bnx2: stop using net_device.{base_addr, irq}.
[linux-2.6.git] / drivers / net / ethernet / sfc / nic.c
blob4a9a5beec8fcf6a42ec7936dc57ea074e47dd568
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
25 /**************************************************************************
27 * Configurable values
29 **************************************************************************
32 /* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
37 * goes idle.
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47 * disable it.
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
61 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
64 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
65 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
68 efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
71 efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
74 (_tx_queue)->queue)
76 /**************************************************************************
78 * Solarstorm hardware access
80 **************************************************************************/
82 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
83 unsigned int index)
85 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
86 value, index);
89 /* Read the current event from the event queue */
90 static inline efx_qword_t *efx_event(struct efx_channel *channel,
91 unsigned int index)
93 return ((efx_qword_t *) (channel->eventq.addr)) +
94 (index & channel->eventq_mask);
97 /* See if an event is present
99 * We check both the high and low dword of the event for all ones. We
100 * wrote all ones when we cleared the event, and no valid event can
101 * have all ones in either its high or low dwords. This approach is
102 * robust against reordering.
104 * Note that using a single 64-bit comparison is incorrect; even
105 * though the CPU read will be atomic, the DMA write may not be.
107 static inline int efx_event_present(efx_qword_t *event)
109 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
110 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
113 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
114 const efx_oword_t *mask)
116 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
117 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
120 int efx_nic_test_registers(struct efx_nic *efx,
121 const struct efx_nic_register_test *regs,
122 size_t n_regs)
124 unsigned address = 0, i, j;
125 efx_oword_t mask, imask, original, reg, buf;
127 /* Falcon should be in loopback to isolate the XMAC from the PHY */
128 WARN_ON(!LOOPBACK_INTERNAL(efx));
130 for (i = 0; i < n_regs; ++i) {
131 address = regs[i].address;
132 mask = imask = regs[i].mask;
133 EFX_INVERT_OWORD(imask);
135 efx_reado(efx, &original, address);
137 /* bit sweep on and off */
138 for (j = 0; j < 128; j++) {
139 if (!EFX_EXTRACT_OWORD32(mask, j, j))
140 continue;
142 /* Test this testable bit can be set in isolation */
143 EFX_AND_OWORD(reg, original, mask);
144 EFX_SET_OWORD32(reg, j, j, 1);
146 efx_writeo(efx, &reg, address);
147 efx_reado(efx, &buf, address);
149 if (efx_masked_compare_oword(&reg, &buf, &mask))
150 goto fail;
152 /* Test this testable bit can be cleared in isolation */
153 EFX_OR_OWORD(reg, original, mask);
154 EFX_SET_OWORD32(reg, j, j, 0);
156 efx_writeo(efx, &reg, address);
157 efx_reado(efx, &buf, address);
159 if (efx_masked_compare_oword(&reg, &buf, &mask))
160 goto fail;
163 efx_writeo(efx, &original, address);
166 return 0;
168 fail:
169 netif_err(efx, hw, efx->net_dev,
170 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
171 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
172 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
173 return -EIO;
176 /**************************************************************************
178 * Special buffer handling
179 * Special buffers are used for event queues and the TX and RX
180 * descriptor rings.
182 *************************************************************************/
185 * Initialise a special buffer
187 * This will define a buffer (previously allocated via
188 * efx_alloc_special_buffer()) in the buffer table, allowing
189 * it to be used for event queues, descriptor rings etc.
191 static void
192 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
194 efx_qword_t buf_desc;
195 unsigned int index;
196 dma_addr_t dma_addr;
197 int i;
199 EFX_BUG_ON_PARANOID(!buffer->addr);
201 /* Write buffer descriptors to NIC */
202 for (i = 0; i < buffer->entries; i++) {
203 index = buffer->index + i;
204 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
205 netif_dbg(efx, probe, efx->net_dev,
206 "mapping special buffer %d at %llx\n",
207 index, (unsigned long long)dma_addr);
208 EFX_POPULATE_QWORD_3(buf_desc,
209 FRF_AZ_BUF_ADR_REGION, 0,
210 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
211 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
212 efx_write_buf_tbl(efx, &buf_desc, index);
216 /* Unmaps a buffer and clears the buffer table entries */
217 static void
218 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
220 efx_oword_t buf_tbl_upd;
221 unsigned int start = buffer->index;
222 unsigned int end = (buffer->index + buffer->entries - 1);
224 if (!buffer->entries)
225 return;
227 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
228 buffer->index, buffer->index + buffer->entries - 1);
230 EFX_POPULATE_OWORD_4(buf_tbl_upd,
231 FRF_AZ_BUF_UPD_CMD, 0,
232 FRF_AZ_BUF_CLR_CMD, 1,
233 FRF_AZ_BUF_CLR_END_ID, end,
234 FRF_AZ_BUF_CLR_START_ID, start);
235 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
239 * Allocate a new special buffer
241 * This allocates memory for a new buffer, clears it and allocates a
242 * new buffer ID range. It does not write into the buffer table.
244 * This call will allocate 4KB buffers, since 8KB buffers can't be
245 * used for event queues and descriptor rings.
247 static int efx_alloc_special_buffer(struct efx_nic *efx,
248 struct efx_special_buffer *buffer,
249 unsigned int len)
251 len = ALIGN(len, EFX_BUF_SIZE);
253 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
254 &buffer->dma_addr, GFP_KERNEL);
255 if (!buffer->addr)
256 return -ENOMEM;
257 buffer->len = len;
258 buffer->entries = len / EFX_BUF_SIZE;
259 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
261 /* All zeros is a potentially valid event so memset to 0xff */
262 memset(buffer->addr, 0xff, len);
264 /* Select new buffer ID */
265 buffer->index = efx->next_buffer_table;
266 efx->next_buffer_table += buffer->entries;
267 #ifdef CONFIG_SFC_SRIOV
268 BUG_ON(efx_sriov_enabled(efx) &&
269 efx->vf_buftbl_base < efx->next_buffer_table);
270 #endif
272 netif_dbg(efx, probe, efx->net_dev,
273 "allocating special buffers %d-%d at %llx+%x "
274 "(virt %p phys %llx)\n", buffer->index,
275 buffer->index + buffer->entries - 1,
276 (u64)buffer->dma_addr, len,
277 buffer->addr, (u64)virt_to_phys(buffer->addr));
279 return 0;
282 static void
283 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
285 if (!buffer->addr)
286 return;
288 netif_dbg(efx, hw, efx->net_dev,
289 "deallocating special buffers %d-%d at %llx+%x "
290 "(virt %p phys %llx)\n", buffer->index,
291 buffer->index + buffer->entries - 1,
292 (u64)buffer->dma_addr, buffer->len,
293 buffer->addr, (u64)virt_to_phys(buffer->addr));
295 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
296 buffer->dma_addr);
297 buffer->addr = NULL;
298 buffer->entries = 0;
301 /**************************************************************************
303 * Generic buffer handling
304 * These buffers are used for interrupt status and MAC stats
306 **************************************************************************/
308 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
309 unsigned int len)
311 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
312 &buffer->dma_addr);
313 if (!buffer->addr)
314 return -ENOMEM;
315 buffer->len = len;
316 memset(buffer->addr, 0, len);
317 return 0;
320 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
322 if (buffer->addr) {
323 pci_free_consistent(efx->pci_dev, buffer->len,
324 buffer->addr, buffer->dma_addr);
325 buffer->addr = NULL;
329 /**************************************************************************
331 * TX path
333 **************************************************************************/
335 /* Returns a pointer to the specified transmit descriptor in the TX
336 * descriptor queue belonging to the specified channel.
338 static inline efx_qword_t *
339 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
341 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
344 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
345 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
347 unsigned write_ptr;
348 efx_dword_t reg;
350 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
351 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
352 efx_writed_page(tx_queue->efx, &reg,
353 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
356 /* Write pointer and first descriptor for TX descriptor ring */
357 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
358 const efx_qword_t *txd)
360 unsigned write_ptr;
361 efx_oword_t reg;
363 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
364 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
366 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
367 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
368 FRF_AZ_TX_DESC_WPTR, write_ptr);
369 reg.qword[0] = *txd;
370 efx_writeo_page(tx_queue->efx, &reg,
371 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
374 static inline bool
375 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
377 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
379 if (empty_read_count == 0)
380 return false;
382 tx_queue->empty_read_count = 0;
383 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
386 /* For each entry inserted into the software descriptor ring, create a
387 * descriptor in the hardware TX descriptor ring (in host memory), and
388 * write a doorbell.
390 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
393 struct efx_tx_buffer *buffer;
394 efx_qword_t *txd;
395 unsigned write_ptr;
396 unsigned old_write_count = tx_queue->write_count;
398 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
400 do {
401 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
402 buffer = &tx_queue->buffer[write_ptr];
403 txd = efx_tx_desc(tx_queue, write_ptr);
404 ++tx_queue->write_count;
406 /* Create TX descriptor ring entry */
407 EFX_POPULATE_QWORD_4(*txd,
408 FSF_AZ_TX_KER_CONT, buffer->continuation,
409 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
410 FSF_AZ_TX_KER_BUF_REGION, 0,
411 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
412 } while (tx_queue->write_count != tx_queue->insert_count);
414 wmb(); /* Ensure descriptors are written before they are fetched */
416 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
417 txd = efx_tx_desc(tx_queue,
418 old_write_count & tx_queue->ptr_mask);
419 efx_push_tx_desc(tx_queue, txd);
420 ++tx_queue->pushes;
421 } else {
422 efx_notify_tx_desc(tx_queue);
426 /* Allocate hardware resources for a TX queue */
427 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
429 struct efx_nic *efx = tx_queue->efx;
430 unsigned entries;
432 entries = tx_queue->ptr_mask + 1;
433 return efx_alloc_special_buffer(efx, &tx_queue->txd,
434 entries * sizeof(efx_qword_t));
437 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
439 struct efx_nic *efx = tx_queue->efx;
440 efx_oword_t reg;
442 /* Pin TX descriptor ring */
443 efx_init_special_buffer(efx, &tx_queue->txd);
445 /* Push TX descriptor ring to card */
446 EFX_POPULATE_OWORD_10(reg,
447 FRF_AZ_TX_DESCQ_EN, 1,
448 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
449 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
450 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
451 FRF_AZ_TX_DESCQ_EVQ_ID,
452 tx_queue->channel->channel,
453 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
454 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
455 FRF_AZ_TX_DESCQ_SIZE,
456 __ffs(tx_queue->txd.entries),
457 FRF_AZ_TX_DESCQ_TYPE, 0,
458 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
460 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
461 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
462 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
463 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
464 !csum);
467 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
468 tx_queue->queue);
470 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
471 /* Only 128 bits in this register */
472 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
474 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
475 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
476 clear_bit_le(tx_queue->queue, (void *)&reg);
477 else
478 set_bit_le(tx_queue->queue, (void *)&reg);
479 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
482 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
483 EFX_POPULATE_OWORD_1(reg,
484 FRF_BZ_TX_PACE,
485 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
486 FFE_BZ_TX_PACE_OFF :
487 FFE_BZ_TX_PACE_RESERVED);
488 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
489 tx_queue->queue);
493 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
495 struct efx_nic *efx = tx_queue->efx;
496 efx_oword_t tx_flush_descq;
498 EFX_POPULATE_OWORD_2(tx_flush_descq,
499 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
500 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
501 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
504 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
506 struct efx_nic *efx = tx_queue->efx;
507 efx_oword_t tx_desc_ptr;
509 /* Remove TX descriptor ring from card */
510 EFX_ZERO_OWORD(tx_desc_ptr);
511 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
512 tx_queue->queue);
514 /* Unpin TX descriptor ring */
515 efx_fini_special_buffer(efx, &tx_queue->txd);
518 /* Free buffers backing TX queue */
519 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
521 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
524 /**************************************************************************
526 * RX path
528 **************************************************************************/
530 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
531 static inline efx_qword_t *
532 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
534 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
537 /* This creates an entry in the RX descriptor queue */
538 static inline void
539 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
541 struct efx_rx_buffer *rx_buf;
542 efx_qword_t *rxd;
544 rxd = efx_rx_desc(rx_queue, index);
545 rx_buf = efx_rx_buffer(rx_queue, index);
546 EFX_POPULATE_QWORD_3(*rxd,
547 FSF_AZ_RX_KER_BUF_SIZE,
548 rx_buf->len -
549 rx_queue->efx->type->rx_buffer_padding,
550 FSF_AZ_RX_KER_BUF_REGION, 0,
551 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
554 /* This writes to the RX_DESC_WPTR register for the specified receive
555 * descriptor ring.
557 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
559 struct efx_nic *efx = rx_queue->efx;
560 efx_dword_t reg;
561 unsigned write_ptr;
563 while (rx_queue->notified_count != rx_queue->added_count) {
564 efx_build_rx_desc(
565 rx_queue,
566 rx_queue->notified_count & rx_queue->ptr_mask);
567 ++rx_queue->notified_count;
570 wmb();
571 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
572 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
573 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
574 efx_rx_queue_index(rx_queue));
577 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
579 struct efx_nic *efx = rx_queue->efx;
580 unsigned entries;
582 entries = rx_queue->ptr_mask + 1;
583 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
584 entries * sizeof(efx_qword_t));
587 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
589 efx_oword_t rx_desc_ptr;
590 struct efx_nic *efx = rx_queue->efx;
591 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
592 bool iscsi_digest_en = is_b0;
594 netif_dbg(efx, hw, efx->net_dev,
595 "RX queue %d ring in special buffers %d-%d\n",
596 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
597 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
599 /* Pin RX descriptor ring */
600 efx_init_special_buffer(efx, &rx_queue->rxd);
602 /* Push RX descriptor ring to card */
603 EFX_POPULATE_OWORD_10(rx_desc_ptr,
604 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
605 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
606 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
607 FRF_AZ_RX_DESCQ_EVQ_ID,
608 efx_rx_queue_channel(rx_queue)->channel,
609 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
610 FRF_AZ_RX_DESCQ_LABEL,
611 efx_rx_queue_index(rx_queue),
612 FRF_AZ_RX_DESCQ_SIZE,
613 __ffs(rx_queue->rxd.entries),
614 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
615 /* For >=B0 this is scatter so disable */
616 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
617 FRF_AZ_RX_DESCQ_EN, 1);
618 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
619 efx_rx_queue_index(rx_queue));
622 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
624 struct efx_nic *efx = rx_queue->efx;
625 efx_oword_t rx_flush_descq;
627 EFX_POPULATE_OWORD_2(rx_flush_descq,
628 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
629 FRF_AZ_RX_FLUSH_DESCQ,
630 efx_rx_queue_index(rx_queue));
631 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
634 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
636 efx_oword_t rx_desc_ptr;
637 struct efx_nic *efx = rx_queue->efx;
639 /* Remove RX descriptor ring from card */
640 EFX_ZERO_OWORD(rx_desc_ptr);
641 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
642 efx_rx_queue_index(rx_queue));
644 /* Unpin RX descriptor ring */
645 efx_fini_special_buffer(efx, &rx_queue->rxd);
648 /* Free buffers backing RX queue */
649 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
651 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
654 /**************************************************************************
656 * Flush handling
658 **************************************************************************/
660 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
661 * or more RX flushes can be kicked off.
663 static bool efx_flush_wake(struct efx_nic *efx)
665 /* Ensure that all updates are visible to efx_nic_flush_queues() */
666 smp_mb();
668 return (atomic_read(&efx->drain_pending) == 0 ||
669 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
670 && atomic_read(&efx->rxq_flush_pending) > 0));
673 /* Flush all the transmit queues, and continue flushing receive queues until
674 * they're all flushed. Wait for the DRAIN events to be recieved so that there
675 * are no more RX and TX events left on any channel. */
676 int efx_nic_flush_queues(struct efx_nic *efx)
678 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
679 struct efx_channel *channel;
680 struct efx_rx_queue *rx_queue;
681 struct efx_tx_queue *tx_queue;
682 int rc = 0;
684 efx->fc_disable++;
685 efx->type->prepare_flush(efx);
687 efx_for_each_channel(channel, efx) {
688 efx_for_each_channel_tx_queue(tx_queue, channel) {
689 atomic_inc(&efx->drain_pending);
690 efx_flush_tx_queue(tx_queue);
692 efx_for_each_channel_rx_queue(rx_queue, channel) {
693 atomic_inc(&efx->drain_pending);
694 rx_queue->flush_pending = true;
695 atomic_inc(&efx->rxq_flush_pending);
699 while (timeout && atomic_read(&efx->drain_pending) > 0) {
700 /* If SRIOV is enabled, then offload receive queue flushing to
701 * the firmware (though we will still have to poll for
702 * completion). If that fails, fall back to the old scheme.
704 if (efx_sriov_enabled(efx)) {
705 rc = efx_mcdi_flush_rxqs(efx);
706 if (!rc)
707 goto wait;
710 /* The hardware supports four concurrent rx flushes, each of
711 * which may need to be retried if there is an outstanding
712 * descriptor fetch
714 efx_for_each_channel(channel, efx) {
715 efx_for_each_channel_rx_queue(rx_queue, channel) {
716 if (atomic_read(&efx->rxq_flush_outstanding) >=
717 EFX_RX_FLUSH_COUNT)
718 break;
720 if (rx_queue->flush_pending) {
721 rx_queue->flush_pending = false;
722 atomic_dec(&efx->rxq_flush_pending);
723 atomic_inc(&efx->rxq_flush_outstanding);
724 efx_flush_rx_queue(rx_queue);
729 wait:
730 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
731 timeout);
734 if (atomic_read(&efx->drain_pending)) {
735 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
736 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
737 atomic_read(&efx->rxq_flush_outstanding),
738 atomic_read(&efx->rxq_flush_pending));
739 rc = -ETIMEDOUT;
741 atomic_set(&efx->drain_pending, 0);
742 atomic_set(&efx->rxq_flush_pending, 0);
743 atomic_set(&efx->rxq_flush_outstanding, 0);
746 efx->fc_disable--;
748 return rc;
751 /**************************************************************************
753 * Event queue processing
754 * Event queues are processed by per-channel tasklets.
756 **************************************************************************/
758 /* Update a channel's event queue's read pointer (RPTR) register
760 * This writes the EVQ_RPTR_REG register for the specified channel's
761 * event queue.
763 void efx_nic_eventq_read_ack(struct efx_channel *channel)
765 efx_dword_t reg;
766 struct efx_nic *efx = channel->efx;
768 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
769 channel->eventq_read_ptr & channel->eventq_mask);
770 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
771 channel->channel);
774 /* Use HW to insert a SW defined event */
775 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
776 efx_qword_t *event)
778 efx_oword_t drv_ev_reg;
780 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
781 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
782 drv_ev_reg.u32[0] = event->u32[0];
783 drv_ev_reg.u32[1] = event->u32[1];
784 drv_ev_reg.u32[2] = 0;
785 drv_ev_reg.u32[3] = 0;
786 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
787 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
790 static void efx_magic_event(struct efx_channel *channel, u32 magic)
792 efx_qword_t event;
794 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
795 FSE_AZ_EV_CODE_DRV_GEN_EV,
796 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
797 efx_generate_event(channel->efx, channel->channel, &event);
800 /* Handle a transmit completion event
802 * The NIC batches TX completion events; the message we receive is of
803 * the form "complete all TX events up to this index".
805 static int
806 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
808 unsigned int tx_ev_desc_ptr;
809 unsigned int tx_ev_q_label;
810 struct efx_tx_queue *tx_queue;
811 struct efx_nic *efx = channel->efx;
812 int tx_packets = 0;
814 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
815 return 0;
817 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
818 /* Transmit completion */
819 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
820 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
821 tx_queue = efx_channel_get_tx_queue(
822 channel, tx_ev_q_label % EFX_TXQ_TYPES);
823 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
824 tx_queue->ptr_mask);
825 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
826 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
827 /* Rewrite the FIFO write pointer */
828 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
829 tx_queue = efx_channel_get_tx_queue(
830 channel, tx_ev_q_label % EFX_TXQ_TYPES);
832 netif_tx_lock(efx->net_dev);
833 efx_notify_tx_desc(tx_queue);
834 netif_tx_unlock(efx->net_dev);
835 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
836 EFX_WORKAROUND_10727(efx)) {
837 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
838 } else {
839 netif_err(efx, tx_err, efx->net_dev,
840 "channel %d unexpected TX event "
841 EFX_QWORD_FMT"\n", channel->channel,
842 EFX_QWORD_VAL(*event));
845 return tx_packets;
848 /* Detect errors included in the rx_evt_pkt_ok bit. */
849 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
850 const efx_qword_t *event)
852 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
853 struct efx_nic *efx = rx_queue->efx;
854 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
855 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
856 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
857 bool rx_ev_other_err, rx_ev_pause_frm;
858 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
859 unsigned rx_ev_pkt_type;
861 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
862 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
863 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
864 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
865 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
866 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
867 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
868 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
869 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
870 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
871 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
872 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
873 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
874 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
875 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
877 /* Every error apart from tobe_disc and pause_frm */
878 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
879 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
880 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
882 /* Count errors that are not in MAC stats. Ignore expected
883 * checksum errors during self-test. */
884 if (rx_ev_frm_trunc)
885 ++channel->n_rx_frm_trunc;
886 else if (rx_ev_tobe_disc)
887 ++channel->n_rx_tobe_disc;
888 else if (!efx->loopback_selftest) {
889 if (rx_ev_ip_hdr_chksum_err)
890 ++channel->n_rx_ip_hdr_chksum_err;
891 else if (rx_ev_tcp_udp_chksum_err)
892 ++channel->n_rx_tcp_udp_chksum_err;
895 /* TOBE_DISC is expected on unicast mismatches; don't print out an
896 * error message. FRM_TRUNC indicates RXDP dropped the packet due
897 * to a FIFO overflow.
899 #ifdef DEBUG
900 if (rx_ev_other_err && net_ratelimit()) {
901 netif_dbg(efx, rx_err, efx->net_dev,
902 " RX queue %d unexpected RX event "
903 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
904 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
905 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
906 rx_ev_ip_hdr_chksum_err ?
907 " [IP_HDR_CHKSUM_ERR]" : "",
908 rx_ev_tcp_udp_chksum_err ?
909 " [TCP_UDP_CHKSUM_ERR]" : "",
910 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
911 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
912 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
913 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
914 rx_ev_pause_frm ? " [PAUSE]" : "");
916 #endif
918 /* The frame must be discarded if any of these are true. */
919 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
920 rx_ev_tobe_disc | rx_ev_pause_frm) ?
921 EFX_RX_PKT_DISCARD : 0;
924 /* Handle receive events that are not in-order. */
925 static void
926 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
928 struct efx_nic *efx = rx_queue->efx;
929 unsigned expected, dropped;
931 expected = rx_queue->removed_count & rx_queue->ptr_mask;
932 dropped = (index - expected) & rx_queue->ptr_mask;
933 netif_info(efx, rx_err, efx->net_dev,
934 "dropped %d events (index=%d expected=%d)\n",
935 dropped, index, expected);
937 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
938 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
941 /* Handle a packet received event
943 * The NIC gives a "discard" flag if it's a unicast packet with the
944 * wrong destination address
945 * Also "is multicast" and "matches multicast filter" flags can be used to
946 * discard non-matching multicast packets.
948 static void
949 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
951 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
952 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
953 unsigned expected_ptr;
954 bool rx_ev_pkt_ok;
955 u16 flags;
956 struct efx_rx_queue *rx_queue;
957 struct efx_nic *efx = channel->efx;
959 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
960 return;
962 /* Basic packet information */
963 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
964 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
965 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
966 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
967 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
968 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
969 channel->channel);
971 rx_queue = efx_channel_get_rx_queue(channel);
973 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
974 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
975 if (unlikely(rx_ev_desc_ptr != expected_ptr))
976 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
978 if (likely(rx_ev_pkt_ok)) {
979 /* If packet is marked as OK and packet type is TCP/IP or
980 * UDP/IP, then we can rely on the hardware checksum.
982 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
983 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
984 EFX_RX_PKT_CSUMMED : 0;
985 } else {
986 flags = efx_handle_rx_not_ok(rx_queue, event);
989 /* Detect multicast packets that didn't match the filter */
990 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
991 if (rx_ev_mcast_pkt) {
992 unsigned int rx_ev_mcast_hash_match =
993 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
995 if (unlikely(!rx_ev_mcast_hash_match)) {
996 ++channel->n_rx_mcast_mismatch;
997 flags |= EFX_RX_PKT_DISCARD;
1001 channel->irq_mod_score += 2;
1003 /* Handle received packet */
1004 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1007 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1008 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1009 * of all transmit completions.
1011 static void
1012 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1014 struct efx_tx_queue *tx_queue;
1015 int qid;
1017 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1018 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1019 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1020 qid % EFX_TXQ_TYPES);
1022 efx_magic_event(tx_queue->channel,
1023 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1027 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1028 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1029 * the RX queue back to the mask of RX queues in need of flushing.
1031 static void
1032 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1034 struct efx_channel *channel;
1035 struct efx_rx_queue *rx_queue;
1036 int qid;
1037 bool failed;
1039 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1040 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1041 if (qid >= efx->n_channels)
1042 return;
1043 channel = efx_get_channel(efx, qid);
1044 if (!efx_channel_has_rx_queue(channel))
1045 return;
1046 rx_queue = efx_channel_get_rx_queue(channel);
1048 if (failed) {
1049 netif_info(efx, hw, efx->net_dev,
1050 "RXQ %d flush retry\n", qid);
1051 rx_queue->flush_pending = true;
1052 atomic_inc(&efx->rxq_flush_pending);
1053 } else {
1054 efx_magic_event(efx_rx_queue_channel(rx_queue),
1055 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1057 atomic_dec(&efx->rxq_flush_outstanding);
1058 if (efx_flush_wake(efx))
1059 wake_up(&efx->flush_wq);
1062 static void
1063 efx_handle_drain_event(struct efx_channel *channel)
1065 struct efx_nic *efx = channel->efx;
1067 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1068 atomic_dec(&efx->drain_pending);
1069 if (efx_flush_wake(efx))
1070 wake_up(&efx->flush_wq);
1073 static void
1074 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1076 struct efx_nic *efx = channel->efx;
1077 struct efx_rx_queue *rx_queue =
1078 efx_channel_has_rx_queue(channel) ?
1079 efx_channel_get_rx_queue(channel) : NULL;
1080 unsigned magic, code;
1082 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1083 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1085 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1086 channel->event_test_cpu = raw_smp_processor_id();
1087 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1088 /* The queue must be empty, so we won't receive any rx
1089 * events, so efx_process_channel() won't refill the
1090 * queue. Refill it here */
1091 efx_fast_push_rx_descriptors(rx_queue);
1092 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1093 rx_queue->enabled = false;
1094 efx_handle_drain_event(channel);
1095 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1096 efx_handle_drain_event(channel);
1097 } else {
1098 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1099 "generated event "EFX_QWORD_FMT"\n",
1100 channel->channel, EFX_QWORD_VAL(*event));
1104 static void
1105 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1107 struct efx_nic *efx = channel->efx;
1108 unsigned int ev_sub_code;
1109 unsigned int ev_sub_data;
1111 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1112 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1114 switch (ev_sub_code) {
1115 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1116 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1117 channel->channel, ev_sub_data);
1118 efx_handle_tx_flush_done(efx, event);
1119 efx_sriov_tx_flush_done(efx, event);
1120 break;
1121 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1122 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1123 channel->channel, ev_sub_data);
1124 efx_handle_rx_flush_done(efx, event);
1125 efx_sriov_rx_flush_done(efx, event);
1126 break;
1127 case FSE_AZ_EVQ_INIT_DONE_EV:
1128 netif_dbg(efx, hw, efx->net_dev,
1129 "channel %d EVQ %d initialised\n",
1130 channel->channel, ev_sub_data);
1131 break;
1132 case FSE_AZ_SRM_UPD_DONE_EV:
1133 netif_vdbg(efx, hw, efx->net_dev,
1134 "channel %d SRAM update done\n", channel->channel);
1135 break;
1136 case FSE_AZ_WAKE_UP_EV:
1137 netif_vdbg(efx, hw, efx->net_dev,
1138 "channel %d RXQ %d wakeup event\n",
1139 channel->channel, ev_sub_data);
1140 break;
1141 case FSE_AZ_TIMER_EV:
1142 netif_vdbg(efx, hw, efx->net_dev,
1143 "channel %d RX queue %d timer expired\n",
1144 channel->channel, ev_sub_data);
1145 break;
1146 case FSE_AA_RX_RECOVER_EV:
1147 netif_err(efx, rx_err, efx->net_dev,
1148 "channel %d seen DRIVER RX_RESET event. "
1149 "Resetting.\n", channel->channel);
1150 atomic_inc(&efx->rx_reset);
1151 efx_schedule_reset(efx,
1152 EFX_WORKAROUND_6555(efx) ?
1153 RESET_TYPE_RX_RECOVERY :
1154 RESET_TYPE_DISABLE);
1155 break;
1156 case FSE_BZ_RX_DSC_ERROR_EV:
1157 if (ev_sub_data < EFX_VI_BASE) {
1158 netif_err(efx, rx_err, efx->net_dev,
1159 "RX DMA Q %d reports descriptor fetch error."
1160 " RX Q %d is disabled.\n", ev_sub_data,
1161 ev_sub_data);
1162 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1163 } else
1164 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1165 break;
1166 case FSE_BZ_TX_DSC_ERROR_EV:
1167 if (ev_sub_data < EFX_VI_BASE) {
1168 netif_err(efx, tx_err, efx->net_dev,
1169 "TX DMA Q %d reports descriptor fetch error."
1170 " TX Q %d is disabled.\n", ev_sub_data,
1171 ev_sub_data);
1172 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1173 } else
1174 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1175 break;
1176 default:
1177 netif_vdbg(efx, hw, efx->net_dev,
1178 "channel %d unknown driver event code %d "
1179 "data %04x\n", channel->channel, ev_sub_code,
1180 ev_sub_data);
1181 break;
1185 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1187 struct efx_nic *efx = channel->efx;
1188 unsigned int read_ptr;
1189 efx_qword_t event, *p_event;
1190 int ev_code;
1191 int tx_packets = 0;
1192 int spent = 0;
1194 read_ptr = channel->eventq_read_ptr;
1196 for (;;) {
1197 p_event = efx_event(channel, read_ptr);
1198 event = *p_event;
1200 if (!efx_event_present(&event))
1201 /* End of events */
1202 break;
1204 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1205 "channel %d event is "EFX_QWORD_FMT"\n",
1206 channel->channel, EFX_QWORD_VAL(event));
1208 /* Clear this event by marking it all ones */
1209 EFX_SET_QWORD(*p_event);
1211 ++read_ptr;
1213 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1215 switch (ev_code) {
1216 case FSE_AZ_EV_CODE_RX_EV:
1217 efx_handle_rx_event(channel, &event);
1218 if (++spent == budget)
1219 goto out;
1220 break;
1221 case FSE_AZ_EV_CODE_TX_EV:
1222 tx_packets += efx_handle_tx_event(channel, &event);
1223 if (tx_packets > efx->txq_entries) {
1224 spent = budget;
1225 goto out;
1227 break;
1228 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1229 efx_handle_generated_event(channel, &event);
1230 break;
1231 case FSE_AZ_EV_CODE_DRIVER_EV:
1232 efx_handle_driver_event(channel, &event);
1233 break;
1234 case FSE_CZ_EV_CODE_USER_EV:
1235 efx_sriov_event(channel, &event);
1236 break;
1237 case FSE_CZ_EV_CODE_MCDI_EV:
1238 efx_mcdi_process_event(channel, &event);
1239 break;
1240 case FSE_AZ_EV_CODE_GLOBAL_EV:
1241 if (efx->type->handle_global_event &&
1242 efx->type->handle_global_event(channel, &event))
1243 break;
1244 /* else fall through */
1245 default:
1246 netif_err(channel->efx, hw, channel->efx->net_dev,
1247 "channel %d unknown event type %d (data "
1248 EFX_QWORD_FMT ")\n", channel->channel,
1249 ev_code, EFX_QWORD_VAL(event));
1253 out:
1254 channel->eventq_read_ptr = read_ptr;
1255 return spent;
1258 /* Check whether an event is present in the eventq at the current
1259 * read pointer. Only useful for self-test.
1261 bool efx_nic_event_present(struct efx_channel *channel)
1263 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1266 /* Allocate buffer table entries for event queue */
1267 int efx_nic_probe_eventq(struct efx_channel *channel)
1269 struct efx_nic *efx = channel->efx;
1270 unsigned entries;
1272 entries = channel->eventq_mask + 1;
1273 return efx_alloc_special_buffer(efx, &channel->eventq,
1274 entries * sizeof(efx_qword_t));
1277 void efx_nic_init_eventq(struct efx_channel *channel)
1279 efx_oword_t reg;
1280 struct efx_nic *efx = channel->efx;
1282 netif_dbg(efx, hw, efx->net_dev,
1283 "channel %d event queue in special buffers %d-%d\n",
1284 channel->channel, channel->eventq.index,
1285 channel->eventq.index + channel->eventq.entries - 1);
1287 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1288 EFX_POPULATE_OWORD_3(reg,
1289 FRF_CZ_TIMER_Q_EN, 1,
1290 FRF_CZ_HOST_NOTIFY_MODE, 0,
1291 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1292 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1295 /* Pin event queue buffer */
1296 efx_init_special_buffer(efx, &channel->eventq);
1298 /* Fill event queue with all ones (i.e. empty events) */
1299 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1301 /* Push event queue to card */
1302 EFX_POPULATE_OWORD_3(reg,
1303 FRF_AZ_EVQ_EN, 1,
1304 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1305 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1306 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1307 channel->channel);
1309 efx->type->push_irq_moderation(channel);
1312 void efx_nic_fini_eventq(struct efx_channel *channel)
1314 efx_oword_t reg;
1315 struct efx_nic *efx = channel->efx;
1317 /* Remove event queue from card */
1318 EFX_ZERO_OWORD(reg);
1319 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1320 channel->channel);
1321 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1322 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1324 /* Unpin event queue */
1325 efx_fini_special_buffer(efx, &channel->eventq);
1328 /* Free buffers backing event queue */
1329 void efx_nic_remove_eventq(struct efx_channel *channel)
1331 efx_free_special_buffer(channel->efx, &channel->eventq);
1335 void efx_nic_event_test_start(struct efx_channel *channel)
1337 channel->event_test_cpu = -1;
1338 smp_wmb();
1339 efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1342 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1344 efx_magic_event(efx_rx_queue_channel(rx_queue),
1345 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1348 /**************************************************************************
1350 * Hardware interrupts
1351 * The hardware interrupt handler does very little work; all the event
1352 * queue processing is carried out by per-channel tasklets.
1354 **************************************************************************/
1356 /* Enable/disable/generate interrupts */
1357 static inline void efx_nic_interrupts(struct efx_nic *efx,
1358 bool enabled, bool force)
1360 efx_oword_t int_en_reg_ker;
1362 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1363 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1364 FRF_AZ_KER_INT_KER, force,
1365 FRF_AZ_DRV_INT_EN_KER, enabled);
1366 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1369 void efx_nic_enable_interrupts(struct efx_nic *efx)
1371 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1372 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1374 efx_nic_interrupts(efx, true, false);
1377 void efx_nic_disable_interrupts(struct efx_nic *efx)
1379 /* Disable interrupts */
1380 efx_nic_interrupts(efx, false, false);
1383 /* Generate a test interrupt
1384 * Interrupt must already have been enabled, otherwise nasty things
1385 * may happen.
1387 void efx_nic_irq_test_start(struct efx_nic *efx)
1389 efx->last_irq_cpu = -1;
1390 smp_wmb();
1391 efx_nic_interrupts(efx, true, true);
1394 /* Process a fatal interrupt
1395 * Disable bus mastering ASAP and schedule a reset
1397 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1399 struct falcon_nic_data *nic_data = efx->nic_data;
1400 efx_oword_t *int_ker = efx->irq_status.addr;
1401 efx_oword_t fatal_intr;
1402 int error, mem_perr;
1404 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1405 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1407 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1408 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1409 EFX_OWORD_VAL(fatal_intr),
1410 error ? "disabling bus mastering" : "no recognised error");
1412 /* If this is a memory parity error dump which blocks are offending */
1413 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1414 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1415 if (mem_perr) {
1416 efx_oword_t reg;
1417 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1418 netif_err(efx, hw, efx->net_dev,
1419 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1420 EFX_OWORD_VAL(reg));
1423 /* Disable both devices */
1424 pci_clear_master(efx->pci_dev);
1425 if (efx_nic_is_dual_func(efx))
1426 pci_clear_master(nic_data->pci_dev2);
1427 efx_nic_disable_interrupts(efx);
1429 /* Count errors and reset or disable the NIC accordingly */
1430 if (efx->int_error_count == 0 ||
1431 time_after(jiffies, efx->int_error_expire)) {
1432 efx->int_error_count = 0;
1433 efx->int_error_expire =
1434 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1436 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1437 netif_err(efx, hw, efx->net_dev,
1438 "SYSTEM ERROR - reset scheduled\n");
1439 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1440 } else {
1441 netif_err(efx, hw, efx->net_dev,
1442 "SYSTEM ERROR - max number of errors seen."
1443 "NIC will be disabled\n");
1444 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1447 return IRQ_HANDLED;
1450 /* Handle a legacy interrupt
1451 * Acknowledges the interrupt and schedule event queue processing.
1453 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1455 struct efx_nic *efx = dev_id;
1456 efx_oword_t *int_ker = efx->irq_status.addr;
1457 irqreturn_t result = IRQ_NONE;
1458 struct efx_channel *channel;
1459 efx_dword_t reg;
1460 u32 queues;
1461 int syserr;
1463 /* Could this be ours? If interrupts are disabled then the
1464 * channel state may not be valid.
1466 if (!efx->legacy_irq_enabled)
1467 return result;
1469 /* Read the ISR which also ACKs the interrupts */
1470 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1471 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1473 /* Handle non-event-queue sources */
1474 if (queues & (1U << efx->irq_level)) {
1475 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1476 if (unlikely(syserr))
1477 return efx_nic_fatal_interrupt(efx);
1478 efx->last_irq_cpu = raw_smp_processor_id();
1481 if (queues != 0) {
1482 if (EFX_WORKAROUND_15783(efx))
1483 efx->irq_zero_count = 0;
1485 /* Schedule processing of any interrupting queues */
1486 efx_for_each_channel(channel, efx) {
1487 if (queues & 1)
1488 efx_schedule_channel_irq(channel);
1489 queues >>= 1;
1491 result = IRQ_HANDLED;
1493 } else if (EFX_WORKAROUND_15783(efx)) {
1494 efx_qword_t *event;
1496 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1497 * because this might be a shared interrupt. */
1498 if (efx->irq_zero_count++ == 0)
1499 result = IRQ_HANDLED;
1501 /* Ensure we schedule or rearm all event queues */
1502 efx_for_each_channel(channel, efx) {
1503 event = efx_event(channel, channel->eventq_read_ptr);
1504 if (efx_event_present(event))
1505 efx_schedule_channel_irq(channel);
1506 else
1507 efx_nic_eventq_read_ack(channel);
1511 if (result == IRQ_HANDLED)
1512 netif_vdbg(efx, intr, efx->net_dev,
1513 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1514 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1516 return result;
1519 /* Handle an MSI interrupt
1521 * Handle an MSI hardware interrupt. This routine schedules event
1522 * queue processing. No interrupt acknowledgement cycle is necessary.
1523 * Also, we never need to check that the interrupt is for us, since
1524 * MSI interrupts cannot be shared.
1526 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1528 struct efx_channel *channel = *(struct efx_channel **)dev_id;
1529 struct efx_nic *efx = channel->efx;
1530 efx_oword_t *int_ker = efx->irq_status.addr;
1531 int syserr;
1533 netif_vdbg(efx, intr, efx->net_dev,
1534 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1535 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1537 /* Handle non-event-queue sources */
1538 if (channel->channel == efx->irq_level) {
1539 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1540 if (unlikely(syserr))
1541 return efx_nic_fatal_interrupt(efx);
1542 efx->last_irq_cpu = raw_smp_processor_id();
1545 /* Schedule processing of the channel */
1546 efx_schedule_channel_irq(channel);
1548 return IRQ_HANDLED;
1552 /* Setup RSS indirection table.
1553 * This maps from the hash value of the packet to RXQ
1555 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1557 size_t i = 0;
1558 efx_dword_t dword;
1560 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1561 return;
1563 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1564 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1566 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1567 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1568 efx->rx_indir_table[i]);
1569 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1573 /* Hook interrupt handler(s)
1574 * Try MSI and then legacy interrupts.
1576 int efx_nic_init_interrupt(struct efx_nic *efx)
1578 struct efx_channel *channel;
1579 int rc;
1581 if (!EFX_INT_MODE_USE_MSI(efx)) {
1582 irq_handler_t handler;
1583 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1584 handler = efx_legacy_interrupt;
1585 else
1586 handler = falcon_legacy_interrupt_a1;
1588 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1589 efx->name, efx);
1590 if (rc) {
1591 netif_err(efx, drv, efx->net_dev,
1592 "failed to hook legacy IRQ %d\n",
1593 efx->pci_dev->irq);
1594 goto fail1;
1596 return 0;
1599 /* Hook MSI or MSI-X interrupt */
1600 efx_for_each_channel(channel, efx) {
1601 rc = request_irq(channel->irq, efx_msi_interrupt,
1602 IRQF_PROBE_SHARED, /* Not shared */
1603 efx->channel_name[channel->channel],
1604 &efx->channel[channel->channel]);
1605 if (rc) {
1606 netif_err(efx, drv, efx->net_dev,
1607 "failed to hook IRQ %d\n", channel->irq);
1608 goto fail2;
1612 return 0;
1614 fail2:
1615 efx_for_each_channel(channel, efx)
1616 free_irq(channel->irq, &efx->channel[channel->channel]);
1617 fail1:
1618 return rc;
1621 void efx_nic_fini_interrupt(struct efx_nic *efx)
1623 struct efx_channel *channel;
1624 efx_oword_t reg;
1626 /* Disable MSI/MSI-X interrupts */
1627 efx_for_each_channel(channel, efx) {
1628 if (channel->irq)
1629 free_irq(channel->irq, &efx->channel[channel->channel]);
1632 /* ACK legacy interrupt */
1633 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1634 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1635 else
1636 falcon_irq_ack_a1(efx);
1638 /* Disable legacy interrupt */
1639 if (efx->legacy_irq)
1640 free_irq(efx->legacy_irq, efx);
1643 /* Looks at available SRAM resources and works out how many queues we
1644 * can support, and where things like descriptor caches should live.
1646 * SRAM is split up as follows:
1647 * 0 buftbl entries for channels
1648 * efx->vf_buftbl_base buftbl entries for SR-IOV
1649 * efx->rx_dc_base RX descriptor caches
1650 * efx->tx_dc_base TX descriptor caches
1652 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1654 unsigned vi_count, buftbl_min;
1656 /* Account for the buffer table entries backing the datapath channels
1657 * and the descriptor caches for those channels.
1659 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1660 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1661 efx->n_channels * EFX_MAX_EVQ_SIZE)
1662 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1663 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1665 #ifdef CONFIG_SFC_SRIOV
1666 if (efx_sriov_wanted(efx)) {
1667 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1669 efx->vf_buftbl_base = buftbl_min;
1671 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1672 vi_count = max(vi_count, EFX_VI_BASE);
1673 buftbl_free = (sram_lim_qw - buftbl_min -
1674 vi_count * vi_dc_entries);
1676 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1677 efx_vf_size(efx));
1678 vf_limit = min(buftbl_free / entries_per_vf,
1679 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1681 if (efx->vf_count > vf_limit) {
1682 netif_err(efx, probe, efx->net_dev,
1683 "Reducing VF count from from %d to %d\n",
1684 efx->vf_count, vf_limit);
1685 efx->vf_count = vf_limit;
1687 vi_count += efx->vf_count * efx_vf_size(efx);
1689 #endif
1691 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1692 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1695 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1697 efx_oword_t altera_build;
1698 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1699 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1702 void efx_nic_init_common(struct efx_nic *efx)
1704 efx_oword_t temp;
1706 /* Set positions of descriptor caches in SRAM. */
1707 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1708 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1709 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1710 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1712 /* Set TX descriptor cache size. */
1713 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1714 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1715 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1717 /* Set RX descriptor cache size. Set low watermark to size-8, as
1718 * this allows most efficient prefetching.
1720 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1721 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1722 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1723 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1724 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1726 /* Program INT_KER address */
1727 EFX_POPULATE_OWORD_2(temp,
1728 FRF_AZ_NORM_INT_VEC_DIS_KER,
1729 EFX_INT_MODE_USE_MSI(efx),
1730 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1731 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1733 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1734 /* Use an interrupt level unused by event queues */
1735 efx->irq_level = 0x1f;
1736 else
1737 /* Use a valid MSI-X vector */
1738 efx->irq_level = 0;
1740 /* Enable all the genuinely fatal interrupts. (They are still
1741 * masked by the overall interrupt mask, controlled by
1742 * falcon_interrupts()).
1744 * Note: All other fatal interrupts are enabled
1746 EFX_POPULATE_OWORD_3(temp,
1747 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1748 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1749 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1750 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1751 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1752 EFX_INVERT_OWORD(temp);
1753 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1755 efx_nic_push_rx_indir_table(efx);
1757 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1758 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1760 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1761 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1762 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1763 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1764 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1765 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1766 /* Enable SW_EV to inherit in char driver - assume harmless here */
1767 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1768 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1769 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1770 /* Disable hardware watchdog which can misfire */
1771 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1772 /* Squash TX of packets of 16 bytes or less */
1773 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1774 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1775 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1777 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1778 EFX_POPULATE_OWORD_4(temp,
1779 /* Default values */
1780 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1781 FRF_BZ_TX_PACE_SB_AF, 0xb,
1782 FRF_BZ_TX_PACE_FB_BASE, 0,
1783 /* Allow large pace values in the
1784 * fast bin. */
1785 FRF_BZ_TX_PACE_BIN_TH,
1786 FFE_BZ_TX_PACE_RESERVED);
1787 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1791 /* Register dump */
1793 #define REGISTER_REVISION_A 1
1794 #define REGISTER_REVISION_B 2
1795 #define REGISTER_REVISION_C 3
1796 #define REGISTER_REVISION_Z 3 /* latest revision */
1798 struct efx_nic_reg {
1799 u32 offset:24;
1800 u32 min_revision:2, max_revision:2;
1803 #define REGISTER(name, min_rev, max_rev) { \
1804 FR_ ## min_rev ## max_rev ## _ ## name, \
1805 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1807 #define REGISTER_AA(name) REGISTER(name, A, A)
1808 #define REGISTER_AB(name) REGISTER(name, A, B)
1809 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1810 #define REGISTER_BB(name) REGISTER(name, B, B)
1811 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1812 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1814 static const struct efx_nic_reg efx_nic_regs[] = {
1815 REGISTER_AZ(ADR_REGION),
1816 REGISTER_AZ(INT_EN_KER),
1817 REGISTER_BZ(INT_EN_CHAR),
1818 REGISTER_AZ(INT_ADR_KER),
1819 REGISTER_BZ(INT_ADR_CHAR),
1820 /* INT_ACK_KER is WO */
1821 /* INT_ISR0 is RC */
1822 REGISTER_AZ(HW_INIT),
1823 REGISTER_CZ(USR_EV_CFG),
1824 REGISTER_AB(EE_SPI_HCMD),
1825 REGISTER_AB(EE_SPI_HADR),
1826 REGISTER_AB(EE_SPI_HDATA),
1827 REGISTER_AB(EE_BASE_PAGE),
1828 REGISTER_AB(EE_VPD_CFG0),
1829 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1830 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1831 /* PCIE_CORE_INDIRECT is indirect */
1832 REGISTER_AB(NIC_STAT),
1833 REGISTER_AB(GPIO_CTL),
1834 REGISTER_AB(GLB_CTL),
1835 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1836 REGISTER_BZ(DP_CTRL),
1837 REGISTER_AZ(MEM_STAT),
1838 REGISTER_AZ(CS_DEBUG),
1839 REGISTER_AZ(ALTERA_BUILD),
1840 REGISTER_AZ(CSR_SPARE),
1841 REGISTER_AB(PCIE_SD_CTL0123),
1842 REGISTER_AB(PCIE_SD_CTL45),
1843 REGISTER_AB(PCIE_PCS_CTL_STAT),
1844 /* DEBUG_DATA_OUT is not used */
1845 /* DRV_EV is WO */
1846 REGISTER_AZ(EVQ_CTL),
1847 REGISTER_AZ(EVQ_CNT1),
1848 REGISTER_AZ(EVQ_CNT2),
1849 REGISTER_AZ(BUF_TBL_CFG),
1850 REGISTER_AZ(SRM_RX_DC_CFG),
1851 REGISTER_AZ(SRM_TX_DC_CFG),
1852 REGISTER_AZ(SRM_CFG),
1853 /* BUF_TBL_UPD is WO */
1854 REGISTER_AZ(SRM_UPD_EVQ),
1855 REGISTER_AZ(SRAM_PARITY),
1856 REGISTER_AZ(RX_CFG),
1857 REGISTER_BZ(RX_FILTER_CTL),
1858 /* RX_FLUSH_DESCQ is WO */
1859 REGISTER_AZ(RX_DC_CFG),
1860 REGISTER_AZ(RX_DC_PF_WM),
1861 REGISTER_BZ(RX_RSS_TKEY),
1862 /* RX_NODESC_DROP is RC */
1863 REGISTER_AA(RX_SELF_RST),
1864 /* RX_DEBUG, RX_PUSH_DROP are not used */
1865 REGISTER_CZ(RX_RSS_IPV6_REG1),
1866 REGISTER_CZ(RX_RSS_IPV6_REG2),
1867 REGISTER_CZ(RX_RSS_IPV6_REG3),
1868 /* TX_FLUSH_DESCQ is WO */
1869 REGISTER_AZ(TX_DC_CFG),
1870 REGISTER_AA(TX_CHKSM_CFG),
1871 REGISTER_AZ(TX_CFG),
1872 /* TX_PUSH_DROP is not used */
1873 REGISTER_AZ(TX_RESERVED),
1874 REGISTER_BZ(TX_PACE),
1875 /* TX_PACE_DROP_QID is RC */
1876 REGISTER_BB(TX_VLAN),
1877 REGISTER_BZ(TX_IPFIL_PORTEN),
1878 REGISTER_AB(MD_TXD),
1879 REGISTER_AB(MD_RXD),
1880 REGISTER_AB(MD_CS),
1881 REGISTER_AB(MD_PHY_ADR),
1882 REGISTER_AB(MD_ID),
1883 /* MD_STAT is RC */
1884 REGISTER_AB(MAC_STAT_DMA),
1885 REGISTER_AB(MAC_CTRL),
1886 REGISTER_BB(GEN_MODE),
1887 REGISTER_AB(MAC_MC_HASH_REG0),
1888 REGISTER_AB(MAC_MC_HASH_REG1),
1889 REGISTER_AB(GM_CFG1),
1890 REGISTER_AB(GM_CFG2),
1891 /* GM_IPG and GM_HD are not used */
1892 REGISTER_AB(GM_MAX_FLEN),
1893 /* GM_TEST is not used */
1894 REGISTER_AB(GM_ADR1),
1895 REGISTER_AB(GM_ADR2),
1896 REGISTER_AB(GMF_CFG0),
1897 REGISTER_AB(GMF_CFG1),
1898 REGISTER_AB(GMF_CFG2),
1899 REGISTER_AB(GMF_CFG3),
1900 REGISTER_AB(GMF_CFG4),
1901 REGISTER_AB(GMF_CFG5),
1902 REGISTER_BB(TX_SRC_MAC_CTL),
1903 REGISTER_AB(XM_ADR_LO),
1904 REGISTER_AB(XM_ADR_HI),
1905 REGISTER_AB(XM_GLB_CFG),
1906 REGISTER_AB(XM_TX_CFG),
1907 REGISTER_AB(XM_RX_CFG),
1908 REGISTER_AB(XM_MGT_INT_MASK),
1909 REGISTER_AB(XM_FC),
1910 REGISTER_AB(XM_PAUSE_TIME),
1911 REGISTER_AB(XM_TX_PARAM),
1912 REGISTER_AB(XM_RX_PARAM),
1913 /* XM_MGT_INT_MSK (note no 'A') is RC */
1914 REGISTER_AB(XX_PWR_RST),
1915 REGISTER_AB(XX_SD_CTL),
1916 REGISTER_AB(XX_TXDRV_CTL),
1917 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1918 /* XX_CORE_STAT is partly RC */
1921 struct efx_nic_reg_table {
1922 u32 offset:24;
1923 u32 min_revision:2, max_revision:2;
1924 u32 step:6, rows:21;
1927 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1928 offset, \
1929 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1930 step, rows \
1932 #define REGISTER_TABLE(name, min_rev, max_rev) \
1933 REGISTER_TABLE_DIMENSIONS( \
1934 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1935 min_rev, max_rev, \
1936 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1937 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1938 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1939 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1940 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1941 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1942 #define REGISTER_TABLE_BB_CZ(name) \
1943 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1944 FR_BZ_ ## name ## _STEP, \
1945 FR_BB_ ## name ## _ROWS), \
1946 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1947 FR_BZ_ ## name ## _STEP, \
1948 FR_CZ_ ## name ## _ROWS)
1949 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1951 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1952 /* DRIVER is not used */
1953 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1954 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1955 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1956 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1957 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1958 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1959 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1960 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1961 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1962 /* We can't reasonably read all of the buffer table (up to 8MB!).
1963 * However this driver will only use a few entries. Reading
1964 * 1K entries allows for some expansion of queue count and
1965 * size before we need to change the version. */
1966 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1967 A, A, 8, 1024),
1968 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1969 B, Z, 8, 1024),
1970 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1971 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1972 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1973 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1974 /* TX_FILTER_TBL0 is huge and not used by this driver */
1975 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1976 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1977 /* MSIX_PBA_TABLE is not mapped */
1978 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1979 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1982 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1984 const struct efx_nic_reg *reg;
1985 const struct efx_nic_reg_table *table;
1986 size_t len = 0;
1988 for (reg = efx_nic_regs;
1989 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1990 reg++)
1991 if (efx->type->revision >= reg->min_revision &&
1992 efx->type->revision <= reg->max_revision)
1993 len += sizeof(efx_oword_t);
1995 for (table = efx_nic_reg_tables;
1996 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1997 table++)
1998 if (efx->type->revision >= table->min_revision &&
1999 efx->type->revision <= table->max_revision)
2000 len += table->rows * min_t(size_t, table->step, 16);
2002 return len;
2005 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2007 const struct efx_nic_reg *reg;
2008 const struct efx_nic_reg_table *table;
2010 for (reg = efx_nic_regs;
2011 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2012 reg++) {
2013 if (efx->type->revision >= reg->min_revision &&
2014 efx->type->revision <= reg->max_revision) {
2015 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2016 buf += sizeof(efx_oword_t);
2020 for (table = efx_nic_reg_tables;
2021 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2022 table++) {
2023 size_t size, i;
2025 if (!(efx->type->revision >= table->min_revision &&
2026 efx->type->revision <= table->max_revision))
2027 continue;
2029 size = min_t(size_t, table->step, 16);
2031 for (i = 0; i < table->rows; i++) {
2032 switch (table->step) {
2033 case 4: /* 32-bit register or SRAM */
2034 efx_readd_table(efx, buf, table->offset, i);
2035 break;
2036 case 8: /* 64-bit SRAM */
2037 efx_sram_readq(efx,
2038 efx->membase + table->offset,
2039 buf, i);
2040 break;
2041 case 16: /* 128-bit register */
2042 efx_reado_table(efx, buf, table->offset, i);
2043 break;
2044 case 32: /* 128-bit register, interleaved */
2045 efx_reado_table(efx, buf, table->offset, 2 * i);
2046 break;
2047 default:
2048 WARN_ON(1);
2049 return;
2051 buf += size;