2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 #include <linux/pm_runtime.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/block.h>
39 #include "blk-cgroup.h"
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
46 DEFINE_IDA(blk_queue_ida
);
49 * For the allocated request tables
51 static struct kmem_cache
*request_cachep
;
54 * For queue allocation
56 struct kmem_cache
*blk_requestq_cachep
;
59 * Controlling structure to kblockd
61 static struct workqueue_struct
*kblockd_workqueue
;
63 static void drive_stat_acct(struct request
*rq
, int new_io
)
65 struct hd_struct
*part
;
66 int rw
= rq_data_dir(rq
);
69 if (!blk_do_io_stat(rq
))
72 cpu
= part_stat_lock();
76 part_stat_inc(cpu
, part
, merges
[rw
]);
78 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
79 if (!hd_struct_try_get(part
)) {
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
88 part
= &rq
->rq_disk
->part0
;
91 part_round_stats(cpu
, part
);
92 part_inc_in_flight(part
, rw
);
99 void blk_queue_congestion_threshold(struct request_queue
*q
)
103 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
104 if (nr
> q
->nr_requests
)
106 q
->nr_congestion_on
= nr
;
108 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
111 q
->nr_congestion_off
= nr
;
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * Locates the passed device's request queue and returns the address of its
121 * Will return NULL if the request queue cannot be located.
123 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
125 struct backing_dev_info
*ret
= NULL
;
126 struct request_queue
*q
= bdev_get_queue(bdev
);
129 ret
= &q
->backing_dev_info
;
132 EXPORT_SYMBOL(blk_get_backing_dev_info
);
134 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
136 memset(rq
, 0, sizeof(*rq
));
138 INIT_LIST_HEAD(&rq
->queuelist
);
139 INIT_LIST_HEAD(&rq
->timeout_list
);
142 rq
->__sector
= (sector_t
) -1;
143 INIT_HLIST_NODE(&rq
->hash
);
144 RB_CLEAR_NODE(&rq
->rb_node
);
146 rq
->cmd_len
= BLK_MAX_CDB
;
149 rq
->start_time
= jiffies
;
150 set_start_time_ns(rq
);
153 EXPORT_SYMBOL(blk_rq_init
);
155 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
156 unsigned int nbytes
, int error
)
159 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
160 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
163 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
164 set_bit(BIO_QUIET
, &bio
->bi_flags
);
166 bio_advance(bio
, nbytes
);
168 /* don't actually finish bio if it's part of flush sequence */
169 if (bio
->bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
170 bio_endio(bio
, error
);
173 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
177 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
178 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
181 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq
),
183 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
184 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
185 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
187 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
188 printk(KERN_INFO
" cdb: ");
189 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
190 printk("%02x ", rq
->cmd
[bit
]);
194 EXPORT_SYMBOL(blk_dump_rq_flags
);
196 static void blk_delay_work(struct work_struct
*work
)
198 struct request_queue
*q
;
200 q
= container_of(work
, struct request_queue
, delay_work
.work
);
201 spin_lock_irq(q
->queue_lock
);
203 spin_unlock_irq(q
->queue_lock
);
207 * blk_delay_queue - restart queueing after defined interval
208 * @q: The &struct request_queue in question
209 * @msecs: Delay in msecs
212 * Sometimes queueing needs to be postponed for a little while, to allow
213 * resources to come back. This function will make sure that queueing is
214 * restarted around the specified time. Queue lock must be held.
216 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
218 if (likely(!blk_queue_dead(q
)))
219 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
220 msecs_to_jiffies(msecs
));
222 EXPORT_SYMBOL(blk_delay_queue
);
225 * blk_start_queue - restart a previously stopped queue
226 * @q: The &struct request_queue in question
229 * blk_start_queue() will clear the stop flag on the queue, and call
230 * the request_fn for the queue if it was in a stopped state when
231 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 void blk_start_queue(struct request_queue
*q
)
235 WARN_ON(!irqs_disabled());
237 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
240 EXPORT_SYMBOL(blk_start_queue
);
243 * blk_stop_queue - stop a queue
244 * @q: The &struct request_queue in question
247 * The Linux block layer assumes that a block driver will consume all
248 * entries on the request queue when the request_fn strategy is called.
249 * Often this will not happen, because of hardware limitations (queue
250 * depth settings). If a device driver gets a 'queue full' response,
251 * or if it simply chooses not to queue more I/O at one point, it can
252 * call this function to prevent the request_fn from being called until
253 * the driver has signalled it's ready to go again. This happens by calling
254 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 void blk_stop_queue(struct request_queue
*q
)
258 cancel_delayed_work(&q
->delay_work
);
259 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
261 EXPORT_SYMBOL(blk_stop_queue
);
264 * blk_sync_queue - cancel any pending callbacks on a queue
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
272 * that the callbacks might use. The caller must already have made sure
273 * that its ->make_request_fn will not re-add plugging prior to calling
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevaotor_exit()
278 * and blkcg_exit_queue() to be called with queue lock initialized.
281 void blk_sync_queue(struct request_queue
*q
)
283 del_timer_sync(&q
->timeout
);
284 cancel_delayed_work_sync(&q
->delay_work
);
286 EXPORT_SYMBOL(blk_sync_queue
);
289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290 * @q: The queue to run
293 * Invoke request handling on a queue if there are any pending requests.
294 * May be used to restart request handling after a request has completed.
295 * This variant runs the queue whether or not the queue has been
296 * stopped. Must be called with the queue lock held and interrupts
297 * disabled. See also @blk_run_queue.
299 inline void __blk_run_queue_uncond(struct request_queue
*q
)
301 if (unlikely(blk_queue_dead(q
)))
305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 * the queue lock internally. As a result multiple threads may be
307 * running such a request function concurrently. Keep track of the
308 * number of active request_fn invocations such that blk_drain_queue()
309 * can wait until all these request_fn calls have finished.
311 q
->request_fn_active
++;
313 q
->request_fn_active
--;
317 * __blk_run_queue - run a single device queue
318 * @q: The queue to run
321 * See @blk_run_queue. This variant must be called with the queue lock
322 * held and interrupts disabled.
324 void __blk_run_queue(struct request_queue
*q
)
326 if (unlikely(blk_queue_stopped(q
)))
329 __blk_run_queue_uncond(q
);
331 EXPORT_SYMBOL(__blk_run_queue
);
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
339 * of us. The caller must hold the queue lock.
341 void blk_run_queue_async(struct request_queue
*q
)
343 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
344 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
346 EXPORT_SYMBOL(blk_run_queue_async
);
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
353 * Invoke request handling on this queue, if it has pending work to do.
354 * May be used to restart queueing when a request has completed.
356 void blk_run_queue(struct request_queue
*q
)
360 spin_lock_irqsave(q
->queue_lock
, flags
);
362 spin_unlock_irqrestore(q
->queue_lock
, flags
);
364 EXPORT_SYMBOL(blk_run_queue
);
366 void blk_put_queue(struct request_queue
*q
)
368 kobject_put(&q
->kobj
);
370 EXPORT_SYMBOL(blk_put_queue
);
373 * __blk_drain_queue - drain requests from request_queue
375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
381 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
382 __releases(q
->queue_lock
)
383 __acquires(q
->queue_lock
)
387 lockdep_assert_held(q
->queue_lock
);
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
397 elv_drain_elevator(q
);
399 blkcg_drain_queue(q
);
402 * This function might be called on a queue which failed
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
408 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
411 drain
|= q
->nr_rqs_elvpriv
;
412 drain
|= q
->request_fn_active
;
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
420 drain
|= !list_empty(&q
->queue_head
);
421 for (i
= 0; i
< 2; i
++) {
422 drain
|= q
->nr_rqs
[i
];
423 drain
|= q
->in_flight
[i
];
424 drain
|= !list_empty(&q
->flush_queue
[i
]);
431 spin_unlock_irq(q
->queue_lock
);
435 spin_lock_irq(q
->queue_lock
);
439 * With queue marked dead, any woken up waiter will fail the
440 * allocation path, so the wakeup chaining is lost and we're
441 * left with hung waiters. We need to wake up those waiters.
444 struct request_list
*rl
;
446 blk_queue_for_each_rl(rl
, q
)
447 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
448 wake_up_all(&rl
->wait
[i
]);
453 * blk_queue_bypass_start - enter queue bypass mode
454 * @q: queue of interest
456 * In bypass mode, only the dispatch FIFO queue of @q is used. This
457 * function makes @q enter bypass mode and drains all requests which were
458 * throttled or issued before. On return, it's guaranteed that no request
459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460 * inside queue or RCU read lock.
462 void blk_queue_bypass_start(struct request_queue
*q
)
466 spin_lock_irq(q
->queue_lock
);
467 drain
= !q
->bypass_depth
++;
468 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
469 spin_unlock_irq(q
->queue_lock
);
472 spin_lock_irq(q
->queue_lock
);
473 __blk_drain_queue(q
, false);
474 spin_unlock_irq(q
->queue_lock
);
476 /* ensure blk_queue_bypass() is %true inside RCU read lock */
480 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
483 * blk_queue_bypass_end - leave queue bypass mode
484 * @q: queue of interest
486 * Leave bypass mode and restore the normal queueing behavior.
488 void blk_queue_bypass_end(struct request_queue
*q
)
490 spin_lock_irq(q
->queue_lock
);
491 if (!--q
->bypass_depth
)
492 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
493 WARN_ON_ONCE(q
->bypass_depth
< 0);
494 spin_unlock_irq(q
->queue_lock
);
496 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
499 * blk_cleanup_queue - shutdown a request queue
500 * @q: request queue to shutdown
502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503 * put it. All future requests will be failed immediately with -ENODEV.
505 void blk_cleanup_queue(struct request_queue
*q
)
507 spinlock_t
*lock
= q
->queue_lock
;
509 /* mark @q DYING, no new request or merges will be allowed afterwards */
510 mutex_lock(&q
->sysfs_lock
);
511 queue_flag_set_unlocked(QUEUE_FLAG_DYING
, q
);
515 * A dying queue is permanently in bypass mode till released. Note
516 * that, unlike blk_queue_bypass_start(), we aren't performing
517 * synchronize_rcu() after entering bypass mode to avoid the delay
518 * as some drivers create and destroy a lot of queues while
519 * probing. This is still safe because blk_release_queue() will be
520 * called only after the queue refcnt drops to zero and nothing,
521 * RCU or not, would be traversing the queue by then.
524 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
526 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
527 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
528 queue_flag_set(QUEUE_FLAG_DYING
, q
);
529 spin_unlock_irq(lock
);
530 mutex_unlock(&q
->sysfs_lock
);
533 * Drain all requests queued before DYING marking. Set DEAD flag to
534 * prevent that q->request_fn() gets invoked after draining finished.
537 __blk_drain_queue(q
, true);
538 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
539 spin_unlock_irq(lock
);
541 /* @q won't process any more request, flush async actions */
542 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
546 if (q
->queue_lock
!= &q
->__queue_lock
)
547 q
->queue_lock
= &q
->__queue_lock
;
548 spin_unlock_irq(lock
);
550 /* @q is and will stay empty, shutdown and put */
553 EXPORT_SYMBOL(blk_cleanup_queue
);
555 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
558 if (unlikely(rl
->rq_pool
))
562 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
563 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
564 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
565 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
567 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
568 mempool_free_slab
, request_cachep
,
576 void blk_exit_rl(struct request_list
*rl
)
579 mempool_destroy(rl
->rq_pool
);
582 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
584 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
586 EXPORT_SYMBOL(blk_alloc_queue
);
588 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
590 struct request_queue
*q
;
593 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
594 gfp_mask
| __GFP_ZERO
, node_id
);
598 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
602 q
->backing_dev_info
.ra_pages
=
603 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
604 q
->backing_dev_info
.state
= 0;
605 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
606 q
->backing_dev_info
.name
= "block";
609 err
= bdi_init(&q
->backing_dev_info
);
613 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
614 laptop_mode_timer_fn
, (unsigned long) q
);
615 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
616 INIT_LIST_HEAD(&q
->queue_head
);
617 INIT_LIST_HEAD(&q
->timeout_list
);
618 INIT_LIST_HEAD(&q
->icq_list
);
619 #ifdef CONFIG_BLK_CGROUP
620 INIT_LIST_HEAD(&q
->blkg_list
);
622 INIT_LIST_HEAD(&q
->flush_queue
[0]);
623 INIT_LIST_HEAD(&q
->flush_queue
[1]);
624 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
625 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
627 kobject_init(&q
->kobj
, &blk_queue_ktype
);
629 mutex_init(&q
->sysfs_lock
);
630 spin_lock_init(&q
->__queue_lock
);
633 * By default initialize queue_lock to internal lock and driver can
634 * override it later if need be.
636 q
->queue_lock
= &q
->__queue_lock
;
639 * A queue starts its life with bypass turned on to avoid
640 * unnecessary bypass on/off overhead and nasty surprises during
641 * init. The initial bypass will be finished when the queue is
642 * registered by blk_register_queue().
645 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
647 if (blkcg_init_queue(q
))
653 ida_simple_remove(&blk_queue_ida
, q
->id
);
655 kmem_cache_free(blk_requestq_cachep
, q
);
658 EXPORT_SYMBOL(blk_alloc_queue_node
);
661 * blk_init_queue - prepare a request queue for use with a block device
662 * @rfn: The function to be called to process requests that have been
663 * placed on the queue.
664 * @lock: Request queue spin lock
667 * If a block device wishes to use the standard request handling procedures,
668 * which sorts requests and coalesces adjacent requests, then it must
669 * call blk_init_queue(). The function @rfn will be called when there
670 * are requests on the queue that need to be processed. If the device
671 * supports plugging, then @rfn may not be called immediately when requests
672 * are available on the queue, but may be called at some time later instead.
673 * Plugged queues are generally unplugged when a buffer belonging to one
674 * of the requests on the queue is needed, or due to memory pressure.
676 * @rfn is not required, or even expected, to remove all requests off the
677 * queue, but only as many as it can handle at a time. If it does leave
678 * requests on the queue, it is responsible for arranging that the requests
679 * get dealt with eventually.
681 * The queue spin lock must be held while manipulating the requests on the
682 * request queue; this lock will be taken also from interrupt context, so irq
683 * disabling is needed for it.
685 * Function returns a pointer to the initialized request queue, or %NULL if
689 * blk_init_queue() must be paired with a blk_cleanup_queue() call
690 * when the block device is deactivated (such as at module unload).
693 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
695 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
697 EXPORT_SYMBOL(blk_init_queue
);
699 struct request_queue
*
700 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
702 struct request_queue
*uninit_q
, *q
;
704 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
708 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
710 blk_cleanup_queue(uninit_q
);
714 EXPORT_SYMBOL(blk_init_queue_node
);
716 struct request_queue
*
717 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
723 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
727 q
->prep_rq_fn
= NULL
;
728 q
->unprep_rq_fn
= NULL
;
729 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
731 /* Override internal queue lock with supplied lock pointer */
733 q
->queue_lock
= lock
;
736 * This also sets hw/phys segments, boundary and size
738 blk_queue_make_request(q
, blk_queue_bio
);
740 q
->sg_reserved_size
= INT_MAX
;
743 if (elevator_init(q
, NULL
))
747 EXPORT_SYMBOL(blk_init_allocated_queue
);
749 bool blk_get_queue(struct request_queue
*q
)
751 if (likely(!blk_queue_dying(q
))) {
758 EXPORT_SYMBOL(blk_get_queue
);
760 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
762 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
763 elv_put_request(rl
->q
, rq
);
765 put_io_context(rq
->elv
.icq
->ioc
);
768 mempool_free(rq
, rl
->rq_pool
);
772 * ioc_batching returns true if the ioc is a valid batching request and
773 * should be given priority access to a request.
775 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
781 * Make sure the process is able to allocate at least 1 request
782 * even if the batch times out, otherwise we could theoretically
785 return ioc
->nr_batch_requests
== q
->nr_batching
||
786 (ioc
->nr_batch_requests
> 0
787 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
791 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
792 * will cause the process to be a "batcher" on all queues in the system. This
793 * is the behaviour we want though - once it gets a wakeup it should be given
796 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
798 if (!ioc
|| ioc_batching(q
, ioc
))
801 ioc
->nr_batch_requests
= q
->nr_batching
;
802 ioc
->last_waited
= jiffies
;
805 static void __freed_request(struct request_list
*rl
, int sync
)
807 struct request_queue
*q
= rl
->q
;
810 * bdi isn't aware of blkcg yet. As all async IOs end up root
811 * blkcg anyway, just use root blkcg state.
813 if (rl
== &q
->root_rl
&&
814 rl
->count
[sync
] < queue_congestion_off_threshold(q
))
815 blk_clear_queue_congested(q
, sync
);
817 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
818 if (waitqueue_active(&rl
->wait
[sync
]))
819 wake_up(&rl
->wait
[sync
]);
821 blk_clear_rl_full(rl
, sync
);
826 * A request has just been released. Account for it, update the full and
827 * congestion status, wake up any waiters. Called under q->queue_lock.
829 static void freed_request(struct request_list
*rl
, unsigned int flags
)
831 struct request_queue
*q
= rl
->q
;
832 int sync
= rw_is_sync(flags
);
836 if (flags
& REQ_ELVPRIV
)
839 __freed_request(rl
, sync
);
841 if (unlikely(rl
->starved
[sync
^ 1]))
842 __freed_request(rl
, sync
^ 1);
846 * Determine if elevator data should be initialized when allocating the
847 * request associated with @bio.
849 static bool blk_rq_should_init_elevator(struct bio
*bio
)
855 * Flush requests do not use the elevator so skip initialization.
856 * This allows a request to share the flush and elevator data.
858 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
865 * rq_ioc - determine io_context for request allocation
866 * @bio: request being allocated is for this bio (can be %NULL)
868 * Determine io_context to use for request allocation for @bio. May return
869 * %NULL if %current->io_context doesn't exist.
871 static struct io_context
*rq_ioc(struct bio
*bio
)
873 #ifdef CONFIG_BLK_CGROUP
874 if (bio
&& bio
->bi_ioc
)
877 return current
->io_context
;
881 * __get_request - get a free request
882 * @rl: request list to allocate from
883 * @rw_flags: RW and SYNC flags
884 * @bio: bio to allocate request for (can be %NULL)
885 * @gfp_mask: allocation mask
887 * Get a free request from @q. This function may fail under memory
888 * pressure or if @q is dead.
890 * Must be callled with @q->queue_lock held and,
891 * Returns %NULL on failure, with @q->queue_lock held.
892 * Returns !%NULL on success, with @q->queue_lock *not held*.
894 static struct request
*__get_request(struct request_list
*rl
, int rw_flags
,
895 struct bio
*bio
, gfp_t gfp_mask
)
897 struct request_queue
*q
= rl
->q
;
899 struct elevator_type
*et
= q
->elevator
->type
;
900 struct io_context
*ioc
= rq_ioc(bio
);
901 struct io_cq
*icq
= NULL
;
902 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
905 if (unlikely(blk_queue_dying(q
)))
908 may_queue
= elv_may_queue(q
, rw_flags
);
909 if (may_queue
== ELV_MQUEUE_NO
)
912 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
913 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
915 * The queue will fill after this allocation, so set
916 * it as full, and mark this process as "batching".
917 * This process will be allowed to complete a batch of
918 * requests, others will be blocked.
920 if (!blk_rl_full(rl
, is_sync
)) {
921 ioc_set_batching(q
, ioc
);
922 blk_set_rl_full(rl
, is_sync
);
924 if (may_queue
!= ELV_MQUEUE_MUST
925 && !ioc_batching(q
, ioc
)) {
927 * The queue is full and the allocating
928 * process is not a "batcher", and not
929 * exempted by the IO scheduler
936 * bdi isn't aware of blkcg yet. As all async IOs end up
937 * root blkcg anyway, just use root blkcg state.
939 if (rl
== &q
->root_rl
)
940 blk_set_queue_congested(q
, is_sync
);
944 * Only allow batching queuers to allocate up to 50% over the defined
945 * limit of requests, otherwise we could have thousands of requests
946 * allocated with any setting of ->nr_requests
948 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
951 q
->nr_rqs
[is_sync
]++;
952 rl
->count
[is_sync
]++;
953 rl
->starved
[is_sync
] = 0;
956 * Decide whether the new request will be managed by elevator. If
957 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
958 * prevent the current elevator from being destroyed until the new
959 * request is freed. This guarantees icq's won't be destroyed and
960 * makes creating new ones safe.
962 * Also, lookup icq while holding queue_lock. If it doesn't exist,
963 * it will be created after releasing queue_lock.
965 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
966 rw_flags
|= REQ_ELVPRIV
;
968 if (et
->icq_cache
&& ioc
)
969 icq
= ioc_lookup_icq(ioc
, q
);
972 if (blk_queue_io_stat(q
))
973 rw_flags
|= REQ_IO_STAT
;
974 spin_unlock_irq(q
->queue_lock
);
976 /* allocate and init request */
977 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
982 blk_rq_set_rl(rq
, rl
);
983 rq
->cmd_flags
= rw_flags
| REQ_ALLOCED
;
986 if (rw_flags
& REQ_ELVPRIV
) {
987 if (unlikely(et
->icq_cache
&& !icq
)) {
989 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
995 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
998 /* @rq->elv.icq holds io_context until @rq is freed */
1000 get_io_context(icq
->ioc
);
1004 * ioc may be NULL here, and ioc_batching will be false. That's
1005 * OK, if the queue is under the request limit then requests need
1006 * not count toward the nr_batch_requests limit. There will always
1007 * be some limit enforced by BLK_BATCH_TIME.
1009 if (ioc_batching(q
, ioc
))
1010 ioc
->nr_batch_requests
--;
1012 trace_block_getrq(q
, bio
, rw_flags
& 1);
1017 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1018 * and may fail indefinitely under memory pressure and thus
1019 * shouldn't stall IO. Treat this request as !elvpriv. This will
1020 * disturb iosched and blkcg but weird is bettern than dead.
1022 printk_ratelimited(KERN_WARNING
"%s: request aux data allocation failed, iosched may be disturbed\n",
1023 dev_name(q
->backing_dev_info
.dev
));
1025 rq
->cmd_flags
&= ~REQ_ELVPRIV
;
1028 spin_lock_irq(q
->queue_lock
);
1029 q
->nr_rqs_elvpriv
--;
1030 spin_unlock_irq(q
->queue_lock
);
1035 * Allocation failed presumably due to memory. Undo anything we
1036 * might have messed up.
1038 * Allocating task should really be put onto the front of the wait
1039 * queue, but this is pretty rare.
1041 spin_lock_irq(q
->queue_lock
);
1042 freed_request(rl
, rw_flags
);
1045 * in the very unlikely event that allocation failed and no
1046 * requests for this direction was pending, mark us starved so that
1047 * freeing of a request in the other direction will notice
1048 * us. another possible fix would be to split the rq mempool into
1052 if (unlikely(rl
->count
[is_sync
] == 0))
1053 rl
->starved
[is_sync
] = 1;
1058 * get_request - get a free request
1059 * @q: request_queue to allocate request from
1060 * @rw_flags: RW and SYNC flags
1061 * @bio: bio to allocate request for (can be %NULL)
1062 * @gfp_mask: allocation mask
1064 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1065 * function keeps retrying under memory pressure and fails iff @q is dead.
1067 * Must be callled with @q->queue_lock held and,
1068 * Returns %NULL on failure, with @q->queue_lock held.
1069 * Returns !%NULL on success, with @q->queue_lock *not held*.
1071 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
1072 struct bio
*bio
, gfp_t gfp_mask
)
1074 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
1076 struct request_list
*rl
;
1079 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1081 rq
= __get_request(rl
, rw_flags
, bio
, gfp_mask
);
1085 if (!(gfp_mask
& __GFP_WAIT
) || unlikely(blk_queue_dying(q
))) {
1090 /* wait on @rl and retry */
1091 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1092 TASK_UNINTERRUPTIBLE
);
1094 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
1096 spin_unlock_irq(q
->queue_lock
);
1100 * After sleeping, we become a "batching" process and will be able
1101 * to allocate at least one request, and up to a big batch of them
1102 * for a small period time. See ioc_batching, ioc_set_batching
1104 ioc_set_batching(q
, current
->io_context
);
1106 spin_lock_irq(q
->queue_lock
);
1107 finish_wait(&rl
->wait
[is_sync
], &wait
);
1112 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1116 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1118 /* create ioc upfront */
1119 create_io_context(gfp_mask
, q
->node
);
1121 spin_lock_irq(q
->queue_lock
);
1122 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1124 spin_unlock_irq(q
->queue_lock
);
1125 /* q->queue_lock is unlocked at this point */
1129 EXPORT_SYMBOL(blk_get_request
);
1132 * blk_make_request - given a bio, allocate a corresponding struct request.
1133 * @q: target request queue
1134 * @bio: The bio describing the memory mappings that will be submitted for IO.
1135 * It may be a chained-bio properly constructed by block/bio layer.
1136 * @gfp_mask: gfp flags to be used for memory allocation
1138 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1139 * type commands. Where the struct request needs to be farther initialized by
1140 * the caller. It is passed a &struct bio, which describes the memory info of
1143 * The caller of blk_make_request must make sure that bi_io_vec
1144 * are set to describe the memory buffers. That bio_data_dir() will return
1145 * the needed direction of the request. (And all bio's in the passed bio-chain
1146 * are properly set accordingly)
1148 * If called under none-sleepable conditions, mapped bio buffers must not
1149 * need bouncing, by calling the appropriate masked or flagged allocator,
1150 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1153 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1154 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1155 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1156 * completion of a bio that hasn't been submitted yet, thus resulting in a
1157 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1158 * of bio_alloc(), as that avoids the mempool deadlock.
1159 * If possible a big IO should be split into smaller parts when allocation
1160 * fails. Partial allocation should not be an error, or you risk a live-lock.
1162 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1165 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1168 return ERR_PTR(-ENOMEM
);
1171 struct bio
*bounce_bio
= bio
;
1174 blk_queue_bounce(q
, &bounce_bio
);
1175 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1176 if (unlikely(ret
)) {
1177 blk_put_request(rq
);
1178 return ERR_PTR(ret
);
1184 EXPORT_SYMBOL(blk_make_request
);
1187 * blk_requeue_request - put a request back on queue
1188 * @q: request queue where request should be inserted
1189 * @rq: request to be inserted
1192 * Drivers often keep queueing requests until the hardware cannot accept
1193 * more, when that condition happens we need to put the request back
1194 * on the queue. Must be called with queue lock held.
1196 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1198 blk_delete_timer(rq
);
1199 blk_clear_rq_complete(rq
);
1200 trace_block_rq_requeue(q
, rq
);
1202 if (blk_rq_tagged(rq
))
1203 blk_queue_end_tag(q
, rq
);
1205 BUG_ON(blk_queued_rq(rq
));
1207 elv_requeue_request(q
, rq
);
1209 EXPORT_SYMBOL(blk_requeue_request
);
1211 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1214 drive_stat_acct(rq
, 1);
1215 __elv_add_request(q
, rq
, where
);
1218 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1221 if (now
== part
->stamp
)
1224 if (part_in_flight(part
)) {
1225 __part_stat_add(cpu
, part
, time_in_queue
,
1226 part_in_flight(part
) * (now
- part
->stamp
));
1227 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1233 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1234 * @cpu: cpu number for stats access
1235 * @part: target partition
1237 * The average IO queue length and utilisation statistics are maintained
1238 * by observing the current state of the queue length and the amount of
1239 * time it has been in this state for.
1241 * Normally, that accounting is done on IO completion, but that can result
1242 * in more than a second's worth of IO being accounted for within any one
1243 * second, leading to >100% utilisation. To deal with that, we call this
1244 * function to do a round-off before returning the results when reading
1245 * /proc/diskstats. This accounts immediately for all queue usage up to
1246 * the current jiffies and restarts the counters again.
1248 void part_round_stats(int cpu
, struct hd_struct
*part
)
1250 unsigned long now
= jiffies
;
1253 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1254 part_round_stats_single(cpu
, part
, now
);
1256 EXPORT_SYMBOL_GPL(part_round_stats
);
1258 #ifdef CONFIG_PM_RUNTIME
1259 static void blk_pm_put_request(struct request
*rq
)
1261 if (rq
->q
->dev
&& !(rq
->cmd_flags
& REQ_PM
) && !--rq
->q
->nr_pending
)
1262 pm_runtime_mark_last_busy(rq
->q
->dev
);
1265 static inline void blk_pm_put_request(struct request
*rq
) {}
1269 * queue lock must be held
1271 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1275 if (unlikely(--req
->ref_count
))
1278 blk_pm_put_request(req
);
1280 elv_completed_request(q
, req
);
1282 /* this is a bio leak */
1283 WARN_ON(req
->bio
!= NULL
);
1286 * Request may not have originated from ll_rw_blk. if not,
1287 * it didn't come out of our reserved rq pools
1289 if (req
->cmd_flags
& REQ_ALLOCED
) {
1290 unsigned int flags
= req
->cmd_flags
;
1291 struct request_list
*rl
= blk_rq_rl(req
);
1293 BUG_ON(!list_empty(&req
->queuelist
));
1294 BUG_ON(!hlist_unhashed(&req
->hash
));
1296 blk_free_request(rl
, req
);
1297 freed_request(rl
, flags
);
1301 EXPORT_SYMBOL_GPL(__blk_put_request
);
1303 void blk_put_request(struct request
*req
)
1305 unsigned long flags
;
1306 struct request_queue
*q
= req
->q
;
1308 spin_lock_irqsave(q
->queue_lock
, flags
);
1309 __blk_put_request(q
, req
);
1310 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1312 EXPORT_SYMBOL(blk_put_request
);
1315 * blk_add_request_payload - add a payload to a request
1316 * @rq: request to update
1317 * @page: page backing the payload
1318 * @len: length of the payload.
1320 * This allows to later add a payload to an already submitted request by
1321 * a block driver. The driver needs to take care of freeing the payload
1324 * Note that this is a quite horrible hack and nothing but handling of
1325 * discard requests should ever use it.
1327 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1330 struct bio
*bio
= rq
->bio
;
1332 bio
->bi_io_vec
->bv_page
= page
;
1333 bio
->bi_io_vec
->bv_offset
= 0;
1334 bio
->bi_io_vec
->bv_len
= len
;
1338 bio
->bi_phys_segments
= 1;
1340 rq
->__data_len
= rq
->resid_len
= len
;
1341 rq
->nr_phys_segments
= 1;
1342 rq
->buffer
= bio_data(bio
);
1344 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1346 static bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1349 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1351 if (!ll_back_merge_fn(q
, req
, bio
))
1354 trace_block_bio_backmerge(q
, req
, bio
);
1356 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1357 blk_rq_set_mixed_merge(req
);
1359 req
->biotail
->bi_next
= bio
;
1361 req
->__data_len
+= bio
->bi_size
;
1362 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1364 drive_stat_acct(req
, 0);
1368 static bool bio_attempt_front_merge(struct request_queue
*q
,
1369 struct request
*req
, struct bio
*bio
)
1371 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1373 if (!ll_front_merge_fn(q
, req
, bio
))
1376 trace_block_bio_frontmerge(q
, req
, bio
);
1378 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1379 blk_rq_set_mixed_merge(req
);
1381 bio
->bi_next
= req
->bio
;
1385 * may not be valid. if the low level driver said
1386 * it didn't need a bounce buffer then it better
1387 * not touch req->buffer either...
1389 req
->buffer
= bio_data(bio
);
1390 req
->__sector
= bio
->bi_sector
;
1391 req
->__data_len
+= bio
->bi_size
;
1392 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1394 drive_stat_acct(req
, 0);
1399 * attempt_plug_merge - try to merge with %current's plugged list
1400 * @q: request_queue new bio is being queued at
1401 * @bio: new bio being queued
1402 * @request_count: out parameter for number of traversed plugged requests
1404 * Determine whether @bio being queued on @q can be merged with a request
1405 * on %current's plugged list. Returns %true if merge was successful,
1408 * Plugging coalesces IOs from the same issuer for the same purpose without
1409 * going through @q->queue_lock. As such it's more of an issuing mechanism
1410 * than scheduling, and the request, while may have elvpriv data, is not
1411 * added on the elevator at this point. In addition, we don't have
1412 * reliable access to the elevator outside queue lock. Only check basic
1413 * merging parameters without querying the elevator.
1415 static bool attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1416 unsigned int *request_count
)
1418 struct blk_plug
*plug
;
1422 plug
= current
->plug
;
1427 list_for_each_entry_reverse(rq
, &plug
->list
, queuelist
) {
1433 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1436 el_ret
= blk_try_merge(rq
, bio
);
1437 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1438 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1441 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1442 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1451 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1453 req
->cmd_type
= REQ_TYPE_FS
;
1455 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1456 if (bio
->bi_rw
& REQ_RAHEAD
)
1457 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1460 req
->__sector
= bio
->bi_sector
;
1461 req
->ioprio
= bio_prio(bio
);
1462 blk_rq_bio_prep(req
->q
, req
, bio
);
1465 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1467 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1468 struct blk_plug
*plug
;
1469 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1470 struct request
*req
;
1471 unsigned int request_count
= 0;
1474 * low level driver can indicate that it wants pages above a
1475 * certain limit bounced to low memory (ie for highmem, or even
1476 * ISA dma in theory)
1478 blk_queue_bounce(q
, &bio
);
1480 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1481 bio_endio(bio
, -EIO
);
1485 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1486 spin_lock_irq(q
->queue_lock
);
1487 where
= ELEVATOR_INSERT_FLUSH
;
1492 * Check if we can merge with the plugged list before grabbing
1495 if (attempt_plug_merge(q
, bio
, &request_count
))
1498 spin_lock_irq(q
->queue_lock
);
1500 el_ret
= elv_merge(q
, &req
, bio
);
1501 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1502 if (bio_attempt_back_merge(q
, req
, bio
)) {
1503 elv_bio_merged(q
, req
, bio
);
1504 if (!attempt_back_merge(q
, req
))
1505 elv_merged_request(q
, req
, el_ret
);
1508 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1509 if (bio_attempt_front_merge(q
, req
, bio
)) {
1510 elv_bio_merged(q
, req
, bio
);
1511 if (!attempt_front_merge(q
, req
))
1512 elv_merged_request(q
, req
, el_ret
);
1519 * This sync check and mask will be re-done in init_request_from_bio(),
1520 * but we need to set it earlier to expose the sync flag to the
1521 * rq allocator and io schedulers.
1523 rw_flags
= bio_data_dir(bio
);
1525 rw_flags
|= REQ_SYNC
;
1528 * Grab a free request. This is might sleep but can not fail.
1529 * Returns with the queue unlocked.
1531 req
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1532 if (unlikely(!req
)) {
1533 bio_endio(bio
, -ENODEV
); /* @q is dead */
1538 * After dropping the lock and possibly sleeping here, our request
1539 * may now be mergeable after it had proven unmergeable (above).
1540 * We don't worry about that case for efficiency. It won't happen
1541 * often, and the elevators are able to handle it.
1543 init_request_from_bio(req
, bio
);
1545 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1546 req
->cpu
= raw_smp_processor_id();
1548 plug
= current
->plug
;
1551 * If this is the first request added after a plug, fire
1552 * of a plug trace. If others have been added before, check
1553 * if we have multiple devices in this plug. If so, make a
1554 * note to sort the list before dispatch.
1556 if (list_empty(&plug
->list
))
1557 trace_block_plug(q
);
1559 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1560 blk_flush_plug_list(plug
, false);
1561 trace_block_plug(q
);
1564 list_add_tail(&req
->queuelist
, &plug
->list
);
1565 drive_stat_acct(req
, 1);
1567 spin_lock_irq(q
->queue_lock
);
1568 add_acct_request(q
, req
, where
);
1571 spin_unlock_irq(q
->queue_lock
);
1574 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1577 * If bio->bi_dev is a partition, remap the location
1579 static inline void blk_partition_remap(struct bio
*bio
)
1581 struct block_device
*bdev
= bio
->bi_bdev
;
1583 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1584 struct hd_struct
*p
= bdev
->bd_part
;
1586 bio
->bi_sector
+= p
->start_sect
;
1587 bio
->bi_bdev
= bdev
->bd_contains
;
1589 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1591 bio
->bi_sector
- p
->start_sect
);
1595 static void handle_bad_sector(struct bio
*bio
)
1597 char b
[BDEVNAME_SIZE
];
1599 printk(KERN_INFO
"attempt to access beyond end of device\n");
1600 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1601 bdevname(bio
->bi_bdev
, b
),
1603 (unsigned long long)bio_end_sector(bio
),
1604 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1606 set_bit(BIO_EOF
, &bio
->bi_flags
);
1609 #ifdef CONFIG_FAIL_MAKE_REQUEST
1611 static DECLARE_FAULT_ATTR(fail_make_request
);
1613 static int __init
setup_fail_make_request(char *str
)
1615 return setup_fault_attr(&fail_make_request
, str
);
1617 __setup("fail_make_request=", setup_fail_make_request
);
1619 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1621 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1624 static int __init
fail_make_request_debugfs(void)
1626 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1627 NULL
, &fail_make_request
);
1629 return IS_ERR(dir
) ? PTR_ERR(dir
) : 0;
1632 late_initcall(fail_make_request_debugfs
);
1634 #else /* CONFIG_FAIL_MAKE_REQUEST */
1636 static inline bool should_fail_request(struct hd_struct
*part
,
1642 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1645 * Check whether this bio extends beyond the end of the device.
1647 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1654 /* Test device or partition size, when known. */
1655 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1657 sector_t sector
= bio
->bi_sector
;
1659 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1661 * This may well happen - the kernel calls bread()
1662 * without checking the size of the device, e.g., when
1663 * mounting a device.
1665 handle_bad_sector(bio
);
1673 static noinline_for_stack
bool
1674 generic_make_request_checks(struct bio
*bio
)
1676 struct request_queue
*q
;
1677 int nr_sectors
= bio_sectors(bio
);
1679 char b
[BDEVNAME_SIZE
];
1680 struct hd_struct
*part
;
1684 if (bio_check_eod(bio
, nr_sectors
))
1687 q
= bdev_get_queue(bio
->bi_bdev
);
1690 "generic_make_request: Trying to access "
1691 "nonexistent block-device %s (%Lu)\n",
1692 bdevname(bio
->bi_bdev
, b
),
1693 (long long) bio
->bi_sector
);
1697 if (likely(bio_is_rw(bio
) &&
1698 nr_sectors
> queue_max_hw_sectors(q
))) {
1699 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1700 bdevname(bio
->bi_bdev
, b
),
1702 queue_max_hw_sectors(q
));
1706 part
= bio
->bi_bdev
->bd_part
;
1707 if (should_fail_request(part
, bio
->bi_size
) ||
1708 should_fail_request(&part_to_disk(part
)->part0
,
1713 * If this device has partitions, remap block n
1714 * of partition p to block n+start(p) of the disk.
1716 blk_partition_remap(bio
);
1718 if (bio_check_eod(bio
, nr_sectors
))
1722 * Filter flush bio's early so that make_request based
1723 * drivers without flush support don't have to worry
1726 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1727 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1734 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1735 (!blk_queue_discard(q
) ||
1736 ((bio
->bi_rw
& REQ_SECURE
) && !blk_queue_secdiscard(q
)))) {
1741 if (bio
->bi_rw
& REQ_WRITE_SAME
&& !bdev_write_same(bio
->bi_bdev
)) {
1747 * Various block parts want %current->io_context and lazy ioc
1748 * allocation ends up trading a lot of pain for a small amount of
1749 * memory. Just allocate it upfront. This may fail and block
1750 * layer knows how to live with it.
1752 create_io_context(GFP_ATOMIC
, q
->node
);
1754 if (blk_throtl_bio(q
, bio
))
1755 return false; /* throttled, will be resubmitted later */
1757 trace_block_bio_queue(q
, bio
);
1761 bio_endio(bio
, err
);
1766 * generic_make_request - hand a buffer to its device driver for I/O
1767 * @bio: The bio describing the location in memory and on the device.
1769 * generic_make_request() is used to make I/O requests of block
1770 * devices. It is passed a &struct bio, which describes the I/O that needs
1773 * generic_make_request() does not return any status. The
1774 * success/failure status of the request, along with notification of
1775 * completion, is delivered asynchronously through the bio->bi_end_io
1776 * function described (one day) else where.
1778 * The caller of generic_make_request must make sure that bi_io_vec
1779 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1780 * set to describe the device address, and the
1781 * bi_end_io and optionally bi_private are set to describe how
1782 * completion notification should be signaled.
1784 * generic_make_request and the drivers it calls may use bi_next if this
1785 * bio happens to be merged with someone else, and may resubmit the bio to
1786 * a lower device by calling into generic_make_request recursively, which
1787 * means the bio should NOT be touched after the call to ->make_request_fn.
1789 void generic_make_request(struct bio
*bio
)
1791 struct bio_list bio_list_on_stack
;
1793 if (!generic_make_request_checks(bio
))
1797 * We only want one ->make_request_fn to be active at a time, else
1798 * stack usage with stacked devices could be a problem. So use
1799 * current->bio_list to keep a list of requests submited by a
1800 * make_request_fn function. current->bio_list is also used as a
1801 * flag to say if generic_make_request is currently active in this
1802 * task or not. If it is NULL, then no make_request is active. If
1803 * it is non-NULL, then a make_request is active, and new requests
1804 * should be added at the tail
1806 if (current
->bio_list
) {
1807 bio_list_add(current
->bio_list
, bio
);
1811 /* following loop may be a bit non-obvious, and so deserves some
1813 * Before entering the loop, bio->bi_next is NULL (as all callers
1814 * ensure that) so we have a list with a single bio.
1815 * We pretend that we have just taken it off a longer list, so
1816 * we assign bio_list to a pointer to the bio_list_on_stack,
1817 * thus initialising the bio_list of new bios to be
1818 * added. ->make_request() may indeed add some more bios
1819 * through a recursive call to generic_make_request. If it
1820 * did, we find a non-NULL value in bio_list and re-enter the loop
1821 * from the top. In this case we really did just take the bio
1822 * of the top of the list (no pretending) and so remove it from
1823 * bio_list, and call into ->make_request() again.
1825 BUG_ON(bio
->bi_next
);
1826 bio_list_init(&bio_list_on_stack
);
1827 current
->bio_list
= &bio_list_on_stack
;
1829 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1831 q
->make_request_fn(q
, bio
);
1833 bio
= bio_list_pop(current
->bio_list
);
1835 current
->bio_list
= NULL
; /* deactivate */
1837 EXPORT_SYMBOL(generic_make_request
);
1840 * submit_bio - submit a bio to the block device layer for I/O
1841 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1842 * @bio: The &struct bio which describes the I/O
1844 * submit_bio() is very similar in purpose to generic_make_request(), and
1845 * uses that function to do most of the work. Both are fairly rough
1846 * interfaces; @bio must be presetup and ready for I/O.
1849 void submit_bio(int rw
, struct bio
*bio
)
1854 * If it's a regular read/write or a barrier with data attached,
1855 * go through the normal accounting stuff before submission.
1857 if (bio_has_data(bio
)) {
1860 if (unlikely(rw
& REQ_WRITE_SAME
))
1861 count
= bdev_logical_block_size(bio
->bi_bdev
) >> 9;
1863 count
= bio_sectors(bio
);
1866 count_vm_events(PGPGOUT
, count
);
1868 task_io_account_read(bio
->bi_size
);
1869 count_vm_events(PGPGIN
, count
);
1872 if (unlikely(block_dump
)) {
1873 char b
[BDEVNAME_SIZE
];
1874 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1875 current
->comm
, task_pid_nr(current
),
1876 (rw
& WRITE
) ? "WRITE" : "READ",
1877 (unsigned long long)bio
->bi_sector
,
1878 bdevname(bio
->bi_bdev
, b
),
1883 generic_make_request(bio
);
1885 EXPORT_SYMBOL(submit_bio
);
1888 * blk_rq_check_limits - Helper function to check a request for the queue limit
1890 * @rq: the request being checked
1893 * @rq may have been made based on weaker limitations of upper-level queues
1894 * in request stacking drivers, and it may violate the limitation of @q.
1895 * Since the block layer and the underlying device driver trust @rq
1896 * after it is inserted to @q, it should be checked against @q before
1897 * the insertion using this generic function.
1899 * This function should also be useful for request stacking drivers
1900 * in some cases below, so export this function.
1901 * Request stacking drivers like request-based dm may change the queue
1902 * limits while requests are in the queue (e.g. dm's table swapping).
1903 * Such request stacking drivers should check those requests agaist
1904 * the new queue limits again when they dispatch those requests,
1905 * although such checkings are also done against the old queue limits
1906 * when submitting requests.
1908 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1910 if (!rq_mergeable(rq
))
1913 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, rq
->cmd_flags
)) {
1914 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1919 * queue's settings related to segment counting like q->bounce_pfn
1920 * may differ from that of other stacking queues.
1921 * Recalculate it to check the request correctly on this queue's
1924 blk_recalc_rq_segments(rq
);
1925 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1926 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1932 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1935 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1936 * @q: the queue to submit the request
1937 * @rq: the request being queued
1939 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1941 unsigned long flags
;
1942 int where
= ELEVATOR_INSERT_BACK
;
1944 if (blk_rq_check_limits(q
, rq
))
1948 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1951 spin_lock_irqsave(q
->queue_lock
, flags
);
1952 if (unlikely(blk_queue_dying(q
))) {
1953 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1958 * Submitting request must be dequeued before calling this function
1959 * because it will be linked to another request_queue
1961 BUG_ON(blk_queued_rq(rq
));
1963 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
1964 where
= ELEVATOR_INSERT_FLUSH
;
1966 add_acct_request(q
, rq
, where
);
1967 if (where
== ELEVATOR_INSERT_FLUSH
)
1969 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1973 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1976 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1977 * @rq: request to examine
1980 * A request could be merge of IOs which require different failure
1981 * handling. This function determines the number of bytes which
1982 * can be failed from the beginning of the request without
1983 * crossing into area which need to be retried further.
1986 * The number of bytes to fail.
1989 * queue_lock must be held.
1991 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1993 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1994 unsigned int bytes
= 0;
1997 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
1998 return blk_rq_bytes(rq
);
2001 * Currently the only 'mixing' which can happen is between
2002 * different fastfail types. We can safely fail portions
2003 * which have all the failfast bits that the first one has -
2004 * the ones which are at least as eager to fail as the first
2007 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2008 if ((bio
->bi_rw
& ff
) != ff
)
2010 bytes
+= bio
->bi_size
;
2013 /* this could lead to infinite loop */
2014 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2017 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2019 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2021 if (blk_do_io_stat(req
)) {
2022 const int rw
= rq_data_dir(req
);
2023 struct hd_struct
*part
;
2026 cpu
= part_stat_lock();
2028 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2033 static void blk_account_io_done(struct request
*req
)
2036 * Account IO completion. flush_rq isn't accounted as a
2037 * normal IO on queueing nor completion. Accounting the
2038 * containing request is enough.
2040 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
2041 unsigned long duration
= jiffies
- req
->start_time
;
2042 const int rw
= rq_data_dir(req
);
2043 struct hd_struct
*part
;
2046 cpu
= part_stat_lock();
2049 part_stat_inc(cpu
, part
, ios
[rw
]);
2050 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2051 part_round_stats(cpu
, part
);
2052 part_dec_in_flight(part
, rw
);
2054 hd_struct_put(part
);
2059 #ifdef CONFIG_PM_RUNTIME
2061 * Don't process normal requests when queue is suspended
2062 * or in the process of suspending/resuming
2064 static struct request
*blk_pm_peek_request(struct request_queue
*q
,
2067 if (q
->dev
&& (q
->rpm_status
== RPM_SUSPENDED
||
2068 (q
->rpm_status
!= RPM_ACTIVE
&& !(rq
->cmd_flags
& REQ_PM
))))
2074 static inline struct request
*blk_pm_peek_request(struct request_queue
*q
,
2082 * blk_peek_request - peek at the top of a request queue
2083 * @q: request queue to peek at
2086 * Return the request at the top of @q. The returned request
2087 * should be started using blk_start_request() before LLD starts
2091 * Pointer to the request at the top of @q if available. Null
2095 * queue_lock must be held.
2097 struct request
*blk_peek_request(struct request_queue
*q
)
2102 while ((rq
= __elv_next_request(q
)) != NULL
) {
2104 rq
= blk_pm_peek_request(q
, rq
);
2108 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
2110 * This is the first time the device driver
2111 * sees this request (possibly after
2112 * requeueing). Notify IO scheduler.
2114 if (rq
->cmd_flags
& REQ_SORTED
)
2115 elv_activate_rq(q
, rq
);
2118 * just mark as started even if we don't start
2119 * it, a request that has been delayed should
2120 * not be passed by new incoming requests
2122 rq
->cmd_flags
|= REQ_STARTED
;
2123 trace_block_rq_issue(q
, rq
);
2126 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2127 q
->end_sector
= rq_end_sector(rq
);
2128 q
->boundary_rq
= NULL
;
2131 if (rq
->cmd_flags
& REQ_DONTPREP
)
2134 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2136 * make sure space for the drain appears we
2137 * know we can do this because max_hw_segments
2138 * has been adjusted to be one fewer than the
2141 rq
->nr_phys_segments
++;
2147 ret
= q
->prep_rq_fn(q
, rq
);
2148 if (ret
== BLKPREP_OK
) {
2150 } else if (ret
== BLKPREP_DEFER
) {
2152 * the request may have been (partially) prepped.
2153 * we need to keep this request in the front to
2154 * avoid resource deadlock. REQ_STARTED will
2155 * prevent other fs requests from passing this one.
2157 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2158 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2160 * remove the space for the drain we added
2161 * so that we don't add it again
2163 --rq
->nr_phys_segments
;
2168 } else if (ret
== BLKPREP_KILL
) {
2169 rq
->cmd_flags
|= REQ_QUIET
;
2171 * Mark this request as started so we don't trigger
2172 * any debug logic in the end I/O path.
2174 blk_start_request(rq
);
2175 __blk_end_request_all(rq
, -EIO
);
2177 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2184 EXPORT_SYMBOL(blk_peek_request
);
2186 void blk_dequeue_request(struct request
*rq
)
2188 struct request_queue
*q
= rq
->q
;
2190 BUG_ON(list_empty(&rq
->queuelist
));
2191 BUG_ON(ELV_ON_HASH(rq
));
2193 list_del_init(&rq
->queuelist
);
2196 * the time frame between a request being removed from the lists
2197 * and to it is freed is accounted as io that is in progress at
2200 if (blk_account_rq(rq
)) {
2201 q
->in_flight
[rq_is_sync(rq
)]++;
2202 set_io_start_time_ns(rq
);
2207 * blk_start_request - start request processing on the driver
2208 * @req: request to dequeue
2211 * Dequeue @req and start timeout timer on it. This hands off the
2212 * request to the driver.
2214 * Block internal functions which don't want to start timer should
2215 * call blk_dequeue_request().
2218 * queue_lock must be held.
2220 void blk_start_request(struct request
*req
)
2222 blk_dequeue_request(req
);
2225 * We are now handing the request to the hardware, initialize
2226 * resid_len to full count and add the timeout handler.
2228 req
->resid_len
= blk_rq_bytes(req
);
2229 if (unlikely(blk_bidi_rq(req
)))
2230 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2234 EXPORT_SYMBOL(blk_start_request
);
2237 * blk_fetch_request - fetch a request from a request queue
2238 * @q: request queue to fetch a request from
2241 * Return the request at the top of @q. The request is started on
2242 * return and LLD can start processing it immediately.
2245 * Pointer to the request at the top of @q if available. Null
2249 * queue_lock must be held.
2251 struct request
*blk_fetch_request(struct request_queue
*q
)
2255 rq
= blk_peek_request(q
);
2257 blk_start_request(rq
);
2260 EXPORT_SYMBOL(blk_fetch_request
);
2263 * blk_update_request - Special helper function for request stacking drivers
2264 * @req: the request being processed
2265 * @error: %0 for success, < %0 for error
2266 * @nr_bytes: number of bytes to complete @req
2269 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2270 * the request structure even if @req doesn't have leftover.
2271 * If @req has leftover, sets it up for the next range of segments.
2273 * This special helper function is only for request stacking drivers
2274 * (e.g. request-based dm) so that they can handle partial completion.
2275 * Actual device drivers should use blk_end_request instead.
2277 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2278 * %false return from this function.
2281 * %false - this request doesn't have any more data
2282 * %true - this request has more data
2284 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2291 trace_block_rq_complete(req
->q
, req
);
2294 * For fs requests, rq is just carrier of independent bio's
2295 * and each partial completion should be handled separately.
2296 * Reset per-request error on each partial completion.
2298 * TODO: tj: This is too subtle. It would be better to let
2299 * low level drivers do what they see fit.
2301 if (req
->cmd_type
== REQ_TYPE_FS
)
2304 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2305 !(req
->cmd_flags
& REQ_QUIET
)) {
2310 error_type
= "recoverable transport";
2313 error_type
= "critical target";
2316 error_type
= "critical nexus";
2319 error_type
= "timeout";
2326 printk_ratelimited(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2327 error_type
, req
->rq_disk
?
2328 req
->rq_disk
->disk_name
: "?",
2329 (unsigned long long)blk_rq_pos(req
));
2333 blk_account_io_completion(req
, nr_bytes
);
2337 struct bio
*bio
= req
->bio
;
2338 unsigned bio_bytes
= min(bio
->bi_size
, nr_bytes
);
2340 if (bio_bytes
== bio
->bi_size
)
2341 req
->bio
= bio
->bi_next
;
2343 req_bio_endio(req
, bio
, bio_bytes
, error
);
2345 total_bytes
+= bio_bytes
;
2346 nr_bytes
-= bio_bytes
;
2357 * Reset counters so that the request stacking driver
2358 * can find how many bytes remain in the request
2361 req
->__data_len
= 0;
2365 req
->__data_len
-= total_bytes
;
2366 req
->buffer
= bio_data(req
->bio
);
2368 /* update sector only for requests with clear definition of sector */
2369 if (req
->cmd_type
== REQ_TYPE_FS
)
2370 req
->__sector
+= total_bytes
>> 9;
2372 /* mixed attributes always follow the first bio */
2373 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2374 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2375 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2379 * If total number of sectors is less than the first segment
2380 * size, something has gone terribly wrong.
2382 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2383 blk_dump_rq_flags(req
, "request botched");
2384 req
->__data_len
= blk_rq_cur_bytes(req
);
2387 /* recalculate the number of segments */
2388 blk_recalc_rq_segments(req
);
2392 EXPORT_SYMBOL_GPL(blk_update_request
);
2394 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2395 unsigned int nr_bytes
,
2396 unsigned int bidi_bytes
)
2398 if (blk_update_request(rq
, error
, nr_bytes
))
2401 /* Bidi request must be completed as a whole */
2402 if (unlikely(blk_bidi_rq(rq
)) &&
2403 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2406 if (blk_queue_add_random(rq
->q
))
2407 add_disk_randomness(rq
->rq_disk
);
2413 * blk_unprep_request - unprepare a request
2416 * This function makes a request ready for complete resubmission (or
2417 * completion). It happens only after all error handling is complete,
2418 * so represents the appropriate moment to deallocate any resources
2419 * that were allocated to the request in the prep_rq_fn. The queue
2420 * lock is held when calling this.
2422 void blk_unprep_request(struct request
*req
)
2424 struct request_queue
*q
= req
->q
;
2426 req
->cmd_flags
&= ~REQ_DONTPREP
;
2427 if (q
->unprep_rq_fn
)
2428 q
->unprep_rq_fn(q
, req
);
2430 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2433 * queue lock must be held
2435 static void blk_finish_request(struct request
*req
, int error
)
2437 if (blk_rq_tagged(req
))
2438 blk_queue_end_tag(req
->q
, req
);
2440 BUG_ON(blk_queued_rq(req
));
2442 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2443 laptop_io_completion(&req
->q
->backing_dev_info
);
2445 blk_delete_timer(req
);
2447 if (req
->cmd_flags
& REQ_DONTPREP
)
2448 blk_unprep_request(req
);
2451 blk_account_io_done(req
);
2454 req
->end_io(req
, error
);
2456 if (blk_bidi_rq(req
))
2457 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2459 __blk_put_request(req
->q
, req
);
2464 * blk_end_bidi_request - Complete a bidi request
2465 * @rq: the request to complete
2466 * @error: %0 for success, < %0 for error
2467 * @nr_bytes: number of bytes to complete @rq
2468 * @bidi_bytes: number of bytes to complete @rq->next_rq
2471 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2472 * Drivers that supports bidi can safely call this member for any
2473 * type of request, bidi or uni. In the later case @bidi_bytes is
2477 * %false - we are done with this request
2478 * %true - still buffers pending for this request
2480 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2481 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2483 struct request_queue
*q
= rq
->q
;
2484 unsigned long flags
;
2486 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2489 spin_lock_irqsave(q
->queue_lock
, flags
);
2490 blk_finish_request(rq
, error
);
2491 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2497 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2498 * @rq: the request to complete
2499 * @error: %0 for success, < %0 for error
2500 * @nr_bytes: number of bytes to complete @rq
2501 * @bidi_bytes: number of bytes to complete @rq->next_rq
2504 * Identical to blk_end_bidi_request() except that queue lock is
2505 * assumed to be locked on entry and remains so on return.
2508 * %false - we are done with this request
2509 * %true - still buffers pending for this request
2511 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2512 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2514 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2517 blk_finish_request(rq
, error
);
2523 * blk_end_request - Helper function for drivers to complete the request.
2524 * @rq: the request being processed
2525 * @error: %0 for success, < %0 for error
2526 * @nr_bytes: number of bytes to complete
2529 * Ends I/O on a number of bytes attached to @rq.
2530 * If @rq has leftover, sets it up for the next range of segments.
2533 * %false - we are done with this request
2534 * %true - still buffers pending for this request
2536 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2538 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2540 EXPORT_SYMBOL(blk_end_request
);
2543 * blk_end_request_all - Helper function for drives to finish the request.
2544 * @rq: the request to finish
2545 * @error: %0 for success, < %0 for error
2548 * Completely finish @rq.
2550 void blk_end_request_all(struct request
*rq
, int error
)
2553 unsigned int bidi_bytes
= 0;
2555 if (unlikely(blk_bidi_rq(rq
)))
2556 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2558 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2561 EXPORT_SYMBOL(blk_end_request_all
);
2564 * blk_end_request_cur - Helper function to finish the current request chunk.
2565 * @rq: the request to finish the current chunk for
2566 * @error: %0 for success, < %0 for error
2569 * Complete the current consecutively mapped chunk from @rq.
2572 * %false - we are done with this request
2573 * %true - still buffers pending for this request
2575 bool blk_end_request_cur(struct request
*rq
, int error
)
2577 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2579 EXPORT_SYMBOL(blk_end_request_cur
);
2582 * blk_end_request_err - Finish a request till the next failure boundary.
2583 * @rq: the request to finish till the next failure boundary for
2584 * @error: must be negative errno
2587 * Complete @rq till the next failure boundary.
2590 * %false - we are done with this request
2591 * %true - still buffers pending for this request
2593 bool blk_end_request_err(struct request
*rq
, int error
)
2595 WARN_ON(error
>= 0);
2596 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2598 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2601 * __blk_end_request - Helper function for drivers to complete the request.
2602 * @rq: the request being processed
2603 * @error: %0 for success, < %0 for error
2604 * @nr_bytes: number of bytes to complete
2607 * Must be called with queue lock held unlike blk_end_request().
2610 * %false - we are done with this request
2611 * %true - still buffers pending for this request
2613 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2615 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2617 EXPORT_SYMBOL(__blk_end_request
);
2620 * __blk_end_request_all - Helper function for drives to finish the request.
2621 * @rq: the request to finish
2622 * @error: %0 for success, < %0 for error
2625 * Completely finish @rq. Must be called with queue lock held.
2627 void __blk_end_request_all(struct request
*rq
, int error
)
2630 unsigned int bidi_bytes
= 0;
2632 if (unlikely(blk_bidi_rq(rq
)))
2633 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2635 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2638 EXPORT_SYMBOL(__blk_end_request_all
);
2641 * __blk_end_request_cur - Helper function to finish the current request chunk.
2642 * @rq: the request to finish the current chunk for
2643 * @error: %0 for success, < %0 for error
2646 * Complete the current consecutively mapped chunk from @rq. Must
2647 * be called with queue lock held.
2650 * %false - we are done with this request
2651 * %true - still buffers pending for this request
2653 bool __blk_end_request_cur(struct request
*rq
, int error
)
2655 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2657 EXPORT_SYMBOL(__blk_end_request_cur
);
2660 * __blk_end_request_err - Finish a request till the next failure boundary.
2661 * @rq: the request to finish till the next failure boundary for
2662 * @error: must be negative errno
2665 * Complete @rq till the next failure boundary. Must be called
2666 * with queue lock held.
2669 * %false - we are done with this request
2670 * %true - still buffers pending for this request
2672 bool __blk_end_request_err(struct request
*rq
, int error
)
2674 WARN_ON(error
>= 0);
2675 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2677 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2679 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2682 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2683 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2685 if (bio_has_data(bio
)) {
2686 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2687 rq
->buffer
= bio_data(bio
);
2689 rq
->__data_len
= bio
->bi_size
;
2690 rq
->bio
= rq
->biotail
= bio
;
2693 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2696 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2698 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2699 * @rq: the request to be flushed
2702 * Flush all pages in @rq.
2704 void rq_flush_dcache_pages(struct request
*rq
)
2706 struct req_iterator iter
;
2707 struct bio_vec
*bvec
;
2709 rq_for_each_segment(bvec
, rq
, iter
)
2710 flush_dcache_page(bvec
->bv_page
);
2712 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2716 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2717 * @q : the queue of the device being checked
2720 * Check if underlying low-level drivers of a device are busy.
2721 * If the drivers want to export their busy state, they must set own
2722 * exporting function using blk_queue_lld_busy() first.
2724 * Basically, this function is used only by request stacking drivers
2725 * to stop dispatching requests to underlying devices when underlying
2726 * devices are busy. This behavior helps more I/O merging on the queue
2727 * of the request stacking driver and prevents I/O throughput regression
2728 * on burst I/O load.
2731 * 0 - Not busy (The request stacking driver should dispatch request)
2732 * 1 - Busy (The request stacking driver should stop dispatching request)
2734 int blk_lld_busy(struct request_queue
*q
)
2737 return q
->lld_busy_fn(q
);
2741 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2744 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2745 * @rq: the clone request to be cleaned up
2748 * Free all bios in @rq for a cloned request.
2750 void blk_rq_unprep_clone(struct request
*rq
)
2754 while ((bio
= rq
->bio
) != NULL
) {
2755 rq
->bio
= bio
->bi_next
;
2760 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2763 * Copy attributes of the original request to the clone request.
2764 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2766 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2768 dst
->cpu
= src
->cpu
;
2769 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2770 dst
->cmd_type
= src
->cmd_type
;
2771 dst
->__sector
= blk_rq_pos(src
);
2772 dst
->__data_len
= blk_rq_bytes(src
);
2773 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2774 dst
->ioprio
= src
->ioprio
;
2775 dst
->extra_len
= src
->extra_len
;
2779 * blk_rq_prep_clone - Helper function to setup clone request
2780 * @rq: the request to be setup
2781 * @rq_src: original request to be cloned
2782 * @bs: bio_set that bios for clone are allocated from
2783 * @gfp_mask: memory allocation mask for bio
2784 * @bio_ctr: setup function to be called for each clone bio.
2785 * Returns %0 for success, non %0 for failure.
2786 * @data: private data to be passed to @bio_ctr
2789 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2790 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2791 * are not copied, and copying such parts is the caller's responsibility.
2792 * Also, pages which the original bios are pointing to are not copied
2793 * and the cloned bios just point same pages.
2794 * So cloned bios must be completed before original bios, which means
2795 * the caller must complete @rq before @rq_src.
2797 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2798 struct bio_set
*bs
, gfp_t gfp_mask
,
2799 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2802 struct bio
*bio
, *bio_src
;
2807 blk_rq_init(NULL
, rq
);
2809 __rq_for_each_bio(bio_src
, rq_src
) {
2810 bio
= bio_clone_bioset(bio_src
, gfp_mask
, bs
);
2814 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2818 rq
->biotail
->bi_next
= bio
;
2821 rq
->bio
= rq
->biotail
= bio
;
2824 __blk_rq_prep_clone(rq
, rq_src
);
2831 blk_rq_unprep_clone(rq
);
2835 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2837 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2839 return queue_work(kblockd_workqueue
, work
);
2841 EXPORT_SYMBOL(kblockd_schedule_work
);
2843 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2844 struct delayed_work
*dwork
, unsigned long delay
)
2846 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2848 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2850 #define PLUG_MAGIC 0x91827364
2853 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2854 * @plug: The &struct blk_plug that needs to be initialized
2857 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2858 * pending I/O should the task end up blocking between blk_start_plug() and
2859 * blk_finish_plug(). This is important from a performance perspective, but
2860 * also ensures that we don't deadlock. For instance, if the task is blocking
2861 * for a memory allocation, memory reclaim could end up wanting to free a
2862 * page belonging to that request that is currently residing in our private
2863 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2864 * this kind of deadlock.
2866 void blk_start_plug(struct blk_plug
*plug
)
2868 struct task_struct
*tsk
= current
;
2870 plug
->magic
= PLUG_MAGIC
;
2871 INIT_LIST_HEAD(&plug
->list
);
2872 INIT_LIST_HEAD(&plug
->cb_list
);
2875 * If this is a nested plug, don't actually assign it. It will be
2876 * flushed on its own.
2880 * Store ordering should not be needed here, since a potential
2881 * preempt will imply a full memory barrier
2886 EXPORT_SYMBOL(blk_start_plug
);
2888 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2890 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2891 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2893 return !(rqa
->q
< rqb
->q
||
2894 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
2898 * If 'from_schedule' is true, then postpone the dispatch of requests
2899 * until a safe kblockd context. We due this to avoid accidental big
2900 * additional stack usage in driver dispatch, in places where the originally
2901 * plugger did not intend it.
2903 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2905 __releases(q
->queue_lock
)
2907 trace_block_unplug(q
, depth
, !from_schedule
);
2910 blk_run_queue_async(q
);
2913 spin_unlock(q
->queue_lock
);
2916 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
2918 LIST_HEAD(callbacks
);
2920 while (!list_empty(&plug
->cb_list
)) {
2921 list_splice_init(&plug
->cb_list
, &callbacks
);
2923 while (!list_empty(&callbacks
)) {
2924 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2927 list_del(&cb
->list
);
2928 cb
->callback(cb
, from_schedule
);
2933 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
2936 struct blk_plug
*plug
= current
->plug
;
2937 struct blk_plug_cb
*cb
;
2942 list_for_each_entry(cb
, &plug
->cb_list
, list
)
2943 if (cb
->callback
== unplug
&& cb
->data
== data
)
2946 /* Not currently on the callback list */
2947 BUG_ON(size
< sizeof(*cb
));
2948 cb
= kzalloc(size
, GFP_ATOMIC
);
2951 cb
->callback
= unplug
;
2952 list_add(&cb
->list
, &plug
->cb_list
);
2956 EXPORT_SYMBOL(blk_check_plugged
);
2958 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2960 struct request_queue
*q
;
2961 unsigned long flags
;
2966 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
2968 flush_plug_callbacks(plug
, from_schedule
);
2969 if (list_empty(&plug
->list
))
2972 list_splice_init(&plug
->list
, &list
);
2974 list_sort(NULL
, &list
, plug_rq_cmp
);
2980 * Save and disable interrupts here, to avoid doing it for every
2981 * queue lock we have to take.
2983 local_irq_save(flags
);
2984 while (!list_empty(&list
)) {
2985 rq
= list_entry_rq(list
.next
);
2986 list_del_init(&rq
->queuelist
);
2990 * This drops the queue lock
2993 queue_unplugged(q
, depth
, from_schedule
);
2996 spin_lock(q
->queue_lock
);
3000 * Short-circuit if @q is dead
3002 if (unlikely(blk_queue_dying(q
))) {
3003 __blk_end_request_all(rq
, -ENODEV
);
3008 * rq is already accounted, so use raw insert
3010 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
3011 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3013 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3019 * This drops the queue lock
3022 queue_unplugged(q
, depth
, from_schedule
);
3024 local_irq_restore(flags
);
3027 void blk_finish_plug(struct blk_plug
*plug
)
3029 blk_flush_plug_list(plug
, false);
3031 if (plug
== current
->plug
)
3032 current
->plug
= NULL
;
3034 EXPORT_SYMBOL(blk_finish_plug
);
3036 #ifdef CONFIG_PM_RUNTIME
3038 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3039 * @q: the queue of the device
3040 * @dev: the device the queue belongs to
3043 * Initialize runtime-PM-related fields for @q and start auto suspend for
3044 * @dev. Drivers that want to take advantage of request-based runtime PM
3045 * should call this function after @dev has been initialized, and its
3046 * request queue @q has been allocated, and runtime PM for it can not happen
3047 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3048 * cases, driver should call this function before any I/O has taken place.
3050 * This function takes care of setting up using auto suspend for the device,
3051 * the autosuspend delay is set to -1 to make runtime suspend impossible
3052 * until an updated value is either set by user or by driver. Drivers do
3053 * not need to touch other autosuspend settings.
3055 * The block layer runtime PM is request based, so only works for drivers
3056 * that use request as their IO unit instead of those directly use bio's.
3058 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3061 q
->rpm_status
= RPM_ACTIVE
;
3062 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3063 pm_runtime_use_autosuspend(q
->dev
);
3065 EXPORT_SYMBOL(blk_pm_runtime_init
);
3068 * blk_pre_runtime_suspend - Pre runtime suspend check
3069 * @q: the queue of the device
3072 * This function will check if runtime suspend is allowed for the device
3073 * by examining if there are any requests pending in the queue. If there
3074 * are requests pending, the device can not be runtime suspended; otherwise,
3075 * the queue's status will be updated to SUSPENDING and the driver can
3076 * proceed to suspend the device.
3078 * For the not allowed case, we mark last busy for the device so that
3079 * runtime PM core will try to autosuspend it some time later.
3081 * This function should be called near the start of the device's
3082 * runtime_suspend callback.
3085 * 0 - OK to runtime suspend the device
3086 * -EBUSY - Device should not be runtime suspended
3088 int blk_pre_runtime_suspend(struct request_queue
*q
)
3092 spin_lock_irq(q
->queue_lock
);
3093 if (q
->nr_pending
) {
3095 pm_runtime_mark_last_busy(q
->dev
);
3097 q
->rpm_status
= RPM_SUSPENDING
;
3099 spin_unlock_irq(q
->queue_lock
);
3102 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3105 * blk_post_runtime_suspend - Post runtime suspend processing
3106 * @q: the queue of the device
3107 * @err: return value of the device's runtime_suspend function
3110 * Update the queue's runtime status according to the return value of the
3111 * device's runtime suspend function and mark last busy for the device so
3112 * that PM core will try to auto suspend the device at a later time.
3114 * This function should be called near the end of the device's
3115 * runtime_suspend callback.
3117 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3119 spin_lock_irq(q
->queue_lock
);
3121 q
->rpm_status
= RPM_SUSPENDED
;
3123 q
->rpm_status
= RPM_ACTIVE
;
3124 pm_runtime_mark_last_busy(q
->dev
);
3126 spin_unlock_irq(q
->queue_lock
);
3128 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3131 * blk_pre_runtime_resume - Pre runtime resume processing
3132 * @q: the queue of the device
3135 * Update the queue's runtime status to RESUMING in preparation for the
3136 * runtime resume of the device.
3138 * This function should be called near the start of the device's
3139 * runtime_resume callback.
3141 void blk_pre_runtime_resume(struct request_queue
*q
)
3143 spin_lock_irq(q
->queue_lock
);
3144 q
->rpm_status
= RPM_RESUMING
;
3145 spin_unlock_irq(q
->queue_lock
);
3147 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3150 * blk_post_runtime_resume - Post runtime resume processing
3151 * @q: the queue of the device
3152 * @err: return value of the device's runtime_resume function
3155 * Update the queue's runtime status according to the return value of the
3156 * device's runtime_resume function. If it is successfully resumed, process
3157 * the requests that are queued into the device's queue when it is resuming
3158 * and then mark last busy and initiate autosuspend for it.
3160 * This function should be called near the end of the device's
3161 * runtime_resume callback.
3163 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3165 spin_lock_irq(q
->queue_lock
);
3167 q
->rpm_status
= RPM_ACTIVE
;
3169 pm_runtime_mark_last_busy(q
->dev
);
3170 pm_request_autosuspend(q
->dev
);
3172 q
->rpm_status
= RPM_SUSPENDED
;
3174 spin_unlock_irq(q
->queue_lock
);
3176 EXPORT_SYMBOL(blk_post_runtime_resume
);
3179 int __init
blk_dev_init(void)
3181 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
3182 sizeof(((struct request
*)0)->cmd_flags
));
3184 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3185 kblockd_workqueue
= alloc_workqueue("kblockd",
3186 WQ_MEM_RECLAIM
| WQ_HIGHPRI
|
3187 WQ_POWER_EFFICIENT
, 0);
3188 if (!kblockd_workqueue
)
3189 panic("Failed to create kblockd\n");
3191 request_cachep
= kmem_cache_create("blkdev_requests",
3192 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3194 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
3195 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);