2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
109 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
110 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
111 unsigned long nr_segs
, loff_t pos
);
112 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
113 unsigned long nr_segs
, loff_t pos
);
114 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
116 static int sock_close(struct inode
*inode
, struct file
*file
);
117 static unsigned int sock_poll(struct file
*file
,
118 struct poll_table_struct
*wait
);
119 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
121 static long compat_sock_ioctl(struct file
*file
,
122 unsigned int cmd
, unsigned long arg
);
124 static int sock_fasync(int fd
, struct file
*filp
, int on
);
125 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
126 int offset
, size_t size
, loff_t
*ppos
, int more
);
127 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
128 struct pipe_inode_info
*pipe
, size_t len
,
132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133 * in the operation structures but are done directly via the socketcall() multiplexor.
136 static const struct file_operations socket_file_ops
= {
137 .owner
= THIS_MODULE
,
139 .aio_read
= sock_aio_read
,
140 .aio_write
= sock_aio_write
,
142 .unlocked_ioctl
= sock_ioctl
,
144 .compat_ioctl
= compat_sock_ioctl
,
147 .open
= sock_no_open
, /* special open code to disallow open via /proc */
148 .release
= sock_close
,
149 .fasync
= sock_fasync
,
150 .sendpage
= sock_sendpage
,
151 .splice_write
= generic_splice_sendpage
,
152 .splice_read
= sock_splice_read
,
156 * The protocol list. Each protocol is registered in here.
159 static DEFINE_SPINLOCK(net_family_lock
);
160 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
163 * Statistics counters of the socket lists
166 static DEFINE_PER_CPU(int, sockets_in_use
);
170 * Move socket addresses back and forth across the kernel/user
171 * divide and look after the messy bits.
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
185 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
187 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
191 if (copy_from_user(kaddr
, uaddr
, ulen
))
193 return audit_sockaddr(ulen
, kaddr
);
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
213 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
214 void __user
*uaddr
, int __user
*ulen
)
219 err
= get_user(len
, ulen
);
224 if (len
< 0 || len
> sizeof(struct sockaddr_storage
))
227 if (audit_sockaddr(klen
, kaddr
))
229 if (copy_to_user(uaddr
, kaddr
, len
))
233 * "fromlen shall refer to the value before truncation.."
236 return __put_user(klen
, ulen
);
239 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
241 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
243 struct socket_alloc
*ei
;
244 struct socket_wq
*wq
;
246 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
249 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
251 kmem_cache_free(sock_inode_cachep
, ei
);
254 init_waitqueue_head(&wq
->wait
);
255 wq
->fasync_list
= NULL
;
256 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
258 ei
->socket
.state
= SS_UNCONNECTED
;
259 ei
->socket
.flags
= 0;
260 ei
->socket
.ops
= NULL
;
261 ei
->socket
.sk
= NULL
;
262 ei
->socket
.file
= NULL
;
264 return &ei
->vfs_inode
;
267 static void sock_destroy_inode(struct inode
*inode
)
269 struct socket_alloc
*ei
;
270 struct socket_wq
*wq
;
272 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
273 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
275 kmem_cache_free(sock_inode_cachep
, ei
);
278 static void init_once(void *foo
)
280 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
282 inode_init_once(&ei
->vfs_inode
);
285 static int init_inodecache(void)
287 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
288 sizeof(struct socket_alloc
),
290 (SLAB_HWCACHE_ALIGN
|
291 SLAB_RECLAIM_ACCOUNT
|
294 if (sock_inode_cachep
== NULL
)
299 static const struct super_operations sockfs_ops
= {
300 .alloc_inode
= sock_alloc_inode
,
301 .destroy_inode
= sock_destroy_inode
,
302 .statfs
= simple_statfs
,
306 * sockfs_dname() is called from d_path().
308 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
310 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
311 dentry
->d_inode
->i_ino
);
314 static const struct dentry_operations sockfs_dentry_operations
= {
315 .d_dname
= sockfs_dname
,
318 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
319 int flags
, const char *dev_name
, void *data
)
321 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
322 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
325 static struct vfsmount
*sock_mnt __read_mostly
;
327 static struct file_system_type sock_fs_type
= {
329 .mount
= sockfs_mount
,
330 .kill_sb
= kill_anon_super
,
334 * Obtains the first available file descriptor and sets it up for use.
336 * These functions create file structures and maps them to fd space
337 * of the current process. On success it returns file descriptor
338 * and file struct implicitly stored in sock->file.
339 * Note that another thread may close file descriptor before we return
340 * from this function. We use the fact that now we do not refer
341 * to socket after mapping. If one day we will need it, this
342 * function will increment ref. count on file by 1.
344 * In any case returned fd MAY BE not valid!
345 * This race condition is unavoidable
346 * with shared fd spaces, we cannot solve it inside kernel,
347 * but we take care of internal coherence yet.
350 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
352 struct qstr name
= { .name
= "" };
358 name
.len
= strlen(name
.name
);
359 } else if (sock
->sk
) {
360 name
.name
= sock
->sk
->sk_prot_creator
->name
;
361 name
.len
= strlen(name
.name
);
363 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
364 if (unlikely(!path
.dentry
))
365 return ERR_PTR(-ENOMEM
);
366 path
.mnt
= mntget(sock_mnt
);
368 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
369 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
371 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
373 if (unlikely(!file
)) {
374 /* drop dentry, keep inode */
375 ihold(path
.dentry
->d_inode
);
377 return ERR_PTR(-ENFILE
);
381 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
383 file
->private_data
= sock
;
386 EXPORT_SYMBOL(sock_alloc_file
);
388 static int sock_map_fd(struct socket
*sock
, int flags
)
390 struct file
*newfile
;
391 int fd
= get_unused_fd_flags(flags
);
392 if (unlikely(fd
< 0))
395 newfile
= sock_alloc_file(sock
, flags
, NULL
);
396 if (likely(!IS_ERR(newfile
))) {
397 fd_install(fd
, newfile
);
402 return PTR_ERR(newfile
);
405 struct socket
*sock_from_file(struct file
*file
, int *err
)
407 if (file
->f_op
== &socket_file_ops
)
408 return file
->private_data
; /* set in sock_map_fd */
413 EXPORT_SYMBOL(sock_from_file
);
416 * sockfd_lookup - Go from a file number to its socket slot
418 * @err: pointer to an error code return
420 * The file handle passed in is locked and the socket it is bound
421 * too is returned. If an error occurs the err pointer is overwritten
422 * with a negative errno code and NULL is returned. The function checks
423 * for both invalid handles and passing a handle which is not a socket.
425 * On a success the socket object pointer is returned.
428 struct socket
*sockfd_lookup(int fd
, int *err
)
439 sock
= sock_from_file(file
, err
);
444 EXPORT_SYMBOL(sockfd_lookup
);
446 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
452 file
= fget_light(fd
, fput_needed
);
454 sock
= sock_from_file(file
, err
);
457 fput_light(file
, *fput_needed
);
462 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
463 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
464 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
465 static ssize_t
sockfs_getxattr(struct dentry
*dentry
,
466 const char *name
, void *value
, size_t size
)
468 const char *proto_name
;
473 if (!strncmp(name
, XATTR_NAME_SOCKPROTONAME
, XATTR_NAME_SOCKPROTONAME_LEN
)) {
474 proto_name
= dentry
->d_name
.name
;
475 proto_size
= strlen(proto_name
);
479 if (proto_size
+ 1 > size
)
482 strncpy(value
, proto_name
, proto_size
+ 1);
484 error
= proto_size
+ 1;
491 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
497 len
= security_inode_listsecurity(dentry
->d_inode
, buffer
, size
);
507 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
512 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
519 static const struct inode_operations sockfs_inode_ops
= {
520 .getxattr
= sockfs_getxattr
,
521 .listxattr
= sockfs_listxattr
,
525 * sock_alloc - allocate a socket
527 * Allocate a new inode and socket object. The two are bound together
528 * and initialised. The socket is then returned. If we are out of inodes
532 static struct socket
*sock_alloc(void)
537 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
541 sock
= SOCKET_I(inode
);
543 kmemcheck_annotate_bitfield(sock
, type
);
544 inode
->i_ino
= get_next_ino();
545 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
546 inode
->i_uid
= current_fsuid();
547 inode
->i_gid
= current_fsgid();
548 inode
->i_op
= &sockfs_inode_ops
;
550 this_cpu_add(sockets_in_use
, 1);
555 * In theory you can't get an open on this inode, but /proc provides
556 * a back door. Remember to keep it shut otherwise you'll let the
557 * creepy crawlies in.
560 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
565 const struct file_operations bad_sock_fops
= {
566 .owner
= THIS_MODULE
,
567 .open
= sock_no_open
,
568 .llseek
= noop_llseek
,
572 * sock_release - close a socket
573 * @sock: socket to close
575 * The socket is released from the protocol stack if it has a release
576 * callback, and the inode is then released if the socket is bound to
577 * an inode not a file.
580 void sock_release(struct socket
*sock
)
583 struct module
*owner
= sock
->ops
->owner
;
585 sock
->ops
->release(sock
);
590 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
591 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
593 if (test_bit(SOCK_EXTERNALLY_ALLOCATED
, &sock
->flags
))
596 this_cpu_sub(sockets_in_use
, 1);
598 iput(SOCK_INODE(sock
));
603 EXPORT_SYMBOL(sock_release
);
605 int sock_tx_timestamp(struct sock
*sk
, __u8
*tx_flags
)
608 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
609 *tx_flags
|= SKBTX_HW_TSTAMP
;
610 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
611 *tx_flags
|= SKBTX_SW_TSTAMP
;
612 if (sock_flag(sk
, SOCK_WIFI_STATUS
))
613 *tx_flags
|= SKBTX_WIFI_STATUS
;
616 EXPORT_SYMBOL(sock_tx_timestamp
);
618 static inline int __sock_sendmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
619 struct msghdr
*msg
, size_t size
)
621 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
628 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
631 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
632 struct msghdr
*msg
, size_t size
)
634 int err
= security_socket_sendmsg(sock
, msg
, size
);
636 return err
?: __sock_sendmsg_nosec(iocb
, sock
, msg
, size
);
639 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
642 struct sock_iocb siocb
;
645 init_sync_kiocb(&iocb
, NULL
);
646 iocb
.private = &siocb
;
647 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
648 if (-EIOCBQUEUED
== ret
)
649 ret
= wait_on_sync_kiocb(&iocb
);
652 EXPORT_SYMBOL(sock_sendmsg
);
654 static int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
657 struct sock_iocb siocb
;
660 init_sync_kiocb(&iocb
, NULL
);
661 iocb
.private = &siocb
;
662 ret
= __sock_sendmsg_nosec(&iocb
, sock
, msg
, size
);
663 if (-EIOCBQUEUED
== ret
)
664 ret
= wait_on_sync_kiocb(&iocb
);
668 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
669 struct kvec
*vec
, size_t num
, size_t size
)
671 mm_segment_t oldfs
= get_fs();
676 * the following is safe, since for compiler definitions of kvec and
677 * iovec are identical, yielding the same in-core layout and alignment
679 msg
->msg_iov
= (struct iovec
*)vec
;
680 msg
->msg_iovlen
= num
;
681 result
= sock_sendmsg(sock
, msg
, size
);
685 EXPORT_SYMBOL(kernel_sendmsg
);
687 static int ktime2ts(ktime_t kt
, struct timespec
*ts
)
690 *ts
= ktime_to_timespec(kt
);
698 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
700 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
703 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
704 struct timespec ts
[3];
706 struct skb_shared_hwtstamps
*shhwtstamps
=
709 /* Race occurred between timestamp enabling and packet
710 receiving. Fill in the current time for now. */
711 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
712 __net_timestamp(skb
);
714 if (need_software_tstamp
) {
715 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
717 skb_get_timestamp(skb
, &tv
);
718 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
721 skb_get_timestampns(skb
, &ts
[0]);
722 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
723 sizeof(ts
[0]), &ts
[0]);
728 memset(ts
, 0, sizeof(ts
));
729 if (skb
->tstamp
.tv64
&&
730 sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
)) {
731 skb_get_timestampns(skb
, ts
+ 0);
735 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
736 ktime2ts(shhwtstamps
->syststamp
, ts
+ 1))
738 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
739 ktime2ts(shhwtstamps
->hwtstamp
, ts
+ 2))
743 put_cmsg(msg
, SOL_SOCKET
,
744 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
746 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
748 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
753 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
755 if (!skb
->wifi_acked_valid
)
758 ack
= skb
->wifi_acked
;
760 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
762 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
764 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
767 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& skb
->dropcount
)
768 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
769 sizeof(__u32
), &skb
->dropcount
);
772 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
775 sock_recv_timestamp(msg
, sk
, skb
);
776 sock_recv_drops(msg
, sk
, skb
);
778 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
780 static inline int __sock_recvmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
781 struct msghdr
*msg
, size_t size
, int flags
)
783 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
791 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
794 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
795 struct msghdr
*msg
, size_t size
, int flags
)
797 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
799 return err
?: __sock_recvmsg_nosec(iocb
, sock
, msg
, size
, flags
);
802 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
803 size_t size
, int flags
)
806 struct sock_iocb siocb
;
809 init_sync_kiocb(&iocb
, NULL
);
810 iocb
.private = &siocb
;
811 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
812 if (-EIOCBQUEUED
== ret
)
813 ret
= wait_on_sync_kiocb(&iocb
);
816 EXPORT_SYMBOL(sock_recvmsg
);
818 static int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
819 size_t size
, int flags
)
822 struct sock_iocb siocb
;
825 init_sync_kiocb(&iocb
, NULL
);
826 iocb
.private = &siocb
;
827 ret
= __sock_recvmsg_nosec(&iocb
, sock
, msg
, size
, flags
);
828 if (-EIOCBQUEUED
== ret
)
829 ret
= wait_on_sync_kiocb(&iocb
);
834 * kernel_recvmsg - Receive a message from a socket (kernel space)
835 * @sock: The socket to receive the message from
836 * @msg: Received message
837 * @vec: Input s/g array for message data
838 * @num: Size of input s/g array
839 * @size: Number of bytes to read
840 * @flags: Message flags (MSG_DONTWAIT, etc...)
842 * On return the msg structure contains the scatter/gather array passed in the
843 * vec argument. The array is modified so that it consists of the unfilled
844 * portion of the original array.
846 * The returned value is the total number of bytes received, or an error.
848 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
849 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
851 mm_segment_t oldfs
= get_fs();
856 * the following is safe, since for compiler definitions of kvec and
857 * iovec are identical, yielding the same in-core layout and alignment
859 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
860 result
= sock_recvmsg(sock
, msg
, size
, flags
);
864 EXPORT_SYMBOL(kernel_recvmsg
);
866 static void sock_aio_dtor(struct kiocb
*iocb
)
868 kfree(iocb
->private);
871 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
872 int offset
, size_t size
, loff_t
*ppos
, int more
)
877 sock
= file
->private_data
;
879 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
880 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
883 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
886 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
887 struct pipe_inode_info
*pipe
, size_t len
,
890 struct socket
*sock
= file
->private_data
;
892 if (unlikely(!sock
->ops
->splice_read
))
895 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
898 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
899 struct sock_iocb
*siocb
)
901 if (!is_sync_kiocb(iocb
)) {
902 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
905 iocb
->ki_dtor
= sock_aio_dtor
;
909 iocb
->private = siocb
;
913 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
914 struct file
*file
, const struct iovec
*iov
,
915 unsigned long nr_segs
)
917 struct socket
*sock
= file
->private_data
;
921 for (i
= 0; i
< nr_segs
; i
++)
922 size
+= iov
[i
].iov_len
;
924 msg
->msg_name
= NULL
;
925 msg
->msg_namelen
= 0;
926 msg
->msg_control
= NULL
;
927 msg
->msg_controllen
= 0;
928 msg
->msg_iov
= (struct iovec
*)iov
;
929 msg
->msg_iovlen
= nr_segs
;
930 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
932 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
935 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
936 unsigned long nr_segs
, loff_t pos
)
938 struct sock_iocb siocb
, *x
;
943 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
947 x
= alloc_sock_iocb(iocb
, &siocb
);
950 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
953 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
954 struct file
*file
, const struct iovec
*iov
,
955 unsigned long nr_segs
)
957 struct socket
*sock
= file
->private_data
;
961 for (i
= 0; i
< nr_segs
; i
++)
962 size
+= iov
[i
].iov_len
;
964 msg
->msg_name
= NULL
;
965 msg
->msg_namelen
= 0;
966 msg
->msg_control
= NULL
;
967 msg
->msg_controllen
= 0;
968 msg
->msg_iov
= (struct iovec
*)iov
;
969 msg
->msg_iovlen
= nr_segs
;
970 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
971 if (sock
->type
== SOCK_SEQPACKET
)
972 msg
->msg_flags
|= MSG_EOR
;
974 return __sock_sendmsg(iocb
, sock
, msg
, size
);
977 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
978 unsigned long nr_segs
, loff_t pos
)
980 struct sock_iocb siocb
, *x
;
985 x
= alloc_sock_iocb(iocb
, &siocb
);
989 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
993 * Atomic setting of ioctl hooks to avoid race
994 * with module unload.
997 static DEFINE_MUTEX(br_ioctl_mutex
);
998 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
1000 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
1002 mutex_lock(&br_ioctl_mutex
);
1003 br_ioctl_hook
= hook
;
1004 mutex_unlock(&br_ioctl_mutex
);
1006 EXPORT_SYMBOL(brioctl_set
);
1008 static DEFINE_MUTEX(vlan_ioctl_mutex
);
1009 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
1011 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
1013 mutex_lock(&vlan_ioctl_mutex
);
1014 vlan_ioctl_hook
= hook
;
1015 mutex_unlock(&vlan_ioctl_mutex
);
1017 EXPORT_SYMBOL(vlan_ioctl_set
);
1019 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1020 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1022 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1024 mutex_lock(&dlci_ioctl_mutex
);
1025 dlci_ioctl_hook
= hook
;
1026 mutex_unlock(&dlci_ioctl_mutex
);
1028 EXPORT_SYMBOL(dlci_ioctl_set
);
1030 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1031 unsigned int cmd
, unsigned long arg
)
1034 void __user
*argp
= (void __user
*)arg
;
1036 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1039 * If this ioctl is unknown try to hand it down
1040 * to the NIC driver.
1042 if (err
== -ENOIOCTLCMD
)
1043 err
= dev_ioctl(net
, cmd
, argp
);
1049 * With an ioctl, arg may well be a user mode pointer, but we don't know
1050 * what to do with it - that's up to the protocol still.
1053 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1055 struct socket
*sock
;
1057 void __user
*argp
= (void __user
*)arg
;
1061 sock
= file
->private_data
;
1064 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
1065 err
= dev_ioctl(net
, cmd
, argp
);
1067 #ifdef CONFIG_WEXT_CORE
1068 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1069 err
= dev_ioctl(net
, cmd
, argp
);
1076 if (get_user(pid
, (int __user
*)argp
))
1078 err
= f_setown(sock
->file
, pid
, 1);
1082 err
= put_user(f_getown(sock
->file
),
1083 (int __user
*)argp
);
1091 request_module("bridge");
1093 mutex_lock(&br_ioctl_mutex
);
1095 err
= br_ioctl_hook(net
, cmd
, argp
);
1096 mutex_unlock(&br_ioctl_mutex
);
1101 if (!vlan_ioctl_hook
)
1102 request_module("8021q");
1104 mutex_lock(&vlan_ioctl_mutex
);
1105 if (vlan_ioctl_hook
)
1106 err
= vlan_ioctl_hook(net
, argp
);
1107 mutex_unlock(&vlan_ioctl_mutex
);
1112 if (!dlci_ioctl_hook
)
1113 request_module("dlci");
1115 mutex_lock(&dlci_ioctl_mutex
);
1116 if (dlci_ioctl_hook
)
1117 err
= dlci_ioctl_hook(cmd
, argp
);
1118 mutex_unlock(&dlci_ioctl_mutex
);
1121 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1127 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1130 struct socket
*sock
= NULL
;
1132 err
= security_socket_create(family
, type
, protocol
, 1);
1136 sock
= sock_alloc();
1143 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1155 EXPORT_SYMBOL(sock_create_lite
);
1157 /* No kernel lock held - perfect */
1158 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1160 struct socket
*sock
;
1163 * We can't return errors to poll, so it's either yes or no.
1165 sock
= file
->private_data
;
1166 return sock
->ops
->poll(file
, sock
, wait
);
1169 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1171 struct socket
*sock
= file
->private_data
;
1173 return sock
->ops
->mmap(file
, sock
, vma
);
1176 static int sock_close(struct inode
*inode
, struct file
*filp
)
1179 * It was possible the inode is NULL we were
1180 * closing an unfinished socket.
1184 printk(KERN_DEBUG
"sock_close: NULL inode\n");
1187 sock_release(SOCKET_I(inode
));
1192 * Update the socket async list
1194 * Fasync_list locking strategy.
1196 * 1. fasync_list is modified only under process context socket lock
1197 * i.e. under semaphore.
1198 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1199 * or under socket lock
1202 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1204 struct socket
*sock
= filp
->private_data
;
1205 struct sock
*sk
= sock
->sk
;
1206 struct socket_wq
*wq
;
1212 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1213 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1215 if (!wq
->fasync_list
)
1216 sock_reset_flag(sk
, SOCK_FASYNC
);
1218 sock_set_flag(sk
, SOCK_FASYNC
);
1224 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1226 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1228 struct socket_wq
*wq
;
1233 wq
= rcu_dereference(sock
->wq
);
1234 if (!wq
|| !wq
->fasync_list
) {
1239 case SOCK_WAKE_WAITD
:
1240 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1243 case SOCK_WAKE_SPACE
:
1244 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1249 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1252 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1257 EXPORT_SYMBOL(sock_wake_async
);
1259 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1260 struct socket
**res
, int kern
)
1263 struct socket
*sock
;
1264 const struct net_proto_family
*pf
;
1267 * Check protocol is in range
1269 if (family
< 0 || family
>= NPROTO
)
1270 return -EAFNOSUPPORT
;
1271 if (type
< 0 || type
>= SOCK_MAX
)
1276 This uglymoron is moved from INET layer to here to avoid
1277 deadlock in module load.
1279 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1283 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1289 err
= security_socket_create(family
, type
, protocol
, kern
);
1294 * Allocate the socket and allow the family to set things up. if
1295 * the protocol is 0, the family is instructed to select an appropriate
1298 sock
= sock_alloc();
1300 net_warn_ratelimited("socket: no more sockets\n");
1301 return -ENFILE
; /* Not exactly a match, but its the
1302 closest posix thing */
1307 #ifdef CONFIG_MODULES
1308 /* Attempt to load a protocol module if the find failed.
1310 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1311 * requested real, full-featured networking support upon configuration.
1312 * Otherwise module support will break!
1314 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1315 request_module("net-pf-%d", family
);
1319 pf
= rcu_dereference(net_families
[family
]);
1320 err
= -EAFNOSUPPORT
;
1325 * We will call the ->create function, that possibly is in a loadable
1326 * module, so we have to bump that loadable module refcnt first.
1328 if (!try_module_get(pf
->owner
))
1331 /* Now protected by module ref count */
1334 err
= pf
->create(net
, sock
, protocol
, kern
);
1336 goto out_module_put
;
1339 * Now to bump the refcnt of the [loadable] module that owns this
1340 * socket at sock_release time we decrement its refcnt.
1342 if (!try_module_get(sock
->ops
->owner
))
1343 goto out_module_busy
;
1346 * Now that we're done with the ->create function, the [loadable]
1347 * module can have its refcnt decremented
1349 module_put(pf
->owner
);
1350 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1352 goto out_sock_release
;
1358 err
= -EAFNOSUPPORT
;
1361 module_put(pf
->owner
);
1368 goto out_sock_release
;
1370 EXPORT_SYMBOL(__sock_create
);
1372 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1374 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1376 EXPORT_SYMBOL(sock_create
);
1378 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1380 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1382 EXPORT_SYMBOL(sock_create_kern
);
1384 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1387 struct socket
*sock
;
1390 /* Check the SOCK_* constants for consistency. */
1391 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1392 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1393 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1394 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1396 flags
= type
& ~SOCK_TYPE_MASK
;
1397 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1399 type
&= SOCK_TYPE_MASK
;
1401 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1402 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1404 retval
= sock_create(family
, type
, protocol
, &sock
);
1408 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1413 /* It may be already another descriptor 8) Not kernel problem. */
1422 * Create a pair of connected sockets.
1425 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1426 int __user
*, usockvec
)
1428 struct socket
*sock1
, *sock2
;
1430 struct file
*newfile1
, *newfile2
;
1433 flags
= type
& ~SOCK_TYPE_MASK
;
1434 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1436 type
&= SOCK_TYPE_MASK
;
1438 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1439 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1442 * Obtain the first socket and check if the underlying protocol
1443 * supports the socketpair call.
1446 err
= sock_create(family
, type
, protocol
, &sock1
);
1450 err
= sock_create(family
, type
, protocol
, &sock2
);
1454 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1456 goto out_release_both
;
1458 fd1
= get_unused_fd_flags(flags
);
1459 if (unlikely(fd1
< 0)) {
1461 goto out_release_both
;
1463 fd2
= get_unused_fd_flags(flags
);
1464 if (unlikely(fd2
< 0)) {
1467 goto out_release_both
;
1470 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1471 if (unlikely(IS_ERR(newfile1
))) {
1472 err
= PTR_ERR(newfile1
);
1475 goto out_release_both
;
1478 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1479 if (IS_ERR(newfile2
)) {
1480 err
= PTR_ERR(newfile2
);
1484 sock_release(sock2
);
1488 audit_fd_pair(fd1
, fd2
);
1489 fd_install(fd1
, newfile1
);
1490 fd_install(fd2
, newfile2
);
1491 /* fd1 and fd2 may be already another descriptors.
1492 * Not kernel problem.
1495 err
= put_user(fd1
, &usockvec
[0]);
1497 err
= put_user(fd2
, &usockvec
[1]);
1506 sock_release(sock2
);
1508 sock_release(sock1
);
1514 * Bind a name to a socket. Nothing much to do here since it's
1515 * the protocol's responsibility to handle the local address.
1517 * We move the socket address to kernel space before we call
1518 * the protocol layer (having also checked the address is ok).
1521 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1523 struct socket
*sock
;
1524 struct sockaddr_storage address
;
1525 int err
, fput_needed
;
1527 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1529 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1531 err
= security_socket_bind(sock
,
1532 (struct sockaddr
*)&address
,
1535 err
= sock
->ops
->bind(sock
,
1539 fput_light(sock
->file
, fput_needed
);
1545 * Perform a listen. Basically, we allow the protocol to do anything
1546 * necessary for a listen, and if that works, we mark the socket as
1547 * ready for listening.
1550 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1552 struct socket
*sock
;
1553 int err
, fput_needed
;
1556 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1558 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1559 if ((unsigned int)backlog
> somaxconn
)
1560 backlog
= somaxconn
;
1562 err
= security_socket_listen(sock
, backlog
);
1564 err
= sock
->ops
->listen(sock
, backlog
);
1566 fput_light(sock
->file
, fput_needed
);
1572 * For accept, we attempt to create a new socket, set up the link
1573 * with the client, wake up the client, then return the new
1574 * connected fd. We collect the address of the connector in kernel
1575 * space and move it to user at the very end. This is unclean because
1576 * we open the socket then return an error.
1578 * 1003.1g adds the ability to recvmsg() to query connection pending
1579 * status to recvmsg. We need to add that support in a way thats
1580 * clean when we restucture accept also.
1583 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1584 int __user
*, upeer_addrlen
, int, flags
)
1586 struct socket
*sock
, *newsock
;
1587 struct file
*newfile
;
1588 int err
, len
, newfd
, fput_needed
;
1589 struct sockaddr_storage address
;
1591 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1594 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1595 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1597 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1602 newsock
= sock_alloc();
1606 newsock
->type
= sock
->type
;
1607 newsock
->ops
= sock
->ops
;
1610 * We don't need try_module_get here, as the listening socket (sock)
1611 * has the protocol module (sock->ops->owner) held.
1613 __module_get(newsock
->ops
->owner
);
1615 newfd
= get_unused_fd_flags(flags
);
1616 if (unlikely(newfd
< 0)) {
1618 sock_release(newsock
);
1621 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1622 if (unlikely(IS_ERR(newfile
))) {
1623 err
= PTR_ERR(newfile
);
1624 put_unused_fd(newfd
);
1625 sock_release(newsock
);
1629 err
= security_socket_accept(sock
, newsock
);
1633 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1637 if (upeer_sockaddr
) {
1638 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1640 err
= -ECONNABORTED
;
1643 err
= move_addr_to_user(&address
,
1644 len
, upeer_sockaddr
, upeer_addrlen
);
1649 /* File flags are not inherited via accept() unlike another OSes. */
1651 fd_install(newfd
, newfile
);
1655 fput_light(sock
->file
, fput_needed
);
1660 put_unused_fd(newfd
);
1664 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1665 int __user
*, upeer_addrlen
)
1667 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1671 * Attempt to connect to a socket with the server address. The address
1672 * is in user space so we verify it is OK and move it to kernel space.
1674 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1677 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1678 * other SEQPACKET protocols that take time to connect() as it doesn't
1679 * include the -EINPROGRESS status for such sockets.
1682 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1685 struct socket
*sock
;
1686 struct sockaddr_storage address
;
1687 int err
, fput_needed
;
1689 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1692 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1697 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1701 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1702 sock
->file
->f_flags
);
1704 fput_light(sock
->file
, fput_needed
);
1710 * Get the local address ('name') of a socket object. Move the obtained
1711 * name to user space.
1714 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1715 int __user
*, usockaddr_len
)
1717 struct socket
*sock
;
1718 struct sockaddr_storage address
;
1719 int len
, err
, fput_needed
;
1721 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1725 err
= security_socket_getsockname(sock
);
1729 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1732 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1735 fput_light(sock
->file
, fput_needed
);
1741 * Get the remote address ('name') of a socket object. Move the obtained
1742 * name to user space.
1745 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1746 int __user
*, usockaddr_len
)
1748 struct socket
*sock
;
1749 struct sockaddr_storage address
;
1750 int len
, err
, fput_needed
;
1752 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1754 err
= security_socket_getpeername(sock
);
1756 fput_light(sock
->file
, fput_needed
);
1761 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1764 err
= move_addr_to_user(&address
, len
, usockaddr
,
1766 fput_light(sock
->file
, fput_needed
);
1772 * Send a datagram to a given address. We move the address into kernel
1773 * space and check the user space data area is readable before invoking
1777 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1778 unsigned int, flags
, struct sockaddr __user
*, addr
,
1781 struct socket
*sock
;
1782 struct sockaddr_storage address
;
1790 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1794 iov
.iov_base
= buff
;
1796 msg
.msg_name
= NULL
;
1799 msg
.msg_control
= NULL
;
1800 msg
.msg_controllen
= 0;
1801 msg
.msg_namelen
= 0;
1803 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1806 msg
.msg_name
= (struct sockaddr
*)&address
;
1807 msg
.msg_namelen
= addr_len
;
1809 if (sock
->file
->f_flags
& O_NONBLOCK
)
1810 flags
|= MSG_DONTWAIT
;
1811 msg
.msg_flags
= flags
;
1812 err
= sock_sendmsg(sock
, &msg
, len
);
1815 fput_light(sock
->file
, fput_needed
);
1821 * Send a datagram down a socket.
1824 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1825 unsigned int, flags
)
1827 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1831 * Receive a frame from the socket and optionally record the address of the
1832 * sender. We verify the buffers are writable and if needed move the
1833 * sender address from kernel to user space.
1836 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1837 unsigned int, flags
, struct sockaddr __user
*, addr
,
1838 int __user
*, addr_len
)
1840 struct socket
*sock
;
1843 struct sockaddr_storage address
;
1849 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1853 msg
.msg_control
= NULL
;
1854 msg
.msg_controllen
= 0;
1858 iov
.iov_base
= ubuf
;
1859 msg
.msg_name
= (struct sockaddr
*)&address
;
1860 msg
.msg_namelen
= sizeof(address
);
1861 if (sock
->file
->f_flags
& O_NONBLOCK
)
1862 flags
|= MSG_DONTWAIT
;
1863 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1865 if (err
>= 0 && addr
!= NULL
) {
1866 err2
= move_addr_to_user(&address
,
1867 msg
.msg_namelen
, addr
, addr_len
);
1872 fput_light(sock
->file
, fput_needed
);
1878 * Receive a datagram from a socket.
1881 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1884 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1888 * Set a socket option. Because we don't know the option lengths we have
1889 * to pass the user mode parameter for the protocols to sort out.
1892 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1893 char __user
*, optval
, int, optlen
)
1895 int err
, fput_needed
;
1896 struct socket
*sock
;
1901 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1903 err
= security_socket_setsockopt(sock
, level
, optname
);
1907 if (level
== SOL_SOCKET
)
1909 sock_setsockopt(sock
, level
, optname
, optval
,
1913 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1916 fput_light(sock
->file
, fput_needed
);
1922 * Get a socket option. Because we don't know the option lengths we have
1923 * to pass a user mode parameter for the protocols to sort out.
1926 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1927 char __user
*, optval
, int __user
*, optlen
)
1929 int err
, fput_needed
;
1930 struct socket
*sock
;
1932 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1934 err
= security_socket_getsockopt(sock
, level
, optname
);
1938 if (level
== SOL_SOCKET
)
1940 sock_getsockopt(sock
, level
, optname
, optval
,
1944 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1947 fput_light(sock
->file
, fput_needed
);
1953 * Shutdown a socket.
1956 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1958 int err
, fput_needed
;
1959 struct socket
*sock
;
1961 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1963 err
= security_socket_shutdown(sock
, how
);
1965 err
= sock
->ops
->shutdown(sock
, how
);
1966 fput_light(sock
->file
, fput_needed
);
1971 /* A couple of helpful macros for getting the address of the 32/64 bit
1972 * fields which are the same type (int / unsigned) on our platforms.
1974 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1975 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1976 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1978 struct used_address
{
1979 struct sockaddr_storage name
;
1980 unsigned int name_len
;
1983 static int __sys_sendmsg(struct socket
*sock
, struct msghdr __user
*msg
,
1984 struct msghdr
*msg_sys
, unsigned int flags
,
1985 struct used_address
*used_address
)
1987 struct compat_msghdr __user
*msg_compat
=
1988 (struct compat_msghdr __user
*)msg
;
1989 struct sockaddr_storage address
;
1990 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1991 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1992 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1993 /* 20 is size of ipv6_pktinfo */
1994 unsigned char *ctl_buf
= ctl
;
1995 int err
, ctl_len
, total_len
;
1998 if (MSG_CMSG_COMPAT
& flags
) {
1999 if (get_compat_msghdr(msg_sys
, msg_compat
))
2001 } else if (copy_from_user(msg_sys
, msg
, sizeof(struct msghdr
)))
2004 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2006 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2009 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2015 /* This will also move the address data into kernel space */
2016 if (MSG_CMSG_COMPAT
& flags
) {
2017 err
= verify_compat_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2019 err
= verify_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2026 if (msg_sys
->msg_controllen
> INT_MAX
)
2028 ctl_len
= msg_sys
->msg_controllen
;
2029 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2031 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2035 ctl_buf
= msg_sys
->msg_control
;
2036 ctl_len
= msg_sys
->msg_controllen
;
2037 } else if (ctl_len
) {
2038 if (ctl_len
> sizeof(ctl
)) {
2039 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2040 if (ctl_buf
== NULL
)
2045 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2046 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2047 * checking falls down on this.
2049 if (copy_from_user(ctl_buf
,
2050 (void __user __force
*)msg_sys
->msg_control
,
2053 msg_sys
->msg_control
= ctl_buf
;
2055 msg_sys
->msg_flags
= flags
;
2057 if (sock
->file
->f_flags
& O_NONBLOCK
)
2058 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2060 * If this is sendmmsg() and current destination address is same as
2061 * previously succeeded address, omit asking LSM's decision.
2062 * used_address->name_len is initialized to UINT_MAX so that the first
2063 * destination address never matches.
2065 if (used_address
&& msg_sys
->msg_name
&&
2066 used_address
->name_len
== msg_sys
->msg_namelen
&&
2067 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2068 used_address
->name_len
)) {
2069 err
= sock_sendmsg_nosec(sock
, msg_sys
, total_len
);
2072 err
= sock_sendmsg(sock
, msg_sys
, total_len
);
2074 * If this is sendmmsg() and sending to current destination address was
2075 * successful, remember it.
2077 if (used_address
&& err
>= 0) {
2078 used_address
->name_len
= msg_sys
->msg_namelen
;
2079 if (msg_sys
->msg_name
)
2080 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2081 used_address
->name_len
);
2086 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2088 if (iov
!= iovstack
)
2095 * BSD sendmsg interface
2098 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned int, flags
)
2100 int fput_needed
, err
;
2101 struct msghdr msg_sys
;
2102 struct socket
*sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2107 err
= __sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
);
2109 fput_light(sock
->file
, fput_needed
);
2115 * Linux sendmmsg interface
2118 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2121 int fput_needed
, err
, datagrams
;
2122 struct socket
*sock
;
2123 struct mmsghdr __user
*entry
;
2124 struct compat_mmsghdr __user
*compat_entry
;
2125 struct msghdr msg_sys
;
2126 struct used_address used_address
;
2128 if (vlen
> UIO_MAXIOV
)
2133 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2137 used_address
.name_len
= UINT_MAX
;
2139 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2142 while (datagrams
< vlen
) {
2143 if (MSG_CMSG_COMPAT
& flags
) {
2144 err
= __sys_sendmsg(sock
, (struct msghdr __user
*)compat_entry
,
2145 &msg_sys
, flags
, &used_address
);
2148 err
= __put_user(err
, &compat_entry
->msg_len
);
2151 err
= __sys_sendmsg(sock
, (struct msghdr __user
*)entry
,
2152 &msg_sys
, flags
, &used_address
);
2155 err
= put_user(err
, &entry
->msg_len
);
2164 fput_light(sock
->file
, fput_needed
);
2166 /* We only return an error if no datagrams were able to be sent */
2173 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2174 unsigned int, vlen
, unsigned int, flags
)
2176 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2179 static int __sys_recvmsg(struct socket
*sock
, struct msghdr __user
*msg
,
2180 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2182 struct compat_msghdr __user
*msg_compat
=
2183 (struct compat_msghdr __user
*)msg
;
2184 struct iovec iovstack
[UIO_FASTIOV
];
2185 struct iovec
*iov
= iovstack
;
2186 unsigned long cmsg_ptr
;
2187 int err
, total_len
, len
;
2189 /* kernel mode address */
2190 struct sockaddr_storage addr
;
2192 /* user mode address pointers */
2193 struct sockaddr __user
*uaddr
;
2194 int __user
*uaddr_len
;
2196 if (MSG_CMSG_COMPAT
& flags
) {
2197 if (get_compat_msghdr(msg_sys
, msg_compat
))
2199 } else if (copy_from_user(msg_sys
, msg
, sizeof(struct msghdr
)))
2202 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2204 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2207 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2214 * Save the user-mode address (verify_iovec will change the
2215 * kernel msghdr to use the kernel address space)
2218 uaddr
= (__force
void __user
*)msg_sys
->msg_name
;
2219 uaddr_len
= COMPAT_NAMELEN(msg
);
2220 if (MSG_CMSG_COMPAT
& flags
) {
2221 err
= verify_compat_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2223 err
= verify_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2228 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2229 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2231 if (sock
->file
->f_flags
& O_NONBLOCK
)
2232 flags
|= MSG_DONTWAIT
;
2233 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2239 if (uaddr
!= NULL
) {
2240 err
= move_addr_to_user(&addr
,
2241 msg_sys
->msg_namelen
, uaddr
,
2246 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2250 if (MSG_CMSG_COMPAT
& flags
)
2251 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2252 &msg_compat
->msg_controllen
);
2254 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2255 &msg
->msg_controllen
);
2261 if (iov
!= iovstack
)
2268 * BSD recvmsg interface
2271 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
2272 unsigned int, flags
)
2274 int fput_needed
, err
;
2275 struct msghdr msg_sys
;
2276 struct socket
*sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2281 err
= __sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2283 fput_light(sock
->file
, fput_needed
);
2289 * Linux recvmmsg interface
2292 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2293 unsigned int flags
, struct timespec
*timeout
)
2295 int fput_needed
, err
, datagrams
;
2296 struct socket
*sock
;
2297 struct mmsghdr __user
*entry
;
2298 struct compat_mmsghdr __user
*compat_entry
;
2299 struct msghdr msg_sys
;
2300 struct timespec end_time
;
2303 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2309 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2313 err
= sock_error(sock
->sk
);
2318 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2320 while (datagrams
< vlen
) {
2322 * No need to ask LSM for more than the first datagram.
2324 if (MSG_CMSG_COMPAT
& flags
) {
2325 err
= __sys_recvmsg(sock
, (struct msghdr __user
*)compat_entry
,
2326 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2330 err
= __put_user(err
, &compat_entry
->msg_len
);
2333 err
= __sys_recvmsg(sock
, (struct msghdr __user
*)entry
,
2334 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2338 err
= put_user(err
, &entry
->msg_len
);
2346 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2347 if (flags
& MSG_WAITFORONE
)
2348 flags
|= MSG_DONTWAIT
;
2351 ktime_get_ts(timeout
);
2352 *timeout
= timespec_sub(end_time
, *timeout
);
2353 if (timeout
->tv_sec
< 0) {
2354 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2358 /* Timeout, return less than vlen datagrams */
2359 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2363 /* Out of band data, return right away */
2364 if (msg_sys
.msg_flags
& MSG_OOB
)
2369 fput_light(sock
->file
, fput_needed
);
2374 if (datagrams
!= 0) {
2376 * We may return less entries than requested (vlen) if the
2377 * sock is non block and there aren't enough datagrams...
2379 if (err
!= -EAGAIN
) {
2381 * ... or if recvmsg returns an error after we
2382 * received some datagrams, where we record the
2383 * error to return on the next call or if the
2384 * app asks about it using getsockopt(SO_ERROR).
2386 sock
->sk
->sk_err
= -err
;
2395 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2396 unsigned int, vlen
, unsigned int, flags
,
2397 struct timespec __user
*, timeout
)
2400 struct timespec timeout_sys
;
2403 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2405 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2408 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2410 if (datagrams
> 0 &&
2411 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2412 datagrams
= -EFAULT
;
2417 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2418 /* Argument list sizes for sys_socketcall */
2419 #define AL(x) ((x) * sizeof(unsigned long))
2420 static const unsigned char nargs
[21] = {
2421 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2422 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2423 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2430 * System call vectors.
2432 * Argument checking cleaned up. Saved 20% in size.
2433 * This function doesn't need to set the kernel lock because
2434 * it is set by the callees.
2437 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2440 unsigned long a0
, a1
;
2444 if (call
< 1 || call
> SYS_SENDMMSG
)
2448 if (len
> sizeof(a
))
2451 /* copy_from_user should be SMP safe. */
2452 if (copy_from_user(a
, args
, len
))
2455 audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2462 err
= sys_socket(a0
, a1
, a
[2]);
2465 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2468 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2471 err
= sys_listen(a0
, a1
);
2474 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2475 (int __user
*)a
[2], 0);
2477 case SYS_GETSOCKNAME
:
2479 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2480 (int __user
*)a
[2]);
2482 case SYS_GETPEERNAME
:
2484 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2485 (int __user
*)a
[2]);
2487 case SYS_SOCKETPAIR
:
2488 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2491 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2494 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2495 (struct sockaddr __user
*)a
[4], a
[5]);
2498 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2501 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2502 (struct sockaddr __user
*)a
[4],
2503 (int __user
*)a
[5]);
2506 err
= sys_shutdown(a0
, a1
);
2508 case SYS_SETSOCKOPT
:
2509 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2511 case SYS_GETSOCKOPT
:
2513 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2514 (int __user
*)a
[4]);
2517 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2520 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2523 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2526 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2527 (struct timespec __user
*)a
[4]);
2530 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2531 (int __user
*)a
[2], a
[3]);
2540 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2543 * sock_register - add a socket protocol handler
2544 * @ops: description of protocol
2546 * This function is called by a protocol handler that wants to
2547 * advertise its address family, and have it linked into the
2548 * socket interface. The value ops->family coresponds to the
2549 * socket system call protocol family.
2551 int sock_register(const struct net_proto_family
*ops
)
2555 if (ops
->family
>= NPROTO
) {
2556 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2561 spin_lock(&net_family_lock
);
2562 if (rcu_dereference_protected(net_families
[ops
->family
],
2563 lockdep_is_held(&net_family_lock
)))
2566 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2569 spin_unlock(&net_family_lock
);
2571 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2574 EXPORT_SYMBOL(sock_register
);
2577 * sock_unregister - remove a protocol handler
2578 * @family: protocol family to remove
2580 * This function is called by a protocol handler that wants to
2581 * remove its address family, and have it unlinked from the
2582 * new socket creation.
2584 * If protocol handler is a module, then it can use module reference
2585 * counts to protect against new references. If protocol handler is not
2586 * a module then it needs to provide its own protection in
2587 * the ops->create routine.
2589 void sock_unregister(int family
)
2591 BUG_ON(family
< 0 || family
>= NPROTO
);
2593 spin_lock(&net_family_lock
);
2594 RCU_INIT_POINTER(net_families
[family
], NULL
);
2595 spin_unlock(&net_family_lock
);
2599 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2601 EXPORT_SYMBOL(sock_unregister
);
2603 static int __init
sock_init(void)
2607 * Initialize the network sysctl infrastructure.
2609 err
= net_sysctl_init();
2614 * Initialize skbuff SLAB cache
2619 * Initialize the protocols module.
2624 err
= register_filesystem(&sock_fs_type
);
2627 sock_mnt
= kern_mount(&sock_fs_type
);
2628 if (IS_ERR(sock_mnt
)) {
2629 err
= PTR_ERR(sock_mnt
);
2633 /* The real protocol initialization is performed in later initcalls.
2636 #ifdef CONFIG_NETFILTER
2640 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2641 skb_timestamping_init();
2648 unregister_filesystem(&sock_fs_type
);
2653 core_initcall(sock_init
); /* early initcall */
2655 #ifdef CONFIG_PROC_FS
2656 void socket_seq_show(struct seq_file
*seq
)
2661 for_each_possible_cpu(cpu
)
2662 counter
+= per_cpu(sockets_in_use
, cpu
);
2664 /* It can be negative, by the way. 8) */
2668 seq_printf(seq
, "sockets: used %d\n", counter
);
2670 #endif /* CONFIG_PROC_FS */
2672 #ifdef CONFIG_COMPAT
2673 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2674 unsigned int cmd
, void __user
*up
)
2676 mm_segment_t old_fs
= get_fs();
2681 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2684 err
= compat_put_timeval(&ktv
, up
);
2689 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2690 unsigned int cmd
, void __user
*up
)
2692 mm_segment_t old_fs
= get_fs();
2693 struct timespec kts
;
2697 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2700 err
= compat_put_timespec(&kts
, up
);
2705 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2707 struct ifreq __user
*uifr
;
2710 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2711 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2714 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2718 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2724 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2726 struct compat_ifconf ifc32
;
2728 struct ifconf __user
*uifc
;
2729 struct compat_ifreq __user
*ifr32
;
2730 struct ifreq __user
*ifr
;
2734 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2737 memset(&ifc
, 0, sizeof(ifc
));
2738 if (ifc32
.ifcbuf
== 0) {
2742 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2744 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2745 sizeof(struct ifreq
);
2746 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2748 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2749 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2750 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2751 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2757 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2760 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2764 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2768 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2770 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2771 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2772 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2778 if (ifc32
.ifcbuf
== 0) {
2779 /* Translate from 64-bit structure multiple to
2783 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2788 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2794 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2796 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2797 bool convert_in
= false, convert_out
= false;
2798 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2799 struct ethtool_rxnfc __user
*rxnfc
;
2800 struct ifreq __user
*ifr
;
2801 u32 rule_cnt
= 0, actual_rule_cnt
;
2806 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2809 compat_rxnfc
= compat_ptr(data
);
2811 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2814 /* Most ethtool structures are defined without padding.
2815 * Unfortunately struct ethtool_rxnfc is an exception.
2820 case ETHTOOL_GRXCLSRLALL
:
2821 /* Buffer size is variable */
2822 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2824 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2826 buf_size
+= rule_cnt
* sizeof(u32
);
2828 case ETHTOOL_GRXRINGS
:
2829 case ETHTOOL_GRXCLSRLCNT
:
2830 case ETHTOOL_GRXCLSRULE
:
2831 case ETHTOOL_SRXCLSRLINS
:
2834 case ETHTOOL_SRXCLSRLDEL
:
2835 buf_size
+= sizeof(struct ethtool_rxnfc
);
2840 ifr
= compat_alloc_user_space(buf_size
);
2841 rxnfc
= (void *)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2843 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2846 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2847 &ifr
->ifr_ifru
.ifru_data
))
2851 /* We expect there to be holes between fs.m_ext and
2852 * fs.ring_cookie and at the end of fs, but nowhere else.
2854 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2855 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2856 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2857 sizeof(rxnfc
->fs
.m_ext
));
2859 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2860 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2861 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2862 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2864 if (copy_in_user(rxnfc
, compat_rxnfc
,
2865 (void *)(&rxnfc
->fs
.m_ext
+ 1) -
2867 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2868 &compat_rxnfc
->fs
.ring_cookie
,
2869 (void *)(&rxnfc
->fs
.location
+ 1) -
2870 (void *)&rxnfc
->fs
.ring_cookie
) ||
2871 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2872 sizeof(rxnfc
->rule_cnt
)))
2876 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2881 if (copy_in_user(compat_rxnfc
, rxnfc
,
2882 (const void *)(&rxnfc
->fs
.m_ext
+ 1) -
2883 (const void *)rxnfc
) ||
2884 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2885 &rxnfc
->fs
.ring_cookie
,
2886 (const void *)(&rxnfc
->fs
.location
+ 1) -
2887 (const void *)&rxnfc
->fs
.ring_cookie
) ||
2888 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2889 sizeof(rxnfc
->rule_cnt
)))
2892 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2893 /* As an optimisation, we only copy the actual
2894 * number of rules that the underlying
2895 * function returned. Since Mallory might
2896 * change the rule count in user memory, we
2897 * check that it is less than the rule count
2898 * originally given (as the user buffer size),
2899 * which has been range-checked.
2901 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2903 if (actual_rule_cnt
< rule_cnt
)
2904 rule_cnt
= actual_rule_cnt
;
2905 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2906 &rxnfc
->rule_locs
[0],
2907 rule_cnt
* sizeof(u32
)))
2915 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2918 compat_uptr_t uptr32
;
2919 struct ifreq __user
*uifr
;
2921 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2922 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2925 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2928 uptr
= compat_ptr(uptr32
);
2930 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2933 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2936 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2937 struct compat_ifreq __user
*ifr32
)
2940 struct ifreq __user
*uifr
;
2941 mm_segment_t old_fs
;
2947 case SIOCBONDENSLAVE
:
2948 case SIOCBONDRELEASE
:
2949 case SIOCBONDSETHWADDR
:
2950 case SIOCBONDCHANGEACTIVE
:
2951 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2956 err
= dev_ioctl(net
, cmd
,
2957 (struct ifreq __user __force
*) &kifr
);
2961 case SIOCBONDSLAVEINFOQUERY
:
2962 case SIOCBONDINFOQUERY
:
2963 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2964 if (copy_in_user(&uifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2967 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2970 datap
= compat_ptr(data
);
2971 if (put_user(datap
, &uifr
->ifr_ifru
.ifru_data
))
2974 return dev_ioctl(net
, cmd
, uifr
);
2976 return -ENOIOCTLCMD
;
2980 static int siocdevprivate_ioctl(struct net
*net
, unsigned int cmd
,
2981 struct compat_ifreq __user
*u_ifreq32
)
2983 struct ifreq __user
*u_ifreq64
;
2984 char tmp_buf
[IFNAMSIZ
];
2985 void __user
*data64
;
2988 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2991 if (__get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2993 data64
= compat_ptr(data32
);
2995 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2997 /* Don't check these user accesses, just let that get trapped
2998 * in the ioctl handler instead.
3000 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
3003 if (__put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
3006 return dev_ioctl(net
, cmd
, u_ifreq64
);
3009 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
3010 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
3012 struct ifreq __user
*uifr
;
3015 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3016 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3019 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3030 case SIOCGIFBRDADDR
:
3031 case SIOCGIFDSTADDR
:
3032 case SIOCGIFNETMASK
:
3037 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3045 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3046 struct compat_ifreq __user
*uifr32
)
3049 struct compat_ifmap __user
*uifmap32
;
3050 mm_segment_t old_fs
;
3053 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3054 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3055 err
|= __get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3056 err
|= __get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3057 err
|= __get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3058 err
|= __get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3059 err
|= __get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3060 err
|= __get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3066 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
3069 if (cmd
== SIOCGIFMAP
&& !err
) {
3070 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3071 err
|= __put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3072 err
|= __put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3073 err
|= __put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3074 err
|= __put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3075 err
|= __put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3076 err
|= __put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3083 static int compat_siocshwtstamp(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3086 compat_uptr_t uptr32
;
3087 struct ifreq __user
*uifr
;
3089 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3090 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
3093 if (get_user(uptr32
, &uifr32
->ifr_data
))
3096 uptr
= compat_ptr(uptr32
);
3098 if (put_user(uptr
, &uifr
->ifr_data
))
3101 return dev_ioctl(net
, SIOCSHWTSTAMP
, uifr
);
3106 struct sockaddr rt_dst
; /* target address */
3107 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3108 struct sockaddr rt_genmask
; /* target network mask (IP) */
3109 unsigned short rt_flags
;
3112 unsigned char rt_tos
;
3113 unsigned char rt_class
;
3115 short rt_metric
; /* +1 for binary compatibility! */
3116 /* char * */ u32 rt_dev
; /* forcing the device at add */
3117 u32 rt_mtu
; /* per route MTU/Window */
3118 u32 rt_window
; /* Window clamping */
3119 unsigned short rt_irtt
; /* Initial RTT */
3122 struct in6_rtmsg32
{
3123 struct in6_addr rtmsg_dst
;
3124 struct in6_addr rtmsg_src
;
3125 struct in6_addr rtmsg_gateway
;
3135 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3136 unsigned int cmd
, void __user
*argp
)
3140 struct in6_rtmsg r6
;
3144 mm_segment_t old_fs
= get_fs();
3146 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3147 struct in6_rtmsg32 __user
*ur6
= argp
;
3148 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3149 3 * sizeof(struct in6_addr
));
3150 ret
|= __get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3151 ret
|= __get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3152 ret
|= __get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3153 ret
|= __get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3154 ret
|= __get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3155 ret
|= __get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3156 ret
|= __get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3160 struct rtentry32 __user
*ur4
= argp
;
3161 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3162 3 * sizeof(struct sockaddr
));
3163 ret
|= __get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3164 ret
|= __get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3165 ret
|= __get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3166 ret
|= __get_user(r4
.rt_window
, &(ur4
->rt_window
));
3167 ret
|= __get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3168 ret
|= __get_user(rtdev
, &(ur4
->rt_dev
));
3170 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3171 r4
.rt_dev
= (char __user __force
*)devname
;
3185 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3192 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3193 * for some operations; this forces use of the newer bridge-utils that
3194 * use compatible ioctls
3196 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3200 if (get_user(tmp
, argp
))
3202 if (tmp
== BRCTL_GET_VERSION
)
3203 return BRCTL_VERSION
+ 1;
3207 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3208 unsigned int cmd
, unsigned long arg
)
3210 void __user
*argp
= compat_ptr(arg
);
3211 struct sock
*sk
= sock
->sk
;
3212 struct net
*net
= sock_net(sk
);
3214 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3215 return siocdevprivate_ioctl(net
, cmd
, argp
);
3220 return old_bridge_ioctl(argp
);
3222 return dev_ifname32(net
, argp
);
3224 return dev_ifconf(net
, argp
);
3226 return ethtool_ioctl(net
, argp
);
3228 return compat_siocwandev(net
, argp
);
3231 return compat_sioc_ifmap(net
, cmd
, argp
);
3232 case SIOCBONDENSLAVE
:
3233 case SIOCBONDRELEASE
:
3234 case SIOCBONDSETHWADDR
:
3235 case SIOCBONDSLAVEINFOQUERY
:
3236 case SIOCBONDINFOQUERY
:
3237 case SIOCBONDCHANGEACTIVE
:
3238 return bond_ioctl(net
, cmd
, argp
);
3241 return routing_ioctl(net
, sock
, cmd
, argp
);
3243 return do_siocgstamp(net
, sock
, cmd
, argp
);
3245 return do_siocgstampns(net
, sock
, cmd
, argp
);
3247 return compat_siocshwtstamp(net
, argp
);
3259 return sock_ioctl(file
, cmd
, arg
);
3276 case SIOCSIFHWBROADCAST
:
3278 case SIOCGIFBRDADDR
:
3279 case SIOCSIFBRDADDR
:
3280 case SIOCGIFDSTADDR
:
3281 case SIOCSIFDSTADDR
:
3282 case SIOCGIFNETMASK
:
3283 case SIOCSIFNETMASK
:
3294 return dev_ifsioc(net
, sock
, cmd
, argp
);
3300 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3303 return -ENOIOCTLCMD
;
3306 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3309 struct socket
*sock
= file
->private_data
;
3310 int ret
= -ENOIOCTLCMD
;
3317 if (sock
->ops
->compat_ioctl
)
3318 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3320 if (ret
== -ENOIOCTLCMD
&&
3321 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3322 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3324 if (ret
== -ENOIOCTLCMD
)
3325 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3331 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3333 return sock
->ops
->bind(sock
, addr
, addrlen
);
3335 EXPORT_SYMBOL(kernel_bind
);
3337 int kernel_listen(struct socket
*sock
, int backlog
)
3339 return sock
->ops
->listen(sock
, backlog
);
3341 EXPORT_SYMBOL(kernel_listen
);
3343 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3345 struct sock
*sk
= sock
->sk
;
3348 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3353 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3355 sock_release(*newsock
);
3360 (*newsock
)->ops
= sock
->ops
;
3361 __module_get((*newsock
)->ops
->owner
);
3366 EXPORT_SYMBOL(kernel_accept
);
3368 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3371 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3373 EXPORT_SYMBOL(kernel_connect
);
3375 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3378 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3380 EXPORT_SYMBOL(kernel_getsockname
);
3382 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3385 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3387 EXPORT_SYMBOL(kernel_getpeername
);
3389 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3390 char *optval
, int *optlen
)
3392 mm_segment_t oldfs
= get_fs();
3393 char __user
*uoptval
;
3394 int __user
*uoptlen
;
3397 uoptval
= (char __user __force
*) optval
;
3398 uoptlen
= (int __user __force
*) optlen
;
3401 if (level
== SOL_SOCKET
)
3402 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3404 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3409 EXPORT_SYMBOL(kernel_getsockopt
);
3411 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3412 char *optval
, unsigned int optlen
)
3414 mm_segment_t oldfs
= get_fs();
3415 char __user
*uoptval
;
3418 uoptval
= (char __user __force
*) optval
;
3421 if (level
== SOL_SOCKET
)
3422 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3424 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3429 EXPORT_SYMBOL(kernel_setsockopt
);
3431 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3432 size_t size
, int flags
)
3434 if (sock
->ops
->sendpage
)
3435 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3437 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3439 EXPORT_SYMBOL(kernel_sendpage
);
3441 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3443 mm_segment_t oldfs
= get_fs();
3447 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3452 EXPORT_SYMBOL(kernel_sock_ioctl
);
3454 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3456 return sock
->ops
->shutdown(sock
, how
);
3458 EXPORT_SYMBOL(kernel_sock_shutdown
);