2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
15 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
21 * * Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * * Redistributions in binary form must reproduce the above copy
24 * notice, this list of conditions and the following disclaimer in
25 * the documentation and/or other materials provided with the
27 * * Neither the name of Intel Corporation nor the names of its
28 * contributors may be used to endorse or promote products derived
29 * from this software without specific prior written permission.
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43 * Intel PCIe NTB Linux driver
45 * Contact Information:
46 * Jon Mason <jon.mason@intel.com>
48 #include <linux/debugfs.h>
49 #include <linux/init.h>
50 #include <linux/interrupt.h>
51 #include <linux/module.h>
52 #include <linux/pci.h>
53 #include <linux/slab.h>
57 #define NTB_NAME "Intel(R) PCI-E Non-Transparent Bridge Driver"
58 #define NTB_VER "0.25"
60 MODULE_DESCRIPTION(NTB_NAME
);
61 MODULE_VERSION(NTB_VER
);
62 MODULE_LICENSE("Dual BSD/GPL");
63 MODULE_AUTHOR("Intel Corporation");
81 /* Translate memory window 0,1 to BAR 2,4 */
82 #define MW_TO_BAR(mw) (mw * 2 + 2)
84 static DEFINE_PCI_DEVICE_TABLE(ntb_pci_tbl
) = {
85 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD
)},
86 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF
)},
87 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_CLASSIC_JSF
)},
88 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_RP_JSF
)},
89 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_RP_SNB
)},
90 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB
)},
91 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_CLASSIC_SNB
)},
94 MODULE_DEVICE_TABLE(pci
, ntb_pci_tbl
);
97 * ntb_register_event_callback() - register event callback
98 * @ndev: pointer to ntb_device instance
99 * @func: callback function to register
101 * This function registers a callback for any HW driver events such as link
102 * up/down, power management notices and etc.
104 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
106 int ntb_register_event_callback(struct ntb_device
*ndev
,
107 void (*func
)(void *handle
, enum ntb_hw_event event
))
112 ndev
->event_cb
= func
;
118 * ntb_unregister_event_callback() - unregisters the event callback
119 * @ndev: pointer to ntb_device instance
121 * This function unregisters the existing callback from transport
123 void ntb_unregister_event_callback(struct ntb_device
*ndev
)
125 ndev
->event_cb
= NULL
;
129 * ntb_register_db_callback() - register a callback for doorbell interrupt
130 * @ndev: pointer to ntb_device instance
131 * @idx: doorbell index to register callback, zero based
132 * @func: callback function to register
134 * This function registers a callback function for the doorbell interrupt
135 * on the primary side. The function will unmask the doorbell as well to
138 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
140 int ntb_register_db_callback(struct ntb_device
*ndev
, unsigned int idx
,
141 void *data
, void (*func
)(void *data
, int db_num
))
145 if (idx
>= ndev
->max_cbs
|| ndev
->db_cb
[idx
].callback
) {
146 dev_warn(&ndev
->pdev
->dev
, "Invalid Index.\n");
150 ndev
->db_cb
[idx
].callback
= func
;
151 ndev
->db_cb
[idx
].data
= data
;
153 /* unmask interrupt */
154 mask
= readw(ndev
->reg_ofs
.pdb_mask
);
155 clear_bit(idx
* ndev
->bits_per_vector
, &mask
);
156 writew(mask
, ndev
->reg_ofs
.pdb_mask
);
162 * ntb_unregister_db_callback() - unregister a callback for doorbell interrupt
163 * @ndev: pointer to ntb_device instance
164 * @idx: doorbell index to register callback, zero based
166 * This function unregisters a callback function for the doorbell interrupt
167 * on the primary side. The function will also mask the said doorbell.
169 void ntb_unregister_db_callback(struct ntb_device
*ndev
, unsigned int idx
)
173 if (idx
>= ndev
->max_cbs
|| !ndev
->db_cb
[idx
].callback
)
176 mask
= readw(ndev
->reg_ofs
.pdb_mask
);
177 set_bit(idx
* ndev
->bits_per_vector
, &mask
);
178 writew(mask
, ndev
->reg_ofs
.pdb_mask
);
180 ndev
->db_cb
[idx
].callback
= NULL
;
184 * ntb_find_transport() - find the transport pointer
185 * @transport: pointer to pci device
187 * Given the pci device pointer, return the transport pointer passed in when
188 * the transport attached when it was inited.
190 * RETURNS: pointer to transport.
192 void *ntb_find_transport(struct pci_dev
*pdev
)
194 struct ntb_device
*ndev
= pci_get_drvdata(pdev
);
195 return ndev
->ntb_transport
;
199 * ntb_register_transport() - Register NTB transport with NTB HW driver
200 * @transport: transport identifier
202 * This function allows a transport to reserve the hardware driver for
205 * RETURNS: pointer to ntb_device, NULL on error.
207 struct ntb_device
*ntb_register_transport(struct pci_dev
*pdev
, void *transport
)
209 struct ntb_device
*ndev
= pci_get_drvdata(pdev
);
211 if (ndev
->ntb_transport
)
214 ndev
->ntb_transport
= transport
;
219 * ntb_unregister_transport() - Unregister the transport with the NTB HW driver
220 * @ndev - ntb_device of the transport to be freed
222 * This function unregisters the transport from the HW driver and performs any
223 * necessary cleanups.
225 void ntb_unregister_transport(struct ntb_device
*ndev
)
229 if (!ndev
->ntb_transport
)
232 for (i
= 0; i
< ndev
->max_cbs
; i
++)
233 ntb_unregister_db_callback(ndev
, i
);
235 ntb_unregister_event_callback(ndev
);
236 ndev
->ntb_transport
= NULL
;
240 * ntb_write_local_spad() - write to the secondary scratchpad register
241 * @ndev: pointer to ntb_device instance
242 * @idx: index to the scratchpad register, 0 based
243 * @val: the data value to put into the register
245 * This function allows writing of a 32bit value to the indexed scratchpad
246 * register. This writes over the data mirrored to the local scratchpad register
247 * by the remote system.
249 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
251 int ntb_write_local_spad(struct ntb_device
*ndev
, unsigned int idx
, u32 val
)
253 if (idx
>= ndev
->limits
.max_spads
)
256 dev_dbg(&ndev
->pdev
->dev
, "Writing %x to local scratch pad index %d\n",
258 writel(val
, ndev
->reg_ofs
.spad_read
+ idx
* 4);
264 * ntb_read_local_spad() - read from the primary scratchpad register
265 * @ndev: pointer to ntb_device instance
266 * @idx: index to scratchpad register, 0 based
267 * @val: pointer to 32bit integer for storing the register value
269 * This function allows reading of the 32bit scratchpad register on
270 * the primary (internal) side. This allows the local system to read data
271 * written and mirrored to the scratchpad register by the remote system.
273 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
275 int ntb_read_local_spad(struct ntb_device
*ndev
, unsigned int idx
, u32
*val
)
277 if (idx
>= ndev
->limits
.max_spads
)
280 *val
= readl(ndev
->reg_ofs
.spad_write
+ idx
* 4);
281 dev_dbg(&ndev
->pdev
->dev
,
282 "Reading %x from local scratch pad index %d\n", *val
, idx
);
288 * ntb_write_remote_spad() - write to the secondary scratchpad register
289 * @ndev: pointer to ntb_device instance
290 * @idx: index to the scratchpad register, 0 based
291 * @val: the data value to put into the register
293 * This function allows writing of a 32bit value to the indexed scratchpad
294 * register. The register resides on the secondary (external) side. This allows
295 * the local system to write data to be mirrored to the remote systems
296 * scratchpad register.
298 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
300 int ntb_write_remote_spad(struct ntb_device
*ndev
, unsigned int idx
, u32 val
)
302 if (idx
>= ndev
->limits
.max_spads
)
305 dev_dbg(&ndev
->pdev
->dev
, "Writing %x to remote scratch pad index %d\n",
307 writel(val
, ndev
->reg_ofs
.spad_write
+ idx
* 4);
313 * ntb_read_remote_spad() - read from the primary scratchpad register
314 * @ndev: pointer to ntb_device instance
315 * @idx: index to scratchpad register, 0 based
316 * @val: pointer to 32bit integer for storing the register value
318 * This function allows reading of the 32bit scratchpad register on
319 * the primary (internal) side. This alloows the local system to read the data
320 * it wrote to be mirrored on the remote system.
322 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
324 int ntb_read_remote_spad(struct ntb_device
*ndev
, unsigned int idx
, u32
*val
)
326 if (idx
>= ndev
->limits
.max_spads
)
329 *val
= readl(ndev
->reg_ofs
.spad_read
+ idx
* 4);
330 dev_dbg(&ndev
->pdev
->dev
,
331 "Reading %x from remote scratch pad index %d\n", *val
, idx
);
337 * ntb_get_mw_vbase() - get virtual addr for the NTB memory window
338 * @ndev: pointer to ntb_device instance
339 * @mw: memory window number
341 * This function provides the base virtual address of the memory window
344 * RETURNS: pointer to virtual address, or NULL on error.
346 void __iomem
*ntb_get_mw_vbase(struct ntb_device
*ndev
, unsigned int mw
)
348 if (mw
>= NTB_NUM_MW
)
351 return ndev
->mw
[mw
].vbase
;
355 * ntb_get_mw_size() - return size of NTB memory window
356 * @ndev: pointer to ntb_device instance
357 * @mw: memory window number
359 * This function provides the physical size of the memory window specified
361 * RETURNS: the size of the memory window or zero on error
363 resource_size_t
ntb_get_mw_size(struct ntb_device
*ndev
, unsigned int mw
)
365 if (mw
>= NTB_NUM_MW
)
368 return ndev
->mw
[mw
].bar_sz
;
372 * ntb_set_mw_addr - set the memory window address
373 * @ndev: pointer to ntb_device instance
374 * @mw: memory window number
375 * @addr: base address for data
377 * This function sets the base physical address of the memory window. This
378 * memory address is where data from the remote system will be transfered into
379 * or out of depending on how the transport is configured.
381 void ntb_set_mw_addr(struct ntb_device
*ndev
, unsigned int mw
, u64 addr
)
383 if (mw
>= NTB_NUM_MW
)
386 dev_dbg(&ndev
->pdev
->dev
, "Writing addr %Lx to BAR %d\n", addr
,
389 ndev
->mw
[mw
].phys_addr
= addr
;
391 switch (MW_TO_BAR(mw
)) {
393 writeq(addr
, ndev
->reg_ofs
.sbar2_xlat
);
396 writeq(addr
, ndev
->reg_ofs
.sbar4_xlat
);
402 * ntb_ring_sdb() - Set the doorbell on the secondary/external side
403 * @ndev: pointer to ntb_device instance
404 * @db: doorbell to ring
406 * This function allows triggering of a doorbell on the secondary/external
407 * side that will initiate an interrupt on the remote host
409 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
411 void ntb_ring_sdb(struct ntb_device
*ndev
, unsigned int db
)
413 dev_dbg(&ndev
->pdev
->dev
, "%s: ringing doorbell %d\n", __func__
, db
);
415 if (ndev
->hw_type
== BWD_HW
)
416 writeq((u64
) 1 << db
, ndev
->reg_ofs
.sdb
);
418 writew(((1 << ndev
->bits_per_vector
) - 1) <<
419 (db
* ndev
->bits_per_vector
), ndev
->reg_ofs
.sdb
);
422 static void ntb_link_event(struct ntb_device
*ndev
, int link_state
)
426 if (ndev
->link_status
== link_state
)
429 if (link_state
== NTB_LINK_UP
) {
432 dev_info(&ndev
->pdev
->dev
, "Link Up\n");
433 ndev
->link_status
= NTB_LINK_UP
;
434 event
= NTB_EVENT_HW_LINK_UP
;
436 if (ndev
->hw_type
== BWD_HW
)
437 status
= readw(ndev
->reg_ofs
.lnk_stat
);
439 int rc
= pci_read_config_word(ndev
->pdev
,
440 SNB_LINK_STATUS_OFFSET
,
445 dev_info(&ndev
->pdev
->dev
, "Link Width %d, Link Speed %d\n",
446 (status
& NTB_LINK_WIDTH_MASK
) >> 4,
447 (status
& NTB_LINK_SPEED_MASK
));
449 dev_info(&ndev
->pdev
->dev
, "Link Down\n");
450 ndev
->link_status
= NTB_LINK_DOWN
;
451 event
= NTB_EVENT_HW_LINK_DOWN
;
454 /* notify the upper layer if we have an event change */
456 ndev
->event_cb(ndev
->ntb_transport
, event
);
459 static int ntb_link_status(struct ntb_device
*ndev
)
463 if (ndev
->hw_type
== BWD_HW
) {
466 ntb_cntl
= readl(ndev
->reg_ofs
.lnk_cntl
);
467 if (ntb_cntl
& BWD_CNTL_LINK_DOWN
)
468 link_state
= NTB_LINK_DOWN
;
470 link_state
= NTB_LINK_UP
;
475 rc
= pci_read_config_word(ndev
->pdev
, SNB_LINK_STATUS_OFFSET
,
480 if (status
& NTB_LINK_STATUS_ACTIVE
)
481 link_state
= NTB_LINK_UP
;
483 link_state
= NTB_LINK_DOWN
;
486 ntb_link_event(ndev
, link_state
);
491 /* BWD doesn't have link status interrupt, poll on that platform */
492 static void bwd_link_poll(struct work_struct
*work
)
494 struct ntb_device
*ndev
= container_of(work
, struct ntb_device
,
496 unsigned long ts
= jiffies
;
498 /* If we haven't gotten an interrupt in a while, check the BWD link
501 if (ts
> ndev
->last_ts
+ NTB_HB_TIMEOUT
) {
502 int rc
= ntb_link_status(ndev
);
504 dev_err(&ndev
->pdev
->dev
,
505 "Error determining link status\n");
508 schedule_delayed_work(&ndev
->hb_timer
, NTB_HB_TIMEOUT
);
511 static int ntb_xeon_setup(struct ntb_device
*ndev
)
516 ndev
->hw_type
= SNB_HW
;
518 rc
= pci_read_config_byte(ndev
->pdev
, NTB_PPD_OFFSET
, &val
);
522 switch (val
& SNB_PPD_CONN_TYPE
) {
524 ndev
->conn_type
= NTB_CONN_B2B
;
526 case NTB_CONN_CLASSIC
:
529 dev_err(&ndev
->pdev
->dev
, "Only B2B supported at this time\n");
533 if (val
& SNB_PPD_DEV_TYPE
)
534 ndev
->dev_type
= NTB_DEV_DSD
;
536 ndev
->dev_type
= NTB_DEV_USD
;
538 ndev
->reg_ofs
.pdb
= ndev
->reg_base
+ SNB_PDOORBELL_OFFSET
;
539 ndev
->reg_ofs
.pdb_mask
= ndev
->reg_base
+ SNB_PDBMSK_OFFSET
;
540 ndev
->reg_ofs
.sbar2_xlat
= ndev
->reg_base
+ SNB_SBAR2XLAT_OFFSET
;
541 ndev
->reg_ofs
.sbar4_xlat
= ndev
->reg_base
+ SNB_SBAR4XLAT_OFFSET
;
542 ndev
->reg_ofs
.lnk_cntl
= ndev
->reg_base
+ SNB_NTBCNTL_OFFSET
;
543 ndev
->reg_ofs
.lnk_stat
= ndev
->reg_base
+ SNB_LINK_STATUS_OFFSET
;
544 ndev
->reg_ofs
.spad_read
= ndev
->reg_base
+ SNB_SPAD_OFFSET
;
545 ndev
->reg_ofs
.spci_cmd
= ndev
->reg_base
+ SNB_PCICMD_OFFSET
;
547 if (ndev
->conn_type
== NTB_CONN_B2B
) {
548 ndev
->reg_ofs
.sdb
= ndev
->reg_base
+ SNB_B2B_DOORBELL_OFFSET
;
549 ndev
->reg_ofs
.spad_write
= ndev
->reg_base
+ SNB_B2B_SPAD_OFFSET
;
550 ndev
->limits
.max_spads
= SNB_MAX_SPADS
;
552 ndev
->reg_ofs
.sdb
= ndev
->reg_base
+ SNB_SDOORBELL_OFFSET
;
553 ndev
->reg_ofs
.spad_write
= ndev
->reg_base
+ SNB_SPAD_OFFSET
;
554 ndev
->limits
.max_spads
= SNB_MAX_COMPAT_SPADS
;
557 ndev
->limits
.max_db_bits
= SNB_MAX_DB_BITS
;
558 ndev
->limits
.msix_cnt
= SNB_MSIX_CNT
;
559 ndev
->bits_per_vector
= SNB_DB_BITS_PER_VEC
;
564 static int ntb_bwd_setup(struct ntb_device
*ndev
)
569 ndev
->hw_type
= BWD_HW
;
571 rc
= pci_read_config_dword(ndev
->pdev
, NTB_PPD_OFFSET
, &val
);
575 switch ((val
& BWD_PPD_CONN_TYPE
) >> 8) {
577 ndev
->conn_type
= NTB_CONN_B2B
;
581 dev_err(&ndev
->pdev
->dev
, "Only B2B supported at this time\n");
585 if (val
& BWD_PPD_DEV_TYPE
)
586 ndev
->dev_type
= NTB_DEV_DSD
;
588 ndev
->dev_type
= NTB_DEV_USD
;
590 /* Initiate PCI-E link training */
591 rc
= pci_write_config_dword(ndev
->pdev
, NTB_PPD_OFFSET
,
592 val
| BWD_PPD_INIT_LINK
);
596 ndev
->reg_ofs
.pdb
= ndev
->reg_base
+ BWD_PDOORBELL_OFFSET
;
597 ndev
->reg_ofs
.pdb_mask
= ndev
->reg_base
+ BWD_PDBMSK_OFFSET
;
598 ndev
->reg_ofs
.sbar2_xlat
= ndev
->reg_base
+ BWD_SBAR2XLAT_OFFSET
;
599 ndev
->reg_ofs
.sbar4_xlat
= ndev
->reg_base
+ BWD_SBAR4XLAT_OFFSET
;
600 ndev
->reg_ofs
.lnk_cntl
= ndev
->reg_base
+ BWD_NTBCNTL_OFFSET
;
601 ndev
->reg_ofs
.lnk_stat
= ndev
->reg_base
+ BWD_LINK_STATUS_OFFSET
;
602 ndev
->reg_ofs
.spad_read
= ndev
->reg_base
+ BWD_SPAD_OFFSET
;
603 ndev
->reg_ofs
.spci_cmd
= ndev
->reg_base
+ BWD_PCICMD_OFFSET
;
605 if (ndev
->conn_type
== NTB_CONN_B2B
) {
606 ndev
->reg_ofs
.sdb
= ndev
->reg_base
+ BWD_B2B_DOORBELL_OFFSET
;
607 ndev
->reg_ofs
.spad_write
= ndev
->reg_base
+ BWD_B2B_SPAD_OFFSET
;
608 ndev
->limits
.max_spads
= BWD_MAX_SPADS
;
610 ndev
->reg_ofs
.sdb
= ndev
->reg_base
+ BWD_PDOORBELL_OFFSET
;
611 ndev
->reg_ofs
.spad_write
= ndev
->reg_base
+ BWD_SPAD_OFFSET
;
612 ndev
->limits
.max_spads
= BWD_MAX_COMPAT_SPADS
;
615 ndev
->limits
.max_db_bits
= BWD_MAX_DB_BITS
;
616 ndev
->limits
.msix_cnt
= BWD_MSIX_CNT
;
617 ndev
->bits_per_vector
= BWD_DB_BITS_PER_VEC
;
619 /* Since bwd doesn't have a link interrupt, setup a poll timer */
620 INIT_DELAYED_WORK(&ndev
->hb_timer
, bwd_link_poll
);
621 schedule_delayed_work(&ndev
->hb_timer
, NTB_HB_TIMEOUT
);
626 static int ntb_device_setup(struct ntb_device
*ndev
)
630 switch (ndev
->pdev
->device
) {
631 case PCI_DEVICE_ID_INTEL_NTB_2ND_SNB
:
632 case PCI_DEVICE_ID_INTEL_NTB_RP_JSF
:
633 case PCI_DEVICE_ID_INTEL_NTB_RP_SNB
:
634 case PCI_DEVICE_ID_INTEL_NTB_CLASSIC_JSF
:
635 case PCI_DEVICE_ID_INTEL_NTB_CLASSIC_SNB
:
636 case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF
:
637 case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB
:
638 rc
= ntb_xeon_setup(ndev
);
640 case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD
:
641 rc
= ntb_bwd_setup(ndev
);
647 /* Enable Bus Master and Memory Space on the secondary side */
648 writew(PCI_COMMAND_MEMORY
| PCI_COMMAND_MASTER
, ndev
->reg_ofs
.spci_cmd
);
653 static void ntb_device_free(struct ntb_device
*ndev
)
655 if (ndev
->hw_type
== BWD_HW
)
656 cancel_delayed_work_sync(&ndev
->hb_timer
);
659 static irqreturn_t
bwd_callback_msix_irq(int irq
, void *data
)
661 struct ntb_db_cb
*db_cb
= data
;
662 struct ntb_device
*ndev
= db_cb
->ndev
;
664 dev_dbg(&ndev
->pdev
->dev
, "MSI-X irq %d received for DB %d\n", irq
,
668 db_cb
->callback(db_cb
->data
, db_cb
->db_num
);
670 /* No need to check for the specific HB irq, any interrupt means
673 ndev
->last_ts
= jiffies
;
675 writeq((u64
) 1 << db_cb
->db_num
, ndev
->reg_ofs
.pdb
);
680 static irqreturn_t
xeon_callback_msix_irq(int irq
, void *data
)
682 struct ntb_db_cb
*db_cb
= data
;
683 struct ntb_device
*ndev
= db_cb
->ndev
;
685 dev_dbg(&ndev
->pdev
->dev
, "MSI-X irq %d received for DB %d\n", irq
,
689 db_cb
->callback(db_cb
->data
, db_cb
->db_num
);
691 /* On Sandybridge, there are 16 bits in the interrupt register
692 * but only 4 vectors. So, 5 bits are assigned to the first 3
693 * vectors, with the 4th having a single bit for link
696 writew(((1 << ndev
->bits_per_vector
) - 1) <<
697 (db_cb
->db_num
* ndev
->bits_per_vector
), ndev
->reg_ofs
.pdb
);
702 /* Since we do not have a HW doorbell in BWD, this is only used in JF/JT */
703 static irqreturn_t
xeon_event_msix_irq(int irq
, void *dev
)
705 struct ntb_device
*ndev
= dev
;
708 dev_dbg(&ndev
->pdev
->dev
, "MSI-X irq %d received for Events\n", irq
);
710 rc
= ntb_link_status(ndev
);
712 dev_err(&ndev
->pdev
->dev
, "Error determining link status\n");
714 /* bit 15 is always the link bit */
715 writew(1 << ndev
->limits
.max_db_bits
, ndev
->reg_ofs
.pdb
);
720 static irqreturn_t
ntb_interrupt(int irq
, void *dev
)
722 struct ntb_device
*ndev
= dev
;
725 if (ndev
->hw_type
== BWD_HW
) {
726 u64 pdb
= readq(ndev
->reg_ofs
.pdb
);
728 dev_dbg(&ndev
->pdev
->dev
, "irq %d - pdb = %Lx\n", irq
, pdb
);
733 bwd_callback_msix_irq(irq
, &ndev
->db_cb
[i
]);
736 u16 pdb
= readw(ndev
->reg_ofs
.pdb
);
738 dev_dbg(&ndev
->pdev
->dev
, "irq %d - pdb = %x sdb %x\n", irq
,
739 pdb
, readw(ndev
->reg_ofs
.sdb
));
741 if (pdb
& SNB_DB_HW_LINK
) {
742 xeon_event_msix_irq(irq
, dev
);
743 pdb
&= ~SNB_DB_HW_LINK
;
749 xeon_callback_msix_irq(irq
, &ndev
->db_cb
[i
]);
756 static int ntb_setup_msix(struct ntb_device
*ndev
)
758 struct pci_dev
*pdev
= ndev
->pdev
;
759 struct msix_entry
*msix
;
764 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
770 rc
= pci_read_config_word(pdev
, pos
+ PCI_MSIX_FLAGS
, &val
);
774 msix_entries
= msix_table_size(val
);
775 if (msix_entries
> ndev
->limits
.msix_cnt
) {
780 ndev
->msix_entries
= kmalloc(sizeof(struct msix_entry
) * msix_entries
,
782 if (!ndev
->msix_entries
) {
787 for (i
= 0; i
< msix_entries
; i
++)
788 ndev
->msix_entries
[i
].entry
= i
;
790 rc
= pci_enable_msix(pdev
, ndev
->msix_entries
, msix_entries
);
794 /* On SNB, the link interrupt is always tied to 4th vector. If
795 * we can't get all 4, then we can't use MSI-X.
797 if (ndev
->hw_type
!= BWD_HW
) {
803 "Only %d MSI-X vectors. Limiting the number of queues to that number.\n",
808 for (i
= 0; i
< msix_entries
; i
++) {
809 msix
= &ndev
->msix_entries
[i
];
810 WARN_ON(!msix
->vector
);
812 /* Use the last MSI-X vector for Link status */
813 if (ndev
->hw_type
== BWD_HW
) {
814 rc
= request_irq(msix
->vector
, bwd_callback_msix_irq
, 0,
815 "ntb-callback-msix", &ndev
->db_cb
[i
]);
819 if (i
== msix_entries
- 1) {
820 rc
= request_irq(msix
->vector
,
821 xeon_event_msix_irq
, 0,
822 "ntb-event-msix", ndev
);
826 rc
= request_irq(msix
->vector
,
827 xeon_callback_msix_irq
, 0,
836 ndev
->num_msix
= msix_entries
;
837 if (ndev
->hw_type
== BWD_HW
)
838 ndev
->max_cbs
= msix_entries
;
840 ndev
->max_cbs
= msix_entries
- 1;
846 msix
= &ndev
->msix_entries
[i
];
847 if (ndev
->hw_type
!= BWD_HW
&& i
== ndev
->num_msix
- 1)
848 free_irq(msix
->vector
, ndev
);
850 free_irq(msix
->vector
, &ndev
->db_cb
[i
]);
852 pci_disable_msix(pdev
);
854 kfree(ndev
->msix_entries
);
855 dev_err(&pdev
->dev
, "Error allocating MSI-X interrupt\n");
861 static int ntb_setup_msi(struct ntb_device
*ndev
)
863 struct pci_dev
*pdev
= ndev
->pdev
;
866 rc
= pci_enable_msi(pdev
);
870 rc
= request_irq(pdev
->irq
, ntb_interrupt
, 0, "ntb-msi", ndev
);
872 pci_disable_msi(pdev
);
873 dev_err(&pdev
->dev
, "Error allocating MSI interrupt\n");
880 static int ntb_setup_intx(struct ntb_device
*ndev
)
882 struct pci_dev
*pdev
= ndev
->pdev
;
887 /* Verify intx is enabled */
890 rc
= request_irq(pdev
->irq
, ntb_interrupt
, IRQF_SHARED
, "ntb-intx",
898 static int ntb_setup_interrupts(struct ntb_device
*ndev
)
902 /* On BWD, disable all interrupts. On SNB, disable all but Link
903 * Interrupt. The rest will be unmasked as callbacks are registered.
905 if (ndev
->hw_type
== BWD_HW
)
906 writeq(~0, ndev
->reg_ofs
.pdb_mask
);
908 writew(~(1 << ndev
->limits
.max_db_bits
),
909 ndev
->reg_ofs
.pdb_mask
);
911 rc
= ntb_setup_msix(ndev
);
915 ndev
->bits_per_vector
= 1;
916 ndev
->max_cbs
= ndev
->limits
.max_db_bits
;
918 rc
= ntb_setup_msi(ndev
);
922 rc
= ntb_setup_intx(ndev
);
924 dev_err(&ndev
->pdev
->dev
, "no usable interrupts\n");
932 static void ntb_free_interrupts(struct ntb_device
*ndev
)
934 struct pci_dev
*pdev
= ndev
->pdev
;
936 /* mask interrupts */
937 if (ndev
->hw_type
== BWD_HW
)
938 writeq(~0, ndev
->reg_ofs
.pdb_mask
);
940 writew(~0, ndev
->reg_ofs
.pdb_mask
);
942 if (ndev
->num_msix
) {
943 struct msix_entry
*msix
;
946 for (i
= 0; i
< ndev
->num_msix
; i
++) {
947 msix
= &ndev
->msix_entries
[i
];
948 if (ndev
->hw_type
!= BWD_HW
&& i
== ndev
->num_msix
- 1)
949 free_irq(msix
->vector
, ndev
);
951 free_irq(msix
->vector
, &ndev
->db_cb
[i
]);
953 pci_disable_msix(pdev
);
955 free_irq(pdev
->irq
, ndev
);
957 if (pci_dev_msi_enabled(pdev
))
958 pci_disable_msi(pdev
);
962 static int ntb_create_callbacks(struct ntb_device
*ndev
)
966 /* Checken-egg issue. We won't know how many callbacks are necessary
967 * until we see how many MSI-X vectors we get, but these pointers need
968 * to be passed into the MSI-X register fucntion. So, we allocate the
969 * max, knowing that they might not all be used, to work around this.
971 ndev
->db_cb
= kcalloc(ndev
->limits
.max_db_bits
,
972 sizeof(struct ntb_db_cb
),
977 for (i
= 0; i
< ndev
->limits
.max_db_bits
; i
++) {
978 ndev
->db_cb
[i
].db_num
= i
;
979 ndev
->db_cb
[i
].ndev
= ndev
;
985 static void ntb_free_callbacks(struct ntb_device
*ndev
)
989 for (i
= 0; i
< ndev
->limits
.max_db_bits
; i
++)
990 ntb_unregister_db_callback(ndev
, i
);
995 static int ntb_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
997 struct ntb_device
*ndev
;
1000 ndev
= kzalloc(sizeof(struct ntb_device
), GFP_KERNEL
);
1005 ndev
->link_status
= NTB_LINK_DOWN
;
1006 pci_set_drvdata(pdev
, ndev
);
1008 rc
= pci_enable_device(pdev
);
1012 pci_set_master(ndev
->pdev
);
1014 rc
= pci_request_selected_regions(pdev
, NTB_BAR_MASK
, KBUILD_MODNAME
);
1018 ndev
->reg_base
= pci_ioremap_bar(pdev
, NTB_BAR_MMIO
);
1019 if (!ndev
->reg_base
) {
1020 dev_warn(&pdev
->dev
, "Cannot remap BAR 0\n");
1025 for (i
= 0; i
< NTB_NUM_MW
; i
++) {
1026 ndev
->mw
[i
].bar_sz
= pci_resource_len(pdev
, MW_TO_BAR(i
));
1028 ioremap_wc(pci_resource_start(pdev
, MW_TO_BAR(i
)),
1029 ndev
->mw
[i
].bar_sz
);
1030 dev_info(&pdev
->dev
, "MW %d size %llu\n", i
,
1031 pci_resource_len(pdev
, MW_TO_BAR(i
)));
1032 if (!ndev
->mw
[i
].vbase
) {
1033 dev_warn(&pdev
->dev
, "Cannot remap BAR %d\n",
1040 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
1042 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
1046 dev_warn(&pdev
->dev
, "Cannot DMA highmem\n");
1049 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
1051 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
1055 dev_warn(&pdev
->dev
, "Cannot DMA consistent highmem\n");
1058 rc
= ntb_device_setup(ndev
);
1062 rc
= ntb_create_callbacks(ndev
);
1066 rc
= ntb_setup_interrupts(ndev
);
1070 /* The scratchpad registers keep the values between rmmod/insmod,
1073 for (i
= 0; i
< ndev
->limits
.max_spads
; i
++) {
1074 ntb_write_local_spad(ndev
, i
, 0);
1075 ntb_write_remote_spad(ndev
, i
, 0);
1078 rc
= ntb_transport_init(pdev
);
1082 /* Let's bring the NTB link up */
1083 writel(NTB_CNTL_BAR23_SNOOP
| NTB_CNTL_BAR45_SNOOP
,
1084 ndev
->reg_ofs
.lnk_cntl
);
1089 ntb_free_interrupts(ndev
);
1091 ntb_free_callbacks(ndev
);
1093 ntb_device_free(ndev
);
1095 for (i
--; i
>= 0; i
--)
1096 iounmap(ndev
->mw
[i
].vbase
);
1097 iounmap(ndev
->reg_base
);
1099 pci_release_selected_regions(pdev
, NTB_BAR_MASK
);
1101 pci_disable_device(pdev
);
1105 dev_err(&pdev
->dev
, "Error loading %s module\n", KBUILD_MODNAME
);
1109 static void ntb_pci_remove(struct pci_dev
*pdev
)
1111 struct ntb_device
*ndev
= pci_get_drvdata(pdev
);
1115 /* Bring NTB link down */
1116 ntb_cntl
= readl(ndev
->reg_ofs
.lnk_cntl
);
1117 ntb_cntl
|= NTB_LINK_DISABLE
;
1118 writel(ntb_cntl
, ndev
->reg_ofs
.lnk_cntl
);
1120 ntb_transport_free(ndev
->ntb_transport
);
1122 ntb_free_interrupts(ndev
);
1123 ntb_free_callbacks(ndev
);
1124 ntb_device_free(ndev
);
1126 for (i
= 0; i
< NTB_NUM_MW
; i
++)
1127 iounmap(ndev
->mw
[i
].vbase
);
1129 iounmap(ndev
->reg_base
);
1130 pci_release_selected_regions(pdev
, NTB_BAR_MASK
);
1131 pci_disable_device(pdev
);
1135 static struct pci_driver ntb_pci_driver
= {
1136 .name
= KBUILD_MODNAME
,
1137 .id_table
= ntb_pci_tbl
,
1138 .probe
= ntb_pci_probe
,
1139 .remove
= ntb_pci_remove
,
1141 module_pci_driver(ntb_pci_driver
);