remove sonypi_camera_command()
[linux-2.6.git] / mm / slub.c
blob6aea48942c29b3e2ada3a551d5382cc88e474539
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
79 * Overloading of page flags that are otherwise used for LRU management.
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
93 * lockless_freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
99 * the fast path and disables lockless freelists.
102 #define FROZEN (1 << PG_active)
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
110 static inline int SlabFrozen(struct page *page)
112 return page->flags & FROZEN;
115 static inline void SetSlabFrozen(struct page *page)
117 page->flags |= FROZEN;
120 static inline void ClearSlabFrozen(struct page *page)
122 page->flags &= ~FROZEN;
125 static inline int SlabDebug(struct page *page)
127 return page->flags & SLABDEBUG;
130 static inline void SetSlabDebug(struct page *page)
132 page->flags |= SLABDEBUG;
135 static inline void ClearSlabDebug(struct page *page)
137 page->flags &= ~SLABDEBUG;
141 * Issues still to be resolved:
143 * - The per cpu array is updated for each new slab and and is a remote
144 * cacheline for most nodes. This could become a bouncing cacheline given
145 * enough frequent updates. There are 16 pointers in a cacheline, so at
146 * max 16 cpus could compete for the cacheline which may be okay.
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 * - Variable sizing of the per node arrays
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
156 #if PAGE_SHIFT <= 12
159 * Small page size. Make sure that we do not fragment memory
161 #define DEFAULT_MAX_ORDER 1
162 #define DEFAULT_MIN_OBJECTS 4
164 #else
167 * Large page machines are customarily able to handle larger
168 * page orders.
170 #define DEFAULT_MAX_ORDER 2
171 #define DEFAULT_MIN_OBJECTS 8
173 #endif
176 * Mininum number of partial slabs. These will be left on the partial
177 * lists even if they are empty. kmem_cache_shrink may reclaim them.
179 #define MIN_PARTIAL 2
182 * Maximum number of desirable partial slabs.
183 * The existence of more partial slabs makes kmem_cache_shrink
184 * sort the partial list by the number of objects in the.
186 #define MAX_PARTIAL 10
188 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 SLAB_POISON | SLAB_STORE_USER)
192 * Set of flags that will prevent slab merging
194 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
197 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 SLAB_CACHE_DMA)
200 #ifndef ARCH_KMALLOC_MINALIGN
201 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
202 #endif
204 #ifndef ARCH_SLAB_MINALIGN
205 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
206 #endif
208 /* Internal SLUB flags */
209 #define __OBJECT_POISON 0x80000000 /* Poison object */
211 /* Not all arches define cache_line_size */
212 #ifndef cache_line_size
213 #define cache_line_size() L1_CACHE_BYTES
214 #endif
216 static int kmem_size = sizeof(struct kmem_cache);
218 #ifdef CONFIG_SMP
219 static struct notifier_block slab_notifier;
220 #endif
222 static enum {
223 DOWN, /* No slab functionality available */
224 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
225 UP, /* Everything works but does not show up in sysfs */
226 SYSFS /* Sysfs up */
227 } slab_state = DOWN;
229 /* A list of all slab caches on the system */
230 static DECLARE_RWSEM(slub_lock);
231 LIST_HEAD(slab_caches);
234 * Tracking user of a slab.
236 struct track {
237 void *addr; /* Called from address */
238 int cpu; /* Was running on cpu */
239 int pid; /* Pid context */
240 unsigned long when; /* When did the operation occur */
243 enum track_item { TRACK_ALLOC, TRACK_FREE };
245 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
246 static int sysfs_slab_add(struct kmem_cache *);
247 static int sysfs_slab_alias(struct kmem_cache *, const char *);
248 static void sysfs_slab_remove(struct kmem_cache *);
249 #else
250 static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
252 static void sysfs_slab_remove(struct kmem_cache *s) {}
253 #endif
255 /********************************************************************
256 * Core slab cache functions
257 *******************************************************************/
259 int slab_is_available(void)
261 return slab_state >= UP;
264 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
266 #ifdef CONFIG_NUMA
267 return s->node[node];
268 #else
269 return &s->local_node;
270 #endif
273 static inline int check_valid_pointer(struct kmem_cache *s,
274 struct page *page, const void *object)
276 void *base;
278 if (!object)
279 return 1;
281 base = page_address(page);
282 if (object < base || object >= base + s->objects * s->size ||
283 (object - base) % s->size) {
284 return 0;
287 return 1;
291 * Slow version of get and set free pointer.
293 * This version requires touching the cache lines of kmem_cache which
294 * we avoid to do in the fast alloc free paths. There we obtain the offset
295 * from the page struct.
297 static inline void *get_freepointer(struct kmem_cache *s, void *object)
299 return *(void **)(object + s->offset);
302 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
304 *(void **)(object + s->offset) = fp;
307 /* Loop over all objects in a slab */
308 #define for_each_object(__p, __s, __addr) \
309 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
310 __p += (__s)->size)
312 /* Scan freelist */
313 #define for_each_free_object(__p, __s, __free) \
314 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
316 /* Determine object index from a given position */
317 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
319 return (p - addr) / s->size;
322 #ifdef CONFIG_SLUB_DEBUG
324 * Debug settings:
326 #ifdef CONFIG_SLUB_DEBUG_ON
327 static int slub_debug = DEBUG_DEFAULT_FLAGS;
328 #else
329 static int slub_debug;
330 #endif
332 static char *slub_debug_slabs;
335 * Object debugging
337 static void print_section(char *text, u8 *addr, unsigned int length)
339 int i, offset;
340 int newline = 1;
341 char ascii[17];
343 ascii[16] = 0;
345 for (i = 0; i < length; i++) {
346 if (newline) {
347 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
348 newline = 0;
350 printk(" %02x", addr[i]);
351 offset = i % 16;
352 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
353 if (offset == 15) {
354 printk(" %s\n",ascii);
355 newline = 1;
358 if (!newline) {
359 i %= 16;
360 while (i < 16) {
361 printk(" ");
362 ascii[i] = ' ';
363 i++;
365 printk(" %s\n", ascii);
369 static struct track *get_track(struct kmem_cache *s, void *object,
370 enum track_item alloc)
372 struct track *p;
374 if (s->offset)
375 p = object + s->offset + sizeof(void *);
376 else
377 p = object + s->inuse;
379 return p + alloc;
382 static void set_track(struct kmem_cache *s, void *object,
383 enum track_item alloc, void *addr)
385 struct track *p;
387 if (s->offset)
388 p = object + s->offset + sizeof(void *);
389 else
390 p = object + s->inuse;
392 p += alloc;
393 if (addr) {
394 p->addr = addr;
395 p->cpu = smp_processor_id();
396 p->pid = current ? current->pid : -1;
397 p->when = jiffies;
398 } else
399 memset(p, 0, sizeof(struct track));
402 static void init_tracking(struct kmem_cache *s, void *object)
404 if (s->flags & SLAB_STORE_USER) {
405 set_track(s, object, TRACK_FREE, NULL);
406 set_track(s, object, TRACK_ALLOC, NULL);
410 static void print_track(const char *s, struct track *t)
412 if (!t->addr)
413 return;
415 printk(KERN_ERR "%s: ", s);
416 __print_symbol("%s", (unsigned long)t->addr);
417 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
420 static void print_trailer(struct kmem_cache *s, u8 *p)
422 unsigned int off; /* Offset of last byte */
424 if (s->flags & SLAB_RED_ZONE)
425 print_section("Redzone", p + s->objsize,
426 s->inuse - s->objsize);
428 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
429 p + s->offset,
430 get_freepointer(s, p));
432 if (s->offset)
433 off = s->offset + sizeof(void *);
434 else
435 off = s->inuse;
437 if (s->flags & SLAB_STORE_USER) {
438 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
439 print_track("Last free ", get_track(s, p, TRACK_FREE));
440 off += 2 * sizeof(struct track);
443 if (off != s->size)
444 /* Beginning of the filler is the free pointer */
445 print_section("Filler", p + off, s->size - off);
448 static void object_err(struct kmem_cache *s, struct page *page,
449 u8 *object, char *reason)
451 u8 *addr = page_address(page);
453 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
454 s->name, reason, object, page);
455 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
456 object - addr, page->flags, page->inuse, page->freelist);
457 if (object > addr + 16)
458 print_section("Bytes b4", object - 16, 16);
459 print_section("Object", object, min(s->objsize, 128));
460 print_trailer(s, object);
461 dump_stack();
464 static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
466 va_list args;
467 char buf[100];
469 va_start(args, reason);
470 vsnprintf(buf, sizeof(buf), reason, args);
471 va_end(args);
472 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
473 page);
474 dump_stack();
477 static void init_object(struct kmem_cache *s, void *object, int active)
479 u8 *p = object;
481 if (s->flags & __OBJECT_POISON) {
482 memset(p, POISON_FREE, s->objsize - 1);
483 p[s->objsize -1] = POISON_END;
486 if (s->flags & SLAB_RED_ZONE)
487 memset(p + s->objsize,
488 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
489 s->inuse - s->objsize);
492 static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
494 while (bytes) {
495 if (*start != (u8)value)
496 return 0;
497 start++;
498 bytes--;
500 return 1;
504 * Object layout:
506 * object address
507 * Bytes of the object to be managed.
508 * If the freepointer may overlay the object then the free
509 * pointer is the first word of the object.
511 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
512 * 0xa5 (POISON_END)
514 * object + s->objsize
515 * Padding to reach word boundary. This is also used for Redzoning.
516 * Padding is extended by another word if Redzoning is enabled and
517 * objsize == inuse.
519 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
520 * 0xcc (RED_ACTIVE) for objects in use.
522 * object + s->inuse
523 * Meta data starts here.
525 * A. Free pointer (if we cannot overwrite object on free)
526 * B. Tracking data for SLAB_STORE_USER
527 * C. Padding to reach required alignment boundary or at mininum
528 * one word if debuggin is on to be able to detect writes
529 * before the word boundary.
531 * Padding is done using 0x5a (POISON_INUSE)
533 * object + s->size
534 * Nothing is used beyond s->size.
536 * If slabcaches are merged then the objsize and inuse boundaries are mostly
537 * ignored. And therefore no slab options that rely on these boundaries
538 * may be used with merged slabcaches.
541 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
542 void *from, void *to)
544 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
545 s->name, message, data, from, to - 1);
546 memset(from, data, to - from);
549 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
551 unsigned long off = s->inuse; /* The end of info */
553 if (s->offset)
554 /* Freepointer is placed after the object. */
555 off += sizeof(void *);
557 if (s->flags & SLAB_STORE_USER)
558 /* We also have user information there */
559 off += 2 * sizeof(struct track);
561 if (s->size == off)
562 return 1;
564 if (check_bytes(p + off, POISON_INUSE, s->size - off))
565 return 1;
567 object_err(s, page, p, "Object padding check fails");
570 * Restore padding
572 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
573 return 0;
576 static int slab_pad_check(struct kmem_cache *s, struct page *page)
578 u8 *p;
579 int length, remainder;
581 if (!(s->flags & SLAB_POISON))
582 return 1;
584 p = page_address(page);
585 length = s->objects * s->size;
586 remainder = (PAGE_SIZE << s->order) - length;
587 if (!remainder)
588 return 1;
590 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
591 slab_err(s, page, "Padding check failed");
592 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
593 p + length + remainder);
594 return 0;
596 return 1;
599 static int check_object(struct kmem_cache *s, struct page *page,
600 void *object, int active)
602 u8 *p = object;
603 u8 *endobject = object + s->objsize;
605 if (s->flags & SLAB_RED_ZONE) {
606 unsigned int red =
607 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
609 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
610 object_err(s, page, object,
611 active ? "Redzone Active" : "Redzone Inactive");
612 restore_bytes(s, "redzone", red,
613 endobject, object + s->inuse);
614 return 0;
616 } else {
617 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
618 !check_bytes(endobject, POISON_INUSE,
619 s->inuse - s->objsize)) {
620 object_err(s, page, p, "Alignment padding check fails");
622 * Fix it so that there will not be another report.
624 * Hmmm... We may be corrupting an object that now expects
625 * to be longer than allowed.
627 restore_bytes(s, "alignment padding", POISON_INUSE,
628 endobject, object + s->inuse);
632 if (s->flags & SLAB_POISON) {
633 if (!active && (s->flags & __OBJECT_POISON) &&
634 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
635 p[s->objsize - 1] != POISON_END)) {
637 object_err(s, page, p, "Poison check failed");
638 restore_bytes(s, "Poison", POISON_FREE,
639 p, p + s->objsize -1);
640 restore_bytes(s, "Poison", POISON_END,
641 p + s->objsize - 1, p + s->objsize);
642 return 0;
645 * check_pad_bytes cleans up on its own.
647 check_pad_bytes(s, page, p);
650 if (!s->offset && active)
652 * Object and freepointer overlap. Cannot check
653 * freepointer while object is allocated.
655 return 1;
657 /* Check free pointer validity */
658 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
659 object_err(s, page, p, "Freepointer corrupt");
661 * No choice but to zap it and thus loose the remainder
662 * of the free objects in this slab. May cause
663 * another error because the object count is now wrong.
665 set_freepointer(s, p, NULL);
666 return 0;
668 return 1;
671 static int check_slab(struct kmem_cache *s, struct page *page)
673 VM_BUG_ON(!irqs_disabled());
675 if (!PageSlab(page)) {
676 slab_err(s, page, "Not a valid slab page flags=%lx "
677 "mapping=0x%p count=%d", page->flags, page->mapping,
678 page_count(page));
679 return 0;
681 if (page->offset * sizeof(void *) != s->offset) {
682 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
683 "mapping=0x%p count=%d",
684 (unsigned long)(page->offset * sizeof(void *)),
685 page->flags,
686 page->mapping,
687 page_count(page));
688 return 0;
690 if (page->inuse > s->objects) {
691 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
692 "mapping=0x%p count=%d",
693 s->name, page->inuse, s->objects, page->flags,
694 page->mapping, page_count(page));
695 return 0;
697 /* Slab_pad_check fixes things up after itself */
698 slab_pad_check(s, page);
699 return 1;
703 * Determine if a certain object on a page is on the freelist. Must hold the
704 * slab lock to guarantee that the chains are in a consistent state.
706 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
708 int nr = 0;
709 void *fp = page->freelist;
710 void *object = NULL;
712 while (fp && nr <= s->objects) {
713 if (fp == search)
714 return 1;
715 if (!check_valid_pointer(s, page, fp)) {
716 if (object) {
717 object_err(s, page, object,
718 "Freechain corrupt");
719 set_freepointer(s, object, NULL);
720 break;
721 } else {
722 slab_err(s, page, "Freepointer 0x%p corrupt",
723 fp);
724 page->freelist = NULL;
725 page->inuse = s->objects;
726 printk(KERN_ERR "@@@ SLUB %s: Freelist "
727 "cleared. Slab 0x%p\n",
728 s->name, page);
729 return 0;
731 break;
733 object = fp;
734 fp = get_freepointer(s, object);
735 nr++;
738 if (page->inuse != s->objects - nr) {
739 slab_err(s, page, "Wrong object count. Counter is %d but "
740 "counted were %d", s, page, page->inuse,
741 s->objects - nr);
742 page->inuse = s->objects - nr;
743 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
744 "Slab @0x%p\n", s->name, page);
746 return search == NULL;
749 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
751 if (s->flags & SLAB_TRACE) {
752 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
753 s->name,
754 alloc ? "alloc" : "free",
755 object, page->inuse,
756 page->freelist);
758 if (!alloc)
759 print_section("Object", (void *)object, s->objsize);
761 dump_stack();
766 * Tracking of fully allocated slabs for debugging purposes.
768 static void add_full(struct kmem_cache_node *n, struct page *page)
770 spin_lock(&n->list_lock);
771 list_add(&page->lru, &n->full);
772 spin_unlock(&n->list_lock);
775 static void remove_full(struct kmem_cache *s, struct page *page)
777 struct kmem_cache_node *n;
779 if (!(s->flags & SLAB_STORE_USER))
780 return;
782 n = get_node(s, page_to_nid(page));
784 spin_lock(&n->list_lock);
785 list_del(&page->lru);
786 spin_unlock(&n->list_lock);
789 static void setup_object_debug(struct kmem_cache *s, struct page *page,
790 void *object)
792 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
793 return;
795 init_object(s, object, 0);
796 init_tracking(s, object);
799 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
800 void *object, void *addr)
802 if (!check_slab(s, page))
803 goto bad;
805 if (object && !on_freelist(s, page, object)) {
806 slab_err(s, page, "Object 0x%p already allocated", object);
807 goto bad;
810 if (!check_valid_pointer(s, page, object)) {
811 object_err(s, page, object, "Freelist Pointer check fails");
812 goto bad;
815 if (object && !check_object(s, page, object, 0))
816 goto bad;
818 /* Success perform special debug activities for allocs */
819 if (s->flags & SLAB_STORE_USER)
820 set_track(s, object, TRACK_ALLOC, addr);
821 trace(s, page, object, 1);
822 init_object(s, object, 1);
823 return 1;
825 bad:
826 if (PageSlab(page)) {
828 * If this is a slab page then lets do the best we can
829 * to avoid issues in the future. Marking all objects
830 * as used avoids touching the remaining objects.
832 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
833 s->name, page);
834 page->inuse = s->objects;
835 page->freelist = NULL;
836 /* Fix up fields that may be corrupted */
837 page->offset = s->offset / sizeof(void *);
839 return 0;
842 static int free_debug_processing(struct kmem_cache *s, struct page *page,
843 void *object, void *addr)
845 if (!check_slab(s, page))
846 goto fail;
848 if (!check_valid_pointer(s, page, object)) {
849 slab_err(s, page, "Invalid object pointer 0x%p", object);
850 goto fail;
853 if (on_freelist(s, page, object)) {
854 slab_err(s, page, "Object 0x%p already free", object);
855 goto fail;
858 if (!check_object(s, page, object, 1))
859 return 0;
861 if (unlikely(s != page->slab)) {
862 if (!PageSlab(page))
863 slab_err(s, page, "Attempt to free object(0x%p) "
864 "outside of slab", object);
865 else
866 if (!page->slab) {
867 printk(KERN_ERR
868 "SLUB <none>: no slab for object 0x%p.\n",
869 object);
870 dump_stack();
872 else
873 slab_err(s, page, "object at 0x%p belongs "
874 "to slab %s", object, page->slab->name);
875 goto fail;
878 /* Special debug activities for freeing objects */
879 if (!SlabFrozen(page) && !page->freelist)
880 remove_full(s, page);
881 if (s->flags & SLAB_STORE_USER)
882 set_track(s, object, TRACK_FREE, addr);
883 trace(s, page, object, 0);
884 init_object(s, object, 0);
885 return 1;
887 fail:
888 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
889 s->name, page, object);
890 return 0;
893 static int __init setup_slub_debug(char *str)
895 slub_debug = DEBUG_DEFAULT_FLAGS;
896 if (*str++ != '=' || !*str)
898 * No options specified. Switch on full debugging.
900 goto out;
902 if (*str == ',')
904 * No options but restriction on slabs. This means full
905 * debugging for slabs matching a pattern.
907 goto check_slabs;
909 slub_debug = 0;
910 if (*str == '-')
912 * Switch off all debugging measures.
914 goto out;
917 * Determine which debug features should be switched on
919 for ( ;*str && *str != ','; str++) {
920 switch (tolower(*str)) {
921 case 'f':
922 slub_debug |= SLAB_DEBUG_FREE;
923 break;
924 case 'z':
925 slub_debug |= SLAB_RED_ZONE;
926 break;
927 case 'p':
928 slub_debug |= SLAB_POISON;
929 break;
930 case 'u':
931 slub_debug |= SLAB_STORE_USER;
932 break;
933 case 't':
934 slub_debug |= SLAB_TRACE;
935 break;
936 default:
937 printk(KERN_ERR "slub_debug option '%c' "
938 "unknown. skipped\n",*str);
942 check_slabs:
943 if (*str == ',')
944 slub_debug_slabs = str + 1;
945 out:
946 return 1;
949 __setup("slub_debug", setup_slub_debug);
951 static void kmem_cache_open_debug_check(struct kmem_cache *s)
954 * The page->offset field is only 16 bit wide. This is an offset
955 * in units of words from the beginning of an object. If the slab
956 * size is bigger then we cannot move the free pointer behind the
957 * object anymore.
959 * On 32 bit platforms the limit is 256k. On 64bit platforms
960 * the limit is 512k.
962 * Debugging or ctor may create a need to move the free
963 * pointer. Fail if this happens.
965 if (s->objsize >= 65535 * sizeof(void *)) {
966 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
967 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
968 BUG_ON(s->ctor);
970 else
972 * Enable debugging if selected on the kernel commandline.
974 if (slub_debug && (!slub_debug_slabs ||
975 strncmp(slub_debug_slabs, s->name,
976 strlen(slub_debug_slabs)) == 0))
977 s->flags |= slub_debug;
979 #else
980 static inline void setup_object_debug(struct kmem_cache *s,
981 struct page *page, void *object) {}
983 static inline int alloc_debug_processing(struct kmem_cache *s,
984 struct page *page, void *object, void *addr) { return 0; }
986 static inline int free_debug_processing(struct kmem_cache *s,
987 struct page *page, void *object, void *addr) { return 0; }
989 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
990 { return 1; }
991 static inline int check_object(struct kmem_cache *s, struct page *page,
992 void *object, int active) { return 1; }
993 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
994 static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
995 #define slub_debug 0
996 #endif
998 * Slab allocation and freeing
1000 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1002 struct page * page;
1003 int pages = 1 << s->order;
1005 if (s->order)
1006 flags |= __GFP_COMP;
1008 if (s->flags & SLAB_CACHE_DMA)
1009 flags |= SLUB_DMA;
1011 if (node == -1)
1012 page = alloc_pages(flags, s->order);
1013 else
1014 page = alloc_pages_node(node, flags, s->order);
1016 if (!page)
1017 return NULL;
1019 mod_zone_page_state(page_zone(page),
1020 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1021 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1022 pages);
1024 return page;
1027 static void setup_object(struct kmem_cache *s, struct page *page,
1028 void *object)
1030 setup_object_debug(s, page, object);
1031 if (unlikely(s->ctor))
1032 s->ctor(object, s, 0);
1035 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1037 struct page *page;
1038 struct kmem_cache_node *n;
1039 void *start;
1040 void *end;
1041 void *last;
1042 void *p;
1044 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1046 if (flags & __GFP_WAIT)
1047 local_irq_enable();
1049 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1050 if (!page)
1051 goto out;
1053 n = get_node(s, page_to_nid(page));
1054 if (n)
1055 atomic_long_inc(&n->nr_slabs);
1056 page->offset = s->offset / sizeof(void *);
1057 page->slab = s;
1058 page->flags |= 1 << PG_slab;
1059 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1060 SLAB_STORE_USER | SLAB_TRACE))
1061 SetSlabDebug(page);
1063 start = page_address(page);
1064 end = start + s->objects * s->size;
1066 if (unlikely(s->flags & SLAB_POISON))
1067 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1069 last = start;
1070 for_each_object(p, s, start) {
1071 setup_object(s, page, last);
1072 set_freepointer(s, last, p);
1073 last = p;
1075 setup_object(s, page, last);
1076 set_freepointer(s, last, NULL);
1078 page->freelist = start;
1079 page->lockless_freelist = NULL;
1080 page->inuse = 0;
1081 out:
1082 if (flags & __GFP_WAIT)
1083 local_irq_disable();
1084 return page;
1087 static void __free_slab(struct kmem_cache *s, struct page *page)
1089 int pages = 1 << s->order;
1091 if (unlikely(SlabDebug(page))) {
1092 void *p;
1094 slab_pad_check(s, page);
1095 for_each_object(p, s, page_address(page))
1096 check_object(s, page, p, 0);
1099 mod_zone_page_state(page_zone(page),
1100 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1101 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1102 - pages);
1104 page->mapping = NULL;
1105 __free_pages(page, s->order);
1108 static void rcu_free_slab(struct rcu_head *h)
1110 struct page *page;
1112 page = container_of((struct list_head *)h, struct page, lru);
1113 __free_slab(page->slab, page);
1116 static void free_slab(struct kmem_cache *s, struct page *page)
1118 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1120 * RCU free overloads the RCU head over the LRU
1122 struct rcu_head *head = (void *)&page->lru;
1124 call_rcu(head, rcu_free_slab);
1125 } else
1126 __free_slab(s, page);
1129 static void discard_slab(struct kmem_cache *s, struct page *page)
1131 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1133 atomic_long_dec(&n->nr_slabs);
1134 reset_page_mapcount(page);
1135 ClearSlabDebug(page);
1136 __ClearPageSlab(page);
1137 free_slab(s, page);
1141 * Per slab locking using the pagelock
1143 static __always_inline void slab_lock(struct page *page)
1145 bit_spin_lock(PG_locked, &page->flags);
1148 static __always_inline void slab_unlock(struct page *page)
1150 bit_spin_unlock(PG_locked, &page->flags);
1153 static __always_inline int slab_trylock(struct page *page)
1155 int rc = 1;
1157 rc = bit_spin_trylock(PG_locked, &page->flags);
1158 return rc;
1162 * Management of partially allocated slabs
1164 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1166 spin_lock(&n->list_lock);
1167 n->nr_partial++;
1168 list_add_tail(&page->lru, &n->partial);
1169 spin_unlock(&n->list_lock);
1172 static void add_partial(struct kmem_cache_node *n, struct page *page)
1174 spin_lock(&n->list_lock);
1175 n->nr_partial++;
1176 list_add(&page->lru, &n->partial);
1177 spin_unlock(&n->list_lock);
1180 static void remove_partial(struct kmem_cache *s,
1181 struct page *page)
1183 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1185 spin_lock(&n->list_lock);
1186 list_del(&page->lru);
1187 n->nr_partial--;
1188 spin_unlock(&n->list_lock);
1192 * Lock slab and remove from the partial list.
1194 * Must hold list_lock.
1196 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1198 if (slab_trylock(page)) {
1199 list_del(&page->lru);
1200 n->nr_partial--;
1201 SetSlabFrozen(page);
1202 return 1;
1204 return 0;
1208 * Try to allocate a partial slab from a specific node.
1210 static struct page *get_partial_node(struct kmem_cache_node *n)
1212 struct page *page;
1215 * Racy check. If we mistakenly see no partial slabs then we
1216 * just allocate an empty slab. If we mistakenly try to get a
1217 * partial slab and there is none available then get_partials()
1218 * will return NULL.
1220 if (!n || !n->nr_partial)
1221 return NULL;
1223 spin_lock(&n->list_lock);
1224 list_for_each_entry(page, &n->partial, lru)
1225 if (lock_and_freeze_slab(n, page))
1226 goto out;
1227 page = NULL;
1228 out:
1229 spin_unlock(&n->list_lock);
1230 return page;
1234 * Get a page from somewhere. Search in increasing NUMA distances.
1236 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1238 #ifdef CONFIG_NUMA
1239 struct zonelist *zonelist;
1240 struct zone **z;
1241 struct page *page;
1244 * The defrag ratio allows a configuration of the tradeoffs between
1245 * inter node defragmentation and node local allocations. A lower
1246 * defrag_ratio increases the tendency to do local allocations
1247 * instead of attempting to obtain partial slabs from other nodes.
1249 * If the defrag_ratio is set to 0 then kmalloc() always
1250 * returns node local objects. If the ratio is higher then kmalloc()
1251 * may return off node objects because partial slabs are obtained
1252 * from other nodes and filled up.
1254 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1255 * defrag_ratio = 1000) then every (well almost) allocation will
1256 * first attempt to defrag slab caches on other nodes. This means
1257 * scanning over all nodes to look for partial slabs which may be
1258 * expensive if we do it every time we are trying to find a slab
1259 * with available objects.
1261 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1262 return NULL;
1264 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1265 ->node_zonelists[gfp_zone(flags)];
1266 for (z = zonelist->zones; *z; z++) {
1267 struct kmem_cache_node *n;
1269 n = get_node(s, zone_to_nid(*z));
1271 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1272 n->nr_partial > MIN_PARTIAL) {
1273 page = get_partial_node(n);
1274 if (page)
1275 return page;
1278 #endif
1279 return NULL;
1283 * Get a partial page, lock it and return it.
1285 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1287 struct page *page;
1288 int searchnode = (node == -1) ? numa_node_id() : node;
1290 page = get_partial_node(get_node(s, searchnode));
1291 if (page || (flags & __GFP_THISNODE))
1292 return page;
1294 return get_any_partial(s, flags);
1298 * Move a page back to the lists.
1300 * Must be called with the slab lock held.
1302 * On exit the slab lock will have been dropped.
1304 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1306 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1308 ClearSlabFrozen(page);
1309 if (page->inuse) {
1311 if (page->freelist)
1312 add_partial(n, page);
1313 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1314 add_full(n, page);
1315 slab_unlock(page);
1317 } else {
1318 if (n->nr_partial < MIN_PARTIAL) {
1320 * Adding an empty slab to the partial slabs in order
1321 * to avoid page allocator overhead. This slab needs
1322 * to come after the other slabs with objects in
1323 * order to fill them up. That way the size of the
1324 * partial list stays small. kmem_cache_shrink can
1325 * reclaim empty slabs from the partial list.
1327 add_partial_tail(n, page);
1328 slab_unlock(page);
1329 } else {
1330 slab_unlock(page);
1331 discard_slab(s, page);
1337 * Remove the cpu slab
1339 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1342 * Merge cpu freelist into freelist. Typically we get here
1343 * because both freelists are empty. So this is unlikely
1344 * to occur.
1346 while (unlikely(page->lockless_freelist)) {
1347 void **object;
1349 /* Retrieve object from cpu_freelist */
1350 object = page->lockless_freelist;
1351 page->lockless_freelist = page->lockless_freelist[page->offset];
1353 /* And put onto the regular freelist */
1354 object[page->offset] = page->freelist;
1355 page->freelist = object;
1356 page->inuse--;
1358 s->cpu_slab[cpu] = NULL;
1359 unfreeze_slab(s, page);
1362 static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1364 slab_lock(page);
1365 deactivate_slab(s, page, cpu);
1369 * Flush cpu slab.
1370 * Called from IPI handler with interrupts disabled.
1372 static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1374 struct page *page = s->cpu_slab[cpu];
1376 if (likely(page))
1377 flush_slab(s, page, cpu);
1380 static void flush_cpu_slab(void *d)
1382 struct kmem_cache *s = d;
1383 int cpu = smp_processor_id();
1385 __flush_cpu_slab(s, cpu);
1388 static void flush_all(struct kmem_cache *s)
1390 #ifdef CONFIG_SMP
1391 on_each_cpu(flush_cpu_slab, s, 1, 1);
1392 #else
1393 unsigned long flags;
1395 local_irq_save(flags);
1396 flush_cpu_slab(s);
1397 local_irq_restore(flags);
1398 #endif
1402 * Slow path. The lockless freelist is empty or we need to perform
1403 * debugging duties.
1405 * Interrupts are disabled.
1407 * Processing is still very fast if new objects have been freed to the
1408 * regular freelist. In that case we simply take over the regular freelist
1409 * as the lockless freelist and zap the regular freelist.
1411 * If that is not working then we fall back to the partial lists. We take the
1412 * first element of the freelist as the object to allocate now and move the
1413 * rest of the freelist to the lockless freelist.
1415 * And if we were unable to get a new slab from the partial slab lists then
1416 * we need to allocate a new slab. This is slowest path since we may sleep.
1418 static void *__slab_alloc(struct kmem_cache *s,
1419 gfp_t gfpflags, int node, void *addr, struct page *page)
1421 void **object;
1422 int cpu = smp_processor_id();
1424 if (!page)
1425 goto new_slab;
1427 slab_lock(page);
1428 if (unlikely(node != -1 && page_to_nid(page) != node))
1429 goto another_slab;
1430 load_freelist:
1431 object = page->freelist;
1432 if (unlikely(!object))
1433 goto another_slab;
1434 if (unlikely(SlabDebug(page)))
1435 goto debug;
1437 object = page->freelist;
1438 page->lockless_freelist = object[page->offset];
1439 page->inuse = s->objects;
1440 page->freelist = NULL;
1441 slab_unlock(page);
1442 return object;
1444 another_slab:
1445 deactivate_slab(s, page, cpu);
1447 new_slab:
1448 page = get_partial(s, gfpflags, node);
1449 if (page) {
1450 s->cpu_slab[cpu] = page;
1451 goto load_freelist;
1454 page = new_slab(s, gfpflags, node);
1455 if (page) {
1456 cpu = smp_processor_id();
1457 if (s->cpu_slab[cpu]) {
1459 * Someone else populated the cpu_slab while we
1460 * enabled interrupts, or we have gotten scheduled
1461 * on another cpu. The page may not be on the
1462 * requested node even if __GFP_THISNODE was
1463 * specified. So we need to recheck.
1465 if (node == -1 ||
1466 page_to_nid(s->cpu_slab[cpu]) == node) {
1468 * Current cpuslab is acceptable and we
1469 * want the current one since its cache hot
1471 discard_slab(s, page);
1472 page = s->cpu_slab[cpu];
1473 slab_lock(page);
1474 goto load_freelist;
1476 /* New slab does not fit our expectations */
1477 flush_slab(s, s->cpu_slab[cpu], cpu);
1479 slab_lock(page);
1480 SetSlabFrozen(page);
1481 s->cpu_slab[cpu] = page;
1482 goto load_freelist;
1484 return NULL;
1485 debug:
1486 object = page->freelist;
1487 if (!alloc_debug_processing(s, page, object, addr))
1488 goto another_slab;
1490 page->inuse++;
1491 page->freelist = object[page->offset];
1492 slab_unlock(page);
1493 return object;
1497 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1498 * have the fastpath folded into their functions. So no function call
1499 * overhead for requests that can be satisfied on the fastpath.
1501 * The fastpath works by first checking if the lockless freelist can be used.
1502 * If not then __slab_alloc is called for slow processing.
1504 * Otherwise we can simply pick the next object from the lockless free list.
1506 static void __always_inline *slab_alloc(struct kmem_cache *s,
1507 gfp_t gfpflags, int node, void *addr)
1509 struct page *page;
1510 void **object;
1511 unsigned long flags;
1513 local_irq_save(flags);
1514 page = s->cpu_slab[smp_processor_id()];
1515 if (unlikely(!page || !page->lockless_freelist ||
1516 (node != -1 && page_to_nid(page) != node)))
1518 object = __slab_alloc(s, gfpflags, node, addr, page);
1520 else {
1521 object = page->lockless_freelist;
1522 page->lockless_freelist = object[page->offset];
1524 local_irq_restore(flags);
1525 return object;
1528 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1530 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1532 EXPORT_SYMBOL(kmem_cache_alloc);
1534 #ifdef CONFIG_NUMA
1535 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1537 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1539 EXPORT_SYMBOL(kmem_cache_alloc_node);
1540 #endif
1543 * Slow patch handling. This may still be called frequently since objects
1544 * have a longer lifetime than the cpu slabs in most processing loads.
1546 * So we still attempt to reduce cache line usage. Just take the slab
1547 * lock and free the item. If there is no additional partial page
1548 * handling required then we can return immediately.
1550 static void __slab_free(struct kmem_cache *s, struct page *page,
1551 void *x, void *addr)
1553 void *prior;
1554 void **object = (void *)x;
1556 slab_lock(page);
1558 if (unlikely(SlabDebug(page)))
1559 goto debug;
1560 checks_ok:
1561 prior = object[page->offset] = page->freelist;
1562 page->freelist = object;
1563 page->inuse--;
1565 if (unlikely(SlabFrozen(page)))
1566 goto out_unlock;
1568 if (unlikely(!page->inuse))
1569 goto slab_empty;
1572 * Objects left in the slab. If it
1573 * was not on the partial list before
1574 * then add it.
1576 if (unlikely(!prior))
1577 add_partial(get_node(s, page_to_nid(page)), page);
1579 out_unlock:
1580 slab_unlock(page);
1581 return;
1583 slab_empty:
1584 if (prior)
1586 * Slab still on the partial list.
1588 remove_partial(s, page);
1590 slab_unlock(page);
1591 discard_slab(s, page);
1592 return;
1594 debug:
1595 if (!free_debug_processing(s, page, x, addr))
1596 goto out_unlock;
1597 goto checks_ok;
1601 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1602 * can perform fastpath freeing without additional function calls.
1604 * The fastpath is only possible if we are freeing to the current cpu slab
1605 * of this processor. This typically the case if we have just allocated
1606 * the item before.
1608 * If fastpath is not possible then fall back to __slab_free where we deal
1609 * with all sorts of special processing.
1611 static void __always_inline slab_free(struct kmem_cache *s,
1612 struct page *page, void *x, void *addr)
1614 void **object = (void *)x;
1615 unsigned long flags;
1617 local_irq_save(flags);
1618 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1619 !SlabDebug(page))) {
1620 object[page->offset] = page->lockless_freelist;
1621 page->lockless_freelist = object;
1622 } else
1623 __slab_free(s, page, x, addr);
1625 local_irq_restore(flags);
1628 void kmem_cache_free(struct kmem_cache *s, void *x)
1630 struct page *page;
1632 page = virt_to_head_page(x);
1634 slab_free(s, page, x, __builtin_return_address(0));
1636 EXPORT_SYMBOL(kmem_cache_free);
1638 /* Figure out on which slab object the object resides */
1639 static struct page *get_object_page(const void *x)
1641 struct page *page = virt_to_head_page(x);
1643 if (!PageSlab(page))
1644 return NULL;
1646 return page;
1650 * Object placement in a slab is made very easy because we always start at
1651 * offset 0. If we tune the size of the object to the alignment then we can
1652 * get the required alignment by putting one properly sized object after
1653 * another.
1655 * Notice that the allocation order determines the sizes of the per cpu
1656 * caches. Each processor has always one slab available for allocations.
1657 * Increasing the allocation order reduces the number of times that slabs
1658 * must be moved on and off the partial lists and is therefore a factor in
1659 * locking overhead.
1663 * Mininum / Maximum order of slab pages. This influences locking overhead
1664 * and slab fragmentation. A higher order reduces the number of partial slabs
1665 * and increases the number of allocations possible without having to
1666 * take the list_lock.
1668 static int slub_min_order;
1669 static int slub_max_order = DEFAULT_MAX_ORDER;
1670 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1673 * Merge control. If this is set then no merging of slab caches will occur.
1674 * (Could be removed. This was introduced to pacify the merge skeptics.)
1676 static int slub_nomerge;
1679 * Calculate the order of allocation given an slab object size.
1681 * The order of allocation has significant impact on performance and other
1682 * system components. Generally order 0 allocations should be preferred since
1683 * order 0 does not cause fragmentation in the page allocator. Larger objects
1684 * be problematic to put into order 0 slabs because there may be too much
1685 * unused space left. We go to a higher order if more than 1/8th of the slab
1686 * would be wasted.
1688 * In order to reach satisfactory performance we must ensure that a minimum
1689 * number of objects is in one slab. Otherwise we may generate too much
1690 * activity on the partial lists which requires taking the list_lock. This is
1691 * less a concern for large slabs though which are rarely used.
1693 * slub_max_order specifies the order where we begin to stop considering the
1694 * number of objects in a slab as critical. If we reach slub_max_order then
1695 * we try to keep the page order as low as possible. So we accept more waste
1696 * of space in favor of a small page order.
1698 * Higher order allocations also allow the placement of more objects in a
1699 * slab and thereby reduce object handling overhead. If the user has
1700 * requested a higher mininum order then we start with that one instead of
1701 * the smallest order which will fit the object.
1703 static inline int slab_order(int size, int min_objects,
1704 int max_order, int fract_leftover)
1706 int order;
1707 int rem;
1709 for (order = max(slub_min_order,
1710 fls(min_objects * size - 1) - PAGE_SHIFT);
1711 order <= max_order; order++) {
1713 unsigned long slab_size = PAGE_SIZE << order;
1715 if (slab_size < min_objects * size)
1716 continue;
1718 rem = slab_size % size;
1720 if (rem <= slab_size / fract_leftover)
1721 break;
1725 return order;
1728 static inline int calculate_order(int size)
1730 int order;
1731 int min_objects;
1732 int fraction;
1735 * Attempt to find best configuration for a slab. This
1736 * works by first attempting to generate a layout with
1737 * the best configuration and backing off gradually.
1739 * First we reduce the acceptable waste in a slab. Then
1740 * we reduce the minimum objects required in a slab.
1742 min_objects = slub_min_objects;
1743 while (min_objects > 1) {
1744 fraction = 8;
1745 while (fraction >= 4) {
1746 order = slab_order(size, min_objects,
1747 slub_max_order, fraction);
1748 if (order <= slub_max_order)
1749 return order;
1750 fraction /= 2;
1752 min_objects /= 2;
1756 * We were unable to place multiple objects in a slab. Now
1757 * lets see if we can place a single object there.
1759 order = slab_order(size, 1, slub_max_order, 1);
1760 if (order <= slub_max_order)
1761 return order;
1764 * Doh this slab cannot be placed using slub_max_order.
1766 order = slab_order(size, 1, MAX_ORDER, 1);
1767 if (order <= MAX_ORDER)
1768 return order;
1769 return -ENOSYS;
1773 * Figure out what the alignment of the objects will be.
1775 static unsigned long calculate_alignment(unsigned long flags,
1776 unsigned long align, unsigned long size)
1779 * If the user wants hardware cache aligned objects then
1780 * follow that suggestion if the object is sufficiently
1781 * large.
1783 * The hardware cache alignment cannot override the
1784 * specified alignment though. If that is greater
1785 * then use it.
1787 if ((flags & SLAB_HWCACHE_ALIGN) &&
1788 size > cache_line_size() / 2)
1789 return max_t(unsigned long, align, cache_line_size());
1791 if (align < ARCH_SLAB_MINALIGN)
1792 return ARCH_SLAB_MINALIGN;
1794 return ALIGN(align, sizeof(void *));
1797 static void init_kmem_cache_node(struct kmem_cache_node *n)
1799 n->nr_partial = 0;
1800 atomic_long_set(&n->nr_slabs, 0);
1801 spin_lock_init(&n->list_lock);
1802 INIT_LIST_HEAD(&n->partial);
1803 INIT_LIST_HEAD(&n->full);
1806 #ifdef CONFIG_NUMA
1808 * No kmalloc_node yet so do it by hand. We know that this is the first
1809 * slab on the node for this slabcache. There are no concurrent accesses
1810 * possible.
1812 * Note that this function only works on the kmalloc_node_cache
1813 * when allocating for the kmalloc_node_cache.
1815 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1816 int node)
1818 struct page *page;
1819 struct kmem_cache_node *n;
1821 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1823 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1825 BUG_ON(!page);
1826 n = page->freelist;
1827 BUG_ON(!n);
1828 page->freelist = get_freepointer(kmalloc_caches, n);
1829 page->inuse++;
1830 kmalloc_caches->node[node] = n;
1831 setup_object_debug(kmalloc_caches, page, n);
1832 init_kmem_cache_node(n);
1833 atomic_long_inc(&n->nr_slabs);
1834 add_partial(n, page);
1837 * new_slab() disables interupts. If we do not reenable interrupts here
1838 * then bootup would continue with interrupts disabled.
1840 local_irq_enable();
1841 return n;
1844 static void free_kmem_cache_nodes(struct kmem_cache *s)
1846 int node;
1848 for_each_online_node(node) {
1849 struct kmem_cache_node *n = s->node[node];
1850 if (n && n != &s->local_node)
1851 kmem_cache_free(kmalloc_caches, n);
1852 s->node[node] = NULL;
1856 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1858 int node;
1859 int local_node;
1861 if (slab_state >= UP)
1862 local_node = page_to_nid(virt_to_page(s));
1863 else
1864 local_node = 0;
1866 for_each_online_node(node) {
1867 struct kmem_cache_node *n;
1869 if (local_node == node)
1870 n = &s->local_node;
1871 else {
1872 if (slab_state == DOWN) {
1873 n = early_kmem_cache_node_alloc(gfpflags,
1874 node);
1875 continue;
1877 n = kmem_cache_alloc_node(kmalloc_caches,
1878 gfpflags, node);
1880 if (!n) {
1881 free_kmem_cache_nodes(s);
1882 return 0;
1886 s->node[node] = n;
1887 init_kmem_cache_node(n);
1889 return 1;
1891 #else
1892 static void free_kmem_cache_nodes(struct kmem_cache *s)
1896 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1898 init_kmem_cache_node(&s->local_node);
1899 return 1;
1901 #endif
1904 * calculate_sizes() determines the order and the distribution of data within
1905 * a slab object.
1907 static int calculate_sizes(struct kmem_cache *s)
1909 unsigned long flags = s->flags;
1910 unsigned long size = s->objsize;
1911 unsigned long align = s->align;
1914 * Determine if we can poison the object itself. If the user of
1915 * the slab may touch the object after free or before allocation
1916 * then we should never poison the object itself.
1918 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1919 !s->ctor)
1920 s->flags |= __OBJECT_POISON;
1921 else
1922 s->flags &= ~__OBJECT_POISON;
1925 * Round up object size to the next word boundary. We can only
1926 * place the free pointer at word boundaries and this determines
1927 * the possible location of the free pointer.
1929 size = ALIGN(size, sizeof(void *));
1931 #ifdef CONFIG_SLUB_DEBUG
1933 * If we are Redzoning then check if there is some space between the
1934 * end of the object and the free pointer. If not then add an
1935 * additional word to have some bytes to store Redzone information.
1937 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1938 size += sizeof(void *);
1939 #endif
1942 * With that we have determined the number of bytes in actual use
1943 * by the object. This is the potential offset to the free pointer.
1945 s->inuse = size;
1947 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1948 s->ctor)) {
1950 * Relocate free pointer after the object if it is not
1951 * permitted to overwrite the first word of the object on
1952 * kmem_cache_free.
1954 * This is the case if we do RCU, have a constructor or
1955 * destructor or are poisoning the objects.
1957 s->offset = size;
1958 size += sizeof(void *);
1961 #ifdef CONFIG_SLUB_DEBUG
1962 if (flags & SLAB_STORE_USER)
1964 * Need to store information about allocs and frees after
1965 * the object.
1967 size += 2 * sizeof(struct track);
1969 if (flags & SLAB_RED_ZONE)
1971 * Add some empty padding so that we can catch
1972 * overwrites from earlier objects rather than let
1973 * tracking information or the free pointer be
1974 * corrupted if an user writes before the start
1975 * of the object.
1977 size += sizeof(void *);
1978 #endif
1981 * Determine the alignment based on various parameters that the
1982 * user specified and the dynamic determination of cache line size
1983 * on bootup.
1985 align = calculate_alignment(flags, align, s->objsize);
1988 * SLUB stores one object immediately after another beginning from
1989 * offset 0. In order to align the objects we have to simply size
1990 * each object to conform to the alignment.
1992 size = ALIGN(size, align);
1993 s->size = size;
1995 s->order = calculate_order(size);
1996 if (s->order < 0)
1997 return 0;
2000 * Determine the number of objects per slab
2002 s->objects = (PAGE_SIZE << s->order) / size;
2005 * Verify that the number of objects is within permitted limits.
2006 * The page->inuse field is only 16 bit wide! So we cannot have
2007 * more than 64k objects per slab.
2009 if (!s->objects || s->objects > 65535)
2010 return 0;
2011 return 1;
2015 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2016 const char *name, size_t size,
2017 size_t align, unsigned long flags,
2018 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2020 memset(s, 0, kmem_size);
2021 s->name = name;
2022 s->ctor = ctor;
2023 s->objsize = size;
2024 s->flags = flags;
2025 s->align = align;
2026 kmem_cache_open_debug_check(s);
2028 if (!calculate_sizes(s))
2029 goto error;
2031 s->refcount = 1;
2032 #ifdef CONFIG_NUMA
2033 s->defrag_ratio = 100;
2034 #endif
2036 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2037 return 1;
2038 error:
2039 if (flags & SLAB_PANIC)
2040 panic("Cannot create slab %s size=%lu realsize=%u "
2041 "order=%u offset=%u flags=%lx\n",
2042 s->name, (unsigned long)size, s->size, s->order,
2043 s->offset, flags);
2044 return 0;
2048 * Check if a given pointer is valid
2050 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2052 struct page * page;
2054 page = get_object_page(object);
2056 if (!page || s != page->slab)
2057 /* No slab or wrong slab */
2058 return 0;
2060 if (!check_valid_pointer(s, page, object))
2061 return 0;
2064 * We could also check if the object is on the slabs freelist.
2065 * But this would be too expensive and it seems that the main
2066 * purpose of kmem_ptr_valid is to check if the object belongs
2067 * to a certain slab.
2069 return 1;
2071 EXPORT_SYMBOL(kmem_ptr_validate);
2074 * Determine the size of a slab object
2076 unsigned int kmem_cache_size(struct kmem_cache *s)
2078 return s->objsize;
2080 EXPORT_SYMBOL(kmem_cache_size);
2082 const char *kmem_cache_name(struct kmem_cache *s)
2084 return s->name;
2086 EXPORT_SYMBOL(kmem_cache_name);
2089 * Attempt to free all slabs on a node. Return the number of slabs we
2090 * were unable to free.
2092 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2093 struct list_head *list)
2095 int slabs_inuse = 0;
2096 unsigned long flags;
2097 struct page *page, *h;
2099 spin_lock_irqsave(&n->list_lock, flags);
2100 list_for_each_entry_safe(page, h, list, lru)
2101 if (!page->inuse) {
2102 list_del(&page->lru);
2103 discard_slab(s, page);
2104 } else
2105 slabs_inuse++;
2106 spin_unlock_irqrestore(&n->list_lock, flags);
2107 return slabs_inuse;
2111 * Release all resources used by a slab cache.
2113 static int kmem_cache_close(struct kmem_cache *s)
2115 int node;
2117 flush_all(s);
2119 /* Attempt to free all objects */
2120 for_each_online_node(node) {
2121 struct kmem_cache_node *n = get_node(s, node);
2123 n->nr_partial -= free_list(s, n, &n->partial);
2124 if (atomic_long_read(&n->nr_slabs))
2125 return 1;
2127 free_kmem_cache_nodes(s);
2128 return 0;
2132 * Close a cache and release the kmem_cache structure
2133 * (must be used for caches created using kmem_cache_create)
2135 void kmem_cache_destroy(struct kmem_cache *s)
2137 down_write(&slub_lock);
2138 s->refcount--;
2139 if (!s->refcount) {
2140 list_del(&s->list);
2141 if (kmem_cache_close(s))
2142 WARN_ON(1);
2143 sysfs_slab_remove(s);
2144 kfree(s);
2146 up_write(&slub_lock);
2148 EXPORT_SYMBOL(kmem_cache_destroy);
2150 /********************************************************************
2151 * Kmalloc subsystem
2152 *******************************************************************/
2154 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2155 EXPORT_SYMBOL(kmalloc_caches);
2157 #ifdef CONFIG_ZONE_DMA
2158 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2159 #endif
2161 static int __init setup_slub_min_order(char *str)
2163 get_option (&str, &slub_min_order);
2165 return 1;
2168 __setup("slub_min_order=", setup_slub_min_order);
2170 static int __init setup_slub_max_order(char *str)
2172 get_option (&str, &slub_max_order);
2174 return 1;
2177 __setup("slub_max_order=", setup_slub_max_order);
2179 static int __init setup_slub_min_objects(char *str)
2181 get_option (&str, &slub_min_objects);
2183 return 1;
2186 __setup("slub_min_objects=", setup_slub_min_objects);
2188 static int __init setup_slub_nomerge(char *str)
2190 slub_nomerge = 1;
2191 return 1;
2194 __setup("slub_nomerge", setup_slub_nomerge);
2196 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2197 const char *name, int size, gfp_t gfp_flags)
2199 unsigned int flags = 0;
2201 if (gfp_flags & SLUB_DMA)
2202 flags = SLAB_CACHE_DMA;
2204 down_write(&slub_lock);
2205 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2206 flags, NULL))
2207 goto panic;
2209 list_add(&s->list, &slab_caches);
2210 up_write(&slub_lock);
2211 if (sysfs_slab_add(s))
2212 goto panic;
2213 return s;
2215 panic:
2216 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2219 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2221 int index = kmalloc_index(size);
2223 if (!index)
2224 return NULL;
2226 /* Allocation too large? */
2227 BUG_ON(index < 0);
2229 #ifdef CONFIG_ZONE_DMA
2230 if ((flags & SLUB_DMA)) {
2231 struct kmem_cache *s;
2232 struct kmem_cache *x;
2233 char *text;
2234 size_t realsize;
2236 s = kmalloc_caches_dma[index];
2237 if (s)
2238 return s;
2240 /* Dynamically create dma cache */
2241 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2242 if (!x)
2243 panic("Unable to allocate memory for dma cache\n");
2245 if (index <= KMALLOC_SHIFT_HIGH)
2246 realsize = 1 << index;
2247 else {
2248 if (index == 1)
2249 realsize = 96;
2250 else
2251 realsize = 192;
2254 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2255 (unsigned int)realsize);
2256 s = create_kmalloc_cache(x, text, realsize, flags);
2257 kmalloc_caches_dma[index] = s;
2258 return s;
2260 #endif
2261 return &kmalloc_caches[index];
2264 void *__kmalloc(size_t size, gfp_t flags)
2266 struct kmem_cache *s = get_slab(size, flags);
2268 if (s)
2269 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2270 return ZERO_SIZE_PTR;
2272 EXPORT_SYMBOL(__kmalloc);
2274 #ifdef CONFIG_NUMA
2275 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2277 struct kmem_cache *s = get_slab(size, flags);
2279 if (s)
2280 return slab_alloc(s, flags, node, __builtin_return_address(0));
2281 return ZERO_SIZE_PTR;
2283 EXPORT_SYMBOL(__kmalloc_node);
2284 #endif
2286 size_t ksize(const void *object)
2288 struct page *page;
2289 struct kmem_cache *s;
2291 if (object == ZERO_SIZE_PTR)
2292 return 0;
2294 page = get_object_page(object);
2295 BUG_ON(!page);
2296 s = page->slab;
2297 BUG_ON(!s);
2300 * Debugging requires use of the padding between object
2301 * and whatever may come after it.
2303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2304 return s->objsize;
2307 * If we have the need to store the freelist pointer
2308 * back there or track user information then we can
2309 * only use the space before that information.
2311 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2312 return s->inuse;
2315 * Else we can use all the padding etc for the allocation
2317 return s->size;
2319 EXPORT_SYMBOL(ksize);
2321 void kfree(const void *x)
2323 struct kmem_cache *s;
2324 struct page *page;
2327 * This has to be an unsigned comparison. According to Linus
2328 * some gcc version treat a pointer as a signed entity. Then
2329 * this comparison would be true for all "negative" pointers
2330 * (which would cover the whole upper half of the address space).
2332 if ((unsigned long)x <= (unsigned long)ZERO_SIZE_PTR)
2333 return;
2335 page = virt_to_head_page(x);
2336 s = page->slab;
2338 slab_free(s, page, (void *)x, __builtin_return_address(0));
2340 EXPORT_SYMBOL(kfree);
2343 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2344 * the remaining slabs by the number of items in use. The slabs with the
2345 * most items in use come first. New allocations will then fill those up
2346 * and thus they can be removed from the partial lists.
2348 * The slabs with the least items are placed last. This results in them
2349 * being allocated from last increasing the chance that the last objects
2350 * are freed in them.
2352 int kmem_cache_shrink(struct kmem_cache *s)
2354 int node;
2355 int i;
2356 struct kmem_cache_node *n;
2357 struct page *page;
2358 struct page *t;
2359 struct list_head *slabs_by_inuse =
2360 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2361 unsigned long flags;
2363 if (!slabs_by_inuse)
2364 return -ENOMEM;
2366 flush_all(s);
2367 for_each_online_node(node) {
2368 n = get_node(s, node);
2370 if (!n->nr_partial)
2371 continue;
2373 for (i = 0; i < s->objects; i++)
2374 INIT_LIST_HEAD(slabs_by_inuse + i);
2376 spin_lock_irqsave(&n->list_lock, flags);
2379 * Build lists indexed by the items in use in each slab.
2381 * Note that concurrent frees may occur while we hold the
2382 * list_lock. page->inuse here is the upper limit.
2384 list_for_each_entry_safe(page, t, &n->partial, lru) {
2385 if (!page->inuse && slab_trylock(page)) {
2387 * Must hold slab lock here because slab_free
2388 * may have freed the last object and be
2389 * waiting to release the slab.
2391 list_del(&page->lru);
2392 n->nr_partial--;
2393 slab_unlock(page);
2394 discard_slab(s, page);
2395 } else {
2396 if (n->nr_partial > MAX_PARTIAL)
2397 list_move(&page->lru,
2398 slabs_by_inuse + page->inuse);
2402 if (n->nr_partial <= MAX_PARTIAL)
2403 goto out;
2406 * Rebuild the partial list with the slabs filled up most
2407 * first and the least used slabs at the end.
2409 for (i = s->objects - 1; i >= 0; i--)
2410 list_splice(slabs_by_inuse + i, n->partial.prev);
2412 out:
2413 spin_unlock_irqrestore(&n->list_lock, flags);
2416 kfree(slabs_by_inuse);
2417 return 0;
2419 EXPORT_SYMBOL(kmem_cache_shrink);
2422 * krealloc - reallocate memory. The contents will remain unchanged.
2423 * @p: object to reallocate memory for.
2424 * @new_size: how many bytes of memory are required.
2425 * @flags: the type of memory to allocate.
2427 * The contents of the object pointed to are preserved up to the
2428 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2429 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2430 * %NULL pointer, the object pointed to is freed.
2432 void *krealloc(const void *p, size_t new_size, gfp_t flags)
2434 void *ret;
2435 size_t ks;
2437 if (unlikely(!p || p == ZERO_SIZE_PTR))
2438 return kmalloc(new_size, flags);
2440 if (unlikely(!new_size)) {
2441 kfree(p);
2442 return ZERO_SIZE_PTR;
2445 ks = ksize(p);
2446 if (ks >= new_size)
2447 return (void *)p;
2449 ret = kmalloc(new_size, flags);
2450 if (ret) {
2451 memcpy(ret, p, min(new_size, ks));
2452 kfree(p);
2454 return ret;
2456 EXPORT_SYMBOL(krealloc);
2458 /********************************************************************
2459 * Basic setup of slabs
2460 *******************************************************************/
2462 void __init kmem_cache_init(void)
2464 int i;
2465 int caches = 0;
2467 #ifdef CONFIG_NUMA
2469 * Must first have the slab cache available for the allocations of the
2470 * struct kmem_cache_node's. There is special bootstrap code in
2471 * kmem_cache_open for slab_state == DOWN.
2473 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2474 sizeof(struct kmem_cache_node), GFP_KERNEL);
2475 kmalloc_caches[0].refcount = -1;
2476 caches++;
2477 #endif
2479 /* Able to allocate the per node structures */
2480 slab_state = PARTIAL;
2482 /* Caches that are not of the two-to-the-power-of size */
2483 if (KMALLOC_MIN_SIZE <= 64) {
2484 create_kmalloc_cache(&kmalloc_caches[1],
2485 "kmalloc-96", 96, GFP_KERNEL);
2486 caches++;
2488 if (KMALLOC_MIN_SIZE <= 128) {
2489 create_kmalloc_cache(&kmalloc_caches[2],
2490 "kmalloc-192", 192, GFP_KERNEL);
2491 caches++;
2494 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
2495 create_kmalloc_cache(&kmalloc_caches[i],
2496 "kmalloc", 1 << i, GFP_KERNEL);
2497 caches++;
2500 slab_state = UP;
2502 /* Provide the correct kmalloc names now that the caches are up */
2503 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2504 kmalloc_caches[i]. name =
2505 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2507 #ifdef CONFIG_SMP
2508 register_cpu_notifier(&slab_notifier);
2509 #endif
2511 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2512 nr_cpu_ids * sizeof(struct page *);
2514 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2515 " CPUs=%d, Nodes=%d\n",
2516 caches, cache_line_size(),
2517 slub_min_order, slub_max_order, slub_min_objects,
2518 nr_cpu_ids, nr_node_ids);
2522 * Find a mergeable slab cache
2524 static int slab_unmergeable(struct kmem_cache *s)
2526 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2527 return 1;
2529 if (s->ctor)
2530 return 1;
2533 * We may have set a slab to be unmergeable during bootstrap.
2535 if (s->refcount < 0)
2536 return 1;
2538 return 0;
2541 static struct kmem_cache *find_mergeable(size_t size,
2542 size_t align, unsigned long flags,
2543 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2545 struct list_head *h;
2547 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2548 return NULL;
2550 if (ctor)
2551 return NULL;
2553 size = ALIGN(size, sizeof(void *));
2554 align = calculate_alignment(flags, align, size);
2555 size = ALIGN(size, align);
2557 list_for_each(h, &slab_caches) {
2558 struct kmem_cache *s =
2559 container_of(h, struct kmem_cache, list);
2561 if (slab_unmergeable(s))
2562 continue;
2564 if (size > s->size)
2565 continue;
2567 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2568 (s->flags & SLUB_MERGE_SAME))
2569 continue;
2571 * Check if alignment is compatible.
2572 * Courtesy of Adrian Drzewiecki
2574 if ((s->size & ~(align -1)) != s->size)
2575 continue;
2577 if (s->size - size >= sizeof(void *))
2578 continue;
2580 return s;
2582 return NULL;
2585 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2586 size_t align, unsigned long flags,
2587 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2588 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2590 struct kmem_cache *s;
2592 BUG_ON(dtor);
2593 down_write(&slub_lock);
2594 s = find_mergeable(size, align, flags, ctor);
2595 if (s) {
2596 s->refcount++;
2598 * Adjust the object sizes so that we clear
2599 * the complete object on kzalloc.
2601 s->objsize = max(s->objsize, (int)size);
2602 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2603 if (sysfs_slab_alias(s, name))
2604 goto err;
2605 } else {
2606 s = kmalloc(kmem_size, GFP_KERNEL);
2607 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2608 size, align, flags, ctor)) {
2609 if (sysfs_slab_add(s)) {
2610 kfree(s);
2611 goto err;
2613 list_add(&s->list, &slab_caches);
2614 } else
2615 kfree(s);
2617 up_write(&slub_lock);
2618 return s;
2620 err:
2621 up_write(&slub_lock);
2622 if (flags & SLAB_PANIC)
2623 panic("Cannot create slabcache %s\n", name);
2624 else
2625 s = NULL;
2626 return s;
2628 EXPORT_SYMBOL(kmem_cache_create);
2630 void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2632 void *x;
2634 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
2635 if (x)
2636 memset(x, 0, s->objsize);
2637 return x;
2639 EXPORT_SYMBOL(kmem_cache_zalloc);
2641 #ifdef CONFIG_SMP
2642 static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2644 struct list_head *h;
2646 down_read(&slub_lock);
2647 list_for_each(h, &slab_caches) {
2648 struct kmem_cache *s =
2649 container_of(h, struct kmem_cache, list);
2651 func(s, cpu);
2653 up_read(&slub_lock);
2657 * Version of __flush_cpu_slab for the case that interrupts
2658 * are enabled.
2660 static void cpu_slab_flush(struct kmem_cache *s, int cpu)
2662 unsigned long flags;
2664 local_irq_save(flags);
2665 __flush_cpu_slab(s, cpu);
2666 local_irq_restore(flags);
2670 * Use the cpu notifier to insure that the cpu slabs are flushed when
2671 * necessary.
2673 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2674 unsigned long action, void *hcpu)
2676 long cpu = (long)hcpu;
2678 switch (action) {
2679 case CPU_UP_CANCELED:
2680 case CPU_UP_CANCELED_FROZEN:
2681 case CPU_DEAD:
2682 case CPU_DEAD_FROZEN:
2683 for_all_slabs(cpu_slab_flush, cpu);
2684 break;
2685 default:
2686 break;
2688 return NOTIFY_OK;
2691 static struct notifier_block __cpuinitdata slab_notifier =
2692 { &slab_cpuup_callback, NULL, 0 };
2694 #endif
2696 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2698 struct kmem_cache *s = get_slab(size, gfpflags);
2700 if (!s)
2701 return ZERO_SIZE_PTR;
2703 return slab_alloc(s, gfpflags, -1, caller);
2706 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2707 int node, void *caller)
2709 struct kmem_cache *s = get_slab(size, gfpflags);
2711 if (!s)
2712 return ZERO_SIZE_PTR;
2714 return slab_alloc(s, gfpflags, node, caller);
2717 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2718 static int validate_slab(struct kmem_cache *s, struct page *page)
2720 void *p;
2721 void *addr = page_address(page);
2722 DECLARE_BITMAP(map, s->objects);
2724 if (!check_slab(s, page) ||
2725 !on_freelist(s, page, NULL))
2726 return 0;
2728 /* Now we know that a valid freelist exists */
2729 bitmap_zero(map, s->objects);
2731 for_each_free_object(p, s, page->freelist) {
2732 set_bit(slab_index(p, s, addr), map);
2733 if (!check_object(s, page, p, 0))
2734 return 0;
2737 for_each_object(p, s, addr)
2738 if (!test_bit(slab_index(p, s, addr), map))
2739 if (!check_object(s, page, p, 1))
2740 return 0;
2741 return 1;
2744 static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2746 if (slab_trylock(page)) {
2747 validate_slab(s, page);
2748 slab_unlock(page);
2749 } else
2750 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2751 s->name, page);
2753 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2754 if (!SlabDebug(page))
2755 printk(KERN_ERR "SLUB %s: SlabDebug not set "
2756 "on slab 0x%p\n", s->name, page);
2757 } else {
2758 if (SlabDebug(page))
2759 printk(KERN_ERR "SLUB %s: SlabDebug set on "
2760 "slab 0x%p\n", s->name, page);
2764 static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2766 unsigned long count = 0;
2767 struct page *page;
2768 unsigned long flags;
2770 spin_lock_irqsave(&n->list_lock, flags);
2772 list_for_each_entry(page, &n->partial, lru) {
2773 validate_slab_slab(s, page);
2774 count++;
2776 if (count != n->nr_partial)
2777 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2778 "counter=%ld\n", s->name, count, n->nr_partial);
2780 if (!(s->flags & SLAB_STORE_USER))
2781 goto out;
2783 list_for_each_entry(page, &n->full, lru) {
2784 validate_slab_slab(s, page);
2785 count++;
2787 if (count != atomic_long_read(&n->nr_slabs))
2788 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2789 "counter=%ld\n", s->name, count,
2790 atomic_long_read(&n->nr_slabs));
2792 out:
2793 spin_unlock_irqrestore(&n->list_lock, flags);
2794 return count;
2797 static unsigned long validate_slab_cache(struct kmem_cache *s)
2799 int node;
2800 unsigned long count = 0;
2802 flush_all(s);
2803 for_each_online_node(node) {
2804 struct kmem_cache_node *n = get_node(s, node);
2806 count += validate_slab_node(s, n);
2808 return count;
2811 #ifdef SLUB_RESILIENCY_TEST
2812 static void resiliency_test(void)
2814 u8 *p;
2816 printk(KERN_ERR "SLUB resiliency testing\n");
2817 printk(KERN_ERR "-----------------------\n");
2818 printk(KERN_ERR "A. Corruption after allocation\n");
2820 p = kzalloc(16, GFP_KERNEL);
2821 p[16] = 0x12;
2822 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2823 " 0x12->0x%p\n\n", p + 16);
2825 validate_slab_cache(kmalloc_caches + 4);
2827 /* Hmmm... The next two are dangerous */
2828 p = kzalloc(32, GFP_KERNEL);
2829 p[32 + sizeof(void *)] = 0x34;
2830 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2831 " 0x34 -> -0x%p\n", p);
2832 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2834 validate_slab_cache(kmalloc_caches + 5);
2835 p = kzalloc(64, GFP_KERNEL);
2836 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2837 *p = 0x56;
2838 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2840 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2841 validate_slab_cache(kmalloc_caches + 6);
2843 printk(KERN_ERR "\nB. Corruption after free\n");
2844 p = kzalloc(128, GFP_KERNEL);
2845 kfree(p);
2846 *p = 0x78;
2847 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2848 validate_slab_cache(kmalloc_caches + 7);
2850 p = kzalloc(256, GFP_KERNEL);
2851 kfree(p);
2852 p[50] = 0x9a;
2853 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2854 validate_slab_cache(kmalloc_caches + 8);
2856 p = kzalloc(512, GFP_KERNEL);
2857 kfree(p);
2858 p[512] = 0xab;
2859 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2860 validate_slab_cache(kmalloc_caches + 9);
2862 #else
2863 static void resiliency_test(void) {};
2864 #endif
2867 * Generate lists of code addresses where slabcache objects are allocated
2868 * and freed.
2871 struct location {
2872 unsigned long count;
2873 void *addr;
2874 long long sum_time;
2875 long min_time;
2876 long max_time;
2877 long min_pid;
2878 long max_pid;
2879 cpumask_t cpus;
2880 nodemask_t nodes;
2883 struct loc_track {
2884 unsigned long max;
2885 unsigned long count;
2886 struct location *loc;
2889 static void free_loc_track(struct loc_track *t)
2891 if (t->max)
2892 free_pages((unsigned long)t->loc,
2893 get_order(sizeof(struct location) * t->max));
2896 static int alloc_loc_track(struct loc_track *t, unsigned long max)
2898 struct location *l;
2899 int order;
2901 if (!max)
2902 max = PAGE_SIZE / sizeof(struct location);
2904 order = get_order(sizeof(struct location) * max);
2906 l = (void *)__get_free_pages(GFP_ATOMIC, order);
2908 if (!l)
2909 return 0;
2911 if (t->count) {
2912 memcpy(l, t->loc, sizeof(struct location) * t->count);
2913 free_loc_track(t);
2915 t->max = max;
2916 t->loc = l;
2917 return 1;
2920 static int add_location(struct loc_track *t, struct kmem_cache *s,
2921 const struct track *track)
2923 long start, end, pos;
2924 struct location *l;
2925 void *caddr;
2926 unsigned long age = jiffies - track->when;
2928 start = -1;
2929 end = t->count;
2931 for ( ; ; ) {
2932 pos = start + (end - start + 1) / 2;
2935 * There is nothing at "end". If we end up there
2936 * we need to add something to before end.
2938 if (pos == end)
2939 break;
2941 caddr = t->loc[pos].addr;
2942 if (track->addr == caddr) {
2944 l = &t->loc[pos];
2945 l->count++;
2946 if (track->when) {
2947 l->sum_time += age;
2948 if (age < l->min_time)
2949 l->min_time = age;
2950 if (age > l->max_time)
2951 l->max_time = age;
2953 if (track->pid < l->min_pid)
2954 l->min_pid = track->pid;
2955 if (track->pid > l->max_pid)
2956 l->max_pid = track->pid;
2958 cpu_set(track->cpu, l->cpus);
2960 node_set(page_to_nid(virt_to_page(track)), l->nodes);
2961 return 1;
2964 if (track->addr < caddr)
2965 end = pos;
2966 else
2967 start = pos;
2971 * Not found. Insert new tracking element.
2973 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2974 return 0;
2976 l = t->loc + pos;
2977 if (pos < t->count)
2978 memmove(l + 1, l,
2979 (t->count - pos) * sizeof(struct location));
2980 t->count++;
2981 l->count = 1;
2982 l->addr = track->addr;
2983 l->sum_time = age;
2984 l->min_time = age;
2985 l->max_time = age;
2986 l->min_pid = track->pid;
2987 l->max_pid = track->pid;
2988 cpus_clear(l->cpus);
2989 cpu_set(track->cpu, l->cpus);
2990 nodes_clear(l->nodes);
2991 node_set(page_to_nid(virt_to_page(track)), l->nodes);
2992 return 1;
2995 static void process_slab(struct loc_track *t, struct kmem_cache *s,
2996 struct page *page, enum track_item alloc)
2998 void *addr = page_address(page);
2999 DECLARE_BITMAP(map, s->objects);
3000 void *p;
3002 bitmap_zero(map, s->objects);
3003 for_each_free_object(p, s, page->freelist)
3004 set_bit(slab_index(p, s, addr), map);
3006 for_each_object(p, s, addr)
3007 if (!test_bit(slab_index(p, s, addr), map))
3008 add_location(t, s, get_track(s, p, alloc));
3011 static int list_locations(struct kmem_cache *s, char *buf,
3012 enum track_item alloc)
3014 int n = 0;
3015 unsigned long i;
3016 struct loc_track t;
3017 int node;
3019 t.count = 0;
3020 t.max = 0;
3022 /* Push back cpu slabs */
3023 flush_all(s);
3025 for_each_online_node(node) {
3026 struct kmem_cache_node *n = get_node(s, node);
3027 unsigned long flags;
3028 struct page *page;
3030 if (!atomic_read(&n->nr_slabs))
3031 continue;
3033 spin_lock_irqsave(&n->list_lock, flags);
3034 list_for_each_entry(page, &n->partial, lru)
3035 process_slab(&t, s, page, alloc);
3036 list_for_each_entry(page, &n->full, lru)
3037 process_slab(&t, s, page, alloc);
3038 spin_unlock_irqrestore(&n->list_lock, flags);
3041 for (i = 0; i < t.count; i++) {
3042 struct location *l = &t.loc[i];
3044 if (n > PAGE_SIZE - 100)
3045 break;
3046 n += sprintf(buf + n, "%7ld ", l->count);
3048 if (l->addr)
3049 n += sprint_symbol(buf + n, (unsigned long)l->addr);
3050 else
3051 n += sprintf(buf + n, "<not-available>");
3053 if (l->sum_time != l->min_time) {
3054 unsigned long remainder;
3056 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3057 l->min_time,
3058 div_long_long_rem(l->sum_time, l->count, &remainder),
3059 l->max_time);
3060 } else
3061 n += sprintf(buf + n, " age=%ld",
3062 l->min_time);
3064 if (l->min_pid != l->max_pid)
3065 n += sprintf(buf + n, " pid=%ld-%ld",
3066 l->min_pid, l->max_pid);
3067 else
3068 n += sprintf(buf + n, " pid=%ld",
3069 l->min_pid);
3071 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3072 n < PAGE_SIZE - 60) {
3073 n += sprintf(buf + n, " cpus=");
3074 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3075 l->cpus);
3078 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3079 n < PAGE_SIZE - 60) {
3080 n += sprintf(buf + n, " nodes=");
3081 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3082 l->nodes);
3085 n += sprintf(buf + n, "\n");
3088 free_loc_track(&t);
3089 if (!t.count)
3090 n += sprintf(buf, "No data\n");
3091 return n;
3094 static unsigned long count_partial(struct kmem_cache_node *n)
3096 unsigned long flags;
3097 unsigned long x = 0;
3098 struct page *page;
3100 spin_lock_irqsave(&n->list_lock, flags);
3101 list_for_each_entry(page, &n->partial, lru)
3102 x += page->inuse;
3103 spin_unlock_irqrestore(&n->list_lock, flags);
3104 return x;
3107 enum slab_stat_type {
3108 SL_FULL,
3109 SL_PARTIAL,
3110 SL_CPU,
3111 SL_OBJECTS
3114 #define SO_FULL (1 << SL_FULL)
3115 #define SO_PARTIAL (1 << SL_PARTIAL)
3116 #define SO_CPU (1 << SL_CPU)
3117 #define SO_OBJECTS (1 << SL_OBJECTS)
3119 static unsigned long slab_objects(struct kmem_cache *s,
3120 char *buf, unsigned long flags)
3122 unsigned long total = 0;
3123 int cpu;
3124 int node;
3125 int x;
3126 unsigned long *nodes;
3127 unsigned long *per_cpu;
3129 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3130 per_cpu = nodes + nr_node_ids;
3132 for_each_possible_cpu(cpu) {
3133 struct page *page = s->cpu_slab[cpu];
3134 int node;
3136 if (page) {
3137 node = page_to_nid(page);
3138 if (flags & SO_CPU) {
3139 int x = 0;
3141 if (flags & SO_OBJECTS)
3142 x = page->inuse;
3143 else
3144 x = 1;
3145 total += x;
3146 nodes[node] += x;
3148 per_cpu[node]++;
3152 for_each_online_node(node) {
3153 struct kmem_cache_node *n = get_node(s, node);
3155 if (flags & SO_PARTIAL) {
3156 if (flags & SO_OBJECTS)
3157 x = count_partial(n);
3158 else
3159 x = n->nr_partial;
3160 total += x;
3161 nodes[node] += x;
3164 if (flags & SO_FULL) {
3165 int full_slabs = atomic_read(&n->nr_slabs)
3166 - per_cpu[node]
3167 - n->nr_partial;
3169 if (flags & SO_OBJECTS)
3170 x = full_slabs * s->objects;
3171 else
3172 x = full_slabs;
3173 total += x;
3174 nodes[node] += x;
3178 x = sprintf(buf, "%lu", total);
3179 #ifdef CONFIG_NUMA
3180 for_each_online_node(node)
3181 if (nodes[node])
3182 x += sprintf(buf + x, " N%d=%lu",
3183 node, nodes[node]);
3184 #endif
3185 kfree(nodes);
3186 return x + sprintf(buf + x, "\n");
3189 static int any_slab_objects(struct kmem_cache *s)
3191 int node;
3192 int cpu;
3194 for_each_possible_cpu(cpu)
3195 if (s->cpu_slab[cpu])
3196 return 1;
3198 for_each_node(node) {
3199 struct kmem_cache_node *n = get_node(s, node);
3201 if (n->nr_partial || atomic_read(&n->nr_slabs))
3202 return 1;
3204 return 0;
3207 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3208 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3210 struct slab_attribute {
3211 struct attribute attr;
3212 ssize_t (*show)(struct kmem_cache *s, char *buf);
3213 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3216 #define SLAB_ATTR_RO(_name) \
3217 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3219 #define SLAB_ATTR(_name) \
3220 static struct slab_attribute _name##_attr = \
3221 __ATTR(_name, 0644, _name##_show, _name##_store)
3223 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3225 return sprintf(buf, "%d\n", s->size);
3227 SLAB_ATTR_RO(slab_size);
3229 static ssize_t align_show(struct kmem_cache *s, char *buf)
3231 return sprintf(buf, "%d\n", s->align);
3233 SLAB_ATTR_RO(align);
3235 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3237 return sprintf(buf, "%d\n", s->objsize);
3239 SLAB_ATTR_RO(object_size);
3241 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3243 return sprintf(buf, "%d\n", s->objects);
3245 SLAB_ATTR_RO(objs_per_slab);
3247 static ssize_t order_show(struct kmem_cache *s, char *buf)
3249 return sprintf(buf, "%d\n", s->order);
3251 SLAB_ATTR_RO(order);
3253 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3255 if (s->ctor) {
3256 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3258 return n + sprintf(buf + n, "\n");
3260 return 0;
3262 SLAB_ATTR_RO(ctor);
3264 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3266 return sprintf(buf, "%d\n", s->refcount - 1);
3268 SLAB_ATTR_RO(aliases);
3270 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3272 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3274 SLAB_ATTR_RO(slabs);
3276 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3278 return slab_objects(s, buf, SO_PARTIAL);
3280 SLAB_ATTR_RO(partial);
3282 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3284 return slab_objects(s, buf, SO_CPU);
3286 SLAB_ATTR_RO(cpu_slabs);
3288 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3290 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3292 SLAB_ATTR_RO(objects);
3294 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3296 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3299 static ssize_t sanity_checks_store(struct kmem_cache *s,
3300 const char *buf, size_t length)
3302 s->flags &= ~SLAB_DEBUG_FREE;
3303 if (buf[0] == '1')
3304 s->flags |= SLAB_DEBUG_FREE;
3305 return length;
3307 SLAB_ATTR(sanity_checks);
3309 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3311 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3314 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3315 size_t length)
3317 s->flags &= ~SLAB_TRACE;
3318 if (buf[0] == '1')
3319 s->flags |= SLAB_TRACE;
3320 return length;
3322 SLAB_ATTR(trace);
3324 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3326 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3329 static ssize_t reclaim_account_store(struct kmem_cache *s,
3330 const char *buf, size_t length)
3332 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3333 if (buf[0] == '1')
3334 s->flags |= SLAB_RECLAIM_ACCOUNT;
3335 return length;
3337 SLAB_ATTR(reclaim_account);
3339 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3341 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3343 SLAB_ATTR_RO(hwcache_align);
3345 #ifdef CONFIG_ZONE_DMA
3346 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3348 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3350 SLAB_ATTR_RO(cache_dma);
3351 #endif
3353 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3355 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3357 SLAB_ATTR_RO(destroy_by_rcu);
3359 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3361 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3364 static ssize_t red_zone_store(struct kmem_cache *s,
3365 const char *buf, size_t length)
3367 if (any_slab_objects(s))
3368 return -EBUSY;
3370 s->flags &= ~SLAB_RED_ZONE;
3371 if (buf[0] == '1')
3372 s->flags |= SLAB_RED_ZONE;
3373 calculate_sizes(s);
3374 return length;
3376 SLAB_ATTR(red_zone);
3378 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3380 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3383 static ssize_t poison_store(struct kmem_cache *s,
3384 const char *buf, size_t length)
3386 if (any_slab_objects(s))
3387 return -EBUSY;
3389 s->flags &= ~SLAB_POISON;
3390 if (buf[0] == '1')
3391 s->flags |= SLAB_POISON;
3392 calculate_sizes(s);
3393 return length;
3395 SLAB_ATTR(poison);
3397 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3399 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3402 static ssize_t store_user_store(struct kmem_cache *s,
3403 const char *buf, size_t length)
3405 if (any_slab_objects(s))
3406 return -EBUSY;
3408 s->flags &= ~SLAB_STORE_USER;
3409 if (buf[0] == '1')
3410 s->flags |= SLAB_STORE_USER;
3411 calculate_sizes(s);
3412 return length;
3414 SLAB_ATTR(store_user);
3416 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3418 return 0;
3421 static ssize_t validate_store(struct kmem_cache *s,
3422 const char *buf, size_t length)
3424 if (buf[0] == '1')
3425 validate_slab_cache(s);
3426 else
3427 return -EINVAL;
3428 return length;
3430 SLAB_ATTR(validate);
3432 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3434 return 0;
3437 static ssize_t shrink_store(struct kmem_cache *s,
3438 const char *buf, size_t length)
3440 if (buf[0] == '1') {
3441 int rc = kmem_cache_shrink(s);
3443 if (rc)
3444 return rc;
3445 } else
3446 return -EINVAL;
3447 return length;
3449 SLAB_ATTR(shrink);
3451 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3453 if (!(s->flags & SLAB_STORE_USER))
3454 return -ENOSYS;
3455 return list_locations(s, buf, TRACK_ALLOC);
3457 SLAB_ATTR_RO(alloc_calls);
3459 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3461 if (!(s->flags & SLAB_STORE_USER))
3462 return -ENOSYS;
3463 return list_locations(s, buf, TRACK_FREE);
3465 SLAB_ATTR_RO(free_calls);
3467 #ifdef CONFIG_NUMA
3468 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3470 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3473 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3474 const char *buf, size_t length)
3476 int n = simple_strtoul(buf, NULL, 10);
3478 if (n < 100)
3479 s->defrag_ratio = n * 10;
3480 return length;
3482 SLAB_ATTR(defrag_ratio);
3483 #endif
3485 static struct attribute * slab_attrs[] = {
3486 &slab_size_attr.attr,
3487 &object_size_attr.attr,
3488 &objs_per_slab_attr.attr,
3489 &order_attr.attr,
3490 &objects_attr.attr,
3491 &slabs_attr.attr,
3492 &partial_attr.attr,
3493 &cpu_slabs_attr.attr,
3494 &ctor_attr.attr,
3495 &aliases_attr.attr,
3496 &align_attr.attr,
3497 &sanity_checks_attr.attr,
3498 &trace_attr.attr,
3499 &hwcache_align_attr.attr,
3500 &reclaim_account_attr.attr,
3501 &destroy_by_rcu_attr.attr,
3502 &red_zone_attr.attr,
3503 &poison_attr.attr,
3504 &store_user_attr.attr,
3505 &validate_attr.attr,
3506 &shrink_attr.attr,
3507 &alloc_calls_attr.attr,
3508 &free_calls_attr.attr,
3509 #ifdef CONFIG_ZONE_DMA
3510 &cache_dma_attr.attr,
3511 #endif
3512 #ifdef CONFIG_NUMA
3513 &defrag_ratio_attr.attr,
3514 #endif
3515 NULL
3518 static struct attribute_group slab_attr_group = {
3519 .attrs = slab_attrs,
3522 static ssize_t slab_attr_show(struct kobject *kobj,
3523 struct attribute *attr,
3524 char *buf)
3526 struct slab_attribute *attribute;
3527 struct kmem_cache *s;
3528 int err;
3530 attribute = to_slab_attr(attr);
3531 s = to_slab(kobj);
3533 if (!attribute->show)
3534 return -EIO;
3536 err = attribute->show(s, buf);
3538 return err;
3541 static ssize_t slab_attr_store(struct kobject *kobj,
3542 struct attribute *attr,
3543 const char *buf, size_t len)
3545 struct slab_attribute *attribute;
3546 struct kmem_cache *s;
3547 int err;
3549 attribute = to_slab_attr(attr);
3550 s = to_slab(kobj);
3552 if (!attribute->store)
3553 return -EIO;
3555 err = attribute->store(s, buf, len);
3557 return err;
3560 static struct sysfs_ops slab_sysfs_ops = {
3561 .show = slab_attr_show,
3562 .store = slab_attr_store,
3565 static struct kobj_type slab_ktype = {
3566 .sysfs_ops = &slab_sysfs_ops,
3569 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3571 struct kobj_type *ktype = get_ktype(kobj);
3573 if (ktype == &slab_ktype)
3574 return 1;
3575 return 0;
3578 static struct kset_uevent_ops slab_uevent_ops = {
3579 .filter = uevent_filter,
3582 decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3584 #define ID_STR_LENGTH 64
3586 /* Create a unique string id for a slab cache:
3587 * format
3588 * :[flags-]size:[memory address of kmemcache]
3590 static char *create_unique_id(struct kmem_cache *s)
3592 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3593 char *p = name;
3595 BUG_ON(!name);
3597 *p++ = ':';
3599 * First flags affecting slabcache operations. We will only
3600 * get here for aliasable slabs so we do not need to support
3601 * too many flags. The flags here must cover all flags that
3602 * are matched during merging to guarantee that the id is
3603 * unique.
3605 if (s->flags & SLAB_CACHE_DMA)
3606 *p++ = 'd';
3607 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3608 *p++ = 'a';
3609 if (s->flags & SLAB_DEBUG_FREE)
3610 *p++ = 'F';
3611 if (p != name + 1)
3612 *p++ = '-';
3613 p += sprintf(p, "%07d", s->size);
3614 BUG_ON(p > name + ID_STR_LENGTH - 1);
3615 return name;
3618 static int sysfs_slab_add(struct kmem_cache *s)
3620 int err;
3621 const char *name;
3622 int unmergeable;
3624 if (slab_state < SYSFS)
3625 /* Defer until later */
3626 return 0;
3628 unmergeable = slab_unmergeable(s);
3629 if (unmergeable) {
3631 * Slabcache can never be merged so we can use the name proper.
3632 * This is typically the case for debug situations. In that
3633 * case we can catch duplicate names easily.
3635 sysfs_remove_link(&slab_subsys.kobj, s->name);
3636 name = s->name;
3637 } else {
3639 * Create a unique name for the slab as a target
3640 * for the symlinks.
3642 name = create_unique_id(s);
3645 kobj_set_kset_s(s, slab_subsys);
3646 kobject_set_name(&s->kobj, name);
3647 kobject_init(&s->kobj);
3648 err = kobject_add(&s->kobj);
3649 if (err)
3650 return err;
3652 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3653 if (err)
3654 return err;
3655 kobject_uevent(&s->kobj, KOBJ_ADD);
3656 if (!unmergeable) {
3657 /* Setup first alias */
3658 sysfs_slab_alias(s, s->name);
3659 kfree(name);
3661 return 0;
3664 static void sysfs_slab_remove(struct kmem_cache *s)
3666 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3667 kobject_del(&s->kobj);
3671 * Need to buffer aliases during bootup until sysfs becomes
3672 * available lest we loose that information.
3674 struct saved_alias {
3675 struct kmem_cache *s;
3676 const char *name;
3677 struct saved_alias *next;
3680 struct saved_alias *alias_list;
3682 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3684 struct saved_alias *al;
3686 if (slab_state == SYSFS) {
3688 * If we have a leftover link then remove it.
3690 sysfs_remove_link(&slab_subsys.kobj, name);
3691 return sysfs_create_link(&slab_subsys.kobj,
3692 &s->kobj, name);
3695 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3696 if (!al)
3697 return -ENOMEM;
3699 al->s = s;
3700 al->name = name;
3701 al->next = alias_list;
3702 alias_list = al;
3703 return 0;
3706 static int __init slab_sysfs_init(void)
3708 struct list_head *h;
3709 int err;
3711 err = subsystem_register(&slab_subsys);
3712 if (err) {
3713 printk(KERN_ERR "Cannot register slab subsystem.\n");
3714 return -ENOSYS;
3717 slab_state = SYSFS;
3719 list_for_each(h, &slab_caches) {
3720 struct kmem_cache *s =
3721 container_of(h, struct kmem_cache, list);
3723 err = sysfs_slab_add(s);
3724 BUG_ON(err);
3727 while (alias_list) {
3728 struct saved_alias *al = alias_list;
3730 alias_list = alias_list->next;
3731 err = sysfs_slab_alias(al->s, al->name);
3732 BUG_ON(err);
3733 kfree(al);
3736 resiliency_test();
3737 return 0;
3740 __initcall(slab_sysfs_init);
3741 #endif