1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/socket.h>
13 #include <linux/slab.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
20 #include <net/checksum.h>
21 #include "net_driver.h"
25 #include "workarounds.h"
27 /* Number of RX descriptors pushed at once. */
28 #define EFX_RX_BATCH 8
30 /* Maximum size of a buffer sharing a page */
31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
33 /* Size of buffer allocated for skb header area. */
34 #define EFX_SKB_HEADERS 64u
37 * rx_alloc_method - RX buffer allocation method
39 * This driver supports two methods for allocating and using RX buffers:
40 * each RX buffer may be backed by an skb or by an order-n page.
42 * When GRO is in use then the second method has a lower overhead,
43 * since we don't have to allocate then free skbs on reassembled frames.
46 * - RX_ALLOC_METHOD_AUTO = 0
47 * - RX_ALLOC_METHOD_SKB = 1
48 * - RX_ALLOC_METHOD_PAGE = 2
50 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
51 * controlled by the parameters below.
53 * - Since pushing and popping descriptors are separated by the rx_queue
54 * size, so the watermarks should be ~rxd_size.
55 * - The performance win by using page-based allocation for GRO is less
56 * than the performance hit of using page-based allocation of non-GRO,
57 * so the watermarks should reflect this.
59 * Per channel we maintain a single variable, updated by each channel:
61 * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62 * RX_ALLOC_FACTOR_SKB)
63 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
64 * limits the hysteresis), and update the allocation strategy:
66 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
69 static int rx_alloc_method
= RX_ALLOC_METHOD_AUTO
;
71 #define RX_ALLOC_LEVEL_GRO 0x2000
72 #define RX_ALLOC_LEVEL_MAX 0x3000
73 #define RX_ALLOC_FACTOR_GRO 1
74 #define RX_ALLOC_FACTOR_SKB (-2)
76 /* This is the percentage fill level below which new RX descriptors
77 * will be added to the RX descriptor ring.
79 static unsigned int rx_refill_threshold
= 90;
81 /* This is the percentage fill level to which an RX queue will be refilled
82 * when the "RX refill threshold" is reached.
84 static unsigned int rx_refill_limit
= 95;
87 * RX maximum head room required.
89 * This must be at least 1 to prevent overflow and at least 2 to allow
92 #define EFX_RXD_HEAD_ROOM 2
94 /* Offset of ethernet header within page */
95 static inline unsigned int efx_rx_buf_offset(struct efx_nic
*efx
,
96 struct efx_rx_buffer
*buf
)
98 /* Offset is always within one page, so we don't need to consider
101 return ((unsigned int) buf
->dma_addr
& (PAGE_SIZE
- 1)) +
102 efx
->type
->rx_buffer_hash_size
;
104 static inline unsigned int efx_rx_buf_size(struct efx_nic
*efx
)
106 return PAGE_SIZE
<< efx
->rx_buffer_order
;
109 static u8
*efx_rx_buf_eh(struct efx_nic
*efx
, struct efx_rx_buffer
*buf
)
111 if (buf
->flags
& EFX_RX_BUF_PAGE
)
112 return page_address(buf
->u
.page
) + efx_rx_buf_offset(efx
, buf
);
114 return (u8
*)buf
->u
.skb
->data
+ efx
->type
->rx_buffer_hash_size
;
117 static inline u32
efx_rx_buf_hash(const u8
*eh
)
119 /* The ethernet header is always directly after any hash. */
120 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
121 return __le32_to_cpup((const __le32
*)(eh
- 4));
123 const u8
*data
= eh
- 4;
124 return (u32
)data
[0] |
132 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
134 * @rx_queue: Efx RX queue
136 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
137 * struct efx_rx_buffer for each one. Return a negative error code or 0
138 * on success. May fail having only inserted fewer than EFX_RX_BATCH
141 static int efx_init_rx_buffers_skb(struct efx_rx_queue
*rx_queue
)
143 struct efx_nic
*efx
= rx_queue
->efx
;
144 struct net_device
*net_dev
= efx
->net_dev
;
145 struct efx_rx_buffer
*rx_buf
;
147 int skb_len
= efx
->rx_buffer_len
;
148 unsigned index
, count
;
150 for (count
= 0; count
< EFX_RX_BATCH
; ++count
) {
151 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
152 rx_buf
= efx_rx_buffer(rx_queue
, index
);
154 rx_buf
->u
.skb
= skb
= netdev_alloc_skb(net_dev
, skb_len
);
158 /* Adjust the SKB for padding */
159 skb_reserve(skb
, NET_IP_ALIGN
);
160 rx_buf
->len
= skb_len
- NET_IP_ALIGN
;
163 rx_buf
->dma_addr
= pci_map_single(efx
->pci_dev
,
164 skb
->data
, rx_buf
->len
,
166 if (unlikely(pci_dma_mapping_error(efx
->pci_dev
,
167 rx_buf
->dma_addr
))) {
168 dev_kfree_skb_any(skb
);
169 rx_buf
->u
.skb
= NULL
;
173 ++rx_queue
->added_count
;
174 ++rx_queue
->alloc_skb_count
;
181 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
183 * @rx_queue: Efx RX queue
185 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
186 * and populates struct efx_rx_buffers for each one. Return a negative error
187 * code or 0 on success. If a single page can be split between two buffers,
188 * then the page will either be inserted fully, or not at at all.
190 static int efx_init_rx_buffers_page(struct efx_rx_queue
*rx_queue
)
192 struct efx_nic
*efx
= rx_queue
->efx
;
193 struct efx_rx_buffer
*rx_buf
;
196 struct efx_rx_page_state
*state
;
198 unsigned index
, count
;
200 /* We can split a page between two buffers */
201 BUILD_BUG_ON(EFX_RX_BATCH
& 1);
203 for (count
= 0; count
< EFX_RX_BATCH
; ++count
) {
204 page
= alloc_pages(__GFP_COLD
| __GFP_COMP
| GFP_ATOMIC
,
205 efx
->rx_buffer_order
);
206 if (unlikely(page
== NULL
))
208 dma_addr
= pci_map_page(efx
->pci_dev
, page
, 0,
209 efx_rx_buf_size(efx
),
211 if (unlikely(pci_dma_mapping_error(efx
->pci_dev
, dma_addr
))) {
212 __free_pages(page
, efx
->rx_buffer_order
);
215 page_addr
= page_address(page
);
218 state
->dma_addr
= dma_addr
;
220 page_addr
+= sizeof(struct efx_rx_page_state
);
221 dma_addr
+= sizeof(struct efx_rx_page_state
);
224 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
225 rx_buf
= efx_rx_buffer(rx_queue
, index
);
226 rx_buf
->dma_addr
= dma_addr
+ EFX_PAGE_IP_ALIGN
;
227 rx_buf
->u
.page
= page
;
228 rx_buf
->len
= efx
->rx_buffer_len
- EFX_PAGE_IP_ALIGN
;
229 rx_buf
->flags
= EFX_RX_BUF_PAGE
;
230 ++rx_queue
->added_count
;
231 ++rx_queue
->alloc_page_count
;
234 if ((~count
& 1) && (efx
->rx_buffer_len
<= EFX_RX_HALF_PAGE
)) {
235 /* Use the second half of the page */
237 dma_addr
+= (PAGE_SIZE
>> 1);
238 page_addr
+= (PAGE_SIZE
>> 1);
247 static void efx_unmap_rx_buffer(struct efx_nic
*efx
,
248 struct efx_rx_buffer
*rx_buf
)
250 if ((rx_buf
->flags
& EFX_RX_BUF_PAGE
) && rx_buf
->u
.page
) {
251 struct efx_rx_page_state
*state
;
253 state
= page_address(rx_buf
->u
.page
);
254 if (--state
->refcnt
== 0) {
255 pci_unmap_page(efx
->pci_dev
,
257 efx_rx_buf_size(efx
),
260 } else if (!(rx_buf
->flags
& EFX_RX_BUF_PAGE
) && rx_buf
->u
.skb
) {
261 pci_unmap_single(efx
->pci_dev
, rx_buf
->dma_addr
,
262 rx_buf
->len
, PCI_DMA_FROMDEVICE
);
266 static void efx_free_rx_buffer(struct efx_nic
*efx
,
267 struct efx_rx_buffer
*rx_buf
)
269 if ((rx_buf
->flags
& EFX_RX_BUF_PAGE
) && rx_buf
->u
.page
) {
270 __free_pages(rx_buf
->u
.page
, efx
->rx_buffer_order
);
271 rx_buf
->u
.page
= NULL
;
272 } else if (!(rx_buf
->flags
& EFX_RX_BUF_PAGE
) && rx_buf
->u
.skb
) {
273 dev_kfree_skb_any(rx_buf
->u
.skb
);
274 rx_buf
->u
.skb
= NULL
;
278 static void efx_fini_rx_buffer(struct efx_rx_queue
*rx_queue
,
279 struct efx_rx_buffer
*rx_buf
)
281 efx_unmap_rx_buffer(rx_queue
->efx
, rx_buf
);
282 efx_free_rx_buffer(rx_queue
->efx
, rx_buf
);
285 /* Attempt to resurrect the other receive buffer that used to share this page,
286 * which had previously been passed up to the kernel and freed. */
287 static void efx_resurrect_rx_buffer(struct efx_rx_queue
*rx_queue
,
288 struct efx_rx_buffer
*rx_buf
)
290 struct efx_rx_page_state
*state
= page_address(rx_buf
->u
.page
);
291 struct efx_rx_buffer
*new_buf
;
292 unsigned fill_level
, index
;
294 /* +1 because efx_rx_packet() incremented removed_count. +1 because
295 * we'd like to insert an additional descriptor whilst leaving
296 * EFX_RXD_HEAD_ROOM for the non-recycle path */
297 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
+ 2);
298 if (unlikely(fill_level
> rx_queue
->max_fill
)) {
299 /* We could place "state" on a list, and drain the list in
300 * efx_fast_push_rx_descriptors(). For now, this will do. */
305 get_page(rx_buf
->u
.page
);
307 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
308 new_buf
= efx_rx_buffer(rx_queue
, index
);
309 new_buf
->dma_addr
= rx_buf
->dma_addr
^ (PAGE_SIZE
>> 1);
310 new_buf
->u
.page
= rx_buf
->u
.page
;
311 new_buf
->len
= rx_buf
->len
;
312 new_buf
->flags
= EFX_RX_BUF_PAGE
;
313 ++rx_queue
->added_count
;
316 /* Recycle the given rx buffer directly back into the rx_queue. There is
317 * always room to add this buffer, because we've just popped a buffer. */
318 static void efx_recycle_rx_buffer(struct efx_channel
*channel
,
319 struct efx_rx_buffer
*rx_buf
)
321 struct efx_nic
*efx
= channel
->efx
;
322 struct efx_rx_queue
*rx_queue
= efx_channel_get_rx_queue(channel
);
323 struct efx_rx_buffer
*new_buf
;
326 rx_buf
->flags
&= EFX_RX_BUF_PAGE
;
328 if ((rx_buf
->flags
& EFX_RX_BUF_PAGE
) &&
329 efx
->rx_buffer_len
<= EFX_RX_HALF_PAGE
&&
330 page_count(rx_buf
->u
.page
) == 1)
331 efx_resurrect_rx_buffer(rx_queue
, rx_buf
);
333 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
334 new_buf
= efx_rx_buffer(rx_queue
, index
);
336 memcpy(new_buf
, rx_buf
, sizeof(*new_buf
));
337 rx_buf
->u
.page
= NULL
;
338 ++rx_queue
->added_count
;
342 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
343 * @rx_queue: RX descriptor queue
344 * This will aim to fill the RX descriptor queue up to
345 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
346 * memory to do so, a slow fill will be scheduled.
348 * The caller must provide serialisation (none is used here). In practise,
349 * this means this function must run from the NAPI handler, or be called
350 * when NAPI is disabled.
352 void efx_fast_push_rx_descriptors(struct efx_rx_queue
*rx_queue
)
354 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
358 /* Calculate current fill level, and exit if we don't need to fill */
359 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
);
360 EFX_BUG_ON_PARANOID(fill_level
> rx_queue
->efx
->rxq_entries
);
361 if (fill_level
>= rx_queue
->fast_fill_trigger
)
364 /* Record minimum fill level */
365 if (unlikely(fill_level
< rx_queue
->min_fill
)) {
367 rx_queue
->min_fill
= fill_level
;
370 space
= rx_queue
->fast_fill_limit
- fill_level
;
371 if (space
< EFX_RX_BATCH
)
374 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
375 "RX queue %d fast-filling descriptor ring from"
376 " level %d to level %d using %s allocation\n",
377 efx_rx_queue_index(rx_queue
), fill_level
,
378 rx_queue
->fast_fill_limit
,
379 channel
->rx_alloc_push_pages
? "page" : "skb");
382 if (channel
->rx_alloc_push_pages
)
383 rc
= efx_init_rx_buffers_page(rx_queue
);
385 rc
= efx_init_rx_buffers_skb(rx_queue
);
387 /* Ensure that we don't leave the rx queue empty */
388 if (rx_queue
->added_count
== rx_queue
->removed_count
)
389 efx_schedule_slow_fill(rx_queue
);
392 } while ((space
-= EFX_RX_BATCH
) >= EFX_RX_BATCH
);
394 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
395 "RX queue %d fast-filled descriptor ring "
396 "to level %d\n", efx_rx_queue_index(rx_queue
),
397 rx_queue
->added_count
- rx_queue
->removed_count
);
400 if (rx_queue
->notified_count
!= rx_queue
->added_count
)
401 efx_nic_notify_rx_desc(rx_queue
);
404 void efx_rx_slow_fill(unsigned long context
)
406 struct efx_rx_queue
*rx_queue
= (struct efx_rx_queue
*)context
;
408 /* Post an event to cause NAPI to run and refill the queue */
409 efx_nic_generate_fill_event(rx_queue
);
410 ++rx_queue
->slow_fill_count
;
413 static void efx_rx_packet__check_len(struct efx_rx_queue
*rx_queue
,
414 struct efx_rx_buffer
*rx_buf
,
415 int len
, bool *leak_packet
)
417 struct efx_nic
*efx
= rx_queue
->efx
;
418 unsigned max_len
= rx_buf
->len
- efx
->type
->rx_buffer_padding
;
420 if (likely(len
<= max_len
))
423 /* The packet must be discarded, but this is only a fatal error
424 * if the caller indicated it was
426 rx_buf
->flags
|= EFX_RX_PKT_DISCARD
;
428 if ((len
> rx_buf
->len
) && EFX_WORKAROUND_8071(efx
)) {
430 netif_err(efx
, rx_err
, efx
->net_dev
,
431 " RX queue %d seriously overlength "
432 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
433 efx_rx_queue_index(rx_queue
), len
, max_len
,
434 efx
->type
->rx_buffer_padding
);
435 /* If this buffer was skb-allocated, then the meta
436 * data at the end of the skb will be trashed. So
437 * we have no choice but to leak the fragment.
439 *leak_packet
= !(rx_buf
->flags
& EFX_RX_BUF_PAGE
);
440 efx_schedule_reset(efx
, RESET_TYPE_RX_RECOVERY
);
443 netif_err(efx
, rx_err
, efx
->net_dev
,
444 " RX queue %d overlength RX event "
446 efx_rx_queue_index(rx_queue
), len
, max_len
);
449 efx_rx_queue_channel(rx_queue
)->n_rx_overlength
++;
452 /* Pass a received packet up through GRO. GRO can handle pages
453 * regardless of checksum state and skbs with a good checksum.
455 static void efx_rx_packet_gro(struct efx_channel
*channel
,
456 struct efx_rx_buffer
*rx_buf
,
459 struct napi_struct
*napi
= &channel
->napi_str
;
460 gro_result_t gro_result
;
462 if (rx_buf
->flags
& EFX_RX_BUF_PAGE
) {
463 struct efx_nic
*efx
= channel
->efx
;
464 struct page
*page
= rx_buf
->u
.page
;
467 rx_buf
->u
.page
= NULL
;
469 skb
= napi_get_frags(napi
);
475 if (efx
->net_dev
->features
& NETIF_F_RXHASH
)
476 skb
->rxhash
= efx_rx_buf_hash(eh
);
478 skb_fill_page_desc(skb
, 0, page
,
479 efx_rx_buf_offset(efx
, rx_buf
), rx_buf
->len
);
481 skb
->len
= rx_buf
->len
;
482 skb
->data_len
= rx_buf
->len
;
483 skb
->truesize
+= rx_buf
->len
;
484 skb
->ip_summed
= ((rx_buf
->flags
& EFX_RX_PKT_CSUMMED
) ?
485 CHECKSUM_UNNECESSARY
: CHECKSUM_NONE
);
487 skb_record_rx_queue(skb
, channel
->channel
);
489 gro_result
= napi_gro_frags(napi
);
491 struct sk_buff
*skb
= rx_buf
->u
.skb
;
493 EFX_BUG_ON_PARANOID(!(rx_buf
->flags
& EFX_RX_PKT_CSUMMED
));
494 rx_buf
->u
.skb
= NULL
;
495 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
497 gro_result
= napi_gro_receive(napi
, skb
);
500 if (gro_result
== GRO_NORMAL
) {
501 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_SKB
;
502 } else if (gro_result
!= GRO_DROP
) {
503 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_GRO
;
504 channel
->irq_mod_score
+= 2;
508 void efx_rx_packet(struct efx_rx_queue
*rx_queue
, unsigned int index
,
509 unsigned int len
, u16 flags
)
511 struct efx_nic
*efx
= rx_queue
->efx
;
512 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
513 struct efx_rx_buffer
*rx_buf
;
514 bool leak_packet
= false;
516 rx_buf
= efx_rx_buffer(rx_queue
, index
);
517 rx_buf
->flags
|= flags
;
519 /* This allows the refill path to post another buffer.
520 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
521 * isn't overwritten yet.
523 rx_queue
->removed_count
++;
525 /* Validate the length encoded in the event vs the descriptor pushed */
526 efx_rx_packet__check_len(rx_queue
, rx_buf
, len
, &leak_packet
);
528 netif_vdbg(efx
, rx_status
, efx
->net_dev
,
529 "RX queue %d received id %x at %llx+%x %s%s\n",
530 efx_rx_queue_index(rx_queue
), index
,
531 (unsigned long long)rx_buf
->dma_addr
, len
,
532 (rx_buf
->flags
& EFX_RX_PKT_CSUMMED
) ? " [SUMMED]" : "",
533 (rx_buf
->flags
& EFX_RX_PKT_DISCARD
) ? " [DISCARD]" : "");
535 /* Discard packet, if instructed to do so */
536 if (unlikely(rx_buf
->flags
& EFX_RX_PKT_DISCARD
)) {
537 if (unlikely(leak_packet
))
538 channel
->n_skbuff_leaks
++;
540 efx_recycle_rx_buffer(channel
, rx_buf
);
542 /* Don't hold off the previous receive */
547 /* Release card resources - assumes all RX buffers consumed in-order
550 efx_unmap_rx_buffer(efx
, rx_buf
);
552 /* Prefetch nice and early so data will (hopefully) be in cache by
553 * the time we look at it.
555 prefetch(efx_rx_buf_eh(efx
, rx_buf
));
557 /* Pipeline receives so that we give time for packet headers to be
558 * prefetched into cache.
560 rx_buf
->len
= len
- efx
->type
->rx_buffer_hash_size
;
563 __efx_rx_packet(channel
, channel
->rx_pkt
);
564 channel
->rx_pkt
= rx_buf
;
567 static void efx_rx_deliver(struct efx_channel
*channel
,
568 struct efx_rx_buffer
*rx_buf
)
572 /* We now own the SKB */
574 rx_buf
->u
.skb
= NULL
;
576 /* Set the SKB flags */
577 skb_checksum_none_assert(skb
);
579 /* Pass the packet up */
580 netif_receive_skb(skb
);
582 /* Update allocation strategy method */
583 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_SKB
;
586 /* Handle a received packet. Second half: Touches packet payload. */
587 void __efx_rx_packet(struct efx_channel
*channel
, struct efx_rx_buffer
*rx_buf
)
589 struct efx_nic
*efx
= channel
->efx
;
590 u8
*eh
= efx_rx_buf_eh(efx
, rx_buf
);
592 /* If we're in loopback test, then pass the packet directly to the
593 * loopback layer, and free the rx_buf here
595 if (unlikely(efx
->loopback_selftest
)) {
596 efx_loopback_rx_packet(efx
, eh
, rx_buf
->len
);
597 efx_free_rx_buffer(efx
, rx_buf
);
601 if (!(rx_buf
->flags
& EFX_RX_BUF_PAGE
)) {
602 struct sk_buff
*skb
= rx_buf
->u
.skb
;
604 prefetch(skb_shinfo(skb
));
606 skb_reserve(skb
, efx
->type
->rx_buffer_hash_size
);
607 skb_put(skb
, rx_buf
->len
);
609 if (efx
->net_dev
->features
& NETIF_F_RXHASH
)
610 skb
->rxhash
= efx_rx_buf_hash(eh
);
612 /* Move past the ethernet header. rx_buf->data still points
613 * at the ethernet header */
614 skb
->protocol
= eth_type_trans(skb
, efx
->net_dev
);
616 skb_record_rx_queue(skb
, channel
->channel
);
619 if (unlikely(!(efx
->net_dev
->features
& NETIF_F_RXCSUM
)))
620 rx_buf
->flags
&= ~EFX_RX_PKT_CSUMMED
;
622 if (likely(rx_buf
->flags
& (EFX_RX_BUF_PAGE
| EFX_RX_PKT_CSUMMED
)))
623 efx_rx_packet_gro(channel
, rx_buf
, eh
);
625 efx_rx_deliver(channel
, rx_buf
);
628 void efx_rx_strategy(struct efx_channel
*channel
)
630 enum efx_rx_alloc_method method
= rx_alloc_method
;
632 /* Only makes sense to use page based allocation if GRO is enabled */
633 if (!(channel
->efx
->net_dev
->features
& NETIF_F_GRO
)) {
634 method
= RX_ALLOC_METHOD_SKB
;
635 } else if (method
== RX_ALLOC_METHOD_AUTO
) {
636 /* Constrain the rx_alloc_level */
637 if (channel
->rx_alloc_level
< 0)
638 channel
->rx_alloc_level
= 0;
639 else if (channel
->rx_alloc_level
> RX_ALLOC_LEVEL_MAX
)
640 channel
->rx_alloc_level
= RX_ALLOC_LEVEL_MAX
;
642 /* Decide on the allocation method */
643 method
= ((channel
->rx_alloc_level
> RX_ALLOC_LEVEL_GRO
) ?
644 RX_ALLOC_METHOD_PAGE
: RX_ALLOC_METHOD_SKB
);
647 /* Push the option */
648 channel
->rx_alloc_push_pages
= (method
== RX_ALLOC_METHOD_PAGE
);
651 int efx_probe_rx_queue(struct efx_rx_queue
*rx_queue
)
653 struct efx_nic
*efx
= rx_queue
->efx
;
654 unsigned int entries
;
657 /* Create the smallest power-of-two aligned ring */
658 entries
= max(roundup_pow_of_two(efx
->rxq_entries
), EFX_MIN_DMAQ_SIZE
);
659 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
660 rx_queue
->ptr_mask
= entries
- 1;
662 netif_dbg(efx
, probe
, efx
->net_dev
,
663 "creating RX queue %d size %#x mask %#x\n",
664 efx_rx_queue_index(rx_queue
), efx
->rxq_entries
,
667 /* Allocate RX buffers */
668 rx_queue
->buffer
= kcalloc(entries
, sizeof(*rx_queue
->buffer
),
670 if (!rx_queue
->buffer
)
673 rc
= efx_nic_probe_rx(rx_queue
);
675 kfree(rx_queue
->buffer
);
676 rx_queue
->buffer
= NULL
;
681 void efx_init_rx_queue(struct efx_rx_queue
*rx_queue
)
683 struct efx_nic
*efx
= rx_queue
->efx
;
684 unsigned int max_fill
, trigger
, limit
;
686 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
687 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue
));
689 /* Initialise ptr fields */
690 rx_queue
->added_count
= 0;
691 rx_queue
->notified_count
= 0;
692 rx_queue
->removed_count
= 0;
693 rx_queue
->min_fill
= -1U;
695 /* Initialise limit fields */
696 max_fill
= efx
->rxq_entries
- EFX_RXD_HEAD_ROOM
;
697 trigger
= max_fill
* min(rx_refill_threshold
, 100U) / 100U;
698 limit
= max_fill
* min(rx_refill_limit
, 100U) / 100U;
700 rx_queue
->max_fill
= max_fill
;
701 rx_queue
->fast_fill_trigger
= trigger
;
702 rx_queue
->fast_fill_limit
= limit
;
704 /* Set up RX descriptor ring */
705 rx_queue
->enabled
= true;
706 efx_nic_init_rx(rx_queue
);
709 void efx_fini_rx_queue(struct efx_rx_queue
*rx_queue
)
712 struct efx_rx_buffer
*rx_buf
;
714 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
715 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue
));
717 /* A flush failure might have left rx_queue->enabled */
718 rx_queue
->enabled
= false;
720 del_timer_sync(&rx_queue
->slow_fill
);
721 efx_nic_fini_rx(rx_queue
);
723 /* Release RX buffers NB start at index 0 not current HW ptr */
724 if (rx_queue
->buffer
) {
725 for (i
= 0; i
<= rx_queue
->ptr_mask
; i
++) {
726 rx_buf
= efx_rx_buffer(rx_queue
, i
);
727 efx_fini_rx_buffer(rx_queue
, rx_buf
);
732 void efx_remove_rx_queue(struct efx_rx_queue
*rx_queue
)
734 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
735 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue
));
737 efx_nic_remove_rx(rx_queue
);
739 kfree(rx_queue
->buffer
);
740 rx_queue
->buffer
= NULL
;
744 module_param(rx_alloc_method
, int, 0644);
745 MODULE_PARM_DESC(rx_alloc_method
, "Allocation method used for RX buffers");
747 module_param(rx_refill_threshold
, uint
, 0444);
748 MODULE_PARM_DESC(rx_refill_threshold
,
749 "RX descriptor ring fast/slow fill threshold (%)");