2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
37 #include "blk-cgroup.h"
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
43 DEFINE_IDA(blk_queue_ida
);
46 * For the allocated request tables
48 static struct kmem_cache
*request_cachep
;
51 * For queue allocation
53 struct kmem_cache
*blk_requestq_cachep
;
56 * Controlling structure to kblockd
58 static struct workqueue_struct
*kblockd_workqueue
;
60 static void drive_stat_acct(struct request
*rq
, int new_io
)
62 struct hd_struct
*part
;
63 int rw
= rq_data_dir(rq
);
66 if (!blk_do_io_stat(rq
))
69 cpu
= part_stat_lock();
73 part_stat_inc(cpu
, part
, merges
[rw
]);
75 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
76 if (!hd_struct_try_get(part
)) {
78 * The partition is already being removed,
79 * the request will be accounted on the disk only
81 * We take a reference on disk->part0 although that
82 * partition will never be deleted, so we can treat
83 * it as any other partition.
85 part
= &rq
->rq_disk
->part0
;
88 part_round_stats(cpu
, part
);
89 part_inc_in_flight(part
, rw
);
96 void blk_queue_congestion_threshold(struct request_queue
*q
)
100 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
101 if (nr
> q
->nr_requests
)
103 q
->nr_congestion_on
= nr
;
105 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
108 q
->nr_congestion_off
= nr
;
112 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
115 * Locates the passed device's request queue and returns the address of its
118 * Will return NULL if the request queue cannot be located.
120 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
122 struct backing_dev_info
*ret
= NULL
;
123 struct request_queue
*q
= bdev_get_queue(bdev
);
126 ret
= &q
->backing_dev_info
;
129 EXPORT_SYMBOL(blk_get_backing_dev_info
);
131 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
133 memset(rq
, 0, sizeof(*rq
));
135 INIT_LIST_HEAD(&rq
->queuelist
);
136 INIT_LIST_HEAD(&rq
->timeout_list
);
139 rq
->__sector
= (sector_t
) -1;
140 INIT_HLIST_NODE(&rq
->hash
);
141 RB_CLEAR_NODE(&rq
->rb_node
);
143 rq
->cmd_len
= BLK_MAX_CDB
;
146 rq
->start_time
= jiffies
;
147 set_start_time_ns(rq
);
150 EXPORT_SYMBOL(blk_rq_init
);
152 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
153 unsigned int nbytes
, int error
)
156 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
157 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
160 if (unlikely(nbytes
> bio
->bi_size
)) {
161 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
162 __func__
, nbytes
, bio
->bi_size
);
163 nbytes
= bio
->bi_size
;
166 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
167 set_bit(BIO_QUIET
, &bio
->bi_flags
);
169 bio
->bi_size
-= nbytes
;
170 bio
->bi_sector
+= (nbytes
>> 9);
172 if (bio_integrity(bio
))
173 bio_integrity_advance(bio
, nbytes
);
175 /* don't actually finish bio if it's part of flush sequence */
176 if (bio
->bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
177 bio_endio(bio
, error
);
180 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
184 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
185 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
188 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
189 (unsigned long long)blk_rq_pos(rq
),
190 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
191 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
192 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
194 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
195 printk(KERN_INFO
" cdb: ");
196 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
197 printk("%02x ", rq
->cmd
[bit
]);
201 EXPORT_SYMBOL(blk_dump_rq_flags
);
203 static void blk_delay_work(struct work_struct
*work
)
205 struct request_queue
*q
;
207 q
= container_of(work
, struct request_queue
, delay_work
.work
);
208 spin_lock_irq(q
->queue_lock
);
210 spin_unlock_irq(q
->queue_lock
);
214 * blk_delay_queue - restart queueing after defined interval
215 * @q: The &struct request_queue in question
216 * @msecs: Delay in msecs
219 * Sometimes queueing needs to be postponed for a little while, to allow
220 * resources to come back. This function will make sure that queueing is
221 * restarted around the specified time.
223 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
225 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
226 msecs_to_jiffies(msecs
));
228 EXPORT_SYMBOL(blk_delay_queue
);
231 * blk_start_queue - restart a previously stopped queue
232 * @q: The &struct request_queue in question
235 * blk_start_queue() will clear the stop flag on the queue, and call
236 * the request_fn for the queue if it was in a stopped state when
237 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 void blk_start_queue(struct request_queue
*q
)
241 WARN_ON(!irqs_disabled());
243 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
246 EXPORT_SYMBOL(blk_start_queue
);
249 * blk_stop_queue - stop a queue
250 * @q: The &struct request_queue in question
253 * The Linux block layer assumes that a block driver will consume all
254 * entries on the request queue when the request_fn strategy is called.
255 * Often this will not happen, because of hardware limitations (queue
256 * depth settings). If a device driver gets a 'queue full' response,
257 * or if it simply chooses not to queue more I/O at one point, it can
258 * call this function to prevent the request_fn from being called until
259 * the driver has signalled it's ready to go again. This happens by calling
260 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 void blk_stop_queue(struct request_queue
*q
)
264 __cancel_delayed_work(&q
->delay_work
);
265 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
267 EXPORT_SYMBOL(blk_stop_queue
);
270 * blk_sync_queue - cancel any pending callbacks on a queue
274 * The block layer may perform asynchronous callback activity
275 * on a queue, such as calling the unplug function after a timeout.
276 * A block device may call blk_sync_queue to ensure that any
277 * such activity is cancelled, thus allowing it to release resources
278 * that the callbacks might use. The caller must already have made sure
279 * that its ->make_request_fn will not re-add plugging prior to calling
282 * This function does not cancel any asynchronous activity arising
283 * out of elevator or throttling code. That would require elevaotor_exit()
284 * and blkcg_exit_queue() to be called with queue lock initialized.
287 void blk_sync_queue(struct request_queue
*q
)
289 del_timer_sync(&q
->timeout
);
290 cancel_delayed_work_sync(&q
->delay_work
);
292 EXPORT_SYMBOL(blk_sync_queue
);
295 * __blk_run_queue - run a single device queue
296 * @q: The queue to run
299 * See @blk_run_queue. This variant must be called with the queue lock
300 * held and interrupts disabled.
302 void __blk_run_queue(struct request_queue
*q
)
304 if (unlikely(blk_queue_stopped(q
)))
309 EXPORT_SYMBOL(__blk_run_queue
);
312 * blk_run_queue_async - run a single device queue in workqueue context
313 * @q: The queue to run
316 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
319 void blk_run_queue_async(struct request_queue
*q
)
321 if (likely(!blk_queue_stopped(q
))) {
322 __cancel_delayed_work(&q
->delay_work
);
323 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
326 EXPORT_SYMBOL(blk_run_queue_async
);
329 * blk_run_queue - run a single device queue
330 * @q: The queue to run
333 * Invoke request handling on this queue, if it has pending work to do.
334 * May be used to restart queueing when a request has completed.
336 void blk_run_queue(struct request_queue
*q
)
340 spin_lock_irqsave(q
->queue_lock
, flags
);
342 spin_unlock_irqrestore(q
->queue_lock
, flags
);
344 EXPORT_SYMBOL(blk_run_queue
);
346 void blk_put_queue(struct request_queue
*q
)
348 kobject_put(&q
->kobj
);
350 EXPORT_SYMBOL(blk_put_queue
);
353 * blk_drain_queue - drain requests from request_queue
355 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
357 * Drain requests from @q. If @drain_all is set, all requests are drained.
358 * If not, only ELVPRIV requests are drained. The caller is responsible
359 * for ensuring that no new requests which need to be drained are queued.
361 void blk_drain_queue(struct request_queue
*q
, bool drain_all
)
367 spin_lock_irq(q
->queue_lock
);
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
374 elv_drain_elevator(q
);
376 blkcg_drain_queue(q
);
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
385 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
388 drain
|= q
->rq
.elvpriv
;
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
396 drain
|= !list_empty(&q
->queue_head
);
397 for (i
= 0; i
< 2; i
++) {
398 drain
|= q
->rq
.count
[i
];
399 drain
|= q
->in_flight
[i
];
400 drain
|= !list_empty(&q
->flush_queue
[i
]);
404 spin_unlock_irq(q
->queue_lock
);
413 * blk_queue_bypass_start - enter queue bypass mode
414 * @q: queue of interest
416 * In bypass mode, only the dispatch FIFO queue of @q is used. This
417 * function makes @q enter bypass mode and drains all requests which were
418 * throttled or issued before. On return, it's guaranteed that no request
419 * is being throttled or has ELVPRIV set.
421 void blk_queue_bypass_start(struct request_queue
*q
)
423 spin_lock_irq(q
->queue_lock
);
425 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
426 spin_unlock_irq(q
->queue_lock
);
428 blk_drain_queue(q
, false);
430 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
433 * blk_queue_bypass_end - leave queue bypass mode
434 * @q: queue of interest
436 * Leave bypass mode and restore the normal queueing behavior.
438 void blk_queue_bypass_end(struct request_queue
*q
)
440 spin_lock_irq(q
->queue_lock
);
441 if (!--q
->bypass_depth
)
442 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
443 WARN_ON_ONCE(q
->bypass_depth
< 0);
444 spin_unlock_irq(q
->queue_lock
);
446 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
449 * blk_cleanup_queue - shutdown a request queue
450 * @q: request queue to shutdown
452 * Mark @q DEAD, drain all pending requests, destroy and put it. All
453 * future requests will be failed immediately with -ENODEV.
455 void blk_cleanup_queue(struct request_queue
*q
)
457 spinlock_t
*lock
= q
->queue_lock
;
459 /* mark @q DEAD, no new request or merges will be allowed afterwards */
460 mutex_lock(&q
->sysfs_lock
);
461 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
465 /* dead queue is permanently in bypass mode till released */
467 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
469 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
470 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
471 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
473 if (q
->queue_lock
!= &q
->__queue_lock
)
474 q
->queue_lock
= &q
->__queue_lock
;
476 spin_unlock_irq(lock
);
477 mutex_unlock(&q
->sysfs_lock
);
479 /* drain all requests queued before DEAD marking */
480 blk_drain_queue(q
, true);
482 /* @q won't process any more request, flush async actions */
483 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
486 /* @q is and will stay empty, shutdown and put */
489 EXPORT_SYMBOL(blk_cleanup_queue
);
491 static int blk_init_free_list(struct request_queue
*q
)
493 struct request_list
*rl
= &q
->rq
;
495 if (unlikely(rl
->rq_pool
))
498 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
499 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
501 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
502 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
504 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
505 mempool_free_slab
, request_cachep
, q
->node
);
513 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
515 return blk_alloc_queue_node(gfp_mask
, -1);
517 EXPORT_SYMBOL(blk_alloc_queue
);
519 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
521 struct request_queue
*q
;
524 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
525 gfp_mask
| __GFP_ZERO
, node_id
);
529 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, GFP_KERNEL
);
533 q
->backing_dev_info
.ra_pages
=
534 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
535 q
->backing_dev_info
.state
= 0;
536 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
537 q
->backing_dev_info
.name
= "block";
540 err
= bdi_init(&q
->backing_dev_info
);
544 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
545 laptop_mode_timer_fn
, (unsigned long) q
);
546 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
547 INIT_LIST_HEAD(&q
->queue_head
);
548 INIT_LIST_HEAD(&q
->timeout_list
);
549 INIT_LIST_HEAD(&q
->icq_list
);
550 INIT_LIST_HEAD(&q
->flush_queue
[0]);
551 INIT_LIST_HEAD(&q
->flush_queue
[1]);
552 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
553 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
555 kobject_init(&q
->kobj
, &blk_queue_ktype
);
557 mutex_init(&q
->sysfs_lock
);
558 spin_lock_init(&q
->__queue_lock
);
561 * By default initialize queue_lock to internal lock and driver can
562 * override it later if need be.
564 q
->queue_lock
= &q
->__queue_lock
;
566 if (blkcg_init_queue(q
))
572 ida_simple_remove(&blk_queue_ida
, q
->id
);
574 kmem_cache_free(blk_requestq_cachep
, q
);
577 EXPORT_SYMBOL(blk_alloc_queue_node
);
580 * blk_init_queue - prepare a request queue for use with a block device
581 * @rfn: The function to be called to process requests that have been
582 * placed on the queue.
583 * @lock: Request queue spin lock
586 * If a block device wishes to use the standard request handling procedures,
587 * which sorts requests and coalesces adjacent requests, then it must
588 * call blk_init_queue(). The function @rfn will be called when there
589 * are requests on the queue that need to be processed. If the device
590 * supports plugging, then @rfn may not be called immediately when requests
591 * are available on the queue, but may be called at some time later instead.
592 * Plugged queues are generally unplugged when a buffer belonging to one
593 * of the requests on the queue is needed, or due to memory pressure.
595 * @rfn is not required, or even expected, to remove all requests off the
596 * queue, but only as many as it can handle at a time. If it does leave
597 * requests on the queue, it is responsible for arranging that the requests
598 * get dealt with eventually.
600 * The queue spin lock must be held while manipulating the requests on the
601 * request queue; this lock will be taken also from interrupt context, so irq
602 * disabling is needed for it.
604 * Function returns a pointer to the initialized request queue, or %NULL if
608 * blk_init_queue() must be paired with a blk_cleanup_queue() call
609 * when the block device is deactivated (such as at module unload).
612 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
614 return blk_init_queue_node(rfn
, lock
, -1);
616 EXPORT_SYMBOL(blk_init_queue
);
618 struct request_queue
*
619 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
621 struct request_queue
*uninit_q
, *q
;
623 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
627 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
629 blk_cleanup_queue(uninit_q
);
633 EXPORT_SYMBOL(blk_init_queue_node
);
635 struct request_queue
*
636 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
642 if (blk_init_free_list(q
))
646 q
->prep_rq_fn
= NULL
;
647 q
->unprep_rq_fn
= NULL
;
648 q
->queue_flags
= QUEUE_FLAG_DEFAULT
;
650 /* Override internal queue lock with supplied lock pointer */
652 q
->queue_lock
= lock
;
655 * This also sets hw/phys segments, boundary and size
657 blk_queue_make_request(q
, blk_queue_bio
);
659 q
->sg_reserved_size
= INT_MAX
;
664 if (!elevator_init(q
, NULL
)) {
665 blk_queue_congestion_threshold(q
);
671 EXPORT_SYMBOL(blk_init_allocated_queue
);
673 bool blk_get_queue(struct request_queue
*q
)
675 if (likely(!blk_queue_dead(q
))) {
682 EXPORT_SYMBOL(blk_get_queue
);
684 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
686 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
687 elv_put_request(q
, rq
);
689 put_io_context(rq
->elv
.icq
->ioc
);
692 mempool_free(rq
, q
->rq
.rq_pool
);
695 static struct request
*
696 blk_alloc_request(struct request_queue
*q
, struct io_cq
*icq
,
697 unsigned int flags
, gfp_t gfp_mask
)
699 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
706 rq
->cmd_flags
= flags
| REQ_ALLOCED
;
708 if (flags
& REQ_ELVPRIV
) {
710 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
711 mempool_free(rq
, q
->rq
.rq_pool
);
714 /* @rq->elv.icq holds on to io_context until @rq is freed */
716 get_io_context(icq
->ioc
);
723 * ioc_batching returns true if the ioc is a valid batching request and
724 * should be given priority access to a request.
726 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
732 * Make sure the process is able to allocate at least 1 request
733 * even if the batch times out, otherwise we could theoretically
736 return ioc
->nr_batch_requests
== q
->nr_batching
||
737 (ioc
->nr_batch_requests
> 0
738 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
742 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
743 * will cause the process to be a "batcher" on all queues in the system. This
744 * is the behaviour we want though - once it gets a wakeup it should be given
747 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
749 if (!ioc
|| ioc_batching(q
, ioc
))
752 ioc
->nr_batch_requests
= q
->nr_batching
;
753 ioc
->last_waited
= jiffies
;
756 static void __freed_request(struct request_queue
*q
, int sync
)
758 struct request_list
*rl
= &q
->rq
;
760 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
761 blk_clear_queue_congested(q
, sync
);
763 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
764 if (waitqueue_active(&rl
->wait
[sync
]))
765 wake_up(&rl
->wait
[sync
]);
767 blk_clear_queue_full(q
, sync
);
772 * A request has just been released. Account for it, update the full and
773 * congestion status, wake up any waiters. Called under q->queue_lock.
775 static void freed_request(struct request_queue
*q
, unsigned int flags
)
777 struct request_list
*rl
= &q
->rq
;
778 int sync
= rw_is_sync(flags
);
781 if (flags
& REQ_ELVPRIV
)
784 __freed_request(q
, sync
);
786 if (unlikely(rl
->starved
[sync
^ 1]))
787 __freed_request(q
, sync
^ 1);
791 * Determine if elevator data should be initialized when allocating the
792 * request associated with @bio.
794 static bool blk_rq_should_init_elevator(struct bio
*bio
)
800 * Flush requests do not use the elevator so skip initialization.
801 * This allows a request to share the flush and elevator data.
803 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
810 * get_request - get a free request
811 * @q: request_queue to allocate request from
812 * @rw_flags: RW and SYNC flags
813 * @bio: bio to allocate request for (can be %NULL)
814 * @gfp_mask: allocation mask
816 * Get a free request from @q. This function may fail under memory
817 * pressure or if @q is dead.
819 * Must be callled with @q->queue_lock held and,
820 * Returns %NULL on failure, with @q->queue_lock held.
821 * Returns !%NULL on success, with @q->queue_lock *not held*.
823 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
824 struct bio
*bio
, gfp_t gfp_mask
)
826 struct request
*rq
= NULL
;
827 struct request_list
*rl
= &q
->rq
;
828 struct elevator_type
*et
;
829 struct io_context
*ioc
;
830 struct io_cq
*icq
= NULL
;
831 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
832 bool retried
= false;
835 et
= q
->elevator
->type
;
836 ioc
= current
->io_context
;
838 if (unlikely(blk_queue_dead(q
)))
841 may_queue
= elv_may_queue(q
, rw_flags
);
842 if (may_queue
== ELV_MQUEUE_NO
)
845 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
846 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
848 * We want ioc to record batching state. If it's
849 * not already there, creating a new one requires
850 * dropping queue_lock, which in turn requires
851 * retesting conditions to avoid queue hang.
853 if (!ioc
&& !retried
) {
854 spin_unlock_irq(q
->queue_lock
);
855 create_io_context(current
, gfp_mask
, q
->node
);
856 spin_lock_irq(q
->queue_lock
);
862 * The queue will fill after this allocation, so set
863 * it as full, and mark this process as "batching".
864 * This process will be allowed to complete a batch of
865 * requests, others will be blocked.
867 if (!blk_queue_full(q
, is_sync
)) {
868 ioc_set_batching(q
, ioc
);
869 blk_set_queue_full(q
, is_sync
);
871 if (may_queue
!= ELV_MQUEUE_MUST
872 && !ioc_batching(q
, ioc
)) {
874 * The queue is full and the allocating
875 * process is not a "batcher", and not
876 * exempted by the IO scheduler
882 blk_set_queue_congested(q
, is_sync
);
886 * Only allow batching queuers to allocate up to 50% over the defined
887 * limit of requests, otherwise we could have thousands of requests
888 * allocated with any setting of ->nr_requests
890 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
893 rl
->count
[is_sync
]++;
894 rl
->starved
[is_sync
] = 0;
897 * Decide whether the new request will be managed by elevator. If
898 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
899 * prevent the current elevator from being destroyed until the new
900 * request is freed. This guarantees icq's won't be destroyed and
901 * makes creating new ones safe.
903 * Also, lookup icq while holding queue_lock. If it doesn't exist,
904 * it will be created after releasing queue_lock.
906 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
907 rw_flags
|= REQ_ELVPRIV
;
909 if (et
->icq_cache
&& ioc
)
910 icq
= ioc_lookup_icq(ioc
, q
);
913 if (blk_queue_io_stat(q
))
914 rw_flags
|= REQ_IO_STAT
;
915 spin_unlock_irq(q
->queue_lock
);
917 /* create icq if missing */
918 if ((rw_flags
& REQ_ELVPRIV
) && unlikely(et
->icq_cache
&& !icq
)) {
919 icq
= ioc_create_icq(q
, gfp_mask
);
924 rq
= blk_alloc_request(q
, icq
, rw_flags
, gfp_mask
);
929 * Allocation failed presumably due to memory. Undo anything
930 * we might have messed up.
932 * Allocating task should really be put onto the front of the
933 * wait queue, but this is pretty rare.
935 spin_lock_irq(q
->queue_lock
);
936 freed_request(q
, rw_flags
);
939 * in the very unlikely event that allocation failed and no
940 * requests for this direction was pending, mark us starved
941 * so that freeing of a request in the other direction will
942 * notice us. another possible fix would be to split the
943 * rq mempool into READ and WRITE
946 if (unlikely(rl
->count
[is_sync
] == 0))
947 rl
->starved
[is_sync
] = 1;
953 * ioc may be NULL here, and ioc_batching will be false. That's
954 * OK, if the queue is under the request limit then requests need
955 * not count toward the nr_batch_requests limit. There will always
956 * be some limit enforced by BLK_BATCH_TIME.
958 if (ioc_batching(q
, ioc
))
959 ioc
->nr_batch_requests
--;
961 trace_block_getrq(q
, bio
, rw_flags
& 1);
967 * get_request_wait - get a free request with retry
968 * @q: request_queue to allocate request from
969 * @rw_flags: RW and SYNC flags
970 * @bio: bio to allocate request for (can be %NULL)
972 * Get a free request from @q. This function keeps retrying under memory
973 * pressure and fails iff @q is dead.
975 * Must be callled with @q->queue_lock held and,
976 * Returns %NULL on failure, with @q->queue_lock held.
977 * Returns !%NULL on success, with @q->queue_lock *not held*.
979 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
982 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
985 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
988 struct request_list
*rl
= &q
->rq
;
990 if (unlikely(blk_queue_dead(q
)))
993 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
994 TASK_UNINTERRUPTIBLE
);
996 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
998 spin_unlock_irq(q
->queue_lock
);
1002 * After sleeping, we become a "batching" process and
1003 * will be able to allocate at least one request, and
1004 * up to a big batch of them for a small period time.
1005 * See ioc_batching, ioc_set_batching
1007 create_io_context(current
, GFP_NOIO
, q
->node
);
1008 ioc_set_batching(q
, current
->io_context
);
1010 spin_lock_irq(q
->queue_lock
);
1011 finish_wait(&rl
->wait
[is_sync
], &wait
);
1013 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1019 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1023 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1025 spin_lock_irq(q
->queue_lock
);
1026 if (gfp_mask
& __GFP_WAIT
)
1027 rq
= get_request_wait(q
, rw
, NULL
);
1029 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1031 spin_unlock_irq(q
->queue_lock
);
1032 /* q->queue_lock is unlocked at this point */
1036 EXPORT_SYMBOL(blk_get_request
);
1039 * blk_make_request - given a bio, allocate a corresponding struct request.
1040 * @q: target request queue
1041 * @bio: The bio describing the memory mappings that will be submitted for IO.
1042 * It may be a chained-bio properly constructed by block/bio layer.
1043 * @gfp_mask: gfp flags to be used for memory allocation
1045 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1046 * type commands. Where the struct request needs to be farther initialized by
1047 * the caller. It is passed a &struct bio, which describes the memory info of
1050 * The caller of blk_make_request must make sure that bi_io_vec
1051 * are set to describe the memory buffers. That bio_data_dir() will return
1052 * the needed direction of the request. (And all bio's in the passed bio-chain
1053 * are properly set accordingly)
1055 * If called under none-sleepable conditions, mapped bio buffers must not
1056 * need bouncing, by calling the appropriate masked or flagged allocator,
1057 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1060 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1061 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1062 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1063 * completion of a bio that hasn't been submitted yet, thus resulting in a
1064 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1065 * of bio_alloc(), as that avoids the mempool deadlock.
1066 * If possible a big IO should be split into smaller parts when allocation
1067 * fails. Partial allocation should not be an error, or you risk a live-lock.
1069 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1072 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1075 return ERR_PTR(-ENOMEM
);
1078 struct bio
*bounce_bio
= bio
;
1081 blk_queue_bounce(q
, &bounce_bio
);
1082 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1083 if (unlikely(ret
)) {
1084 blk_put_request(rq
);
1085 return ERR_PTR(ret
);
1091 EXPORT_SYMBOL(blk_make_request
);
1094 * blk_requeue_request - put a request back on queue
1095 * @q: request queue where request should be inserted
1096 * @rq: request to be inserted
1099 * Drivers often keep queueing requests until the hardware cannot accept
1100 * more, when that condition happens we need to put the request back
1101 * on the queue. Must be called with queue lock held.
1103 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1105 blk_delete_timer(rq
);
1106 blk_clear_rq_complete(rq
);
1107 trace_block_rq_requeue(q
, rq
);
1109 if (blk_rq_tagged(rq
))
1110 blk_queue_end_tag(q
, rq
);
1112 BUG_ON(blk_queued_rq(rq
));
1114 elv_requeue_request(q
, rq
);
1116 EXPORT_SYMBOL(blk_requeue_request
);
1118 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1121 drive_stat_acct(rq
, 1);
1122 __elv_add_request(q
, rq
, where
);
1125 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1128 if (now
== part
->stamp
)
1131 if (part_in_flight(part
)) {
1132 __part_stat_add(cpu
, part
, time_in_queue
,
1133 part_in_flight(part
) * (now
- part
->stamp
));
1134 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1140 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1141 * @cpu: cpu number for stats access
1142 * @part: target partition
1144 * The average IO queue length and utilisation statistics are maintained
1145 * by observing the current state of the queue length and the amount of
1146 * time it has been in this state for.
1148 * Normally, that accounting is done on IO completion, but that can result
1149 * in more than a second's worth of IO being accounted for within any one
1150 * second, leading to >100% utilisation. To deal with that, we call this
1151 * function to do a round-off before returning the results when reading
1152 * /proc/diskstats. This accounts immediately for all queue usage up to
1153 * the current jiffies and restarts the counters again.
1155 void part_round_stats(int cpu
, struct hd_struct
*part
)
1157 unsigned long now
= jiffies
;
1160 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1161 part_round_stats_single(cpu
, part
, now
);
1163 EXPORT_SYMBOL_GPL(part_round_stats
);
1166 * queue lock must be held
1168 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1172 if (unlikely(--req
->ref_count
))
1175 elv_completed_request(q
, req
);
1177 /* this is a bio leak */
1178 WARN_ON(req
->bio
!= NULL
);
1181 * Request may not have originated from ll_rw_blk. if not,
1182 * it didn't come out of our reserved rq pools
1184 if (req
->cmd_flags
& REQ_ALLOCED
) {
1185 unsigned int flags
= req
->cmd_flags
;
1187 BUG_ON(!list_empty(&req
->queuelist
));
1188 BUG_ON(!hlist_unhashed(&req
->hash
));
1190 blk_free_request(q
, req
);
1191 freed_request(q
, flags
);
1194 EXPORT_SYMBOL_GPL(__blk_put_request
);
1196 void blk_put_request(struct request
*req
)
1198 unsigned long flags
;
1199 struct request_queue
*q
= req
->q
;
1201 spin_lock_irqsave(q
->queue_lock
, flags
);
1202 __blk_put_request(q
, req
);
1203 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1205 EXPORT_SYMBOL(blk_put_request
);
1208 * blk_add_request_payload - add a payload to a request
1209 * @rq: request to update
1210 * @page: page backing the payload
1211 * @len: length of the payload.
1213 * This allows to later add a payload to an already submitted request by
1214 * a block driver. The driver needs to take care of freeing the payload
1217 * Note that this is a quite horrible hack and nothing but handling of
1218 * discard requests should ever use it.
1220 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1223 struct bio
*bio
= rq
->bio
;
1225 bio
->bi_io_vec
->bv_page
= page
;
1226 bio
->bi_io_vec
->bv_offset
= 0;
1227 bio
->bi_io_vec
->bv_len
= len
;
1231 bio
->bi_phys_segments
= 1;
1233 rq
->__data_len
= rq
->resid_len
= len
;
1234 rq
->nr_phys_segments
= 1;
1235 rq
->buffer
= bio_data(bio
);
1237 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1239 static bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1242 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1244 if (!ll_back_merge_fn(q
, req
, bio
))
1247 trace_block_bio_backmerge(q
, bio
);
1249 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1250 blk_rq_set_mixed_merge(req
);
1252 req
->biotail
->bi_next
= bio
;
1254 req
->__data_len
+= bio
->bi_size
;
1255 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1257 drive_stat_acct(req
, 0);
1261 static bool bio_attempt_front_merge(struct request_queue
*q
,
1262 struct request
*req
, struct bio
*bio
)
1264 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1266 if (!ll_front_merge_fn(q
, req
, bio
))
1269 trace_block_bio_frontmerge(q
, bio
);
1271 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1272 blk_rq_set_mixed_merge(req
);
1274 bio
->bi_next
= req
->bio
;
1278 * may not be valid. if the low level driver said
1279 * it didn't need a bounce buffer then it better
1280 * not touch req->buffer either...
1282 req
->buffer
= bio_data(bio
);
1283 req
->__sector
= bio
->bi_sector
;
1284 req
->__data_len
+= bio
->bi_size
;
1285 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1287 drive_stat_acct(req
, 0);
1292 * attempt_plug_merge - try to merge with %current's plugged list
1293 * @q: request_queue new bio is being queued at
1294 * @bio: new bio being queued
1295 * @request_count: out parameter for number of traversed plugged requests
1297 * Determine whether @bio being queued on @q can be merged with a request
1298 * on %current's plugged list. Returns %true if merge was successful,
1301 * Plugging coalesces IOs from the same issuer for the same purpose without
1302 * going through @q->queue_lock. As such it's more of an issuing mechanism
1303 * than scheduling, and the request, while may have elvpriv data, is not
1304 * added on the elevator at this point. In addition, we don't have
1305 * reliable access to the elevator outside queue lock. Only check basic
1306 * merging parameters without querying the elevator.
1308 static bool attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1309 unsigned int *request_count
)
1311 struct blk_plug
*plug
;
1315 plug
= current
->plug
;
1320 list_for_each_entry_reverse(rq
, &plug
->list
, queuelist
) {
1325 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1328 el_ret
= blk_try_merge(rq
, bio
);
1329 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1330 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1333 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1334 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1343 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1345 req
->cmd_type
= REQ_TYPE_FS
;
1347 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1348 if (bio
->bi_rw
& REQ_RAHEAD
)
1349 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1352 req
->__sector
= bio
->bi_sector
;
1353 req
->ioprio
= bio_prio(bio
);
1354 blk_rq_bio_prep(req
->q
, req
, bio
);
1357 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1359 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1360 struct blk_plug
*plug
;
1361 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1362 struct request
*req
;
1363 unsigned int request_count
= 0;
1366 * low level driver can indicate that it wants pages above a
1367 * certain limit bounced to low memory (ie for highmem, or even
1368 * ISA dma in theory)
1370 blk_queue_bounce(q
, &bio
);
1372 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1373 spin_lock_irq(q
->queue_lock
);
1374 where
= ELEVATOR_INSERT_FLUSH
;
1379 * Check if we can merge with the plugged list before grabbing
1382 if (attempt_plug_merge(q
, bio
, &request_count
))
1385 spin_lock_irq(q
->queue_lock
);
1387 el_ret
= elv_merge(q
, &req
, bio
);
1388 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1389 if (bio_attempt_back_merge(q
, req
, bio
)) {
1390 elv_bio_merged(q
, req
, bio
);
1391 if (!attempt_back_merge(q
, req
))
1392 elv_merged_request(q
, req
, el_ret
);
1395 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1396 if (bio_attempt_front_merge(q
, req
, bio
)) {
1397 elv_bio_merged(q
, req
, bio
);
1398 if (!attempt_front_merge(q
, req
))
1399 elv_merged_request(q
, req
, el_ret
);
1406 * This sync check and mask will be re-done in init_request_from_bio(),
1407 * but we need to set it earlier to expose the sync flag to the
1408 * rq allocator and io schedulers.
1410 rw_flags
= bio_data_dir(bio
);
1412 rw_flags
|= REQ_SYNC
;
1415 * Grab a free request. This is might sleep but can not fail.
1416 * Returns with the queue unlocked.
1418 req
= get_request_wait(q
, rw_flags
, bio
);
1419 if (unlikely(!req
)) {
1420 bio_endio(bio
, -ENODEV
); /* @q is dead */
1425 * After dropping the lock and possibly sleeping here, our request
1426 * may now be mergeable after it had proven unmergeable (above).
1427 * We don't worry about that case for efficiency. It won't happen
1428 * often, and the elevators are able to handle it.
1430 init_request_from_bio(req
, bio
);
1432 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1433 req
->cpu
= raw_smp_processor_id();
1435 plug
= current
->plug
;
1438 * If this is the first request added after a plug, fire
1439 * of a plug trace. If others have been added before, check
1440 * if we have multiple devices in this plug. If so, make a
1441 * note to sort the list before dispatch.
1443 if (list_empty(&plug
->list
))
1444 trace_block_plug(q
);
1446 if (!plug
->should_sort
) {
1447 struct request
*__rq
;
1449 __rq
= list_entry_rq(plug
->list
.prev
);
1451 plug
->should_sort
= 1;
1453 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1454 blk_flush_plug_list(plug
, false);
1455 trace_block_plug(q
);
1458 list_add_tail(&req
->queuelist
, &plug
->list
);
1459 drive_stat_acct(req
, 1);
1461 spin_lock_irq(q
->queue_lock
);
1462 add_acct_request(q
, req
, where
);
1465 spin_unlock_irq(q
->queue_lock
);
1468 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1471 * If bio->bi_dev is a partition, remap the location
1473 static inline void blk_partition_remap(struct bio
*bio
)
1475 struct block_device
*bdev
= bio
->bi_bdev
;
1477 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1478 struct hd_struct
*p
= bdev
->bd_part
;
1480 bio
->bi_sector
+= p
->start_sect
;
1481 bio
->bi_bdev
= bdev
->bd_contains
;
1483 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1485 bio
->bi_sector
- p
->start_sect
);
1489 static void handle_bad_sector(struct bio
*bio
)
1491 char b
[BDEVNAME_SIZE
];
1493 printk(KERN_INFO
"attempt to access beyond end of device\n");
1494 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1495 bdevname(bio
->bi_bdev
, b
),
1497 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1498 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1500 set_bit(BIO_EOF
, &bio
->bi_flags
);
1503 #ifdef CONFIG_FAIL_MAKE_REQUEST
1505 static DECLARE_FAULT_ATTR(fail_make_request
);
1507 static int __init
setup_fail_make_request(char *str
)
1509 return setup_fault_attr(&fail_make_request
, str
);
1511 __setup("fail_make_request=", setup_fail_make_request
);
1513 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1515 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1518 static int __init
fail_make_request_debugfs(void)
1520 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1521 NULL
, &fail_make_request
);
1523 return IS_ERR(dir
) ? PTR_ERR(dir
) : 0;
1526 late_initcall(fail_make_request_debugfs
);
1528 #else /* CONFIG_FAIL_MAKE_REQUEST */
1530 static inline bool should_fail_request(struct hd_struct
*part
,
1536 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1539 * Check whether this bio extends beyond the end of the device.
1541 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1548 /* Test device or partition size, when known. */
1549 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1551 sector_t sector
= bio
->bi_sector
;
1553 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1555 * This may well happen - the kernel calls bread()
1556 * without checking the size of the device, e.g., when
1557 * mounting a device.
1559 handle_bad_sector(bio
);
1567 static noinline_for_stack
bool
1568 generic_make_request_checks(struct bio
*bio
)
1570 struct request_queue
*q
;
1571 int nr_sectors
= bio_sectors(bio
);
1573 char b
[BDEVNAME_SIZE
];
1574 struct hd_struct
*part
;
1578 if (bio_check_eod(bio
, nr_sectors
))
1581 q
= bdev_get_queue(bio
->bi_bdev
);
1584 "generic_make_request: Trying to access "
1585 "nonexistent block-device %s (%Lu)\n",
1586 bdevname(bio
->bi_bdev
, b
),
1587 (long long) bio
->bi_sector
);
1591 if (unlikely(!(bio
->bi_rw
& REQ_DISCARD
) &&
1592 nr_sectors
> queue_max_hw_sectors(q
))) {
1593 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1594 bdevname(bio
->bi_bdev
, b
),
1596 queue_max_hw_sectors(q
));
1600 part
= bio
->bi_bdev
->bd_part
;
1601 if (should_fail_request(part
, bio
->bi_size
) ||
1602 should_fail_request(&part_to_disk(part
)->part0
,
1607 * If this device has partitions, remap block n
1608 * of partition p to block n+start(p) of the disk.
1610 blk_partition_remap(bio
);
1612 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
))
1615 if (bio_check_eod(bio
, nr_sectors
))
1619 * Filter flush bio's early so that make_request based
1620 * drivers without flush support don't have to worry
1623 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1624 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1631 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1632 (!blk_queue_discard(q
) ||
1633 ((bio
->bi_rw
& REQ_SECURE
) &&
1634 !blk_queue_secdiscard(q
)))) {
1639 if (blk_throtl_bio(q
, bio
))
1640 return false; /* throttled, will be resubmitted later */
1642 trace_block_bio_queue(q
, bio
);
1646 bio_endio(bio
, err
);
1651 * generic_make_request - hand a buffer to its device driver for I/O
1652 * @bio: The bio describing the location in memory and on the device.
1654 * generic_make_request() is used to make I/O requests of block
1655 * devices. It is passed a &struct bio, which describes the I/O that needs
1658 * generic_make_request() does not return any status. The
1659 * success/failure status of the request, along with notification of
1660 * completion, is delivered asynchronously through the bio->bi_end_io
1661 * function described (one day) else where.
1663 * The caller of generic_make_request must make sure that bi_io_vec
1664 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1665 * set to describe the device address, and the
1666 * bi_end_io and optionally bi_private are set to describe how
1667 * completion notification should be signaled.
1669 * generic_make_request and the drivers it calls may use bi_next if this
1670 * bio happens to be merged with someone else, and may resubmit the bio to
1671 * a lower device by calling into generic_make_request recursively, which
1672 * means the bio should NOT be touched after the call to ->make_request_fn.
1674 void generic_make_request(struct bio
*bio
)
1676 struct bio_list bio_list_on_stack
;
1678 if (!generic_make_request_checks(bio
))
1682 * We only want one ->make_request_fn to be active at a time, else
1683 * stack usage with stacked devices could be a problem. So use
1684 * current->bio_list to keep a list of requests submited by a
1685 * make_request_fn function. current->bio_list is also used as a
1686 * flag to say if generic_make_request is currently active in this
1687 * task or not. If it is NULL, then no make_request is active. If
1688 * it is non-NULL, then a make_request is active, and new requests
1689 * should be added at the tail
1691 if (current
->bio_list
) {
1692 bio_list_add(current
->bio_list
, bio
);
1696 /* following loop may be a bit non-obvious, and so deserves some
1698 * Before entering the loop, bio->bi_next is NULL (as all callers
1699 * ensure that) so we have a list with a single bio.
1700 * We pretend that we have just taken it off a longer list, so
1701 * we assign bio_list to a pointer to the bio_list_on_stack,
1702 * thus initialising the bio_list of new bios to be
1703 * added. ->make_request() may indeed add some more bios
1704 * through a recursive call to generic_make_request. If it
1705 * did, we find a non-NULL value in bio_list and re-enter the loop
1706 * from the top. In this case we really did just take the bio
1707 * of the top of the list (no pretending) and so remove it from
1708 * bio_list, and call into ->make_request() again.
1710 BUG_ON(bio
->bi_next
);
1711 bio_list_init(&bio_list_on_stack
);
1712 current
->bio_list
= &bio_list_on_stack
;
1714 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1716 q
->make_request_fn(q
, bio
);
1718 bio
= bio_list_pop(current
->bio_list
);
1720 current
->bio_list
= NULL
; /* deactivate */
1722 EXPORT_SYMBOL(generic_make_request
);
1725 * submit_bio - submit a bio to the block device layer for I/O
1726 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1727 * @bio: The &struct bio which describes the I/O
1729 * submit_bio() is very similar in purpose to generic_make_request(), and
1730 * uses that function to do most of the work. Both are fairly rough
1731 * interfaces; @bio must be presetup and ready for I/O.
1734 void submit_bio(int rw
, struct bio
*bio
)
1736 int count
= bio_sectors(bio
);
1741 * If it's a regular read/write or a barrier with data attached,
1742 * go through the normal accounting stuff before submission.
1744 if (bio_has_data(bio
) && !(rw
& REQ_DISCARD
)) {
1746 count_vm_events(PGPGOUT
, count
);
1748 task_io_account_read(bio
->bi_size
);
1749 count_vm_events(PGPGIN
, count
);
1752 if (unlikely(block_dump
)) {
1753 char b
[BDEVNAME_SIZE
];
1754 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1755 current
->comm
, task_pid_nr(current
),
1756 (rw
& WRITE
) ? "WRITE" : "READ",
1757 (unsigned long long)bio
->bi_sector
,
1758 bdevname(bio
->bi_bdev
, b
),
1763 generic_make_request(bio
);
1765 EXPORT_SYMBOL(submit_bio
);
1768 * blk_rq_check_limits - Helper function to check a request for the queue limit
1770 * @rq: the request being checked
1773 * @rq may have been made based on weaker limitations of upper-level queues
1774 * in request stacking drivers, and it may violate the limitation of @q.
1775 * Since the block layer and the underlying device driver trust @rq
1776 * after it is inserted to @q, it should be checked against @q before
1777 * the insertion using this generic function.
1779 * This function should also be useful for request stacking drivers
1780 * in some cases below, so export this function.
1781 * Request stacking drivers like request-based dm may change the queue
1782 * limits while requests are in the queue (e.g. dm's table swapping).
1783 * Such request stacking drivers should check those requests agaist
1784 * the new queue limits again when they dispatch those requests,
1785 * although such checkings are also done against the old queue limits
1786 * when submitting requests.
1788 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1790 if (rq
->cmd_flags
& REQ_DISCARD
)
1793 if (blk_rq_sectors(rq
) > queue_max_sectors(q
) ||
1794 blk_rq_bytes(rq
) > queue_max_hw_sectors(q
) << 9) {
1795 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1800 * queue's settings related to segment counting like q->bounce_pfn
1801 * may differ from that of other stacking queues.
1802 * Recalculate it to check the request correctly on this queue's
1805 blk_recalc_rq_segments(rq
);
1806 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1807 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1813 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1816 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1817 * @q: the queue to submit the request
1818 * @rq: the request being queued
1820 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1822 unsigned long flags
;
1823 int where
= ELEVATOR_INSERT_BACK
;
1825 if (blk_rq_check_limits(q
, rq
))
1829 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1832 spin_lock_irqsave(q
->queue_lock
, flags
);
1833 if (unlikely(blk_queue_dead(q
))) {
1834 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1839 * Submitting request must be dequeued before calling this function
1840 * because it will be linked to another request_queue
1842 BUG_ON(blk_queued_rq(rq
));
1844 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
1845 where
= ELEVATOR_INSERT_FLUSH
;
1847 add_acct_request(q
, rq
, where
);
1848 if (where
== ELEVATOR_INSERT_FLUSH
)
1850 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1854 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1857 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1858 * @rq: request to examine
1861 * A request could be merge of IOs which require different failure
1862 * handling. This function determines the number of bytes which
1863 * can be failed from the beginning of the request without
1864 * crossing into area which need to be retried further.
1867 * The number of bytes to fail.
1870 * queue_lock must be held.
1872 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1874 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1875 unsigned int bytes
= 0;
1878 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
1879 return blk_rq_bytes(rq
);
1882 * Currently the only 'mixing' which can happen is between
1883 * different fastfail types. We can safely fail portions
1884 * which have all the failfast bits that the first one has -
1885 * the ones which are at least as eager to fail as the first
1888 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1889 if ((bio
->bi_rw
& ff
) != ff
)
1891 bytes
+= bio
->bi_size
;
1894 /* this could lead to infinite loop */
1895 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1898 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1900 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1902 if (blk_do_io_stat(req
)) {
1903 const int rw
= rq_data_dir(req
);
1904 struct hd_struct
*part
;
1907 cpu
= part_stat_lock();
1909 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
1914 static void blk_account_io_done(struct request
*req
)
1917 * Account IO completion. flush_rq isn't accounted as a
1918 * normal IO on queueing nor completion. Accounting the
1919 * containing request is enough.
1921 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
1922 unsigned long duration
= jiffies
- req
->start_time
;
1923 const int rw
= rq_data_dir(req
);
1924 struct hd_struct
*part
;
1927 cpu
= part_stat_lock();
1930 part_stat_inc(cpu
, part
, ios
[rw
]);
1931 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1932 part_round_stats(cpu
, part
);
1933 part_dec_in_flight(part
, rw
);
1935 hd_struct_put(part
);
1941 * blk_peek_request - peek at the top of a request queue
1942 * @q: request queue to peek at
1945 * Return the request at the top of @q. The returned request
1946 * should be started using blk_start_request() before LLD starts
1950 * Pointer to the request at the top of @q if available. Null
1954 * queue_lock must be held.
1956 struct request
*blk_peek_request(struct request_queue
*q
)
1961 while ((rq
= __elv_next_request(q
)) != NULL
) {
1962 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
1964 * This is the first time the device driver
1965 * sees this request (possibly after
1966 * requeueing). Notify IO scheduler.
1968 if (rq
->cmd_flags
& REQ_SORTED
)
1969 elv_activate_rq(q
, rq
);
1972 * just mark as started even if we don't start
1973 * it, a request that has been delayed should
1974 * not be passed by new incoming requests
1976 rq
->cmd_flags
|= REQ_STARTED
;
1977 trace_block_rq_issue(q
, rq
);
1980 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
1981 q
->end_sector
= rq_end_sector(rq
);
1982 q
->boundary_rq
= NULL
;
1985 if (rq
->cmd_flags
& REQ_DONTPREP
)
1988 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
1990 * make sure space for the drain appears we
1991 * know we can do this because max_hw_segments
1992 * has been adjusted to be one fewer than the
1995 rq
->nr_phys_segments
++;
2001 ret
= q
->prep_rq_fn(q
, rq
);
2002 if (ret
== BLKPREP_OK
) {
2004 } else if (ret
== BLKPREP_DEFER
) {
2006 * the request may have been (partially) prepped.
2007 * we need to keep this request in the front to
2008 * avoid resource deadlock. REQ_STARTED will
2009 * prevent other fs requests from passing this one.
2011 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2012 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2014 * remove the space for the drain we added
2015 * so that we don't add it again
2017 --rq
->nr_phys_segments
;
2022 } else if (ret
== BLKPREP_KILL
) {
2023 rq
->cmd_flags
|= REQ_QUIET
;
2025 * Mark this request as started so we don't trigger
2026 * any debug logic in the end I/O path.
2028 blk_start_request(rq
);
2029 __blk_end_request_all(rq
, -EIO
);
2031 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2038 EXPORT_SYMBOL(blk_peek_request
);
2040 void blk_dequeue_request(struct request
*rq
)
2042 struct request_queue
*q
= rq
->q
;
2044 BUG_ON(list_empty(&rq
->queuelist
));
2045 BUG_ON(ELV_ON_HASH(rq
));
2047 list_del_init(&rq
->queuelist
);
2050 * the time frame between a request being removed from the lists
2051 * and to it is freed is accounted as io that is in progress at
2054 if (blk_account_rq(rq
)) {
2055 q
->in_flight
[rq_is_sync(rq
)]++;
2056 set_io_start_time_ns(rq
);
2061 * blk_start_request - start request processing on the driver
2062 * @req: request to dequeue
2065 * Dequeue @req and start timeout timer on it. This hands off the
2066 * request to the driver.
2068 * Block internal functions which don't want to start timer should
2069 * call blk_dequeue_request().
2072 * queue_lock must be held.
2074 void blk_start_request(struct request
*req
)
2076 blk_dequeue_request(req
);
2079 * We are now handing the request to the hardware, initialize
2080 * resid_len to full count and add the timeout handler.
2082 req
->resid_len
= blk_rq_bytes(req
);
2083 if (unlikely(blk_bidi_rq(req
)))
2084 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2088 EXPORT_SYMBOL(blk_start_request
);
2091 * blk_fetch_request - fetch a request from a request queue
2092 * @q: request queue to fetch a request from
2095 * Return the request at the top of @q. The request is started on
2096 * return and LLD can start processing it immediately.
2099 * Pointer to the request at the top of @q if available. Null
2103 * queue_lock must be held.
2105 struct request
*blk_fetch_request(struct request_queue
*q
)
2109 rq
= blk_peek_request(q
);
2111 blk_start_request(rq
);
2114 EXPORT_SYMBOL(blk_fetch_request
);
2117 * blk_update_request - Special helper function for request stacking drivers
2118 * @req: the request being processed
2119 * @error: %0 for success, < %0 for error
2120 * @nr_bytes: number of bytes to complete @req
2123 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2124 * the request structure even if @req doesn't have leftover.
2125 * If @req has leftover, sets it up for the next range of segments.
2127 * This special helper function is only for request stacking drivers
2128 * (e.g. request-based dm) so that they can handle partial completion.
2129 * Actual device drivers should use blk_end_request instead.
2131 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2132 * %false return from this function.
2135 * %false - this request doesn't have any more data
2136 * %true - this request has more data
2138 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2140 int total_bytes
, bio_nbytes
, next_idx
= 0;
2146 trace_block_rq_complete(req
->q
, req
);
2149 * For fs requests, rq is just carrier of independent bio's
2150 * and each partial completion should be handled separately.
2151 * Reset per-request error on each partial completion.
2153 * TODO: tj: This is too subtle. It would be better to let
2154 * low level drivers do what they see fit.
2156 if (req
->cmd_type
== REQ_TYPE_FS
)
2159 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2160 !(req
->cmd_flags
& REQ_QUIET
)) {
2165 error_type
= "recoverable transport";
2168 error_type
= "critical target";
2171 error_type
= "critical nexus";
2178 printk(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2179 error_type
, req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
2180 (unsigned long long)blk_rq_pos(req
));
2183 blk_account_io_completion(req
, nr_bytes
);
2185 total_bytes
= bio_nbytes
= 0;
2186 while ((bio
= req
->bio
) != NULL
) {
2189 if (nr_bytes
>= bio
->bi_size
) {
2190 req
->bio
= bio
->bi_next
;
2191 nbytes
= bio
->bi_size
;
2192 req_bio_endio(req
, bio
, nbytes
, error
);
2196 int idx
= bio
->bi_idx
+ next_idx
;
2198 if (unlikely(idx
>= bio
->bi_vcnt
)) {
2199 blk_dump_rq_flags(req
, "__end_that");
2200 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
2201 __func__
, idx
, bio
->bi_vcnt
);
2205 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
2206 BIO_BUG_ON(nbytes
> bio
->bi_size
);
2209 * not a complete bvec done
2211 if (unlikely(nbytes
> nr_bytes
)) {
2212 bio_nbytes
+= nr_bytes
;
2213 total_bytes
+= nr_bytes
;
2218 * advance to the next vector
2221 bio_nbytes
+= nbytes
;
2224 total_bytes
+= nbytes
;
2230 * end more in this run, or just return 'not-done'
2232 if (unlikely(nr_bytes
<= 0))
2242 * Reset counters so that the request stacking driver
2243 * can find how many bytes remain in the request
2246 req
->__data_len
= 0;
2251 * if the request wasn't completed, update state
2254 req_bio_endio(req
, bio
, bio_nbytes
, error
);
2255 bio
->bi_idx
+= next_idx
;
2256 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
2257 bio_iovec(bio
)->bv_len
-= nr_bytes
;
2260 req
->__data_len
-= total_bytes
;
2261 req
->buffer
= bio_data(req
->bio
);
2263 /* update sector only for requests with clear definition of sector */
2264 if (req
->cmd_type
== REQ_TYPE_FS
|| (req
->cmd_flags
& REQ_DISCARD
))
2265 req
->__sector
+= total_bytes
>> 9;
2267 /* mixed attributes always follow the first bio */
2268 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2269 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2270 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2274 * If total number of sectors is less than the first segment
2275 * size, something has gone terribly wrong.
2277 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2278 blk_dump_rq_flags(req
, "request botched");
2279 req
->__data_len
= blk_rq_cur_bytes(req
);
2282 /* recalculate the number of segments */
2283 blk_recalc_rq_segments(req
);
2287 EXPORT_SYMBOL_GPL(blk_update_request
);
2289 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2290 unsigned int nr_bytes
,
2291 unsigned int bidi_bytes
)
2293 if (blk_update_request(rq
, error
, nr_bytes
))
2296 /* Bidi request must be completed as a whole */
2297 if (unlikely(blk_bidi_rq(rq
)) &&
2298 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2301 if (blk_queue_add_random(rq
->q
))
2302 add_disk_randomness(rq
->rq_disk
);
2308 * blk_unprep_request - unprepare a request
2311 * This function makes a request ready for complete resubmission (or
2312 * completion). It happens only after all error handling is complete,
2313 * so represents the appropriate moment to deallocate any resources
2314 * that were allocated to the request in the prep_rq_fn. The queue
2315 * lock is held when calling this.
2317 void blk_unprep_request(struct request
*req
)
2319 struct request_queue
*q
= req
->q
;
2321 req
->cmd_flags
&= ~REQ_DONTPREP
;
2322 if (q
->unprep_rq_fn
)
2323 q
->unprep_rq_fn(q
, req
);
2325 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2328 * queue lock must be held
2330 static void blk_finish_request(struct request
*req
, int error
)
2332 if (blk_rq_tagged(req
))
2333 blk_queue_end_tag(req
->q
, req
);
2335 BUG_ON(blk_queued_rq(req
));
2337 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2338 laptop_io_completion(&req
->q
->backing_dev_info
);
2340 blk_delete_timer(req
);
2342 if (req
->cmd_flags
& REQ_DONTPREP
)
2343 blk_unprep_request(req
);
2346 blk_account_io_done(req
);
2349 req
->end_io(req
, error
);
2351 if (blk_bidi_rq(req
))
2352 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2354 __blk_put_request(req
->q
, req
);
2359 * blk_end_bidi_request - Complete a bidi request
2360 * @rq: the request to complete
2361 * @error: %0 for success, < %0 for error
2362 * @nr_bytes: number of bytes to complete @rq
2363 * @bidi_bytes: number of bytes to complete @rq->next_rq
2366 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2367 * Drivers that supports bidi can safely call this member for any
2368 * type of request, bidi or uni. In the later case @bidi_bytes is
2372 * %false - we are done with this request
2373 * %true - still buffers pending for this request
2375 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2376 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2378 struct request_queue
*q
= rq
->q
;
2379 unsigned long flags
;
2381 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2384 spin_lock_irqsave(q
->queue_lock
, flags
);
2385 blk_finish_request(rq
, error
);
2386 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2392 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2393 * @rq: the request to complete
2394 * @error: %0 for success, < %0 for error
2395 * @nr_bytes: number of bytes to complete @rq
2396 * @bidi_bytes: number of bytes to complete @rq->next_rq
2399 * Identical to blk_end_bidi_request() except that queue lock is
2400 * assumed to be locked on entry and remains so on return.
2403 * %false - we are done with this request
2404 * %true - still buffers pending for this request
2406 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2407 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2409 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2412 blk_finish_request(rq
, error
);
2418 * blk_end_request - Helper function for drivers to complete the request.
2419 * @rq: the request being processed
2420 * @error: %0 for success, < %0 for error
2421 * @nr_bytes: number of bytes to complete
2424 * Ends I/O on a number of bytes attached to @rq.
2425 * If @rq has leftover, sets it up for the next range of segments.
2428 * %false - we are done with this request
2429 * %true - still buffers pending for this request
2431 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2433 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2435 EXPORT_SYMBOL(blk_end_request
);
2438 * blk_end_request_all - Helper function for drives to finish the request.
2439 * @rq: the request to finish
2440 * @error: %0 for success, < %0 for error
2443 * Completely finish @rq.
2445 void blk_end_request_all(struct request
*rq
, int error
)
2448 unsigned int bidi_bytes
= 0;
2450 if (unlikely(blk_bidi_rq(rq
)))
2451 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2453 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2456 EXPORT_SYMBOL(blk_end_request_all
);
2459 * blk_end_request_cur - Helper function to finish the current request chunk.
2460 * @rq: the request to finish the current chunk for
2461 * @error: %0 for success, < %0 for error
2464 * Complete the current consecutively mapped chunk from @rq.
2467 * %false - we are done with this request
2468 * %true - still buffers pending for this request
2470 bool blk_end_request_cur(struct request
*rq
, int error
)
2472 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2474 EXPORT_SYMBOL(blk_end_request_cur
);
2477 * blk_end_request_err - Finish a request till the next failure boundary.
2478 * @rq: the request to finish till the next failure boundary for
2479 * @error: must be negative errno
2482 * Complete @rq till the next failure boundary.
2485 * %false - we are done with this request
2486 * %true - still buffers pending for this request
2488 bool blk_end_request_err(struct request
*rq
, int error
)
2490 WARN_ON(error
>= 0);
2491 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2493 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2496 * __blk_end_request - Helper function for drivers to complete the request.
2497 * @rq: the request being processed
2498 * @error: %0 for success, < %0 for error
2499 * @nr_bytes: number of bytes to complete
2502 * Must be called with queue lock held unlike blk_end_request().
2505 * %false - we are done with this request
2506 * %true - still buffers pending for this request
2508 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2510 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2512 EXPORT_SYMBOL(__blk_end_request
);
2515 * __blk_end_request_all - Helper function for drives to finish the request.
2516 * @rq: the request to finish
2517 * @error: %0 for success, < %0 for error
2520 * Completely finish @rq. Must be called with queue lock held.
2522 void __blk_end_request_all(struct request
*rq
, int error
)
2525 unsigned int bidi_bytes
= 0;
2527 if (unlikely(blk_bidi_rq(rq
)))
2528 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2530 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2533 EXPORT_SYMBOL(__blk_end_request_all
);
2536 * __blk_end_request_cur - Helper function to finish the current request chunk.
2537 * @rq: the request to finish the current chunk for
2538 * @error: %0 for success, < %0 for error
2541 * Complete the current consecutively mapped chunk from @rq. Must
2542 * be called with queue lock held.
2545 * %false - we are done with this request
2546 * %true - still buffers pending for this request
2548 bool __blk_end_request_cur(struct request
*rq
, int error
)
2550 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2552 EXPORT_SYMBOL(__blk_end_request_cur
);
2555 * __blk_end_request_err - Finish a request till the next failure boundary.
2556 * @rq: the request to finish till the next failure boundary for
2557 * @error: must be negative errno
2560 * Complete @rq till the next failure boundary. Must be called
2561 * with queue lock held.
2564 * %false - we are done with this request
2565 * %true - still buffers pending for this request
2567 bool __blk_end_request_err(struct request
*rq
, int error
)
2569 WARN_ON(error
>= 0);
2570 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2572 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2574 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2577 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2578 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2580 if (bio_has_data(bio
)) {
2581 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2582 rq
->buffer
= bio_data(bio
);
2584 rq
->__data_len
= bio
->bi_size
;
2585 rq
->bio
= rq
->biotail
= bio
;
2588 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2591 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2593 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2594 * @rq: the request to be flushed
2597 * Flush all pages in @rq.
2599 void rq_flush_dcache_pages(struct request
*rq
)
2601 struct req_iterator iter
;
2602 struct bio_vec
*bvec
;
2604 rq_for_each_segment(bvec
, rq
, iter
)
2605 flush_dcache_page(bvec
->bv_page
);
2607 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2611 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2612 * @q : the queue of the device being checked
2615 * Check if underlying low-level drivers of a device are busy.
2616 * If the drivers want to export their busy state, they must set own
2617 * exporting function using blk_queue_lld_busy() first.
2619 * Basically, this function is used only by request stacking drivers
2620 * to stop dispatching requests to underlying devices when underlying
2621 * devices are busy. This behavior helps more I/O merging on the queue
2622 * of the request stacking driver and prevents I/O throughput regression
2623 * on burst I/O load.
2626 * 0 - Not busy (The request stacking driver should dispatch request)
2627 * 1 - Busy (The request stacking driver should stop dispatching request)
2629 int blk_lld_busy(struct request_queue
*q
)
2632 return q
->lld_busy_fn(q
);
2636 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2639 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2640 * @rq: the clone request to be cleaned up
2643 * Free all bios in @rq for a cloned request.
2645 void blk_rq_unprep_clone(struct request
*rq
)
2649 while ((bio
= rq
->bio
) != NULL
) {
2650 rq
->bio
= bio
->bi_next
;
2655 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2658 * Copy attributes of the original request to the clone request.
2659 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2661 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2663 dst
->cpu
= src
->cpu
;
2664 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2665 dst
->cmd_type
= src
->cmd_type
;
2666 dst
->__sector
= blk_rq_pos(src
);
2667 dst
->__data_len
= blk_rq_bytes(src
);
2668 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2669 dst
->ioprio
= src
->ioprio
;
2670 dst
->extra_len
= src
->extra_len
;
2674 * blk_rq_prep_clone - Helper function to setup clone request
2675 * @rq: the request to be setup
2676 * @rq_src: original request to be cloned
2677 * @bs: bio_set that bios for clone are allocated from
2678 * @gfp_mask: memory allocation mask for bio
2679 * @bio_ctr: setup function to be called for each clone bio.
2680 * Returns %0 for success, non %0 for failure.
2681 * @data: private data to be passed to @bio_ctr
2684 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2685 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2686 * are not copied, and copying such parts is the caller's responsibility.
2687 * Also, pages which the original bios are pointing to are not copied
2688 * and the cloned bios just point same pages.
2689 * So cloned bios must be completed before original bios, which means
2690 * the caller must complete @rq before @rq_src.
2692 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2693 struct bio_set
*bs
, gfp_t gfp_mask
,
2694 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2697 struct bio
*bio
, *bio_src
;
2702 blk_rq_init(NULL
, rq
);
2704 __rq_for_each_bio(bio_src
, rq_src
) {
2705 bio
= bio_alloc_bioset(gfp_mask
, bio_src
->bi_max_vecs
, bs
);
2709 __bio_clone(bio
, bio_src
);
2711 if (bio_integrity(bio_src
) &&
2712 bio_integrity_clone(bio
, bio_src
, gfp_mask
, bs
))
2715 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2719 rq
->biotail
->bi_next
= bio
;
2722 rq
->bio
= rq
->biotail
= bio
;
2725 __blk_rq_prep_clone(rq
, rq_src
);
2732 blk_rq_unprep_clone(rq
);
2736 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2738 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2740 return queue_work(kblockd_workqueue
, work
);
2742 EXPORT_SYMBOL(kblockd_schedule_work
);
2744 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2745 struct delayed_work
*dwork
, unsigned long delay
)
2747 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2749 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2751 #define PLUG_MAGIC 0x91827364
2754 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2755 * @plug: The &struct blk_plug that needs to be initialized
2758 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2759 * pending I/O should the task end up blocking between blk_start_plug() and
2760 * blk_finish_plug(). This is important from a performance perspective, but
2761 * also ensures that we don't deadlock. For instance, if the task is blocking
2762 * for a memory allocation, memory reclaim could end up wanting to free a
2763 * page belonging to that request that is currently residing in our private
2764 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2765 * this kind of deadlock.
2767 void blk_start_plug(struct blk_plug
*plug
)
2769 struct task_struct
*tsk
= current
;
2771 plug
->magic
= PLUG_MAGIC
;
2772 INIT_LIST_HEAD(&plug
->list
);
2773 INIT_LIST_HEAD(&plug
->cb_list
);
2774 plug
->should_sort
= 0;
2777 * If this is a nested plug, don't actually assign it. It will be
2778 * flushed on its own.
2782 * Store ordering should not be needed here, since a potential
2783 * preempt will imply a full memory barrier
2788 EXPORT_SYMBOL(blk_start_plug
);
2790 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2792 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2793 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2795 return !(rqa
->q
<= rqb
->q
);
2799 * If 'from_schedule' is true, then postpone the dispatch of requests
2800 * until a safe kblockd context. We due this to avoid accidental big
2801 * additional stack usage in driver dispatch, in places where the originally
2802 * plugger did not intend it.
2804 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2806 __releases(q
->queue_lock
)
2808 trace_block_unplug(q
, depth
, !from_schedule
);
2811 * Don't mess with dead queue.
2813 if (unlikely(blk_queue_dead(q
))) {
2814 spin_unlock(q
->queue_lock
);
2819 * If we are punting this to kblockd, then we can safely drop
2820 * the queue_lock before waking kblockd (which needs to take
2823 if (from_schedule
) {
2824 spin_unlock(q
->queue_lock
);
2825 blk_run_queue_async(q
);
2828 spin_unlock(q
->queue_lock
);
2833 static void flush_plug_callbacks(struct blk_plug
*plug
)
2835 LIST_HEAD(callbacks
);
2837 if (list_empty(&plug
->cb_list
))
2840 list_splice_init(&plug
->cb_list
, &callbacks
);
2842 while (!list_empty(&callbacks
)) {
2843 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2846 list_del(&cb
->list
);
2851 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2853 struct request_queue
*q
;
2854 unsigned long flags
;
2859 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
2861 flush_plug_callbacks(plug
);
2862 if (list_empty(&plug
->list
))
2865 list_splice_init(&plug
->list
, &list
);
2867 if (plug
->should_sort
) {
2868 list_sort(NULL
, &list
, plug_rq_cmp
);
2869 plug
->should_sort
= 0;
2876 * Save and disable interrupts here, to avoid doing it for every
2877 * queue lock we have to take.
2879 local_irq_save(flags
);
2880 while (!list_empty(&list
)) {
2881 rq
= list_entry_rq(list
.next
);
2882 list_del_init(&rq
->queuelist
);
2886 * This drops the queue lock
2889 queue_unplugged(q
, depth
, from_schedule
);
2892 spin_lock(q
->queue_lock
);
2896 * Short-circuit if @q is dead
2898 if (unlikely(blk_queue_dead(q
))) {
2899 __blk_end_request_all(rq
, -ENODEV
);
2904 * rq is already accounted, so use raw insert
2906 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
2907 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
2909 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
2915 * This drops the queue lock
2918 queue_unplugged(q
, depth
, from_schedule
);
2920 local_irq_restore(flags
);
2923 void blk_finish_plug(struct blk_plug
*plug
)
2925 blk_flush_plug_list(plug
, false);
2927 if (plug
== current
->plug
)
2928 current
->plug
= NULL
;
2930 EXPORT_SYMBOL(blk_finish_plug
);
2932 int __init
blk_dev_init(void)
2934 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
2935 sizeof(((struct request
*)0)->cmd_flags
));
2937 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2938 kblockd_workqueue
= alloc_workqueue("kblockd",
2939 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
2940 if (!kblockd_workqueue
)
2941 panic("Failed to create kblockd\n");
2943 request_cachep
= kmem_cache_create("blkdev_requests",
2944 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2946 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2947 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);