bnx2: stop using net_device.{base_addr, irq}.
[linux-2.6.git] / drivers / net / ethernet / sfc / rx.c
blob763fa2fe1a38ffbeb4f1cd30a05801ffe3c3d4f6
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <net/ip.h>
20 #include <net/checksum.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
27 /* Number of RX descriptors pushed at once. */
28 #define EFX_RX_BATCH 8
30 /* Maximum size of a buffer sharing a page */
31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
33 /* Size of buffer allocated for skb header area. */
34 #define EFX_SKB_HEADERS 64u
37 * rx_alloc_method - RX buffer allocation method
39 * This driver supports two methods for allocating and using RX buffers:
40 * each RX buffer may be backed by an skb or by an order-n page.
42 * When GRO is in use then the second method has a lower overhead,
43 * since we don't have to allocate then free skbs on reassembled frames.
45 * Values:
46 * - RX_ALLOC_METHOD_AUTO = 0
47 * - RX_ALLOC_METHOD_SKB = 1
48 * - RX_ALLOC_METHOD_PAGE = 2
50 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
51 * controlled by the parameters below.
53 * - Since pushing and popping descriptors are separated by the rx_queue
54 * size, so the watermarks should be ~rxd_size.
55 * - The performance win by using page-based allocation for GRO is less
56 * than the performance hit of using page-based allocation of non-GRO,
57 * so the watermarks should reflect this.
59 * Per channel we maintain a single variable, updated by each channel:
61 * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62 * RX_ALLOC_FACTOR_SKB)
63 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
64 * limits the hysteresis), and update the allocation strategy:
66 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
69 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
71 #define RX_ALLOC_LEVEL_GRO 0x2000
72 #define RX_ALLOC_LEVEL_MAX 0x3000
73 #define RX_ALLOC_FACTOR_GRO 1
74 #define RX_ALLOC_FACTOR_SKB (-2)
76 /* This is the percentage fill level below which new RX descriptors
77 * will be added to the RX descriptor ring.
79 static unsigned int rx_refill_threshold = 90;
81 /* This is the percentage fill level to which an RX queue will be refilled
82 * when the "RX refill threshold" is reached.
84 static unsigned int rx_refill_limit = 95;
87 * RX maximum head room required.
89 * This must be at least 1 to prevent overflow and at least 2 to allow
90 * pipelined receives.
92 #define EFX_RXD_HEAD_ROOM 2
94 /* Offset of ethernet header within page */
95 static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
96 struct efx_rx_buffer *buf)
98 /* Offset is always within one page, so we don't need to consider
99 * the page order.
101 return ((unsigned int) buf->dma_addr & (PAGE_SIZE - 1)) +
102 efx->type->rx_buffer_hash_size;
104 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
106 return PAGE_SIZE << efx->rx_buffer_order;
109 static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
111 if (buf->flags & EFX_RX_BUF_PAGE)
112 return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
113 else
114 return (u8 *)buf->u.skb->data + efx->type->rx_buffer_hash_size;
117 static inline u32 efx_rx_buf_hash(const u8 *eh)
119 /* The ethernet header is always directly after any hash. */
120 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
121 return __le32_to_cpup((const __le32 *)(eh - 4));
122 #else
123 const u8 *data = eh - 4;
124 return (u32)data[0] |
125 (u32)data[1] << 8 |
126 (u32)data[2] << 16 |
127 (u32)data[3] << 24;
128 #endif
132 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
134 * @rx_queue: Efx RX queue
136 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
137 * struct efx_rx_buffer for each one. Return a negative error code or 0
138 * on success. May fail having only inserted fewer than EFX_RX_BATCH
139 * buffers.
141 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
143 struct efx_nic *efx = rx_queue->efx;
144 struct net_device *net_dev = efx->net_dev;
145 struct efx_rx_buffer *rx_buf;
146 struct sk_buff *skb;
147 int skb_len = efx->rx_buffer_len;
148 unsigned index, count;
150 for (count = 0; count < EFX_RX_BATCH; ++count) {
151 index = rx_queue->added_count & rx_queue->ptr_mask;
152 rx_buf = efx_rx_buffer(rx_queue, index);
154 rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
155 if (unlikely(!skb))
156 return -ENOMEM;
158 /* Adjust the SKB for padding */
159 skb_reserve(skb, NET_IP_ALIGN);
160 rx_buf->len = skb_len - NET_IP_ALIGN;
161 rx_buf->flags = 0;
163 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
164 skb->data, rx_buf->len,
165 PCI_DMA_FROMDEVICE);
166 if (unlikely(pci_dma_mapping_error(efx->pci_dev,
167 rx_buf->dma_addr))) {
168 dev_kfree_skb_any(skb);
169 rx_buf->u.skb = NULL;
170 return -EIO;
173 ++rx_queue->added_count;
174 ++rx_queue->alloc_skb_count;
177 return 0;
181 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
183 * @rx_queue: Efx RX queue
185 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
186 * and populates struct efx_rx_buffers for each one. Return a negative error
187 * code or 0 on success. If a single page can be split between two buffers,
188 * then the page will either be inserted fully, or not at at all.
190 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
192 struct efx_nic *efx = rx_queue->efx;
193 struct efx_rx_buffer *rx_buf;
194 struct page *page;
195 void *page_addr;
196 struct efx_rx_page_state *state;
197 dma_addr_t dma_addr;
198 unsigned index, count;
200 /* We can split a page between two buffers */
201 BUILD_BUG_ON(EFX_RX_BATCH & 1);
203 for (count = 0; count < EFX_RX_BATCH; ++count) {
204 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
205 efx->rx_buffer_order);
206 if (unlikely(page == NULL))
207 return -ENOMEM;
208 dma_addr = pci_map_page(efx->pci_dev, page, 0,
209 efx_rx_buf_size(efx),
210 PCI_DMA_FROMDEVICE);
211 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
212 __free_pages(page, efx->rx_buffer_order);
213 return -EIO;
215 page_addr = page_address(page);
216 state = page_addr;
217 state->refcnt = 0;
218 state->dma_addr = dma_addr;
220 page_addr += sizeof(struct efx_rx_page_state);
221 dma_addr += sizeof(struct efx_rx_page_state);
223 split:
224 index = rx_queue->added_count & rx_queue->ptr_mask;
225 rx_buf = efx_rx_buffer(rx_queue, index);
226 rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
227 rx_buf->u.page = page;
228 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
229 rx_buf->flags = EFX_RX_BUF_PAGE;
230 ++rx_queue->added_count;
231 ++rx_queue->alloc_page_count;
232 ++state->refcnt;
234 if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
235 /* Use the second half of the page */
236 get_page(page);
237 dma_addr += (PAGE_SIZE >> 1);
238 page_addr += (PAGE_SIZE >> 1);
239 ++count;
240 goto split;
244 return 0;
247 static void efx_unmap_rx_buffer(struct efx_nic *efx,
248 struct efx_rx_buffer *rx_buf)
250 if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
251 struct efx_rx_page_state *state;
253 state = page_address(rx_buf->u.page);
254 if (--state->refcnt == 0) {
255 pci_unmap_page(efx->pci_dev,
256 state->dma_addr,
257 efx_rx_buf_size(efx),
258 PCI_DMA_FROMDEVICE);
260 } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
261 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
262 rx_buf->len, PCI_DMA_FROMDEVICE);
266 static void efx_free_rx_buffer(struct efx_nic *efx,
267 struct efx_rx_buffer *rx_buf)
269 if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
270 __free_pages(rx_buf->u.page, efx->rx_buffer_order);
271 rx_buf->u.page = NULL;
272 } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
273 dev_kfree_skb_any(rx_buf->u.skb);
274 rx_buf->u.skb = NULL;
278 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
279 struct efx_rx_buffer *rx_buf)
281 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
282 efx_free_rx_buffer(rx_queue->efx, rx_buf);
285 /* Attempt to resurrect the other receive buffer that used to share this page,
286 * which had previously been passed up to the kernel and freed. */
287 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
288 struct efx_rx_buffer *rx_buf)
290 struct efx_rx_page_state *state = page_address(rx_buf->u.page);
291 struct efx_rx_buffer *new_buf;
292 unsigned fill_level, index;
294 /* +1 because efx_rx_packet() incremented removed_count. +1 because
295 * we'd like to insert an additional descriptor whilst leaving
296 * EFX_RXD_HEAD_ROOM for the non-recycle path */
297 fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
298 if (unlikely(fill_level > rx_queue->max_fill)) {
299 /* We could place "state" on a list, and drain the list in
300 * efx_fast_push_rx_descriptors(). For now, this will do. */
301 return;
304 ++state->refcnt;
305 get_page(rx_buf->u.page);
307 index = rx_queue->added_count & rx_queue->ptr_mask;
308 new_buf = efx_rx_buffer(rx_queue, index);
309 new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
310 new_buf->u.page = rx_buf->u.page;
311 new_buf->len = rx_buf->len;
312 new_buf->flags = EFX_RX_BUF_PAGE;
313 ++rx_queue->added_count;
316 /* Recycle the given rx buffer directly back into the rx_queue. There is
317 * always room to add this buffer, because we've just popped a buffer. */
318 static void efx_recycle_rx_buffer(struct efx_channel *channel,
319 struct efx_rx_buffer *rx_buf)
321 struct efx_nic *efx = channel->efx;
322 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
323 struct efx_rx_buffer *new_buf;
324 unsigned index;
326 rx_buf->flags &= EFX_RX_BUF_PAGE;
328 if ((rx_buf->flags & EFX_RX_BUF_PAGE) &&
329 efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
330 page_count(rx_buf->u.page) == 1)
331 efx_resurrect_rx_buffer(rx_queue, rx_buf);
333 index = rx_queue->added_count & rx_queue->ptr_mask;
334 new_buf = efx_rx_buffer(rx_queue, index);
336 memcpy(new_buf, rx_buf, sizeof(*new_buf));
337 rx_buf->u.page = NULL;
338 ++rx_queue->added_count;
342 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
343 * @rx_queue: RX descriptor queue
344 * This will aim to fill the RX descriptor queue up to
345 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
346 * memory to do so, a slow fill will be scheduled.
348 * The caller must provide serialisation (none is used here). In practise,
349 * this means this function must run from the NAPI handler, or be called
350 * when NAPI is disabled.
352 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
354 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
355 unsigned fill_level;
356 int space, rc = 0;
358 /* Calculate current fill level, and exit if we don't need to fill */
359 fill_level = (rx_queue->added_count - rx_queue->removed_count);
360 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
361 if (fill_level >= rx_queue->fast_fill_trigger)
362 goto out;
364 /* Record minimum fill level */
365 if (unlikely(fill_level < rx_queue->min_fill)) {
366 if (fill_level)
367 rx_queue->min_fill = fill_level;
370 space = rx_queue->fast_fill_limit - fill_level;
371 if (space < EFX_RX_BATCH)
372 goto out;
374 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
375 "RX queue %d fast-filling descriptor ring from"
376 " level %d to level %d using %s allocation\n",
377 efx_rx_queue_index(rx_queue), fill_level,
378 rx_queue->fast_fill_limit,
379 channel->rx_alloc_push_pages ? "page" : "skb");
381 do {
382 if (channel->rx_alloc_push_pages)
383 rc = efx_init_rx_buffers_page(rx_queue);
384 else
385 rc = efx_init_rx_buffers_skb(rx_queue);
386 if (unlikely(rc)) {
387 /* Ensure that we don't leave the rx queue empty */
388 if (rx_queue->added_count == rx_queue->removed_count)
389 efx_schedule_slow_fill(rx_queue);
390 goto out;
392 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
394 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
395 "RX queue %d fast-filled descriptor ring "
396 "to level %d\n", efx_rx_queue_index(rx_queue),
397 rx_queue->added_count - rx_queue->removed_count);
399 out:
400 if (rx_queue->notified_count != rx_queue->added_count)
401 efx_nic_notify_rx_desc(rx_queue);
404 void efx_rx_slow_fill(unsigned long context)
406 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
408 /* Post an event to cause NAPI to run and refill the queue */
409 efx_nic_generate_fill_event(rx_queue);
410 ++rx_queue->slow_fill_count;
413 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
414 struct efx_rx_buffer *rx_buf,
415 int len, bool *leak_packet)
417 struct efx_nic *efx = rx_queue->efx;
418 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
420 if (likely(len <= max_len))
421 return;
423 /* The packet must be discarded, but this is only a fatal error
424 * if the caller indicated it was
426 rx_buf->flags |= EFX_RX_PKT_DISCARD;
428 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
429 if (net_ratelimit())
430 netif_err(efx, rx_err, efx->net_dev,
431 " RX queue %d seriously overlength "
432 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
433 efx_rx_queue_index(rx_queue), len, max_len,
434 efx->type->rx_buffer_padding);
435 /* If this buffer was skb-allocated, then the meta
436 * data at the end of the skb will be trashed. So
437 * we have no choice but to leak the fragment.
439 *leak_packet = !(rx_buf->flags & EFX_RX_BUF_PAGE);
440 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
441 } else {
442 if (net_ratelimit())
443 netif_err(efx, rx_err, efx->net_dev,
444 " RX queue %d overlength RX event "
445 "(0x%x > 0x%x)\n",
446 efx_rx_queue_index(rx_queue), len, max_len);
449 efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
452 /* Pass a received packet up through GRO. GRO can handle pages
453 * regardless of checksum state and skbs with a good checksum.
455 static void efx_rx_packet_gro(struct efx_channel *channel,
456 struct efx_rx_buffer *rx_buf,
457 const u8 *eh)
459 struct napi_struct *napi = &channel->napi_str;
460 gro_result_t gro_result;
462 if (rx_buf->flags & EFX_RX_BUF_PAGE) {
463 struct efx_nic *efx = channel->efx;
464 struct page *page = rx_buf->u.page;
465 struct sk_buff *skb;
467 rx_buf->u.page = NULL;
469 skb = napi_get_frags(napi);
470 if (!skb) {
471 put_page(page);
472 return;
475 if (efx->net_dev->features & NETIF_F_RXHASH)
476 skb->rxhash = efx_rx_buf_hash(eh);
478 skb_fill_page_desc(skb, 0, page,
479 efx_rx_buf_offset(efx, rx_buf), rx_buf->len);
481 skb->len = rx_buf->len;
482 skb->data_len = rx_buf->len;
483 skb->truesize += rx_buf->len;
484 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
485 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
487 skb_record_rx_queue(skb, channel->channel);
489 gro_result = napi_gro_frags(napi);
490 } else {
491 struct sk_buff *skb = rx_buf->u.skb;
493 EFX_BUG_ON_PARANOID(!(rx_buf->flags & EFX_RX_PKT_CSUMMED));
494 rx_buf->u.skb = NULL;
495 skb->ip_summed = CHECKSUM_UNNECESSARY;
497 gro_result = napi_gro_receive(napi, skb);
500 if (gro_result == GRO_NORMAL) {
501 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
502 } else if (gro_result != GRO_DROP) {
503 channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
504 channel->irq_mod_score += 2;
508 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
509 unsigned int len, u16 flags)
511 struct efx_nic *efx = rx_queue->efx;
512 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
513 struct efx_rx_buffer *rx_buf;
514 bool leak_packet = false;
516 rx_buf = efx_rx_buffer(rx_queue, index);
517 rx_buf->flags |= flags;
519 /* This allows the refill path to post another buffer.
520 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
521 * isn't overwritten yet.
523 rx_queue->removed_count++;
525 /* Validate the length encoded in the event vs the descriptor pushed */
526 efx_rx_packet__check_len(rx_queue, rx_buf, len, &leak_packet);
528 netif_vdbg(efx, rx_status, efx->net_dev,
529 "RX queue %d received id %x at %llx+%x %s%s\n",
530 efx_rx_queue_index(rx_queue), index,
531 (unsigned long long)rx_buf->dma_addr, len,
532 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
533 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
535 /* Discard packet, if instructed to do so */
536 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
537 if (unlikely(leak_packet))
538 channel->n_skbuff_leaks++;
539 else
540 efx_recycle_rx_buffer(channel, rx_buf);
542 /* Don't hold off the previous receive */
543 rx_buf = NULL;
544 goto out;
547 /* Release card resources - assumes all RX buffers consumed in-order
548 * per RX queue
550 efx_unmap_rx_buffer(efx, rx_buf);
552 /* Prefetch nice and early so data will (hopefully) be in cache by
553 * the time we look at it.
555 prefetch(efx_rx_buf_eh(efx, rx_buf));
557 /* Pipeline receives so that we give time for packet headers to be
558 * prefetched into cache.
560 rx_buf->len = len - efx->type->rx_buffer_hash_size;
561 out:
562 if (channel->rx_pkt)
563 __efx_rx_packet(channel, channel->rx_pkt);
564 channel->rx_pkt = rx_buf;
567 static void efx_rx_deliver(struct efx_channel *channel,
568 struct efx_rx_buffer *rx_buf)
570 struct sk_buff *skb;
572 /* We now own the SKB */
573 skb = rx_buf->u.skb;
574 rx_buf->u.skb = NULL;
576 /* Set the SKB flags */
577 skb_checksum_none_assert(skb);
579 /* Pass the packet up */
580 netif_receive_skb(skb);
582 /* Update allocation strategy method */
583 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
586 /* Handle a received packet. Second half: Touches packet payload. */
587 void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf)
589 struct efx_nic *efx = channel->efx;
590 u8 *eh = efx_rx_buf_eh(efx, rx_buf);
592 /* If we're in loopback test, then pass the packet directly to the
593 * loopback layer, and free the rx_buf here
595 if (unlikely(efx->loopback_selftest)) {
596 efx_loopback_rx_packet(efx, eh, rx_buf->len);
597 efx_free_rx_buffer(efx, rx_buf);
598 return;
601 if (!(rx_buf->flags & EFX_RX_BUF_PAGE)) {
602 struct sk_buff *skb = rx_buf->u.skb;
604 prefetch(skb_shinfo(skb));
606 skb_reserve(skb, efx->type->rx_buffer_hash_size);
607 skb_put(skb, rx_buf->len);
609 if (efx->net_dev->features & NETIF_F_RXHASH)
610 skb->rxhash = efx_rx_buf_hash(eh);
612 /* Move past the ethernet header. rx_buf->data still points
613 * at the ethernet header */
614 skb->protocol = eth_type_trans(skb, efx->net_dev);
616 skb_record_rx_queue(skb, channel->channel);
619 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
620 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
622 if (likely(rx_buf->flags & (EFX_RX_BUF_PAGE | EFX_RX_PKT_CSUMMED)))
623 efx_rx_packet_gro(channel, rx_buf, eh);
624 else
625 efx_rx_deliver(channel, rx_buf);
628 void efx_rx_strategy(struct efx_channel *channel)
630 enum efx_rx_alloc_method method = rx_alloc_method;
632 /* Only makes sense to use page based allocation if GRO is enabled */
633 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
634 method = RX_ALLOC_METHOD_SKB;
635 } else if (method == RX_ALLOC_METHOD_AUTO) {
636 /* Constrain the rx_alloc_level */
637 if (channel->rx_alloc_level < 0)
638 channel->rx_alloc_level = 0;
639 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
640 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
642 /* Decide on the allocation method */
643 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
644 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
647 /* Push the option */
648 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
651 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
653 struct efx_nic *efx = rx_queue->efx;
654 unsigned int entries;
655 int rc;
657 /* Create the smallest power-of-two aligned ring */
658 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
659 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
660 rx_queue->ptr_mask = entries - 1;
662 netif_dbg(efx, probe, efx->net_dev,
663 "creating RX queue %d size %#x mask %#x\n",
664 efx_rx_queue_index(rx_queue), efx->rxq_entries,
665 rx_queue->ptr_mask);
667 /* Allocate RX buffers */
668 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
669 GFP_KERNEL);
670 if (!rx_queue->buffer)
671 return -ENOMEM;
673 rc = efx_nic_probe_rx(rx_queue);
674 if (rc) {
675 kfree(rx_queue->buffer);
676 rx_queue->buffer = NULL;
678 return rc;
681 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
683 struct efx_nic *efx = rx_queue->efx;
684 unsigned int max_fill, trigger, limit;
686 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
687 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
689 /* Initialise ptr fields */
690 rx_queue->added_count = 0;
691 rx_queue->notified_count = 0;
692 rx_queue->removed_count = 0;
693 rx_queue->min_fill = -1U;
695 /* Initialise limit fields */
696 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
697 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
698 limit = max_fill * min(rx_refill_limit, 100U) / 100U;
700 rx_queue->max_fill = max_fill;
701 rx_queue->fast_fill_trigger = trigger;
702 rx_queue->fast_fill_limit = limit;
704 /* Set up RX descriptor ring */
705 rx_queue->enabled = true;
706 efx_nic_init_rx(rx_queue);
709 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
711 int i;
712 struct efx_rx_buffer *rx_buf;
714 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
715 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
717 /* A flush failure might have left rx_queue->enabled */
718 rx_queue->enabled = false;
720 del_timer_sync(&rx_queue->slow_fill);
721 efx_nic_fini_rx(rx_queue);
723 /* Release RX buffers NB start at index 0 not current HW ptr */
724 if (rx_queue->buffer) {
725 for (i = 0; i <= rx_queue->ptr_mask; i++) {
726 rx_buf = efx_rx_buffer(rx_queue, i);
727 efx_fini_rx_buffer(rx_queue, rx_buf);
732 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
734 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
735 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
737 efx_nic_remove_rx(rx_queue);
739 kfree(rx_queue->buffer);
740 rx_queue->buffer = NULL;
744 module_param(rx_alloc_method, int, 0644);
745 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
747 module_param(rx_refill_threshold, uint, 0444);
748 MODULE_PARM_DESC(rx_refill_threshold,
749 "RX descriptor ring fast/slow fill threshold (%)");