2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
24 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
26 struct memblock memblock __initdata_memblock
= {
27 .memory
.regions
= memblock_memory_init_regions
,
28 .memory
.cnt
= 1, /* empty dummy entry */
29 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
31 .reserved
.regions
= memblock_reserved_init_regions
,
32 .reserved
.cnt
= 1, /* empty dummy entry */
33 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
35 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
38 int memblock_debug __initdata_memblock
;
39 int memblock_can_resize __initdata_memblock
;
41 /* inline so we don't get a warning when pr_debug is compiled out */
42 static inline const char *memblock_type_name(struct memblock_type
*type
)
44 if (type
== &memblock
.memory
)
46 else if (type
== &memblock
.reserved
)
52 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
55 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
59 * Address comparison utilities
61 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
62 phys_addr_t base2
, phys_addr_t size2
)
64 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
67 static long __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
68 phys_addr_t base
, phys_addr_t size
)
72 for (i
= 0; i
< type
->cnt
; i
++) {
73 phys_addr_t rgnbase
= type
->regions
[i
].base
;
74 phys_addr_t rgnsize
= type
->regions
[i
].size
;
75 if (memblock_addrs_overlap(base
, size
, rgnbase
, rgnsize
))
79 return (i
< type
->cnt
) ? i
: -1;
83 * Find, allocate, deallocate or reserve unreserved regions. All allocations
87 static phys_addr_t __init_memblock
memblock_find_region(phys_addr_t start
, phys_addr_t end
,
88 phys_addr_t size
, phys_addr_t align
)
90 phys_addr_t base
, res_base
;
93 /* In case, huge size is requested */
97 base
= round_down(end
- size
, align
);
99 /* Prevent allocations returning 0 as it's also used to
100 * indicate an allocation failure
105 while (start
<= base
) {
106 j
= memblock_overlaps_region(&memblock
.reserved
, base
, size
);
109 res_base
= memblock
.reserved
.regions
[j
].base
;
112 base
= round_down(res_base
- size
, align
);
119 * Find a free area with specified alignment in a specific range.
121 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
, phys_addr_t end
,
122 phys_addr_t size
, phys_addr_t align
)
128 /* Pump up max_addr */
129 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
130 end
= memblock
.current_limit
;
132 /* We do a top-down search, this tends to limit memory
133 * fragmentation by keeping early boot allocs near the
136 for (i
= memblock
.memory
.cnt
- 1; i
>= 0; i
--) {
137 phys_addr_t memblockbase
= memblock
.memory
.regions
[i
].base
;
138 phys_addr_t memblocksize
= memblock
.memory
.regions
[i
].size
;
139 phys_addr_t bottom
, top
, found
;
141 if (memblocksize
< size
)
143 if ((memblockbase
+ memblocksize
) <= start
)
145 bottom
= max(memblockbase
, start
);
146 top
= min(memblockbase
+ memblocksize
, end
);
149 found
= memblock_find_region(bottom
, top
, size
, align
);
157 * Free memblock.reserved.regions
159 int __init_memblock
memblock_free_reserved_regions(void)
161 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
164 return memblock_free(__pa(memblock
.reserved
.regions
),
165 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
169 * Reserve memblock.reserved.regions
171 int __init_memblock
memblock_reserve_reserved_regions(void)
173 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
176 return memblock_reserve(__pa(memblock
.reserved
.regions
),
177 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
180 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
182 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
183 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
186 /* Special case for empty arrays */
187 if (type
->cnt
== 0) {
189 type
->regions
[0].base
= 0;
190 type
->regions
[0].size
= 0;
191 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
195 static int __init_memblock
memblock_double_array(struct memblock_type
*type
)
197 struct memblock_region
*new_array
, *old_array
;
198 phys_addr_t old_size
, new_size
, addr
;
199 int use_slab
= slab_is_available();
201 /* We don't allow resizing until we know about the reserved regions
202 * of memory that aren't suitable for allocation
204 if (!memblock_can_resize
)
207 /* Calculate new doubled size */
208 old_size
= type
->max
* sizeof(struct memblock_region
);
209 new_size
= old_size
<< 1;
211 /* Try to find some space for it.
213 * WARNING: We assume that either slab_is_available() and we use it or
214 * we use MEMBLOCK for allocations. That means that this is unsafe to use
215 * when bootmem is currently active (unless bootmem itself is implemented
216 * on top of MEMBLOCK which isn't the case yet)
218 * This should however not be an issue for now, as we currently only
219 * call into MEMBLOCK while it's still active, or much later when slab is
220 * active for memory hotplug operations
223 new_array
= kmalloc(new_size
, GFP_KERNEL
);
224 addr
= new_array
? __pa(new_array
) : 0;
226 addr
= memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE
, new_size
, sizeof(phys_addr_t
));
228 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
229 memblock_type_name(type
), type
->max
, type
->max
* 2);
232 new_array
= __va(addr
);
234 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
235 memblock_type_name(type
), type
->max
* 2, (u64
)addr
, (u64
)addr
+ new_size
- 1);
237 /* Found space, we now need to move the array over before
238 * we add the reserved region since it may be our reserved
239 * array itself that is full.
241 memcpy(new_array
, type
->regions
, old_size
);
242 memset(new_array
+ type
->max
, 0, old_size
);
243 old_array
= type
->regions
;
244 type
->regions
= new_array
;
247 /* If we use SLAB that's it, we are done */
251 /* Add the new reserved region now. Should not fail ! */
252 BUG_ON(memblock_reserve(addr
, new_size
));
254 /* If the array wasn't our static init one, then free it. We only do
255 * that before SLAB is available as later on, we don't know whether
256 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
259 if (old_array
!= memblock_memory_init_regions
&&
260 old_array
!= memblock_reserved_init_regions
)
261 memblock_free(__pa(old_array
), old_size
);
267 * memblock_merge_regions - merge neighboring compatible regions
268 * @type: memblock type to scan
270 * Scan @type and merge neighboring compatible regions.
272 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
276 /* cnt never goes below 1 */
277 while (i
< type
->cnt
- 1) {
278 struct memblock_region
*this = &type
->regions
[i
];
279 struct memblock_region
*next
= &type
->regions
[i
+ 1];
281 if (this->base
+ this->size
!= next
->base
||
282 memblock_get_region_node(this) !=
283 memblock_get_region_node(next
)) {
284 BUG_ON(this->base
+ this->size
> next
->base
);
289 this->size
+= next
->size
;
290 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 1)) * sizeof(*next
));
296 * memblock_insert_region - insert new memblock region
297 * @type: memblock type to insert into
298 * @idx: index for the insertion point
299 * @base: base address of the new region
300 * @size: size of the new region
302 * Insert new memblock region [@base,@base+@size) into @type at @idx.
303 * @type must already have extra room to accomodate the new region.
305 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
306 int idx
, phys_addr_t base
,
307 phys_addr_t size
, int nid
)
309 struct memblock_region
*rgn
= &type
->regions
[idx
];
311 BUG_ON(type
->cnt
>= type
->max
);
312 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
315 memblock_set_region_node(rgn
, nid
);
320 * memblock_add_region - add new memblock region
321 * @type: memblock type to add new region into
322 * @base: base address of the new region
323 * @size: size of the new region
325 * Add new memblock region [@base,@base+@size) into @type. The new region
326 * is allowed to overlap with existing ones - overlaps don't affect already
327 * existing regions. @type is guaranteed to be minimal (all neighbouring
328 * compatible regions are merged) after the addition.
331 * 0 on success, -errno on failure.
333 static int __init_memblock
memblock_add_region(struct memblock_type
*type
,
334 phys_addr_t base
, phys_addr_t size
)
337 phys_addr_t obase
= base
;
338 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
341 /* special case for empty array */
342 if (type
->regions
[0].size
== 0) {
343 WARN_ON(type
->cnt
!= 1);
344 type
->regions
[0].base
= base
;
345 type
->regions
[0].size
= size
;
346 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
351 * The following is executed twice. Once with %false @insert and
352 * then with %true. The first counts the number of regions needed
353 * to accomodate the new area. The second actually inserts them.
358 for (i
= 0; i
< type
->cnt
; i
++) {
359 struct memblock_region
*rgn
= &type
->regions
[i
];
360 phys_addr_t rbase
= rgn
->base
;
361 phys_addr_t rend
= rbase
+ rgn
->size
;
368 * @rgn overlaps. If it separates the lower part of new
369 * area, insert that portion.
374 memblock_insert_region(type
, i
++, base
,
375 rbase
- base
, MAX_NUMNODES
);
377 /* area below @rend is dealt with, forget about it */
378 base
= min(rend
, end
);
381 /* insert the remaining portion */
385 memblock_insert_region(type
, i
, base
, end
- base
,
390 * If this was the first round, resize array and repeat for actual
391 * insertions; otherwise, merge and return.
394 while (type
->cnt
+ nr_new
> type
->max
)
395 if (memblock_double_array(type
) < 0)
400 memblock_merge_regions(type
);
405 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
407 return memblock_add_region(&memblock
.memory
, base
, size
);
411 * memblock_isolate_range - isolate given range into disjoint memblocks
412 * @type: memblock type to isolate range for
413 * @base: base of range to isolate
414 * @size: size of range to isolate
415 * @start_rgn: out parameter for the start of isolated region
416 * @end_rgn: out parameter for the end of isolated region
418 * Walk @type and ensure that regions don't cross the boundaries defined by
419 * [@base,@base+@size). Crossing regions are split at the boundaries,
420 * which may create at most two more regions. The index of the first
421 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
424 * 0 on success, -errno on failure.
426 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
427 phys_addr_t base
, phys_addr_t size
,
428 int *start_rgn
, int *end_rgn
)
430 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
433 *start_rgn
= *end_rgn
= 0;
435 /* we'll create at most two more regions */
436 while (type
->cnt
+ 2 > type
->max
)
437 if (memblock_double_array(type
) < 0)
440 for (i
= 0; i
< type
->cnt
; i
++) {
441 struct memblock_region
*rgn
= &type
->regions
[i
];
442 phys_addr_t rbase
= rgn
->base
;
443 phys_addr_t rend
= rbase
+ rgn
->size
;
452 * @rgn intersects from below. Split and continue
453 * to process the next region - the new top half.
456 rgn
->size
= rend
- rgn
->base
;
457 memblock_insert_region(type
, i
, rbase
, base
- rbase
,
458 memblock_get_region_node(rgn
));
459 } else if (rend
> end
) {
461 * @rgn intersects from above. Split and redo the
462 * current region - the new bottom half.
465 rgn
->size
= rend
- rgn
->base
;
466 memblock_insert_region(type
, i
--, rbase
, end
- rbase
,
467 memblock_get_region_node(rgn
));
469 /* @rgn is fully contained, record it */
479 static int __init_memblock
__memblock_remove(struct memblock_type
*type
,
480 phys_addr_t base
, phys_addr_t size
)
482 int start_rgn
, end_rgn
;
485 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
489 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
490 memblock_remove_region(type
, i
);
494 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
496 return __memblock_remove(&memblock
.memory
, base
, size
);
499 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
501 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
502 (unsigned long long)base
,
503 (unsigned long long)base
+ size
,
506 return __memblock_remove(&memblock
.reserved
, base
, size
);
509 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
511 struct memblock_type
*_rgn
= &memblock
.reserved
;
513 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
514 (unsigned long long)base
,
515 (unsigned long long)base
+ size
,
519 return memblock_add_region(_rgn
, base
, size
);
523 * __next_free_mem_range - next function for for_each_free_mem_range()
524 * @idx: pointer to u64 loop variable
525 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
526 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
527 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
528 * @p_nid: ptr to int for nid of the range, can be %NULL
530 * Find the first free area from *@idx which matches @nid, fill the out
531 * parameters, and update *@idx for the next iteration. The lower 32bit of
532 * *@idx contains index into memory region and the upper 32bit indexes the
533 * areas before each reserved region. For example, if reserved regions
534 * look like the following,
536 * 0:[0-16), 1:[32-48), 2:[128-130)
538 * The upper 32bit indexes the following regions.
540 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
542 * As both region arrays are sorted, the function advances the two indices
543 * in lockstep and returns each intersection.
545 void __init_memblock
__next_free_mem_range(u64
*idx
, int nid
,
546 phys_addr_t
*out_start
,
547 phys_addr_t
*out_end
, int *out_nid
)
549 struct memblock_type
*mem
= &memblock
.memory
;
550 struct memblock_type
*rsv
= &memblock
.reserved
;
551 int mi
= *idx
& 0xffffffff;
554 for ( ; mi
< mem
->cnt
; mi
++) {
555 struct memblock_region
*m
= &mem
->regions
[mi
];
556 phys_addr_t m_start
= m
->base
;
557 phys_addr_t m_end
= m
->base
+ m
->size
;
559 /* only memory regions are associated with nodes, check it */
560 if (nid
!= MAX_NUMNODES
&& nid
!= memblock_get_region_node(m
))
563 /* scan areas before each reservation for intersection */
564 for ( ; ri
< rsv
->cnt
+ 1; ri
++) {
565 struct memblock_region
*r
= &rsv
->regions
[ri
];
566 phys_addr_t r_start
= ri
? r
[-1].base
+ r
[-1].size
: 0;
567 phys_addr_t r_end
= ri
< rsv
->cnt
? r
->base
: ULLONG_MAX
;
569 /* if ri advanced past mi, break out to advance mi */
570 if (r_start
>= m_end
)
572 /* if the two regions intersect, we're done */
573 if (m_start
< r_end
) {
575 *out_start
= max(m_start
, r_start
);
577 *out_end
= min(m_end
, r_end
);
579 *out_nid
= memblock_get_region_node(m
);
581 * The region which ends first is advanced
582 * for the next iteration.
588 *idx
= (u32
)mi
| (u64
)ri
<< 32;
594 /* signal end of iteration */
598 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
600 * Common iterator interface used to define for_each_mem_range().
602 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
603 unsigned long *out_start_pfn
,
604 unsigned long *out_end_pfn
, int *out_nid
)
606 struct memblock_type
*type
= &memblock
.memory
;
607 struct memblock_region
*r
;
609 while (++*idx
< type
->cnt
) {
610 r
= &type
->regions
[*idx
];
612 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
614 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
617 if (*idx
>= type
->cnt
) {
623 *out_start_pfn
= PFN_UP(r
->base
);
625 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
631 * memblock_set_node - set node ID on memblock regions
632 * @base: base of area to set node ID for
633 * @size: size of area to set node ID for
634 * @nid: node ID to set
636 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
637 * Regions which cross the area boundaries are split as necessary.
640 * 0 on success, -errno on failure.
642 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
645 struct memblock_type
*type
= &memblock
.memory
;
646 int start_rgn
, end_rgn
;
649 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
653 for (i
= start_rgn
; i
< end_rgn
; i
++)
654 type
->regions
[i
].nid
= nid
;
656 memblock_merge_regions(type
);
659 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
661 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
665 /* We align the size to limit fragmentation. Without this, a lot of
666 * small allocs quickly eat up the whole reserve array on sparc
668 size
= round_up(size
, align
);
670 found
= memblock_find_in_range(0, max_addr
, size
, align
);
671 if (found
&& !memblock_reserve(found
, size
))
677 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
681 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
684 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
685 (unsigned long long) size
, (unsigned long long) max_addr
);
690 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
692 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
697 * Additional node-local top-down allocators.
699 * WARNING: Only available after early_node_map[] has been populated,
700 * on some architectures, that is after all the calls to add_active_range()
701 * have been done to populate it.
704 static phys_addr_t __init
memblock_nid_range_rev(phys_addr_t start
,
705 phys_addr_t end
, int *nid
)
707 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
708 unsigned long start_pfn
, end_pfn
;
711 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, nid
)
712 if (end
> PFN_PHYS(start_pfn
) && end
<= PFN_PHYS(end_pfn
))
713 return max(start
, PFN_PHYS(start_pfn
));
719 phys_addr_t __init
memblock_find_in_range_node(phys_addr_t start
,
722 phys_addr_t align
, int nid
)
724 struct memblock_type
*mem
= &memblock
.memory
;
729 /* Pump up max_addr */
730 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
731 end
= memblock
.current_limit
;
733 for (i
= mem
->cnt
- 1; i
>= 0; i
--) {
734 struct memblock_region
*r
= &mem
->regions
[i
];
735 phys_addr_t base
= max(start
, r
->base
);
736 phys_addr_t top
= min(end
, r
->base
+ r
->size
);
739 phys_addr_t tbase
, ret
;
742 tbase
= memblock_nid_range_rev(base
, top
, &tnid
);
743 if (nid
== MAX_NUMNODES
|| tnid
== nid
) {
744 ret
= memblock_find_region(tbase
, top
, size
, align
);
755 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
760 * We align the size to limit fragmentation. Without this, a lot of
761 * small allocs quickly eat up the whole reserve array on sparc
763 size
= round_up(size
, align
);
765 found
= memblock_find_in_range_node(0, MEMBLOCK_ALLOC_ACCESSIBLE
,
767 if (found
&& !memblock_reserve(found
, size
))
773 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
775 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
779 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
784 * Remaining API functions
787 /* You must call memblock_analyze() before this. */
788 phys_addr_t __init
memblock_phys_mem_size(void)
790 return memblock
.memory_size
;
794 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
796 return memblock
.memory
.regions
[0].base
;
799 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
801 int idx
= memblock
.memory
.cnt
- 1;
803 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
806 /* You must call memblock_analyze() after this. */
807 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
810 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
815 /* find out max address */
816 for (i
= 0; i
< memblock
.memory
.cnt
; i
++) {
817 struct memblock_region
*r
= &memblock
.memory
.regions
[i
];
819 if (limit
<= r
->size
) {
820 max_addr
= r
->base
+ limit
;
826 /* truncate both memory and reserved regions */
827 __memblock_remove(&memblock
.memory
, max_addr
, (phys_addr_t
)ULLONG_MAX
);
828 __memblock_remove(&memblock
.reserved
, max_addr
, (phys_addr_t
)ULLONG_MAX
);
831 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
833 unsigned int left
= 0, right
= type
->cnt
;
836 unsigned int mid
= (right
+ left
) / 2;
838 if (addr
< type
->regions
[mid
].base
)
840 else if (addr
>= (type
->regions
[mid
].base
+
841 type
->regions
[mid
].size
))
845 } while (left
< right
);
849 int __init
memblock_is_reserved(phys_addr_t addr
)
851 return memblock_search(&memblock
.reserved
, addr
) != -1;
854 int __init_memblock
memblock_is_memory(phys_addr_t addr
)
856 return memblock_search(&memblock
.memory
, addr
) != -1;
859 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
861 int idx
= memblock_search(&memblock
.memory
, base
);
862 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
866 return memblock
.memory
.regions
[idx
].base
<= base
&&
867 (memblock
.memory
.regions
[idx
].base
+
868 memblock
.memory
.regions
[idx
].size
) >= end
;
871 int __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
873 memblock_cap_size(base
, &size
);
874 return memblock_overlaps_region(&memblock
.reserved
, base
, size
) >= 0;
878 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
880 memblock
.current_limit
= limit
;
883 static void __init_memblock
memblock_dump(struct memblock_type
*type
, char *name
)
885 unsigned long long base
, size
;
888 pr_info(" %s.cnt = 0x%lx\n", name
, type
->cnt
);
890 for (i
= 0; i
< type
->cnt
; i
++) {
891 struct memblock_region
*rgn
= &type
->regions
[i
];
892 char nid_buf
[32] = "";
896 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
897 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
898 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
899 memblock_get_region_node(rgn
));
901 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
902 name
, i
, base
, base
+ size
- 1, size
, nid_buf
);
906 void __init_memblock
__memblock_dump_all(void)
908 pr_info("MEMBLOCK configuration:\n");
909 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock
.memory_size
);
911 memblock_dump(&memblock
.memory
, "memory");
912 memblock_dump(&memblock
.reserved
, "reserved");
915 void __init
memblock_analyze(void)
919 memblock
.memory_size
= 0;
921 for (i
= 0; i
< memblock
.memory
.cnt
; i
++)
922 memblock
.memory_size
+= memblock
.memory
.regions
[i
].size
;
924 /* We allow resizing from there */
925 memblock_can_resize
= 1;
928 static int __init
early_memblock(char *p
)
930 if (p
&& strstr(p
, "debug"))
934 early_param("memblock", early_memblock
);
936 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
938 static int memblock_debug_show(struct seq_file
*m
, void *private)
940 struct memblock_type
*type
= m
->private;
941 struct memblock_region
*reg
;
944 for (i
= 0; i
< type
->cnt
; i
++) {
945 reg
= &type
->regions
[i
];
946 seq_printf(m
, "%4d: ", i
);
947 if (sizeof(phys_addr_t
) == 4)
948 seq_printf(m
, "0x%08lx..0x%08lx\n",
949 (unsigned long)reg
->base
,
950 (unsigned long)(reg
->base
+ reg
->size
- 1));
952 seq_printf(m
, "0x%016llx..0x%016llx\n",
953 (unsigned long long)reg
->base
,
954 (unsigned long long)(reg
->base
+ reg
->size
- 1));
960 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
962 return single_open(file
, memblock_debug_show
, inode
->i_private
);
965 static const struct file_operations memblock_debug_fops
= {
966 .open
= memblock_debug_open
,
969 .release
= single_release
,
972 static int __init
memblock_init_debugfs(void)
974 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
977 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
978 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
982 __initcall(memblock_init_debugfs
);
984 #endif /* CONFIG_DEBUG_FS */