoid check that UL is enough for the coremem value */
5088 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5094 * kernelcore=size sets the amount of memory for use for allocations that
5095 * cannot be reclaimed or migrated.
5097 static int __init
cmdline_parse_kernelcore(char *p
)
5099 return cmdline_parse_core(p
, &required_kernelcore
);
5103 * movablecore=size sets the amount of memory for use for allocations that
5104 * can be reclaimed or migrated.
5106 static int __init
cmdline_parse_movablecore(char *p
)
5108 return cmdline_parse_core(p
, &required_movablecore
);
5111 early_param("kernelcore", cmdline_parse_kernelcore
);
5112 early_param("movablecore", cmdline_parse_movablecore
);
5114 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5117 * set_dma_reserve - set the specified number of pages reserved in the first zone
5118 * @new_dma_reserve: The number of pages to mark reserved
5120 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5121 * In the DMA zone, a significant percentage may be consumed by kernel image
5122 * and other unfreeable allocations which can skew the watermarks badly. This
5123 * function may optionally be used to account for unfreeable pages in the
5124 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5125 * smaller per-cpu batchsize.
5127 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5129 dma_reserve
= new_dma_reserve
;
5132 void __init
free_area_init(unsigned long *zones_size
)
5134 free_area_init_node(0, zones_size
,
5135 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5138 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5139 unsigned long action
, void *hcpu
)
5141 int cpu
= (unsigned long)hcpu
;
5143 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5144 lru_add_drain_cpu(cpu
);
5148 * Spill the event counters of the dead processor
5149 * into the current processors event counters.
5150 * This artificially elevates the count of the current
5153 vm_events_fold_cpu(cpu
);
5156 * Zero the differential counters of the dead processor
5157 * so that the vm statistics are consistent.
5159 * This is only okay since the processor is dead and cannot
5160 * race with what we are doing.
5162 refresh_cpu_vm_stats(cpu
);
5167 void __init
page_alloc_init(void)
5169 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5173 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5174 * or min_free_kbytes changes.
5176 static void calculate_totalreserve_pages(void)
5178 struct pglist_data
*pgdat
;
5179 unsigned long reserve_pages
= 0;
5180 enum zone_type i
, j
;
5182 for_each_online_pgdat(pgdat
) {
5183 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5184 struct zone
*zone
= pgdat
->node_zones
+ i
;
5185 unsigned long max
= 0;
5187 /* Find valid and maximum lowmem_reserve in the zone */
5188 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5189 if (zone
->lowmem_reserve
[j
] > max
)
5190 max
= zone
->lowmem_reserve
[j
];
5193 /* we treat the high watermark as reserved pages. */
5194 max
+= high_wmark_pages(zone
);
5196 if (max
> zone
->managed_pages
)
5197 max
= zone
->managed_pages
;
5198 reserve_pages
+= max
;
5200 * Lowmem reserves are not available to
5201 * GFP_HIGHUSER page cache allocations and
5202 * kswapd tries to balance zones to their high
5203 * watermark. As a result, neither should be
5204 * regarded as dirtyable memory, to prevent a
5205 * situation where reclaim has to clean pages
5206 * in order to balance the zones.
5208 zone
->dirty_balance_reserve
= max
;
5211 dirty_balance_reserve
= reserve_pages
;
5212 totalreserve_pages
= reserve_pages
;
5216 * setup_per_zone_lowmem_reserve - called whenever
5217 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5218 * has a correct pages reserved value, so an adequate number of
5219 * pages are left in the zone after a successful __alloc_pages().
5221 static void setup_per_zone_lowmem_reserve(void)
5223 struct pglist_data
*pgdat
;
5224 enum zone_type j
, idx
;
5226 for_each_online_pgdat(pgdat
) {
5227 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5228 struct zone
*zone
= pgdat
->node_zones
+ j
;
5229 unsigned long managed_pages
= zone
->managed_pages
;
5231 zone
->lowmem_reserve
[j
] = 0;
5235 struct zone
*lower_zone
;
5239 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5240 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5242 lower_zone
= pgdat
->node_zones
+ idx
;
5243 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5244 sysctl_lowmem_reserve_ratio
[idx
];
5245 managed_pages
+= lower_zone
->managed_pages
;
5250 /* update totalreserve_pages */
5251 calculate_totalreserve_pages();
5254 static void __setup_per_zone_wmarks(void)
5256 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5257 unsigned long lowmem_pages
= 0;
5259 unsigned long flags
;
5261 /* Calculate total number of !ZONE_HIGHMEM pages */
5262 for_each_zone(zone
) {
5263 if (!is_highmem(zone
))
5264 lowmem_pages
+= zone
->managed_pages
;
5267 for_each_zone(zone
) {
5270 spin_lock_irqsave(&zone
->lock
, flags
);
5271 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5272 do_div(tmp
, lowmem_pages
);
5273 if (is_highmem(zone
)) {
5275 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5276 * need highmem pages, so cap pages_min to a small
5279 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5280 * deltas controls asynch page reclaim, and so should
5281 * not be capped for highmem.
5283 unsigned long min_pages
;
5285 min_pages
= zone
->managed_pages
/ 1024;
5286 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5287 zone
->watermark
[WMARK_MIN
] = min_pages
;
5290 * If it's a lowmem zone, reserve a number of pages
5291 * proportionate to the zone's size.
5293 zone
->watermark
[WMARK_MIN
] = tmp
;
5296 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5297 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5299 setup_zone_migrate_reserve(zone
);
5300 spin_unlock_irqrestore(&zone
->lock
, flags
);
5303 /* update totalreserve_pages */
5304 calculate_totalreserve_pages();
5308 * setup_per_zone_wmarks - called when min_free_kbytes changes
5309 * or when memory is hot-{added|removed}
5311 * Ensures that the watermark[min,low,high] values for each zone are set
5312 * correctly with respect to min_free_kbytes.
5314 void setup_per_zone_wmarks(void)
5316 mutex_lock(&zonelists_mutex
);
5317 __setup_per_zone_wmarks();
5318 mutex_unlock(&zonelists_mutex
);
5322 * The inactive anon list should be small enough that the VM never has to
5323 * do too much work, but large enough that each inactive page has a chance
5324 * to be referenced again before it is swapped out.
5326 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5327 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5328 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5329 * the anonymous pages are kept on the inactive list.
5332 * memory ratio inactive anon
5333 * -------------------------------------
5342 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5344 unsigned int gb
, ratio
;
5346 /* Zone size in gigabytes */
5347 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5349 ratio
= int_sqrt(10 * gb
);
5353 zone
->inactive_ratio
= ratio
;
5356 static void __meminit
setup_per_zone_inactive_ratio(void)
5361 calculate_zone_inactive_ratio(zone
);
5365 * Initialise min_free_kbytes.
5367 * For small machines we want it small (128k min). For large machines
5368 * we want it large (64MB max). But it is not linear, because network
5369 * bandwidth does not increase linearly with machine size. We use
5371 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5372 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5388 int __meminit
init_per_zone_wmark_min(void)
5390 unsigned long lowmem_kbytes
;
5392 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5394 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5395 if (min_free_kbytes
< 128)
5396 min_free_kbytes
= 128;
5397 if (min_free_kbytes
> 65536)
5398 min_free_kbytes
= 65536;
5399 setup_per_zone_wmarks();
5400 refresh_zone_stat_thresholds();
5401 setup_per_zone_lowmem_reserve();
5402 setup_per_zone_inactive_ratio();
5405 module_init(init_per_zone_wmark_min
)
5408 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5409 * that we can call two helper functions whenever min_free_kbytes
5412 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5413 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5415 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5417 setup_per_zone_wmarks();
5422 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5423 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5428 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5433 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5434 sysctl_min_unmapped_ratio
) / 100;
5438 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5439 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5444 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5449 zone
->min_slab_pages
= (zone
->managed_pages
*
5450 sysctl_min_slab_ratio
) / 100;
5456 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5457 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5458 * whenever sysctl_lowmem_reserve_ratio changes.
5460 * The reserve ratio obviously has absolutely no relation with the
5461 * minimum watermarks. The lowmem reserve ratio can only make sense
5462 * if in function of the boot time zone sizes.
5464 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5465 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5467 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5468 setup_per_zone_lowmem_reserve();
5473 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5474 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5475 * can have before it gets flushed back to buddy allocator.
5478 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5479 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5485 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5486 if (!write
|| (ret
< 0))
5488 for_each_populated_zone(zone
) {
5489 for_each_possible_cpu(cpu
) {
5491 high
= zone
->managed_pages
/ percpu_pagelist_fraction
;
5492 setup_pagelist_highmark(
5493 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5499 int hashdist
= HASHDIST_DEFAULT
;
5502 static int __init
set_hashdist(char *str
)
5506 hashdist
= simple_strtoul(str
, &str
, 0);
5509 __setup("hashdist=", set_hashdist
);
5513 * allocate a large system hash table from bootmem
5514 * - it is assumed that the hash table must contain an exact power-of-2
5515 * quantity of entries
5516 * - limit is the number of hash buckets, not the total allocation size
5518 void *__init
alloc_large_system_hash(const char *tablename
,
5519 unsigned long bucketsize
,
5520 unsigned long numentries
,
5523 unsigned int *_hash_shift
,
5524 unsigned int *_hash_mask
,
5525 unsigned long low_limit
,
5526 unsigned long high_limit
)
5528 unsigned long long max
= high_limit
;
5529 unsigned long log2qty
, size
;
5532 /* allow the kernel cmdline to have a say */
5534 /* round applicable memory size up to nearest megabyte */
5535 numentries
= nr_kernel_pages
;
5536 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5537 numentries
>>= 20 - PAGE_SHIFT
;
5538 numentries
<<= 20 - PAGE_SHIFT
;
5540 /* limit to 1 bucket per 2^scale bytes of low memory */
5541 if (scale
> PAGE_SHIFT
)
5542 numentries
>>= (scale
- PAGE_SHIFT
);
5544 numentries
<<= (PAGE_SHIFT
- scale
);
5546 /* Make sure we've got at least a 0-order allocation.. */
5547 if (unlikely(flags
& HASH_SMALL
)) {
5548 /* Makes no sense without HASH_EARLY */
5549 WARN_ON(!(flags
& HASH_EARLY
));
5550 if (!(numentries
>> *_hash_shift
)) {
5551 numentries
= 1UL << *_hash_shift
;
5552 BUG_ON(!numentries
);
5554 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5555 numentries
= PAGE_SIZE
/ bucketsize
;
5557 numentries
= roundup_pow_of_two(numentries
);
5559 /* limit allocation size to 1/16 total memory by default */
5561 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5562 do_div(max
, bucketsize
);
5564 max
= min(max
, 0x80000000ULL
);
5566 if (numentries
< low_limit
)
5567 numentries
= low_limit
;
5568 if (numentries
> max
)
5571 log2qty
= ilog2(numentries
);
5574 size
= bucketsize
<< log2qty
;
5575 if (flags
& HASH_EARLY
)
5576 table
= alloc_bootmem_nopanic(size
);
5578 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5581 * If bucketsize is not a power-of-two, we may free
5582 * some pages at the end of hash table which
5583 * alloc_pages_exact() automatically does
5585 if (get_order(size
) < MAX_ORDER
) {
5586 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5587 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5590 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5593 panic("Failed to allocate %s hash table\n", tablename
);
5595 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5598 ilog2(size
) - PAGE_SHIFT
,
5602 *_hash_shift
= log2qty
;
5604 *_hash_mask
= (1 << log2qty
) - 1;
5609 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5610 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5613 #ifdef CONFIG_SPARSEMEM
5614 return __pfn_to_section(pfn
)->pageblock_flags
;
5616 return zone
->pageblock_flags
;
5617 #endif /* CONFIG_SPARSEMEM */
5620 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5622 #ifdef CONFIG_SPARSEMEM
5623 pfn
&= (PAGES_PER_SECTION
-1);
5624 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5626 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
5627 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5628 #endif /* CONFIG_SPARSEMEM */
5632 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5633 * @page: The page within the block of interest
5634 * @start_bitidx: The first bit of interest to retrieve
5635 * @end_bitidx: The last bit of interest
5636 * returns pageblock_bits flags
5638 unsigned long get_pageblock_flags_group(struct page
*page
,
5639 int start_bitidx
, int end_bitidx
)
5642 unsigned long *bitmap
;
5643 unsigned long pfn
, bitidx
;
5644 unsigned long flags
= 0;
5645 unsigned long value
= 1;
5647 zone
= page_zone(page
);
5648 pfn
= page_to_pfn(page
);
5649 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5650 bitidx
= pfn_to_bitidx(zone
, pfn
);
5652 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5653 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5660 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5661 * @page: The page within the block of interest
5662 * @start_bitidx: The first bit of interest
5663 * @end_bitidx: The last bit of interest
5664 * @flags: The flags to set
5666 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5667 int start_bitidx
, int end_bitidx
)
5670 unsigned long *bitmap
;
5671 unsigned long pfn
, bitidx
;
5672 unsigned long value
= 1;
5674 zone
= page_zone(page
);
5675 pfn
= page_to_pfn(page
);
5676 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5677 bitidx
= pfn_to_bitidx(zone
, pfn
);
5678 VM_BUG_ON(!zone_spans_pfn(zone
, pfn
));
5680 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5682 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5684 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5688 * This function checks whether pageblock includes unmovable pages or not.
5689 * If @count is not zero, it is okay to include less @count unmovable pages
5691 * PageLRU check wihtout isolation or lru_lock could race so that
5692 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5693 * expect this function should be exact.
5695 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
5696 bool skip_hwpoisoned_pages
)
5698 unsigned long pfn
, iter
, found
;
5702 * For avoiding noise data, lru_add_drain_all() should be called
5703 * If ZONE_MOVABLE, the zone never contains unmovable pages
5705 if (zone_idx(zone
) == ZONE_MOVABLE
)
5707 mt
= get_pageblock_migratetype(page
);
5708 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
5711 pfn
= page_to_pfn(page
);
5712 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5713 unsigned long check
= pfn
+ iter
;
5715 if (!pfn_valid_within(check
))
5718 page
= pfn_to_page(check
);
5720 * We can't use page_count without pin a page
5721 * because another CPU can free compound page.
5722 * This check already skips compound tails of THP
5723 * because their page->_count is zero at all time.
5725 if (!atomic_read(&page
->_count
)) {
5726 if (PageBuddy(page
))
5727 iter
+= (1 << page_order(page
)) - 1;
5732 * The HWPoisoned page may be not in buddy system, and
5733 * page_count() is not 0.
5735 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
5741 * If there are RECLAIMABLE pages, we need to check it.
5742 * But now, memory offline itself doesn't call shrink_slab()
5743 * and it still to be fixed.
5746 * If the page is not RAM, page_count()should be 0.
5747 * we don't need more check. This is an _used_ not-movable page.
5749 * The problematic thing here is PG_reserved pages. PG_reserved
5750 * is set to both of a memory hole page and a _used_ kernel
5759 bool is_pageblock_removable_nolock(struct page
*page
)
5765 * We have to be careful here because we are iterating over memory
5766 * sections which are not zone aware so we might end up outside of
5767 * the zone but still within the section.
5768 * We have to take care about the node as well. If the node is offline
5769 * its NODE_DATA will be NULL - see page_zone.
5771 if (!node_online(page_to_nid(page
)))
5774 zone
= page_zone(page
);
5775 pfn
= page_to_pfn(page
);
5776 if (!zone_spans_pfn(zone
, pfn
))
5779 return !has_unmovable_pages(zone
, page
, 0, true);
5784 static unsigned long pfn_max_align_down(unsigned long pfn
)
5786 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
5787 pageblock_nr_pages
) - 1);
5790 static unsigned long pfn_max_align_up(unsigned long pfn
)
5792 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
5793 pageblock_nr_pages
));
5796 /* [start, end) must belong to a single zone. */
5797 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
5798 unsigned long start
, unsigned long end
)
5800 /* This function is based on compact_zone() from compaction.c. */
5801 unsigned long nr_reclaimed
;
5802 unsigned long pfn
= start
;
5803 unsigned int tries
= 0;
5808 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
5809 if (fatal_signal_pending(current
)) {
5814 if (list_empty(&cc
->migratepages
)) {
5815 cc
->nr_migratepages
= 0;
5816 pfn
= isolate_migratepages_range(cc
->zone
, cc
,
5823 } else if (++tries
== 5) {
5824 ret
= ret
< 0 ? ret
: -EBUSY
;
5828 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
5830 cc
->nr_migratepages
-= nr_reclaimed
;
5832 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
5833 0, MIGRATE_SYNC
, MR_CMA
);
5836 putback_movable_pages(&cc
->migratepages
);
5843 * alloc_contig_range() -- tries to allocate given range of pages
5844 * @start: start PFN to allocate
5845 * @end: one-past-the-last PFN to allocate
5846 * @migratetype: migratetype of the underlaying pageblocks (either
5847 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5848 * in range must have the same migratetype and it must
5849 * be either of the two.
5851 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5852 * aligned, however it's the caller's responsibility to guarantee that
5853 * we are the only thread that changes migrate type of pageblocks the
5856 * The PFN range must belong to a single zone.
5858 * Returns zero on success or negative error code. On success all
5859 * pages which PFN is in [start, end) are allocated for the caller and
5860 * need to be freed with free_contig_range().
5862 int alloc_contig_range(unsigned long start
, unsigned long end
,
5863 unsigned migratetype
)
5865 unsigned long outer_start
, outer_end
;
5868 struct compact_control cc
= {
5869 .nr_migratepages
= 0,
5871 .zone
= page_zone(pfn_to_page(start
)),
5873 .ignore_skip_hint
= true,
5875 INIT_LIST_HEAD(&cc
.migratepages
);
5878 * What we do here is we mark all pageblocks in range as
5879 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5880 * have different sizes, and due to the way page allocator
5881 * work, we align the range to biggest of the two pages so
5882 * that page allocator won't try to merge buddies from
5883 * different pageblocks and change MIGRATE_ISOLATE to some
5884 * other migration type.
5886 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5887 * migrate the pages from an unaligned range (ie. pages that
5888 * we are interested in). This will put all the pages in
5889 * range back to page allocator as MIGRATE_ISOLATE.
5891 * When this is done, we take the pages in range from page
5892 * allocator removing them from the buddy system. This way
5893 * page allocator will never consider using them.
5895 * This lets us mark the pageblocks back as
5896 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5897 * aligned range but not in the unaligned, original range are
5898 * put back to page allocator so that buddy can use them.
5901 ret
= start_isolate_page_range(pfn_max_align_down(start
),
5902 pfn_max_align_up(end
), migratetype
,
5907 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
5912 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5913 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5914 * more, all pages in [start, end) are free in page allocator.
5915 * What we are going to do is to allocate all pages from
5916 * [start, end) (that is remove them from page allocator).
5918 * The only problem is that pages at the beginning and at the
5919 * end of interesting range may be not aligned with pages that
5920 * page allocator holds, ie. they can be part of higher order
5921 * pages. Because of this, we reserve the bigger range and
5922 * once this is done free the pages we are not interested in.
5924 * We don't have to hold zone->lock here because the pages are
5925 * isolated thus they won't get removed from buddy.
5928 lru_add_drain_all();
5932 outer_start
= start
;
5933 while (!PageBuddy(pfn_to_page(outer_start
))) {
5934 if (++order
>= MAX_ORDER
) {
5938 outer_start
&= ~0UL << order
;
5941 /* Make sure the range is really isolated. */
5942 if (test_pages_isolated(outer_start
, end
, false)) {
5943 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5950 /* Grab isolated pages from freelists. */
5951 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
5957 /* Free head and tail (if any) */
5958 if (start
!= outer_start
)
5959 free_contig_range(outer_start
, start
- outer_start
);
5960 if (end
!= outer_end
)
5961 free_contig_range(end
, outer_end
- end
);
5964 undo_isolate_page_range(pfn_max_align_down(start
),
5965 pfn_max_align_up(end
), migratetype
);
5969 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
5971 unsigned int count
= 0;
5973 for (; nr_pages
--; pfn
++) {
5974 struct page
*page
= pfn_to_page(pfn
);
5976 count
+= page_count(page
) != 1;
5979 WARN(count
!= 0, "%d pages are still in use!\n", count
);
5983 #ifdef CONFIG_MEMORY_HOTPLUG
5984 static int __meminit
__zone_pcp_update(void *data
)
5986 struct zone
*zone
= data
;
5988 unsigned long batch
= zone_batchsize(zone
), flags
;
5990 for_each_possible_cpu(cpu
) {
5991 struct per_cpu_pageset
*pset
;
5992 struct per_cpu_pages
*pcp
;
5994 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
5997 local_irq_save(flags
);
5999 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
6000 drain_zonestat(zone
, pset
);
6001 setup_pageset(pset
, batch
);
6002 local_irq_restore(flags
);
6007 void __meminit
zone_pcp_update(struct zone
*zone
)
6009 stop_machine(__zone_pcp_update
, zone
, NULL
);
6013 void zone_pcp_reset(struct zone
*zone
)
6015 unsigned long flags
;
6017 struct per_cpu_pageset
*pset
;
6019 /* avoid races with drain_pages() */
6020 local_irq_save(flags
);
6021 if (zone
->pageset
!= &boot_pageset
) {
6022 for_each_online_cpu(cpu
) {
6023 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6024 drain_zonestat(zone
, pset
);
6026 free_percpu(zone
->pageset
);
6027 zone
->pageset
= &boot_pageset
;
6029 local_irq_restore(flags
);
6032 #ifdef CONFIG_MEMORY_HOTREMOVE
6034 * All pages in the range must be isolated before calling this.
6037 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6043 unsigned long flags
;
6044 /* find the first valid pfn */
6045 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6050 zone
= page_zone(pfn_to_page(pfn
));
6051 spin_lock_irqsave(&zone
->lock
, flags
);
6053 while (pfn
< end_pfn
) {
6054 if (!pfn_valid(pfn
)) {
6058 page
= pfn_to_page(pfn
);
6060 * The HWPoisoned page may be not in buddy system, and
6061 * page_count() is not 0.
6063 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6065 SetPageReserved(page
);
6069 BUG_ON(page_count(page
));
6070 BUG_ON(!PageBuddy(page
));
6071 order
= page_order(page
);
6072 #ifdef CONFIG_DEBUG_VM
6073 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6074 pfn
, 1 << order
, end_pfn
);
6076 list_del(&page
->lru
);
6077 rmv_page_order(page
);
6078 zone
->free_area
[order
].nr_free
--;
6079 for (i
= 0; i
< (1 << order
); i
++)
6080 SetPageReserved((page
+i
));
6081 pfn
+= (1 << order
);
6083 spin_unlock_irqrestore(&zone
->lock
, flags
);
6087 #ifdef CONFIG_MEMORY_FAILURE
6088 bool is_free_buddy_page(struct page
*page
)
6090 struct zone
*zone
= page_zone(page
);
6091 unsigned long pfn
= page_to_pfn(page
);
6092 unsigned long flags
;
6095 spin_lock_irqsave(&zone
->lock
, flags
);
6096 for (order
= 0; order
< MAX_ORDER
; order
++) {
6097 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6099 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6102 spin_unlock_irqrestore(&zone
->lock
, flags
);
6104 return order
< MAX_ORDER
;
6108 static const struct trace_print_flags pageflag_names
[] = {
6109 {1UL << PG_locked
, "locked" },
6110 {1UL << PG_error
, "error" },
6111 {1UL << PG_referenced
, "referenced" },
6112 {1UL << PG_uptodate
, "uptodate" },
6113 {1UL << PG_dirty
, "dirty" },
6114 {1UL << PG_lru
, "lru" },
6115 {1UL << PG_active
, "active" },
6116 {1UL << PG_slab
, "slab" },
6117 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6118 {1UL << PG_arch_1
, "arch_1" },
6119 {1UL << PG_reserved
, "reserved" },
6120 {1UL << PG_private
, "private" },
6121 {1UL << PG_private_2
, "private_2" },
6122 {1UL << PG_writeback
, "writeback" },
6123 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6124 {1UL << PG_head
, "head" },
6125 {1UL << PG_tail
, "tail" },
6127 {1UL << PG_compound
, "compound" },
6129 {1UL << PG_swapcache
, "swapcache" },
6130 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6131 {1UL << PG_reclaim
, "reclaim" },
6132 {1UL << PG_swapbacked
, "swapbacked" },
6133 {1UL << PG_unevictable
, "unevictable" },
6135 {1UL << PG_mlocked
, "mlocked" },
6137 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6138 {1UL << PG_uncached
, "uncached" },
6140 #ifdef CONFIG_MEMORY_FAILURE
6141 {1UL << PG_hwpoison
, "hwpoison" },
6143 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6144 {1UL << PG_compound_lock
, "compound_lock" },
6148 static void dump_page_flags(unsigned long flags
)
6150 const char *delim
= "";
6154 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6156 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6158 /* remove zone id */
6159 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6161 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6163 mask
= pageflag_names
[i
].mask
;
6164 if ((flags
& mask
) != mask
)
6168 printk("%s%s", delim
, pageflag_names
[i
].name
);
6172 /* check for left over flags */
6174 printk("%s%#lx", delim
, flags
);
6179 void dump_page(struct page
*page
)
6182 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6183 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6184 page
->mapping
, page
->index
);
6185 dump_page_flags(page
->flags
);
6186 mem_cgroup_print_bad_page(page
);