1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
23 #include "workarounds.h"
25 /**************************************************************************
29 **************************************************************************
32 /* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
61 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
64 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
65 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
68 efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
71 efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
76 /**************************************************************************
78 * Solarstorm hardware access
80 **************************************************************************/
82 static inline void efx_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
85 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
89 /* Read the current event from the event queue */
90 static inline efx_qword_t
*efx_event(struct efx_channel
*channel
,
93 return ((efx_qword_t
*) (channel
->eventq
.addr
)) +
94 (index
& channel
->eventq_mask
);
97 /* See if an event is present
99 * We check both the high and low dword of the event for all ones. We
100 * wrote all ones when we cleared the event, and no valid event can
101 * have all ones in either its high or low dwords. This approach is
102 * robust against reordering.
104 * Note that using a single 64-bit comparison is incorrect; even
105 * though the CPU read will be atomic, the DMA write may not be.
107 static inline int efx_event_present(efx_qword_t
*event
)
109 return !(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
110 EFX_DWORD_IS_ALL_ONES(event
->dword
[1]));
113 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
114 const efx_oword_t
*mask
)
116 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
117 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
120 int efx_nic_test_registers(struct efx_nic
*efx
,
121 const struct efx_nic_register_test
*regs
,
124 unsigned address
= 0, i
, j
;
125 efx_oword_t mask
, imask
, original
, reg
, buf
;
127 /* Falcon should be in loopback to isolate the XMAC from the PHY */
128 WARN_ON(!LOOPBACK_INTERNAL(efx
));
130 for (i
= 0; i
< n_regs
; ++i
) {
131 address
= regs
[i
].address
;
132 mask
= imask
= regs
[i
].mask
;
133 EFX_INVERT_OWORD(imask
);
135 efx_reado(efx
, &original
, address
);
137 /* bit sweep on and off */
138 for (j
= 0; j
< 128; j
++) {
139 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
142 /* Test this testable bit can be set in isolation */
143 EFX_AND_OWORD(reg
, original
, mask
);
144 EFX_SET_OWORD32(reg
, j
, j
, 1);
146 efx_writeo(efx
, ®
, address
);
147 efx_reado(efx
, &buf
, address
);
149 if (efx_masked_compare_oword(®
, &buf
, &mask
))
152 /* Test this testable bit can be cleared in isolation */
153 EFX_OR_OWORD(reg
, original
, mask
);
154 EFX_SET_OWORD32(reg
, j
, j
, 0);
156 efx_writeo(efx
, ®
, address
);
157 efx_reado(efx
, &buf
, address
);
159 if (efx_masked_compare_oword(®
, &buf
, &mask
))
163 efx_writeo(efx
, &original
, address
);
169 netif_err(efx
, hw
, efx
->net_dev
,
170 "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
171 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
172 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
176 /**************************************************************************
178 * Special buffer handling
179 * Special buffers are used for event queues and the TX and RX
182 *************************************************************************/
185 * Initialise a special buffer
187 * This will define a buffer (previously allocated via
188 * efx_alloc_special_buffer()) in the buffer table, allowing
189 * it to be used for event queues, descriptor rings etc.
192 efx_init_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
194 efx_qword_t buf_desc
;
199 EFX_BUG_ON_PARANOID(!buffer
->addr
);
201 /* Write buffer descriptors to NIC */
202 for (i
= 0; i
< buffer
->entries
; i
++) {
203 index
= buffer
->index
+ i
;
204 dma_addr
= buffer
->dma_addr
+ (i
* EFX_BUF_SIZE
);
205 netif_dbg(efx
, probe
, efx
->net_dev
,
206 "mapping special buffer %d at %llx\n",
207 index
, (unsigned long long)dma_addr
);
208 EFX_POPULATE_QWORD_3(buf_desc
,
209 FRF_AZ_BUF_ADR_REGION
, 0,
210 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
211 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
212 efx_write_buf_tbl(efx
, &buf_desc
, index
);
216 /* Unmaps a buffer and clears the buffer table entries */
218 efx_fini_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
220 efx_oword_t buf_tbl_upd
;
221 unsigned int start
= buffer
->index
;
222 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
224 if (!buffer
->entries
)
227 netif_dbg(efx
, hw
, efx
->net_dev
, "unmapping special buffers %d-%d\n",
228 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
230 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
231 FRF_AZ_BUF_UPD_CMD
, 0,
232 FRF_AZ_BUF_CLR_CMD
, 1,
233 FRF_AZ_BUF_CLR_END_ID
, end
,
234 FRF_AZ_BUF_CLR_START_ID
, start
);
235 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
239 * Allocate a new special buffer
241 * This allocates memory for a new buffer, clears it and allocates a
242 * new buffer ID range. It does not write into the buffer table.
244 * This call will allocate 4KB buffers, since 8KB buffers can't be
245 * used for event queues and descriptor rings.
247 static int efx_alloc_special_buffer(struct efx_nic
*efx
,
248 struct efx_special_buffer
*buffer
,
251 len
= ALIGN(len
, EFX_BUF_SIZE
);
253 buffer
->addr
= dma_alloc_coherent(&efx
->pci_dev
->dev
, len
,
254 &buffer
->dma_addr
, GFP_KERNEL
);
258 buffer
->entries
= len
/ EFX_BUF_SIZE
;
259 BUG_ON(buffer
->dma_addr
& (EFX_BUF_SIZE
- 1));
261 /* All zeros is a potentially valid event so memset to 0xff */
262 memset(buffer
->addr
, 0xff, len
);
264 /* Select new buffer ID */
265 buffer
->index
= efx
->next_buffer_table
;
266 efx
->next_buffer_table
+= buffer
->entries
;
267 #ifdef CONFIG_SFC_SRIOV
268 BUG_ON(efx_sriov_enabled(efx
) &&
269 efx
->vf_buftbl_base
< efx
->next_buffer_table
);
272 netif_dbg(efx
, probe
, efx
->net_dev
,
273 "allocating special buffers %d-%d at %llx+%x "
274 "(virt %p phys %llx)\n", buffer
->index
,
275 buffer
->index
+ buffer
->entries
- 1,
276 (u64
)buffer
->dma_addr
, len
,
277 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
283 efx_free_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
288 netif_dbg(efx
, hw
, efx
->net_dev
,
289 "deallocating special buffers %d-%d at %llx+%x "
290 "(virt %p phys %llx)\n", buffer
->index
,
291 buffer
->index
+ buffer
->entries
- 1,
292 (u64
)buffer
->dma_addr
, buffer
->len
,
293 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
295 dma_free_coherent(&efx
->pci_dev
->dev
, buffer
->len
, buffer
->addr
,
301 /**************************************************************************
303 * Generic buffer handling
304 * These buffers are used for interrupt status and MAC stats
306 **************************************************************************/
308 int efx_nic_alloc_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
,
311 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
316 memset(buffer
->addr
, 0, len
);
320 void efx_nic_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
)
323 pci_free_consistent(efx
->pci_dev
, buffer
->len
,
324 buffer
->addr
, buffer
->dma_addr
);
329 /**************************************************************************
333 **************************************************************************/
335 /* Returns a pointer to the specified transmit descriptor in the TX
336 * descriptor queue belonging to the specified channel.
338 static inline efx_qword_t
*
339 efx_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int index
)
341 return ((efx_qword_t
*) (tx_queue
->txd
.addr
)) + index
;
344 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
345 static inline void efx_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
350 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
351 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
352 efx_writed_page(tx_queue
->efx
, ®
,
353 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
356 /* Write pointer and first descriptor for TX descriptor ring */
357 static inline void efx_push_tx_desc(struct efx_tx_queue
*tx_queue
,
358 const efx_qword_t
*txd
)
363 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN
!= 0);
364 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER
!= FR_BZ_TX_DESC_UPD_P0
);
366 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
367 EFX_POPULATE_OWORD_2(reg
, FRF_AZ_TX_DESC_PUSH_CMD
, true,
368 FRF_AZ_TX_DESC_WPTR
, write_ptr
);
370 efx_writeo_page(tx_queue
->efx
, ®
,
371 FR_BZ_TX_DESC_UPD_P0
, tx_queue
->queue
);
375 efx_may_push_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int write_count
)
377 unsigned empty_read_count
= ACCESS_ONCE(tx_queue
->empty_read_count
);
379 if (empty_read_count
== 0)
382 tx_queue
->empty_read_count
= 0;
383 return ((empty_read_count
^ write_count
) & ~EFX_EMPTY_COUNT_VALID
) == 0;
386 /* For each entry inserted into the software descriptor ring, create a
387 * descriptor in the hardware TX descriptor ring (in host memory), and
390 void efx_nic_push_buffers(struct efx_tx_queue
*tx_queue
)
393 struct efx_tx_buffer
*buffer
;
396 unsigned old_write_count
= tx_queue
->write_count
;
398 BUG_ON(tx_queue
->write_count
== tx_queue
->insert_count
);
401 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
402 buffer
= &tx_queue
->buffer
[write_ptr
];
403 txd
= efx_tx_desc(tx_queue
, write_ptr
);
404 ++tx_queue
->write_count
;
406 /* Create TX descriptor ring entry */
407 EFX_POPULATE_QWORD_4(*txd
,
408 FSF_AZ_TX_KER_CONT
, buffer
->continuation
,
409 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
410 FSF_AZ_TX_KER_BUF_REGION
, 0,
411 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
412 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
414 wmb(); /* Ensure descriptors are written before they are fetched */
416 if (efx_may_push_tx_desc(tx_queue
, old_write_count
)) {
417 txd
= efx_tx_desc(tx_queue
,
418 old_write_count
& tx_queue
->ptr_mask
);
419 efx_push_tx_desc(tx_queue
, txd
);
422 efx_notify_tx_desc(tx_queue
);
426 /* Allocate hardware resources for a TX queue */
427 int efx_nic_probe_tx(struct efx_tx_queue
*tx_queue
)
429 struct efx_nic
*efx
= tx_queue
->efx
;
432 entries
= tx_queue
->ptr_mask
+ 1;
433 return efx_alloc_special_buffer(efx
, &tx_queue
->txd
,
434 entries
* sizeof(efx_qword_t
));
437 void efx_nic_init_tx(struct efx_tx_queue
*tx_queue
)
439 struct efx_nic
*efx
= tx_queue
->efx
;
442 /* Pin TX descriptor ring */
443 efx_init_special_buffer(efx
, &tx_queue
->txd
);
445 /* Push TX descriptor ring to card */
446 EFX_POPULATE_OWORD_10(reg
,
447 FRF_AZ_TX_DESCQ_EN
, 1,
448 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
449 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
450 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
451 FRF_AZ_TX_DESCQ_EVQ_ID
,
452 tx_queue
->channel
->channel
,
453 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
454 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
455 FRF_AZ_TX_DESCQ_SIZE
,
456 __ffs(tx_queue
->txd
.entries
),
457 FRF_AZ_TX_DESCQ_TYPE
, 0,
458 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
460 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
461 int csum
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
462 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
463 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_TCP_CHKSM_DIS
,
467 efx_writeo_table(efx
, ®
, efx
->type
->txd_ptr_tbl_base
,
470 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
471 /* Only 128 bits in this register */
472 BUILD_BUG_ON(EFX_MAX_TX_QUEUES
> 128);
474 efx_reado(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
475 if (tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
)
476 clear_bit_le(tx_queue
->queue
, (void *)®
);
478 set_bit_le(tx_queue
->queue
, (void *)®
);
479 efx_writeo(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
482 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
483 EFX_POPULATE_OWORD_1(reg
,
485 (tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
487 FFE_BZ_TX_PACE_RESERVED
);
488 efx_writeo_table(efx
, ®
, FR_BZ_TX_PACE_TBL
,
493 static void efx_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
495 struct efx_nic
*efx
= tx_queue
->efx
;
496 efx_oword_t tx_flush_descq
;
498 EFX_POPULATE_OWORD_2(tx_flush_descq
,
499 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
500 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
501 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
504 void efx_nic_fini_tx(struct efx_tx_queue
*tx_queue
)
506 struct efx_nic
*efx
= tx_queue
->efx
;
507 efx_oword_t tx_desc_ptr
;
509 /* Remove TX descriptor ring from card */
510 EFX_ZERO_OWORD(tx_desc_ptr
);
511 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
514 /* Unpin TX descriptor ring */
515 efx_fini_special_buffer(efx
, &tx_queue
->txd
);
518 /* Free buffers backing TX queue */
519 void efx_nic_remove_tx(struct efx_tx_queue
*tx_queue
)
521 efx_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
524 /**************************************************************************
528 **************************************************************************/
530 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
531 static inline efx_qword_t
*
532 efx_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
534 return ((efx_qword_t
*) (rx_queue
->rxd
.addr
)) + index
;
537 /* This creates an entry in the RX descriptor queue */
539 efx_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned index
)
541 struct efx_rx_buffer
*rx_buf
;
544 rxd
= efx_rx_desc(rx_queue
, index
);
545 rx_buf
= efx_rx_buffer(rx_queue
, index
);
546 EFX_POPULATE_QWORD_3(*rxd
,
547 FSF_AZ_RX_KER_BUF_SIZE
,
549 rx_queue
->efx
->type
->rx_buffer_padding
,
550 FSF_AZ_RX_KER_BUF_REGION
, 0,
551 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
554 /* This writes to the RX_DESC_WPTR register for the specified receive
557 void efx_nic_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
559 struct efx_nic
*efx
= rx_queue
->efx
;
563 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
566 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
567 ++rx_queue
->notified_count
;
571 write_ptr
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
572 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
573 efx_writed_page(efx
, ®
, FR_AZ_RX_DESC_UPD_DWORD_P0
,
574 efx_rx_queue_index(rx_queue
));
577 int efx_nic_probe_rx(struct efx_rx_queue
*rx_queue
)
579 struct efx_nic
*efx
= rx_queue
->efx
;
582 entries
= rx_queue
->ptr_mask
+ 1;
583 return efx_alloc_special_buffer(efx
, &rx_queue
->rxd
,
584 entries
* sizeof(efx_qword_t
));
587 void efx_nic_init_rx(struct efx_rx_queue
*rx_queue
)
589 efx_oword_t rx_desc_ptr
;
590 struct efx_nic
*efx
= rx_queue
->efx
;
591 bool is_b0
= efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
;
592 bool iscsi_digest_en
= is_b0
;
594 netif_dbg(efx
, hw
, efx
->net_dev
,
595 "RX queue %d ring in special buffers %d-%d\n",
596 efx_rx_queue_index(rx_queue
), rx_queue
->rxd
.index
,
597 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
599 /* Pin RX descriptor ring */
600 efx_init_special_buffer(efx
, &rx_queue
->rxd
);
602 /* Push RX descriptor ring to card */
603 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
604 FRF_AZ_RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
605 FRF_AZ_RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
606 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
607 FRF_AZ_RX_DESCQ_EVQ_ID
,
608 efx_rx_queue_channel(rx_queue
)->channel
,
609 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
610 FRF_AZ_RX_DESCQ_LABEL
,
611 efx_rx_queue_index(rx_queue
),
612 FRF_AZ_RX_DESCQ_SIZE
,
613 __ffs(rx_queue
->rxd
.entries
),
614 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
615 /* For >=B0 this is scatter so disable */
616 FRF_AZ_RX_DESCQ_JUMBO
, !is_b0
,
617 FRF_AZ_RX_DESCQ_EN
, 1);
618 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
619 efx_rx_queue_index(rx_queue
));
622 static void efx_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
624 struct efx_nic
*efx
= rx_queue
->efx
;
625 efx_oword_t rx_flush_descq
;
627 EFX_POPULATE_OWORD_2(rx_flush_descq
,
628 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
629 FRF_AZ_RX_FLUSH_DESCQ
,
630 efx_rx_queue_index(rx_queue
));
631 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
634 void efx_nic_fini_rx(struct efx_rx_queue
*rx_queue
)
636 efx_oword_t rx_desc_ptr
;
637 struct efx_nic
*efx
= rx_queue
->efx
;
639 /* Remove RX descriptor ring from card */
640 EFX_ZERO_OWORD(rx_desc_ptr
);
641 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
642 efx_rx_queue_index(rx_queue
));
644 /* Unpin RX descriptor ring */
645 efx_fini_special_buffer(efx
, &rx_queue
->rxd
);
648 /* Free buffers backing RX queue */
649 void efx_nic_remove_rx(struct efx_rx_queue
*rx_queue
)
651 efx_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
654 /**************************************************************************
658 **************************************************************************/
660 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
661 * or more RX flushes can be kicked off.
663 static bool efx_flush_wake(struct efx_nic
*efx
)
665 /* Ensure that all updates are visible to efx_nic_flush_queues() */
668 return (atomic_read(&efx
->drain_pending
) == 0 ||
669 (atomic_read(&efx
->rxq_flush_outstanding
) < EFX_RX_FLUSH_COUNT
670 && atomic_read(&efx
->rxq_flush_pending
) > 0));
673 /* Flush all the transmit queues, and continue flushing receive queues until
674 * they're all flushed. Wait for the DRAIN events to be recieved so that there
675 * are no more RX and TX events left on any channel. */
676 int efx_nic_flush_queues(struct efx_nic
*efx
)
678 unsigned timeout
= msecs_to_jiffies(5000); /* 5s for all flushes and drains */
679 struct efx_channel
*channel
;
680 struct efx_rx_queue
*rx_queue
;
681 struct efx_tx_queue
*tx_queue
;
685 efx
->type
->prepare_flush(efx
);
687 efx_for_each_channel(channel
, efx
) {
688 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
689 atomic_inc(&efx
->drain_pending
);
690 efx_flush_tx_queue(tx_queue
);
692 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
693 atomic_inc(&efx
->drain_pending
);
694 rx_queue
->flush_pending
= true;
695 atomic_inc(&efx
->rxq_flush_pending
);
699 while (timeout
&& atomic_read(&efx
->drain_pending
) > 0) {
700 /* If SRIOV is enabled, then offload receive queue flushing to
701 * the firmware (though we will still have to poll for
702 * completion). If that fails, fall back to the old scheme.
704 if (efx_sriov_enabled(efx
)) {
705 rc
= efx_mcdi_flush_rxqs(efx
);
710 /* The hardware supports four concurrent rx flushes, each of
711 * which may need to be retried if there is an outstanding
714 efx_for_each_channel(channel
, efx
) {
715 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
716 if (atomic_read(&efx
->rxq_flush_outstanding
) >=
720 if (rx_queue
->flush_pending
) {
721 rx_queue
->flush_pending
= false;
722 atomic_dec(&efx
->rxq_flush_pending
);
723 atomic_inc(&efx
->rxq_flush_outstanding
);
724 efx_flush_rx_queue(rx_queue
);
730 timeout
= wait_event_timeout(efx
->flush_wq
, efx_flush_wake(efx
),
734 if (atomic_read(&efx
->drain_pending
)) {
735 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues "
736 "(rx %d+%d)\n", atomic_read(&efx
->drain_pending
),
737 atomic_read(&efx
->rxq_flush_outstanding
),
738 atomic_read(&efx
->rxq_flush_pending
));
741 atomic_set(&efx
->drain_pending
, 0);
742 atomic_set(&efx
->rxq_flush_pending
, 0);
743 atomic_set(&efx
->rxq_flush_outstanding
, 0);
751 /**************************************************************************
753 * Event queue processing
754 * Event queues are processed by per-channel tasklets.
756 **************************************************************************/
758 /* Update a channel's event queue's read pointer (RPTR) register
760 * This writes the EVQ_RPTR_REG register for the specified channel's
763 void efx_nic_eventq_read_ack(struct efx_channel
*channel
)
766 struct efx_nic
*efx
= channel
->efx
;
768 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
,
769 channel
->eventq_read_ptr
& channel
->eventq_mask
);
770 efx_writed_table(efx
, ®
, efx
->type
->evq_rptr_tbl_base
,
774 /* Use HW to insert a SW defined event */
775 void efx_generate_event(struct efx_nic
*efx
, unsigned int evq
,
778 efx_oword_t drv_ev_reg
;
780 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
781 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
782 drv_ev_reg
.u32
[0] = event
->u32
[0];
783 drv_ev_reg
.u32
[1] = event
->u32
[1];
784 drv_ev_reg
.u32
[2] = 0;
785 drv_ev_reg
.u32
[3] = 0;
786 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, evq
);
787 efx_writeo(efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
790 static void efx_magic_event(struct efx_channel
*channel
, u32 magic
)
794 EFX_POPULATE_QWORD_2(event
, FSF_AZ_EV_CODE
,
795 FSE_AZ_EV_CODE_DRV_GEN_EV
,
796 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
797 efx_generate_event(channel
->efx
, channel
->channel
, &event
);
800 /* Handle a transmit completion event
802 * The NIC batches TX completion events; the message we receive is of
803 * the form "complete all TX events up to this index".
806 efx_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
808 unsigned int tx_ev_desc_ptr
;
809 unsigned int tx_ev_q_label
;
810 struct efx_tx_queue
*tx_queue
;
811 struct efx_nic
*efx
= channel
->efx
;
814 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
817 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
818 /* Transmit completion */
819 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
820 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
821 tx_queue
= efx_channel_get_tx_queue(
822 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
823 tx_packets
= ((tx_ev_desc_ptr
- tx_queue
->read_count
) &
825 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
826 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
827 /* Rewrite the FIFO write pointer */
828 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
829 tx_queue
= efx_channel_get_tx_queue(
830 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
832 netif_tx_lock(efx
->net_dev
);
833 efx_notify_tx_desc(tx_queue
);
834 netif_tx_unlock(efx
->net_dev
);
835 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
) &&
836 EFX_WORKAROUND_10727(efx
)) {
837 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
839 netif_err(efx
, tx_err
, efx
->net_dev
,
840 "channel %d unexpected TX event "
841 EFX_QWORD_FMT
"\n", channel
->channel
,
842 EFX_QWORD_VAL(*event
));
848 /* Detect errors included in the rx_evt_pkt_ok bit. */
849 static u16
efx_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
850 const efx_qword_t
*event
)
852 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
853 struct efx_nic
*efx
= rx_queue
->efx
;
854 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
855 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
856 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
857 bool rx_ev_other_err
, rx_ev_pause_frm
;
858 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
859 unsigned rx_ev_pkt_type
;
861 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
862 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
863 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
864 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
865 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
866 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
867 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
868 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
869 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
870 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
871 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
872 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
873 rx_ev_drib_nib
= ((efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) ?
874 0 : EFX_QWORD_FIELD(*event
, FSF_AA_RX_EV_DRIB_NIB
));
875 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
877 /* Every error apart from tobe_disc and pause_frm */
878 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
879 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
880 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
882 /* Count errors that are not in MAC stats. Ignore expected
883 * checksum errors during self-test. */
885 ++channel
->n_rx_frm_trunc
;
886 else if (rx_ev_tobe_disc
)
887 ++channel
->n_rx_tobe_disc
;
888 else if (!efx
->loopback_selftest
) {
889 if (rx_ev_ip_hdr_chksum_err
)
890 ++channel
->n_rx_ip_hdr_chksum_err
;
891 else if (rx_ev_tcp_udp_chksum_err
)
892 ++channel
->n_rx_tcp_udp_chksum_err
;
895 /* TOBE_DISC is expected on unicast mismatches; don't print out an
896 * error message. FRM_TRUNC indicates RXDP dropped the packet due
897 * to a FIFO overflow.
900 if (rx_ev_other_err
&& net_ratelimit()) {
901 netif_dbg(efx
, rx_err
, efx
->net_dev
,
902 " RX queue %d unexpected RX event "
903 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
904 efx_rx_queue_index(rx_queue
), EFX_QWORD_VAL(*event
),
905 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
906 rx_ev_ip_hdr_chksum_err
?
907 " [IP_HDR_CHKSUM_ERR]" : "",
908 rx_ev_tcp_udp_chksum_err
?
909 " [TCP_UDP_CHKSUM_ERR]" : "",
910 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
911 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
912 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
913 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
914 rx_ev_pause_frm
? " [PAUSE]" : "");
918 /* The frame must be discarded if any of these are true. */
919 return (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
920 rx_ev_tobe_disc
| rx_ev_pause_frm
) ?
921 EFX_RX_PKT_DISCARD
: 0;
924 /* Handle receive events that are not in-order. */
926 efx_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
, unsigned index
)
928 struct efx_nic
*efx
= rx_queue
->efx
;
929 unsigned expected
, dropped
;
931 expected
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
932 dropped
= (index
- expected
) & rx_queue
->ptr_mask
;
933 netif_info(efx
, rx_err
, efx
->net_dev
,
934 "dropped %d events (index=%d expected=%d)\n",
935 dropped
, index
, expected
);
937 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
938 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
941 /* Handle a packet received event
943 * The NIC gives a "discard" flag if it's a unicast packet with the
944 * wrong destination address
945 * Also "is multicast" and "matches multicast filter" flags can be used to
946 * discard non-matching multicast packets.
949 efx_handle_rx_event(struct efx_channel
*channel
, const efx_qword_t
*event
)
951 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
952 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
953 unsigned expected_ptr
;
956 struct efx_rx_queue
*rx_queue
;
957 struct efx_nic
*efx
= channel
->efx
;
959 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
962 /* Basic packet information */
963 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
964 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
965 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
966 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
));
967 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
) != 1);
968 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
971 rx_queue
= efx_channel_get_rx_queue(channel
);
973 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
974 expected_ptr
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
975 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
))
976 efx_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
);
978 if (likely(rx_ev_pkt_ok
)) {
979 /* If packet is marked as OK and packet type is TCP/IP or
980 * UDP/IP, then we can rely on the hardware checksum.
982 flags
= (rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
||
983 rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
) ?
984 EFX_RX_PKT_CSUMMED
: 0;
986 flags
= efx_handle_rx_not_ok(rx_queue
, event
);
989 /* Detect multicast packets that didn't match the filter */
990 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
991 if (rx_ev_mcast_pkt
) {
992 unsigned int rx_ev_mcast_hash_match
=
993 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
995 if (unlikely(!rx_ev_mcast_hash_match
)) {
996 ++channel
->n_rx_mcast_mismatch
;
997 flags
|= EFX_RX_PKT_DISCARD
;
1001 channel
->irq_mod_score
+= 2;
1003 /* Handle received packet */
1004 efx_rx_packet(rx_queue
, rx_ev_desc_ptr
, rx_ev_byte_cnt
, flags
);
1007 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1008 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1009 * of all transmit completions.
1012 efx_handle_tx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1014 struct efx_tx_queue
*tx_queue
;
1017 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1018 if (qid
< EFX_TXQ_TYPES
* efx
->n_tx_channels
) {
1019 tx_queue
= efx_get_tx_queue(efx
, qid
/ EFX_TXQ_TYPES
,
1020 qid
% EFX_TXQ_TYPES
);
1022 efx_magic_event(tx_queue
->channel
,
1023 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue
));
1027 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1028 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1029 * the RX queue back to the mask of RX queues in need of flushing.
1032 efx_handle_rx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1034 struct efx_channel
*channel
;
1035 struct efx_rx_queue
*rx_queue
;
1039 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1040 failed
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1041 if (qid
>= efx
->n_channels
)
1043 channel
= efx_get_channel(efx
, qid
);
1044 if (!efx_channel_has_rx_queue(channel
))
1046 rx_queue
= efx_channel_get_rx_queue(channel
);
1049 netif_info(efx
, hw
, efx
->net_dev
,
1050 "RXQ %d flush retry\n", qid
);
1051 rx_queue
->flush_pending
= true;
1052 atomic_inc(&efx
->rxq_flush_pending
);
1054 efx_magic_event(efx_rx_queue_channel(rx_queue
),
1055 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
));
1057 atomic_dec(&efx
->rxq_flush_outstanding
);
1058 if (efx_flush_wake(efx
))
1059 wake_up(&efx
->flush_wq
);
1063 efx_handle_drain_event(struct efx_channel
*channel
)
1065 struct efx_nic
*efx
= channel
->efx
;
1067 WARN_ON(atomic_read(&efx
->drain_pending
) == 0);
1068 atomic_dec(&efx
->drain_pending
);
1069 if (efx_flush_wake(efx
))
1070 wake_up(&efx
->flush_wq
);
1074 efx_handle_generated_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1076 struct efx_nic
*efx
= channel
->efx
;
1077 struct efx_rx_queue
*rx_queue
=
1078 efx_channel_has_rx_queue(channel
) ?
1079 efx_channel_get_rx_queue(channel
) : NULL
;
1080 unsigned magic
, code
;
1082 magic
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
1083 code
= _EFX_CHANNEL_MAGIC_CODE(magic
);
1085 if (magic
== EFX_CHANNEL_MAGIC_TEST(channel
)) {
1086 channel
->event_test_cpu
= raw_smp_processor_id();
1087 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_FILL(rx_queue
)) {
1088 /* The queue must be empty, so we won't receive any rx
1089 * events, so efx_process_channel() won't refill the
1090 * queue. Refill it here */
1091 efx_fast_push_rx_descriptors(rx_queue
);
1092 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
)) {
1093 rx_queue
->enabled
= false;
1094 efx_handle_drain_event(channel
);
1095 } else if (code
== _EFX_CHANNEL_MAGIC_TX_DRAIN
) {
1096 efx_handle_drain_event(channel
);
1098 netif_dbg(efx
, hw
, efx
->net_dev
, "channel %d received "
1099 "generated event "EFX_QWORD_FMT
"\n",
1100 channel
->channel
, EFX_QWORD_VAL(*event
));
1105 efx_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1107 struct efx_nic
*efx
= channel
->efx
;
1108 unsigned int ev_sub_code
;
1109 unsigned int ev_sub_data
;
1111 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
1112 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1114 switch (ev_sub_code
) {
1115 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
1116 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d TXQ %d flushed\n",
1117 channel
->channel
, ev_sub_data
);
1118 efx_handle_tx_flush_done(efx
, event
);
1119 efx_sriov_tx_flush_done(efx
, event
);
1121 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
1122 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d RXQ %d flushed\n",
1123 channel
->channel
, ev_sub_data
);
1124 efx_handle_rx_flush_done(efx
, event
);
1125 efx_sriov_rx_flush_done(efx
, event
);
1127 case FSE_AZ_EVQ_INIT_DONE_EV
:
1128 netif_dbg(efx
, hw
, efx
->net_dev
,
1129 "channel %d EVQ %d initialised\n",
1130 channel
->channel
, ev_sub_data
);
1132 case FSE_AZ_SRM_UPD_DONE_EV
:
1133 netif_vdbg(efx
, hw
, efx
->net_dev
,
1134 "channel %d SRAM update done\n", channel
->channel
);
1136 case FSE_AZ_WAKE_UP_EV
:
1137 netif_vdbg(efx
, hw
, efx
->net_dev
,
1138 "channel %d RXQ %d wakeup event\n",
1139 channel
->channel
, ev_sub_data
);
1141 case FSE_AZ_TIMER_EV
:
1142 netif_vdbg(efx
, hw
, efx
->net_dev
,
1143 "channel %d RX queue %d timer expired\n",
1144 channel
->channel
, ev_sub_data
);
1146 case FSE_AA_RX_RECOVER_EV
:
1147 netif_err(efx
, rx_err
, efx
->net_dev
,
1148 "channel %d seen DRIVER RX_RESET event. "
1149 "Resetting.\n", channel
->channel
);
1150 atomic_inc(&efx
->rx_reset
);
1151 efx_schedule_reset(efx
,
1152 EFX_WORKAROUND_6555(efx
) ?
1153 RESET_TYPE_RX_RECOVERY
:
1154 RESET_TYPE_DISABLE
);
1156 case FSE_BZ_RX_DSC_ERROR_EV
:
1157 if (ev_sub_data
< EFX_VI_BASE
) {
1158 netif_err(efx
, rx_err
, efx
->net_dev
,
1159 "RX DMA Q %d reports descriptor fetch error."
1160 " RX Q %d is disabled.\n", ev_sub_data
,
1162 efx_schedule_reset(efx
, RESET_TYPE_RX_DESC_FETCH
);
1164 efx_sriov_desc_fetch_err(efx
, ev_sub_data
);
1166 case FSE_BZ_TX_DSC_ERROR_EV
:
1167 if (ev_sub_data
< EFX_VI_BASE
) {
1168 netif_err(efx
, tx_err
, efx
->net_dev
,
1169 "TX DMA Q %d reports descriptor fetch error."
1170 " TX Q %d is disabled.\n", ev_sub_data
,
1172 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
1174 efx_sriov_desc_fetch_err(efx
, ev_sub_data
);
1177 netif_vdbg(efx
, hw
, efx
->net_dev
,
1178 "channel %d unknown driver event code %d "
1179 "data %04x\n", channel
->channel
, ev_sub_code
,
1185 int efx_nic_process_eventq(struct efx_channel
*channel
, int budget
)
1187 struct efx_nic
*efx
= channel
->efx
;
1188 unsigned int read_ptr
;
1189 efx_qword_t event
, *p_event
;
1194 read_ptr
= channel
->eventq_read_ptr
;
1197 p_event
= efx_event(channel
, read_ptr
);
1200 if (!efx_event_present(&event
))
1204 netif_vdbg(channel
->efx
, intr
, channel
->efx
->net_dev
,
1205 "channel %d event is "EFX_QWORD_FMT
"\n",
1206 channel
->channel
, EFX_QWORD_VAL(event
));
1208 /* Clear this event by marking it all ones */
1209 EFX_SET_QWORD(*p_event
);
1213 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1216 case FSE_AZ_EV_CODE_RX_EV
:
1217 efx_handle_rx_event(channel
, &event
);
1218 if (++spent
== budget
)
1221 case FSE_AZ_EV_CODE_TX_EV
:
1222 tx_packets
+= efx_handle_tx_event(channel
, &event
);
1223 if (tx_packets
> efx
->txq_entries
) {
1228 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1229 efx_handle_generated_event(channel
, &event
);
1231 case FSE_AZ_EV_CODE_DRIVER_EV
:
1232 efx_handle_driver_event(channel
, &event
);
1234 case FSE_CZ_EV_CODE_USER_EV
:
1235 efx_sriov_event(channel
, &event
);
1237 case FSE_CZ_EV_CODE_MCDI_EV
:
1238 efx_mcdi_process_event(channel
, &event
);
1240 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1241 if (efx
->type
->handle_global_event
&&
1242 efx
->type
->handle_global_event(channel
, &event
))
1244 /* else fall through */
1246 netif_err(channel
->efx
, hw
, channel
->efx
->net_dev
,
1247 "channel %d unknown event type %d (data "
1248 EFX_QWORD_FMT
")\n", channel
->channel
,
1249 ev_code
, EFX_QWORD_VAL(event
));
1254 channel
->eventq_read_ptr
= read_ptr
;
1258 /* Check whether an event is present in the eventq at the current
1259 * read pointer. Only useful for self-test.
1261 bool efx_nic_event_present(struct efx_channel
*channel
)
1263 return efx_event_present(efx_event(channel
, channel
->eventq_read_ptr
));
1266 /* Allocate buffer table entries for event queue */
1267 int efx_nic_probe_eventq(struct efx_channel
*channel
)
1269 struct efx_nic
*efx
= channel
->efx
;
1272 entries
= channel
->eventq_mask
+ 1;
1273 return efx_alloc_special_buffer(efx
, &channel
->eventq
,
1274 entries
* sizeof(efx_qword_t
));
1277 void efx_nic_init_eventq(struct efx_channel
*channel
)
1280 struct efx_nic
*efx
= channel
->efx
;
1282 netif_dbg(efx
, hw
, efx
->net_dev
,
1283 "channel %d event queue in special buffers %d-%d\n",
1284 channel
->channel
, channel
->eventq
.index
,
1285 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1287 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1288 EFX_POPULATE_OWORD_3(reg
,
1289 FRF_CZ_TIMER_Q_EN
, 1,
1290 FRF_CZ_HOST_NOTIFY_MODE
, 0,
1291 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
1292 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1295 /* Pin event queue buffer */
1296 efx_init_special_buffer(efx
, &channel
->eventq
);
1298 /* Fill event queue with all ones (i.e. empty events) */
1299 memset(channel
->eventq
.addr
, 0xff, channel
->eventq
.len
);
1301 /* Push event queue to card */
1302 EFX_POPULATE_OWORD_3(reg
,
1304 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1305 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1306 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1309 efx
->type
->push_irq_moderation(channel
);
1312 void efx_nic_fini_eventq(struct efx_channel
*channel
)
1315 struct efx_nic
*efx
= channel
->efx
;
1317 /* Remove event queue from card */
1318 EFX_ZERO_OWORD(reg
);
1319 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1321 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1322 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1324 /* Unpin event queue */
1325 efx_fini_special_buffer(efx
, &channel
->eventq
);
1328 /* Free buffers backing event queue */
1329 void efx_nic_remove_eventq(struct efx_channel
*channel
)
1331 efx_free_special_buffer(channel
->efx
, &channel
->eventq
);
1335 void efx_nic_event_test_start(struct efx_channel
*channel
)
1337 channel
->event_test_cpu
= -1;
1339 efx_magic_event(channel
, EFX_CHANNEL_MAGIC_TEST(channel
));
1342 void efx_nic_generate_fill_event(struct efx_rx_queue
*rx_queue
)
1344 efx_magic_event(efx_rx_queue_channel(rx_queue
),
1345 EFX_CHANNEL_MAGIC_FILL(rx_queue
));
1348 /**************************************************************************
1350 * Hardware interrupts
1351 * The hardware interrupt handler does very little work; all the event
1352 * queue processing is carried out by per-channel tasklets.
1354 **************************************************************************/
1356 /* Enable/disable/generate interrupts */
1357 static inline void efx_nic_interrupts(struct efx_nic
*efx
,
1358 bool enabled
, bool force
)
1360 efx_oword_t int_en_reg_ker
;
1362 EFX_POPULATE_OWORD_3(int_en_reg_ker
,
1363 FRF_AZ_KER_INT_LEVE_SEL
, efx
->irq_level
,
1364 FRF_AZ_KER_INT_KER
, force
,
1365 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1366 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1369 void efx_nic_enable_interrupts(struct efx_nic
*efx
)
1371 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1372 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1374 efx_nic_interrupts(efx
, true, false);
1377 void efx_nic_disable_interrupts(struct efx_nic
*efx
)
1379 /* Disable interrupts */
1380 efx_nic_interrupts(efx
, false, false);
1383 /* Generate a test interrupt
1384 * Interrupt must already have been enabled, otherwise nasty things
1387 void efx_nic_irq_test_start(struct efx_nic
*efx
)
1389 efx
->last_irq_cpu
= -1;
1391 efx_nic_interrupts(efx
, true, true);
1394 /* Process a fatal interrupt
1395 * Disable bus mastering ASAP and schedule a reset
1397 irqreturn_t
efx_nic_fatal_interrupt(struct efx_nic
*efx
)
1399 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1400 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1401 efx_oword_t fatal_intr
;
1402 int error
, mem_perr
;
1404 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1405 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1407 netif_err(efx
, hw
, efx
->net_dev
, "SYSTEM ERROR "EFX_OWORD_FMT
" status "
1408 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1409 EFX_OWORD_VAL(fatal_intr
),
1410 error
? "disabling bus mastering" : "no recognised error");
1412 /* If this is a memory parity error dump which blocks are offending */
1413 mem_perr
= (EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
) ||
1414 EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_SRM_PERR_INT_KER
));
1417 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1418 netif_err(efx
, hw
, efx
->net_dev
,
1419 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT
"\n",
1420 EFX_OWORD_VAL(reg
));
1423 /* Disable both devices */
1424 pci_clear_master(efx
->pci_dev
);
1425 if (efx_nic_is_dual_func(efx
))
1426 pci_clear_master(nic_data
->pci_dev2
);
1427 efx_nic_disable_interrupts(efx
);
1429 /* Count errors and reset or disable the NIC accordingly */
1430 if (efx
->int_error_count
== 0 ||
1431 time_after(jiffies
, efx
->int_error_expire
)) {
1432 efx
->int_error_count
= 0;
1433 efx
->int_error_expire
=
1434 jiffies
+ EFX_INT_ERROR_EXPIRE
* HZ
;
1436 if (++efx
->int_error_count
< EFX_MAX_INT_ERRORS
) {
1437 netif_err(efx
, hw
, efx
->net_dev
,
1438 "SYSTEM ERROR - reset scheduled\n");
1439 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1441 netif_err(efx
, hw
, efx
->net_dev
,
1442 "SYSTEM ERROR - max number of errors seen."
1443 "NIC will be disabled\n");
1444 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1450 /* Handle a legacy interrupt
1451 * Acknowledges the interrupt and schedule event queue processing.
1453 static irqreturn_t
efx_legacy_interrupt(int irq
, void *dev_id
)
1455 struct efx_nic
*efx
= dev_id
;
1456 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1457 irqreturn_t result
= IRQ_NONE
;
1458 struct efx_channel
*channel
;
1463 /* Could this be ours? If interrupts are disabled then the
1464 * channel state may not be valid.
1466 if (!efx
->legacy_irq_enabled
)
1469 /* Read the ISR which also ACKs the interrupts */
1470 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1471 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1473 /* Handle non-event-queue sources */
1474 if (queues
& (1U << efx
->irq_level
)) {
1475 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1476 if (unlikely(syserr
))
1477 return efx_nic_fatal_interrupt(efx
);
1478 efx
->last_irq_cpu
= raw_smp_processor_id();
1482 if (EFX_WORKAROUND_15783(efx
))
1483 efx
->irq_zero_count
= 0;
1485 /* Schedule processing of any interrupting queues */
1486 efx_for_each_channel(channel
, efx
) {
1488 efx_schedule_channel_irq(channel
);
1491 result
= IRQ_HANDLED
;
1493 } else if (EFX_WORKAROUND_15783(efx
)) {
1496 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1497 * because this might be a shared interrupt. */
1498 if (efx
->irq_zero_count
++ == 0)
1499 result
= IRQ_HANDLED
;
1501 /* Ensure we schedule or rearm all event queues */
1502 efx_for_each_channel(channel
, efx
) {
1503 event
= efx_event(channel
, channel
->eventq_read_ptr
);
1504 if (efx_event_present(event
))
1505 efx_schedule_channel_irq(channel
);
1507 efx_nic_eventq_read_ack(channel
);
1511 if (result
== IRQ_HANDLED
)
1512 netif_vdbg(efx
, intr
, efx
->net_dev
,
1513 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1514 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1519 /* Handle an MSI interrupt
1521 * Handle an MSI hardware interrupt. This routine schedules event
1522 * queue processing. No interrupt acknowledgement cycle is necessary.
1523 * Also, we never need to check that the interrupt is for us, since
1524 * MSI interrupts cannot be shared.
1526 static irqreturn_t
efx_msi_interrupt(int irq
, void *dev_id
)
1528 struct efx_channel
*channel
= *(struct efx_channel
**)dev_id
;
1529 struct efx_nic
*efx
= channel
->efx
;
1530 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1533 netif_vdbg(efx
, intr
, efx
->net_dev
,
1534 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1535 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1537 /* Handle non-event-queue sources */
1538 if (channel
->channel
== efx
->irq_level
) {
1539 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1540 if (unlikely(syserr
))
1541 return efx_nic_fatal_interrupt(efx
);
1542 efx
->last_irq_cpu
= raw_smp_processor_id();
1545 /* Schedule processing of the channel */
1546 efx_schedule_channel_irq(channel
);
1552 /* Setup RSS indirection table.
1553 * This maps from the hash value of the packet to RXQ
1555 void efx_nic_push_rx_indir_table(struct efx_nic
*efx
)
1560 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
1563 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1564 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1566 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1567 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1568 efx
->rx_indir_table
[i
]);
1569 efx_writed_table(efx
, &dword
, FR_BZ_RX_INDIRECTION_TBL
, i
);
1573 /* Hook interrupt handler(s)
1574 * Try MSI and then legacy interrupts.
1576 int efx_nic_init_interrupt(struct efx_nic
*efx
)
1578 struct efx_channel
*channel
;
1581 if (!EFX_INT_MODE_USE_MSI(efx
)) {
1582 irq_handler_t handler
;
1583 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1584 handler
= efx_legacy_interrupt
;
1586 handler
= falcon_legacy_interrupt_a1
;
1588 rc
= request_irq(efx
->legacy_irq
, handler
, IRQF_SHARED
,
1591 netif_err(efx
, drv
, efx
->net_dev
,
1592 "failed to hook legacy IRQ %d\n",
1599 /* Hook MSI or MSI-X interrupt */
1600 efx_for_each_channel(channel
, efx
) {
1601 rc
= request_irq(channel
->irq
, efx_msi_interrupt
,
1602 IRQF_PROBE_SHARED
, /* Not shared */
1603 efx
->channel_name
[channel
->channel
],
1604 &efx
->channel
[channel
->channel
]);
1606 netif_err(efx
, drv
, efx
->net_dev
,
1607 "failed to hook IRQ %d\n", channel
->irq
);
1615 efx_for_each_channel(channel
, efx
)
1616 free_irq(channel
->irq
, &efx
->channel
[channel
->channel
]);
1621 void efx_nic_fini_interrupt(struct efx_nic
*efx
)
1623 struct efx_channel
*channel
;
1626 /* Disable MSI/MSI-X interrupts */
1627 efx_for_each_channel(channel
, efx
) {
1629 free_irq(channel
->irq
, &efx
->channel
[channel
->channel
]);
1632 /* ACK legacy interrupt */
1633 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1634 efx_reado(efx
, ®
, FR_BZ_INT_ISR0
);
1636 falcon_irq_ack_a1(efx
);
1638 /* Disable legacy interrupt */
1639 if (efx
->legacy_irq
)
1640 free_irq(efx
->legacy_irq
, efx
);
1643 /* Looks at available SRAM resources and works out how many queues we
1644 * can support, and where things like descriptor caches should live.
1646 * SRAM is split up as follows:
1647 * 0 buftbl entries for channels
1648 * efx->vf_buftbl_base buftbl entries for SR-IOV
1649 * efx->rx_dc_base RX descriptor caches
1650 * efx->tx_dc_base TX descriptor caches
1652 void efx_nic_dimension_resources(struct efx_nic
*efx
, unsigned sram_lim_qw
)
1654 unsigned vi_count
, buftbl_min
;
1656 /* Account for the buffer table entries backing the datapath channels
1657 * and the descriptor caches for those channels.
1659 buftbl_min
= ((efx
->n_rx_channels
* EFX_MAX_DMAQ_SIZE
+
1660 efx
->n_tx_channels
* EFX_TXQ_TYPES
* EFX_MAX_DMAQ_SIZE
+
1661 efx
->n_channels
* EFX_MAX_EVQ_SIZE
)
1662 * sizeof(efx_qword_t
) / EFX_BUF_SIZE
);
1663 vi_count
= max(efx
->n_channels
, efx
->n_tx_channels
* EFX_TXQ_TYPES
);
1665 #ifdef CONFIG_SFC_SRIOV
1666 if (efx_sriov_wanted(efx
)) {
1667 unsigned vi_dc_entries
, buftbl_free
, entries_per_vf
, vf_limit
;
1669 efx
->vf_buftbl_base
= buftbl_min
;
1671 vi_dc_entries
= RX_DC_ENTRIES
+ TX_DC_ENTRIES
;
1672 vi_count
= max(vi_count
, EFX_VI_BASE
);
1673 buftbl_free
= (sram_lim_qw
- buftbl_min
-
1674 vi_count
* vi_dc_entries
);
1676 entries_per_vf
= ((vi_dc_entries
+ EFX_VF_BUFTBL_PER_VI
) *
1678 vf_limit
= min(buftbl_free
/ entries_per_vf
,
1679 (1024U - EFX_VI_BASE
) >> efx
->vi_scale
);
1681 if (efx
->vf_count
> vf_limit
) {
1682 netif_err(efx
, probe
, efx
->net_dev
,
1683 "Reducing VF count from from %d to %d\n",
1684 efx
->vf_count
, vf_limit
);
1685 efx
->vf_count
= vf_limit
;
1687 vi_count
+= efx
->vf_count
* efx_vf_size(efx
);
1691 efx
->tx_dc_base
= sram_lim_qw
- vi_count
* TX_DC_ENTRIES
;
1692 efx
->rx_dc_base
= efx
->tx_dc_base
- vi_count
* RX_DC_ENTRIES
;
1695 u32
efx_nic_fpga_ver(struct efx_nic
*efx
)
1697 efx_oword_t altera_build
;
1698 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1699 return EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1702 void efx_nic_init_common(struct efx_nic
*efx
)
1706 /* Set positions of descriptor caches in SRAM. */
1707 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
, efx
->tx_dc_base
);
1708 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1709 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
, efx
->rx_dc_base
);
1710 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1712 /* Set TX descriptor cache size. */
1713 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1714 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1715 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1717 /* Set RX descriptor cache size. Set low watermark to size-8, as
1718 * this allows most efficient prefetching.
1720 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1721 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1722 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1723 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1724 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1726 /* Program INT_KER address */
1727 EFX_POPULATE_OWORD_2(temp
,
1728 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1729 EFX_INT_MODE_USE_MSI(efx
),
1730 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1731 efx_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1733 if (EFX_WORKAROUND_17213(efx
) && !EFX_INT_MODE_USE_MSI(efx
))
1734 /* Use an interrupt level unused by event queues */
1735 efx
->irq_level
= 0x1f;
1737 /* Use a valid MSI-X vector */
1740 /* Enable all the genuinely fatal interrupts. (They are still
1741 * masked by the overall interrupt mask, controlled by
1742 * falcon_interrupts()).
1744 * Note: All other fatal interrupts are enabled
1746 EFX_POPULATE_OWORD_3(temp
,
1747 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1748 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1749 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1750 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1751 EFX_SET_OWORD_FIELD(temp
, FRF_CZ_SRAM_PERR_INT_P_KER_EN
, 1);
1752 EFX_INVERT_OWORD(temp
);
1753 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1755 efx_nic_push_rx_indir_table(efx
);
1757 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1758 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1760 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1761 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1762 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1763 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1764 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 1);
1765 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1766 /* Enable SW_EV to inherit in char driver - assume harmless here */
1767 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1768 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1769 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1770 /* Disable hardware watchdog which can misfire */
1771 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1772 /* Squash TX of packets of 16 bytes or less */
1773 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1774 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1775 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
1777 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1778 EFX_POPULATE_OWORD_4(temp
,
1779 /* Default values */
1780 FRF_BZ_TX_PACE_SB_NOT_AF
, 0x15,
1781 FRF_BZ_TX_PACE_SB_AF
, 0xb,
1782 FRF_BZ_TX_PACE_FB_BASE
, 0,
1783 /* Allow large pace values in the
1785 FRF_BZ_TX_PACE_BIN_TH
,
1786 FFE_BZ_TX_PACE_RESERVED
);
1787 efx_writeo(efx
, &temp
, FR_BZ_TX_PACE
);
1793 #define REGISTER_REVISION_A 1
1794 #define REGISTER_REVISION_B 2
1795 #define REGISTER_REVISION_C 3
1796 #define REGISTER_REVISION_Z 3 /* latest revision */
1798 struct efx_nic_reg
{
1800 u32 min_revision
:2, max_revision
:2;
1803 #define REGISTER(name, min_rev, max_rev) { \
1804 FR_ ## min_rev ## max_rev ## _ ## name, \
1805 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1807 #define REGISTER_AA(name) REGISTER(name, A, A)
1808 #define REGISTER_AB(name) REGISTER(name, A, B)
1809 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1810 #define REGISTER_BB(name) REGISTER(name, B, B)
1811 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1812 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1814 static const struct efx_nic_reg efx_nic_regs
[] = {
1815 REGISTER_AZ(ADR_REGION
),
1816 REGISTER_AZ(INT_EN_KER
),
1817 REGISTER_BZ(INT_EN_CHAR
),
1818 REGISTER_AZ(INT_ADR_KER
),
1819 REGISTER_BZ(INT_ADR_CHAR
),
1820 /* INT_ACK_KER is WO */
1821 /* INT_ISR0 is RC */
1822 REGISTER_AZ(HW_INIT
),
1823 REGISTER_CZ(USR_EV_CFG
),
1824 REGISTER_AB(EE_SPI_HCMD
),
1825 REGISTER_AB(EE_SPI_HADR
),
1826 REGISTER_AB(EE_SPI_HDATA
),
1827 REGISTER_AB(EE_BASE_PAGE
),
1828 REGISTER_AB(EE_VPD_CFG0
),
1829 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1830 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1831 /* PCIE_CORE_INDIRECT is indirect */
1832 REGISTER_AB(NIC_STAT
),
1833 REGISTER_AB(GPIO_CTL
),
1834 REGISTER_AB(GLB_CTL
),
1835 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1836 REGISTER_BZ(DP_CTRL
),
1837 REGISTER_AZ(MEM_STAT
),
1838 REGISTER_AZ(CS_DEBUG
),
1839 REGISTER_AZ(ALTERA_BUILD
),
1840 REGISTER_AZ(CSR_SPARE
),
1841 REGISTER_AB(PCIE_SD_CTL0123
),
1842 REGISTER_AB(PCIE_SD_CTL45
),
1843 REGISTER_AB(PCIE_PCS_CTL_STAT
),
1844 /* DEBUG_DATA_OUT is not used */
1846 REGISTER_AZ(EVQ_CTL
),
1847 REGISTER_AZ(EVQ_CNT1
),
1848 REGISTER_AZ(EVQ_CNT2
),
1849 REGISTER_AZ(BUF_TBL_CFG
),
1850 REGISTER_AZ(SRM_RX_DC_CFG
),
1851 REGISTER_AZ(SRM_TX_DC_CFG
),
1852 REGISTER_AZ(SRM_CFG
),
1853 /* BUF_TBL_UPD is WO */
1854 REGISTER_AZ(SRM_UPD_EVQ
),
1855 REGISTER_AZ(SRAM_PARITY
),
1856 REGISTER_AZ(RX_CFG
),
1857 REGISTER_BZ(RX_FILTER_CTL
),
1858 /* RX_FLUSH_DESCQ is WO */
1859 REGISTER_AZ(RX_DC_CFG
),
1860 REGISTER_AZ(RX_DC_PF_WM
),
1861 REGISTER_BZ(RX_RSS_TKEY
),
1862 /* RX_NODESC_DROP is RC */
1863 REGISTER_AA(RX_SELF_RST
),
1864 /* RX_DEBUG, RX_PUSH_DROP are not used */
1865 REGISTER_CZ(RX_RSS_IPV6_REG1
),
1866 REGISTER_CZ(RX_RSS_IPV6_REG2
),
1867 REGISTER_CZ(RX_RSS_IPV6_REG3
),
1868 /* TX_FLUSH_DESCQ is WO */
1869 REGISTER_AZ(TX_DC_CFG
),
1870 REGISTER_AA(TX_CHKSM_CFG
),
1871 REGISTER_AZ(TX_CFG
),
1872 /* TX_PUSH_DROP is not used */
1873 REGISTER_AZ(TX_RESERVED
),
1874 REGISTER_BZ(TX_PACE
),
1875 /* TX_PACE_DROP_QID is RC */
1876 REGISTER_BB(TX_VLAN
),
1877 REGISTER_BZ(TX_IPFIL_PORTEN
),
1878 REGISTER_AB(MD_TXD
),
1879 REGISTER_AB(MD_RXD
),
1881 REGISTER_AB(MD_PHY_ADR
),
1884 REGISTER_AB(MAC_STAT_DMA
),
1885 REGISTER_AB(MAC_CTRL
),
1886 REGISTER_BB(GEN_MODE
),
1887 REGISTER_AB(MAC_MC_HASH_REG0
),
1888 REGISTER_AB(MAC_MC_HASH_REG1
),
1889 REGISTER_AB(GM_CFG1
),
1890 REGISTER_AB(GM_CFG2
),
1891 /* GM_IPG and GM_HD are not used */
1892 REGISTER_AB(GM_MAX_FLEN
),
1893 /* GM_TEST is not used */
1894 REGISTER_AB(GM_ADR1
),
1895 REGISTER_AB(GM_ADR2
),
1896 REGISTER_AB(GMF_CFG0
),
1897 REGISTER_AB(GMF_CFG1
),
1898 REGISTER_AB(GMF_CFG2
),
1899 REGISTER_AB(GMF_CFG3
),
1900 REGISTER_AB(GMF_CFG4
),
1901 REGISTER_AB(GMF_CFG5
),
1902 REGISTER_BB(TX_SRC_MAC_CTL
),
1903 REGISTER_AB(XM_ADR_LO
),
1904 REGISTER_AB(XM_ADR_HI
),
1905 REGISTER_AB(XM_GLB_CFG
),
1906 REGISTER_AB(XM_TX_CFG
),
1907 REGISTER_AB(XM_RX_CFG
),
1908 REGISTER_AB(XM_MGT_INT_MASK
),
1910 REGISTER_AB(XM_PAUSE_TIME
),
1911 REGISTER_AB(XM_TX_PARAM
),
1912 REGISTER_AB(XM_RX_PARAM
),
1913 /* XM_MGT_INT_MSK (note no 'A') is RC */
1914 REGISTER_AB(XX_PWR_RST
),
1915 REGISTER_AB(XX_SD_CTL
),
1916 REGISTER_AB(XX_TXDRV_CTL
),
1917 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1918 /* XX_CORE_STAT is partly RC */
1921 struct efx_nic_reg_table
{
1923 u32 min_revision
:2, max_revision
:2;
1924 u32 step
:6, rows
:21;
1927 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1929 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1932 #define REGISTER_TABLE(name, min_rev, max_rev) \
1933 REGISTER_TABLE_DIMENSIONS( \
1934 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1936 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1937 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1938 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1939 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1940 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1941 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1942 #define REGISTER_TABLE_BB_CZ(name) \
1943 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1944 FR_BZ_ ## name ## _STEP, \
1945 FR_BB_ ## name ## _ROWS), \
1946 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1947 FR_BZ_ ## name ## _STEP, \
1948 FR_CZ_ ## name ## _ROWS)
1949 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1951 static const struct efx_nic_reg_table efx_nic_reg_tables
[] = {
1952 /* DRIVER is not used */
1953 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1954 REGISTER_TABLE_BB(TX_IPFIL_TBL
),
1955 REGISTER_TABLE_BB(TX_SRC_MAC_TBL
),
1956 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER
),
1957 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL
),
1958 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER
),
1959 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL
),
1960 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER
),
1961 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL
),
1962 /* We can't reasonably read all of the buffer table (up to 8MB!).
1963 * However this driver will only use a few entries. Reading
1964 * 1K entries allows for some expansion of queue count and
1965 * size before we need to change the version. */
1966 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER
, FR_AA_BUF_FULL_TBL_KER
,
1968 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL
, FR_BZ_BUF_FULL_TBL
,
1970 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0
),
1971 REGISTER_TABLE_BB_CZ(TIMER_TBL
),
1972 REGISTER_TABLE_BB_CZ(TX_PACE_TBL
),
1973 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL
),
1974 /* TX_FILTER_TBL0 is huge and not used by this driver */
1975 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0
),
1976 REGISTER_TABLE_CZ(MC_TREG_SMEM
),
1977 /* MSIX_PBA_TABLE is not mapped */
1978 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1979 REGISTER_TABLE_BZ(RX_FILTER_TBL0
),
1982 size_t efx_nic_get_regs_len(struct efx_nic
*efx
)
1984 const struct efx_nic_reg
*reg
;
1985 const struct efx_nic_reg_table
*table
;
1988 for (reg
= efx_nic_regs
;
1989 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
1991 if (efx
->type
->revision
>= reg
->min_revision
&&
1992 efx
->type
->revision
<= reg
->max_revision
)
1993 len
+= sizeof(efx_oword_t
);
1995 for (table
= efx_nic_reg_tables
;
1996 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
1998 if (efx
->type
->revision
>= table
->min_revision
&&
1999 efx
->type
->revision
<= table
->max_revision
)
2000 len
+= table
->rows
* min_t(size_t, table
->step
, 16);
2005 void efx_nic_get_regs(struct efx_nic
*efx
, void *buf
)
2007 const struct efx_nic_reg
*reg
;
2008 const struct efx_nic_reg_table
*table
;
2010 for (reg
= efx_nic_regs
;
2011 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
2013 if (efx
->type
->revision
>= reg
->min_revision
&&
2014 efx
->type
->revision
<= reg
->max_revision
) {
2015 efx_reado(efx
, (efx_oword_t
*)buf
, reg
->offset
);
2016 buf
+= sizeof(efx_oword_t
);
2020 for (table
= efx_nic_reg_tables
;
2021 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
2025 if (!(efx
->type
->revision
>= table
->min_revision
&&
2026 efx
->type
->revision
<= table
->max_revision
))
2029 size
= min_t(size_t, table
->step
, 16);
2031 for (i
= 0; i
< table
->rows
; i
++) {
2032 switch (table
->step
) {
2033 case 4: /* 32-bit register or SRAM */
2034 efx_readd_table(efx
, buf
, table
->offset
, i
);
2036 case 8: /* 64-bit SRAM */
2038 efx
->membase
+ table
->offset
,
2041 case 16: /* 128-bit register */
2042 efx_reado_table(efx
, buf
, table
->offset
, i
);
2044 case 32: /* 128-bit register, interleaved */
2045 efx_reado_table(efx
, buf
, table
->offset
, 2 * i
);