2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
97 #include <net/cls_cgroup.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly
;
111 unsigned int sysctl_net_busy_poll __read_mostly
;
114 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
115 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
116 unsigned long nr_segs
, loff_t pos
);
117 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
118 unsigned long nr_segs
, loff_t pos
);
119 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
121 static int sock_close(struct inode
*inode
, struct file
*file
);
122 static unsigned int sock_poll(struct file
*file
,
123 struct poll_table_struct
*wait
);
124 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
126 static long compat_sock_ioctl(struct file
*file
,
127 unsigned int cmd
, unsigned long arg
);
129 static int sock_fasync(int fd
, struct file
*filp
, int on
);
130 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
131 int offset
, size_t size
, loff_t
*ppos
, int more
);
132 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
133 struct pipe_inode_info
*pipe
, size_t len
,
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops
= {
142 .owner
= THIS_MODULE
,
144 .aio_read
= sock_aio_read
,
145 .aio_write
= sock_aio_write
,
147 .unlocked_ioctl
= sock_ioctl
,
149 .compat_ioctl
= compat_sock_ioctl
,
152 .open
= sock_no_open
, /* special open code to disallow open via /proc */
153 .release
= sock_close
,
154 .fasync
= sock_fasync
,
155 .sendpage
= sock_sendpage
,
156 .splice_write
= generic_splice_sendpage
,
157 .splice_read
= sock_splice_read
,
161 * The protocol list. Each protocol is registered in here.
164 static DEFINE_SPINLOCK(net_family_lock
);
165 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
168 * Statistics counters of the socket lists
171 static DEFINE_PER_CPU(int, sockets_in_use
);
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
192 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
196 if (copy_from_user(kaddr
, uaddr
, ulen
))
198 return audit_sockaddr(ulen
, kaddr
);
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
218 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
219 void __user
*uaddr
, int __user
*ulen
)
224 err
= get_user(len
, ulen
);
229 if (len
< 0 || len
> sizeof(struct sockaddr_storage
))
232 if (audit_sockaddr(klen
, kaddr
))
234 if (copy_to_user(uaddr
, kaddr
, len
))
238 * "fromlen shall refer to the value before truncation.."
241 return __put_user(klen
, ulen
);
244 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
246 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
248 struct socket_alloc
*ei
;
249 struct socket_wq
*wq
;
251 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
254 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
256 kmem_cache_free(sock_inode_cachep
, ei
);
259 init_waitqueue_head(&wq
->wait
);
260 wq
->fasync_list
= NULL
;
261 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
263 ei
->socket
.state
= SS_UNCONNECTED
;
264 ei
->socket
.flags
= 0;
265 ei
->socket
.ops
= NULL
;
266 ei
->socket
.sk
= NULL
;
267 ei
->socket
.file
= NULL
;
269 return &ei
->vfs_inode
;
272 static void sock_destroy_inode(struct inode
*inode
)
274 struct socket_alloc
*ei
;
275 struct socket_wq
*wq
;
277 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
278 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
280 kmem_cache_free(sock_inode_cachep
, ei
);
283 static void init_once(void *foo
)
285 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
287 inode_init_once(&ei
->vfs_inode
);
290 static int init_inodecache(void)
292 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc
),
295 (SLAB_HWCACHE_ALIGN
|
296 SLAB_RECLAIM_ACCOUNT
|
299 if (sock_inode_cachep
== NULL
)
304 static const struct super_operations sockfs_ops
= {
305 .alloc_inode
= sock_alloc_inode
,
306 .destroy_inode
= sock_destroy_inode
,
307 .statfs
= simple_statfs
,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
315 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
316 dentry
->d_inode
->i_ino
);
319 static const struct dentry_operations sockfs_dentry_operations
= {
320 .d_dname
= sockfs_dname
,
323 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
324 int flags
, const char *dev_name
, void *data
)
326 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
327 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
330 static struct vfsmount
*sock_mnt __read_mostly
;
332 static struct file_system_type sock_fs_type
= {
334 .mount
= sockfs_mount
,
335 .kill_sb
= kill_anon_super
,
339 * Obtains the first available file descriptor and sets it up for use.
341 * These functions create file structures and maps them to fd space
342 * of the current process. On success it returns file descriptor
343 * and file struct implicitly stored in sock->file.
344 * Note that another thread may close file descriptor before we return
345 * from this function. We use the fact that now we do not refer
346 * to socket after mapping. If one day we will need it, this
347 * function will increment ref. count on file by 1.
349 * In any case returned fd MAY BE not valid!
350 * This race condition is unavoidable
351 * with shared fd spaces, we cannot solve it inside kernel,
352 * but we take care of internal coherence yet.
355 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
357 struct qstr name
= { .name
= "" };
363 name
.len
= strlen(name
.name
);
364 } else if (sock
->sk
) {
365 name
.name
= sock
->sk
->sk_prot_creator
->name
;
366 name
.len
= strlen(name
.name
);
368 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
369 if (unlikely(!path
.dentry
))
370 return ERR_PTR(-ENOMEM
);
371 path
.mnt
= mntget(sock_mnt
);
373 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
374 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
376 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
378 if (unlikely(IS_ERR(file
))) {
379 /* drop dentry, keep inode */
380 ihold(path
.dentry
->d_inode
);
386 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
387 file
->private_data
= sock
;
390 EXPORT_SYMBOL(sock_alloc_file
);
392 static int sock_map_fd(struct socket
*sock
, int flags
)
394 struct file
*newfile
;
395 int fd
= get_unused_fd_flags(flags
);
396 if (unlikely(fd
< 0))
399 newfile
= sock_alloc_file(sock
, flags
, NULL
);
400 if (likely(!IS_ERR(newfile
))) {
401 fd_install(fd
, newfile
);
406 return PTR_ERR(newfile
);
409 struct socket
*sock_from_file(struct file
*file
, int *err
)
411 if (file
->f_op
== &socket_file_ops
)
412 return file
->private_data
; /* set in sock_map_fd */
417 EXPORT_SYMBOL(sock_from_file
);
420 * sockfd_lookup - Go from a file number to its socket slot
422 * @err: pointer to an error code return
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
429 * On a success the socket object pointer is returned.
432 struct socket
*sockfd_lookup(int fd
, int *err
)
443 sock
= sock_from_file(file
, err
);
448 EXPORT_SYMBOL(sockfd_lookup
);
450 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
456 file
= fget_light(fd
, fput_needed
);
458 sock
= sock_from_file(file
, err
);
461 fput_light(file
, *fput_needed
);
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t
sockfs_getxattr(struct dentry
*dentry
,
470 const char *name
, void *value
, size_t size
)
472 const char *proto_name
;
477 if (!strncmp(name
, XATTR_NAME_SOCKPROTONAME
, XATTR_NAME_SOCKPROTONAME_LEN
)) {
478 proto_name
= dentry
->d_name
.name
;
479 proto_size
= strlen(proto_name
);
483 if (proto_size
+ 1 > size
)
486 strncpy(value
, proto_name
, proto_size
+ 1);
488 error
= proto_size
+ 1;
495 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
501 len
= security_inode_listsecurity(dentry
->d_inode
, buffer
, size
);
511 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
516 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
523 static const struct inode_operations sockfs_inode_ops
= {
524 .getxattr
= sockfs_getxattr
,
525 .listxattr
= sockfs_listxattr
,
529 * sock_alloc - allocate a socket
531 * Allocate a new inode and socket object. The two are bound together
532 * and initialised. The socket is then returned. If we are out of inodes
536 static struct socket
*sock_alloc(void)
541 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
545 sock
= SOCKET_I(inode
);
547 kmemcheck_annotate_bitfield(sock
, type
);
548 inode
->i_ino
= get_next_ino();
549 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
550 inode
->i_uid
= current_fsuid();
551 inode
->i_gid
= current_fsgid();
552 inode
->i_op
= &sockfs_inode_ops
;
554 this_cpu_add(sockets_in_use
, 1);
559 * In theory you can't get an open on this inode, but /proc provides
560 * a back door. Remember to keep it shut otherwise you'll let the
561 * creepy crawlies in.
564 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
569 const struct file_operations bad_sock_fops
= {
570 .owner
= THIS_MODULE
,
571 .open
= sock_no_open
,
572 .llseek
= noop_llseek
,
576 * sock_release - close a socket
577 * @sock: socket to close
579 * The socket is released from the protocol stack if it has a release
580 * callback, and the inode is then released if the socket is bound to
581 * an inode not a file.
584 void sock_release(struct socket
*sock
)
587 struct module
*owner
= sock
->ops
->owner
;
589 sock
->ops
->release(sock
);
594 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
595 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
597 if (test_bit(SOCK_EXTERNALLY_ALLOCATED
, &sock
->flags
))
600 this_cpu_sub(sockets_in_use
, 1);
602 iput(SOCK_INODE(sock
));
607 EXPORT_SYMBOL(sock_release
);
609 void sock_tx_timestamp(struct sock
*sk
, __u8
*tx_flags
)
612 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
613 *tx_flags
|= SKBTX_HW_TSTAMP
;
614 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
615 *tx_flags
|= SKBTX_SW_TSTAMP
;
616 if (sock_flag(sk
, SOCK_WIFI_STATUS
))
617 *tx_flags
|= SKBTX_WIFI_STATUS
;
619 EXPORT_SYMBOL(sock_tx_timestamp
);
621 static inline int __sock_sendmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
622 struct msghdr
*msg
, size_t size
)
624 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
631 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
634 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
635 struct msghdr
*msg
, size_t size
)
637 int err
= security_socket_sendmsg(sock
, msg
, size
);
639 return err
?: __sock_sendmsg_nosec(iocb
, sock
, msg
, size
);
642 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
645 struct sock_iocb siocb
;
648 init_sync_kiocb(&iocb
, NULL
);
649 iocb
.private = &siocb
;
650 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
651 if (-EIOCBQUEUED
== ret
)
652 ret
= wait_on_sync_kiocb(&iocb
);
655 EXPORT_SYMBOL(sock_sendmsg
);
657 static int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
660 struct sock_iocb siocb
;
663 init_sync_kiocb(&iocb
, NULL
);
664 iocb
.private = &siocb
;
665 ret
= __sock_sendmsg_nosec(&iocb
, sock
, msg
, size
);
666 if (-EIOCBQUEUED
== ret
)
667 ret
= wait_on_sync_kiocb(&iocb
);
671 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
672 struct kvec
*vec
, size_t num
, size_t size
)
674 mm_segment_t oldfs
= get_fs();
679 * the following is safe, since for compiler definitions of kvec and
680 * iovec are identical, yielding the same in-core layout and alignment
682 msg
->msg_iov
= (struct iovec
*)vec
;
683 msg
->msg_iovlen
= num
;
684 result
= sock_sendmsg(sock
, msg
, size
);
688 EXPORT_SYMBOL(kernel_sendmsg
);
691 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
693 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
696 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
697 struct timespec ts
[3];
699 struct skb_shared_hwtstamps
*shhwtstamps
=
702 /* Race occurred between timestamp enabling and packet
703 receiving. Fill in the current time for now. */
704 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
705 __net_timestamp(skb
);
707 if (need_software_tstamp
) {
708 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
710 skb_get_timestamp(skb
, &tv
);
711 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
714 skb_get_timestampns(skb
, &ts
[0]);
715 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
716 sizeof(ts
[0]), &ts
[0]);
721 memset(ts
, 0, sizeof(ts
));
722 if (sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
) &&
723 ktime_to_timespec_cond(skb
->tstamp
, ts
+ 0))
726 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
727 ktime_to_timespec_cond(shhwtstamps
->syststamp
, ts
+ 1))
729 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
730 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, ts
+ 2))
734 put_cmsg(msg
, SOL_SOCKET
,
735 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
737 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
739 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
744 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
746 if (!skb
->wifi_acked_valid
)
749 ack
= skb
->wifi_acked
;
751 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
753 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
755 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
758 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& skb
->dropcount
)
759 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
760 sizeof(__u32
), &skb
->dropcount
);
763 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
766 sock_recv_timestamp(msg
, sk
, skb
);
767 sock_recv_drops(msg
, sk
, skb
);
769 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
771 static inline int __sock_recvmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
772 struct msghdr
*msg
, size_t size
, int flags
)
774 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
782 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
785 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
786 struct msghdr
*msg
, size_t size
, int flags
)
788 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
790 return err
?: __sock_recvmsg_nosec(iocb
, sock
, msg
, size
, flags
);
793 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
794 size_t size
, int flags
)
797 struct sock_iocb siocb
;
800 init_sync_kiocb(&iocb
, NULL
);
801 iocb
.private = &siocb
;
802 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
803 if (-EIOCBQUEUED
== ret
)
804 ret
= wait_on_sync_kiocb(&iocb
);
807 EXPORT_SYMBOL(sock_recvmsg
);
809 static int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
810 size_t size
, int flags
)
813 struct sock_iocb siocb
;
816 init_sync_kiocb(&iocb
, NULL
);
817 iocb
.private = &siocb
;
818 ret
= __sock_recvmsg_nosec(&iocb
, sock
, msg
, size
, flags
);
819 if (-EIOCBQUEUED
== ret
)
820 ret
= wait_on_sync_kiocb(&iocb
);
825 * kernel_recvmsg - Receive a message from a socket (kernel space)
826 * @sock: The socket to receive the message from
827 * @msg: Received message
828 * @vec: Input s/g array for message data
829 * @num: Size of input s/g array
830 * @size: Number of bytes to read
831 * @flags: Message flags (MSG_DONTWAIT, etc...)
833 * On return the msg structure contains the scatter/gather array passed in the
834 * vec argument. The array is modified so that it consists of the unfilled
835 * portion of the original array.
837 * The returned value is the total number of bytes received, or an error.
839 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
840 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
842 mm_segment_t oldfs
= get_fs();
847 * the following is safe, since for compiler definitions of kvec and
848 * iovec are identical, yielding the same in-core layout and alignment
850 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
851 result
= sock_recvmsg(sock
, msg
, size
, flags
);
855 EXPORT_SYMBOL(kernel_recvmsg
);
857 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
858 int offset
, size_t size
, loff_t
*ppos
, int more
)
863 sock
= file
->private_data
;
865 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
866 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
869 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
872 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
873 struct pipe_inode_info
*pipe
, size_t len
,
876 struct socket
*sock
= file
->private_data
;
878 if (unlikely(!sock
->ops
->splice_read
))
881 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
884 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
885 struct sock_iocb
*siocb
)
887 if (!is_sync_kiocb(iocb
))
891 iocb
->private = siocb
;
895 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
896 struct file
*file
, const struct iovec
*iov
,
897 unsigned long nr_segs
)
899 struct socket
*sock
= file
->private_data
;
903 for (i
= 0; i
< nr_segs
; i
++)
904 size
+= iov
[i
].iov_len
;
906 msg
->msg_name
= NULL
;
907 msg
->msg_namelen
= 0;
908 msg
->msg_control
= NULL
;
909 msg
->msg_controllen
= 0;
910 msg
->msg_iov
= (struct iovec
*)iov
;
911 msg
->msg_iovlen
= nr_segs
;
912 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
914 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
917 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
918 unsigned long nr_segs
, loff_t pos
)
920 struct sock_iocb siocb
, *x
;
925 if (iocb
->ki_nbytes
== 0) /* Match SYS5 behaviour */
929 x
= alloc_sock_iocb(iocb
, &siocb
);
932 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
935 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
936 struct file
*file
, const struct iovec
*iov
,
937 unsigned long nr_segs
)
939 struct socket
*sock
= file
->private_data
;
943 for (i
= 0; i
< nr_segs
; i
++)
944 size
+= iov
[i
].iov_len
;
946 msg
->msg_name
= NULL
;
947 msg
->msg_namelen
= 0;
948 msg
->msg_control
= NULL
;
949 msg
->msg_controllen
= 0;
950 msg
->msg_iov
= (struct iovec
*)iov
;
951 msg
->msg_iovlen
= nr_segs
;
952 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
953 if (sock
->type
== SOCK_SEQPACKET
)
954 msg
->msg_flags
|= MSG_EOR
;
956 return __sock_sendmsg(iocb
, sock
, msg
, size
);
959 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
960 unsigned long nr_segs
, loff_t pos
)
962 struct sock_iocb siocb
, *x
;
967 x
= alloc_sock_iocb(iocb
, &siocb
);
971 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
975 * Atomic setting of ioctl hooks to avoid race
976 * with module unload.
979 static DEFINE_MUTEX(br_ioctl_mutex
);
980 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
982 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
984 mutex_lock(&br_ioctl_mutex
);
985 br_ioctl_hook
= hook
;
986 mutex_unlock(&br_ioctl_mutex
);
988 EXPORT_SYMBOL(brioctl_set
);
990 static DEFINE_MUTEX(vlan_ioctl_mutex
);
991 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
993 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
995 mutex_lock(&vlan_ioctl_mutex
);
996 vlan_ioctl_hook
= hook
;
997 mutex_unlock(&vlan_ioctl_mutex
);
999 EXPORT_SYMBOL(vlan_ioctl_set
);
1001 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1002 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1004 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1006 mutex_lock(&dlci_ioctl_mutex
);
1007 dlci_ioctl_hook
= hook
;
1008 mutex_unlock(&dlci_ioctl_mutex
);
1010 EXPORT_SYMBOL(dlci_ioctl_set
);
1012 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1013 unsigned int cmd
, unsigned long arg
)
1016 void __user
*argp
= (void __user
*)arg
;
1018 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1021 * If this ioctl is unknown try to hand it down
1022 * to the NIC driver.
1024 if (err
== -ENOIOCTLCMD
)
1025 err
= dev_ioctl(net
, cmd
, argp
);
1031 * With an ioctl, arg may well be a user mode pointer, but we don't know
1032 * what to do with it - that's up to the protocol still.
1035 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1037 struct socket
*sock
;
1039 void __user
*argp
= (void __user
*)arg
;
1043 sock
= file
->private_data
;
1046 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
1047 err
= dev_ioctl(net
, cmd
, argp
);
1049 #ifdef CONFIG_WEXT_CORE
1050 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1051 err
= dev_ioctl(net
, cmd
, argp
);
1058 if (get_user(pid
, (int __user
*)argp
))
1060 err
= f_setown(sock
->file
, pid
, 1);
1064 err
= put_user(f_getown(sock
->file
),
1065 (int __user
*)argp
);
1073 request_module("bridge");
1075 mutex_lock(&br_ioctl_mutex
);
1077 err
= br_ioctl_hook(net
, cmd
, argp
);
1078 mutex_unlock(&br_ioctl_mutex
);
1083 if (!vlan_ioctl_hook
)
1084 request_module("8021q");
1086 mutex_lock(&vlan_ioctl_mutex
);
1087 if (vlan_ioctl_hook
)
1088 err
= vlan_ioctl_hook(net
, argp
);
1089 mutex_unlock(&vlan_ioctl_mutex
);
1094 if (!dlci_ioctl_hook
)
1095 request_module("dlci");
1097 mutex_lock(&dlci_ioctl_mutex
);
1098 if (dlci_ioctl_hook
)
1099 err
= dlci_ioctl_hook(cmd
, argp
);
1100 mutex_unlock(&dlci_ioctl_mutex
);
1103 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1109 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1112 struct socket
*sock
= NULL
;
1114 err
= security_socket_create(family
, type
, protocol
, 1);
1118 sock
= sock_alloc();
1125 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1137 EXPORT_SYMBOL(sock_create_lite
);
1139 /* No kernel lock held - perfect */
1140 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1142 unsigned int busy_flag
= 0;
1143 struct socket
*sock
;
1146 * We can't return errors to poll, so it's either yes or no.
1148 sock
= file
->private_data
;
1150 if (sk_can_busy_loop(sock
->sk
)) {
1151 /* this socket can poll_ll so tell the system call */
1152 busy_flag
= POLL_BUSY_LOOP
;
1154 /* once, only if requested by syscall */
1155 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1156 sk_busy_loop(sock
->sk
, 1);
1159 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1162 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1164 struct socket
*sock
= file
->private_data
;
1166 return sock
->ops
->mmap(file
, sock
, vma
);
1169 static int sock_close(struct inode
*inode
, struct file
*filp
)
1171 sock_release(SOCKET_I(inode
));
1176 * Update the socket async list
1178 * Fasync_list locking strategy.
1180 * 1. fasync_list is modified only under process context socket lock
1181 * i.e. under semaphore.
1182 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1183 * or under socket lock
1186 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1188 struct socket
*sock
= filp
->private_data
;
1189 struct sock
*sk
= sock
->sk
;
1190 struct socket_wq
*wq
;
1196 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1197 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1199 if (!wq
->fasync_list
)
1200 sock_reset_flag(sk
, SOCK_FASYNC
);
1202 sock_set_flag(sk
, SOCK_FASYNC
);
1208 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1210 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1212 struct socket_wq
*wq
;
1217 wq
= rcu_dereference(sock
->wq
);
1218 if (!wq
|| !wq
->fasync_list
) {
1223 case SOCK_WAKE_WAITD
:
1224 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1227 case SOCK_WAKE_SPACE
:
1228 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1233 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1236 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1241 EXPORT_SYMBOL(sock_wake_async
);
1243 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1244 struct socket
**res
, int kern
)
1247 struct socket
*sock
;
1248 const struct net_proto_family
*pf
;
1251 * Check protocol is in range
1253 if (family
< 0 || family
>= NPROTO
)
1254 return -EAFNOSUPPORT
;
1255 if (type
< 0 || type
>= SOCK_MAX
)
1260 This uglymoron is moved from INET layer to here to avoid
1261 deadlock in module load.
1263 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1267 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1273 err
= security_socket_create(family
, type
, protocol
, kern
);
1278 * Allocate the socket and allow the family to set things up. if
1279 * the protocol is 0, the family is instructed to select an appropriate
1282 sock
= sock_alloc();
1284 net_warn_ratelimited("socket: no more sockets\n");
1285 return -ENFILE
; /* Not exactly a match, but its the
1286 closest posix thing */
1291 #ifdef CONFIG_MODULES
1292 /* Attempt to load a protocol module if the find failed.
1294 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1295 * requested real, full-featured networking support upon configuration.
1296 * Otherwise module support will break!
1298 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1299 request_module("net-pf-%d", family
);
1303 pf
= rcu_dereference(net_families
[family
]);
1304 err
= -EAFNOSUPPORT
;
1309 * We will call the ->create function, that possibly is in a loadable
1310 * module, so we have to bump that loadable module refcnt first.
1312 if (!try_module_get(pf
->owner
))
1315 /* Now protected by module ref count */
1318 err
= pf
->create(net
, sock
, protocol
, kern
);
1320 goto out_module_put
;
1323 * Now to bump the refcnt of the [loadable] module that owns this
1324 * socket at sock_release time we decrement its refcnt.
1326 if (!try_module_get(sock
->ops
->owner
))
1327 goto out_module_busy
;
1330 * Now that we're done with the ->create function, the [loadable]
1331 * module can have its refcnt decremented
1333 module_put(pf
->owner
);
1334 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1336 goto out_sock_release
;
1342 err
= -EAFNOSUPPORT
;
1345 module_put(pf
->owner
);
1352 goto out_sock_release
;
1354 EXPORT_SYMBOL(__sock_create
);
1356 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1358 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1360 EXPORT_SYMBOL(sock_create
);
1362 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1364 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1366 EXPORT_SYMBOL(sock_create_kern
);
1368 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1371 struct socket
*sock
;
1374 /* Check the SOCK_* constants for consistency. */
1375 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1376 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1377 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1378 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1380 flags
= type
& ~SOCK_TYPE_MASK
;
1381 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1383 type
&= SOCK_TYPE_MASK
;
1385 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1386 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1388 retval
= sock_create(family
, type
, protocol
, &sock
);
1392 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1397 /* It may be already another descriptor 8) Not kernel problem. */
1406 * Create a pair of connected sockets.
1409 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1410 int __user
*, usockvec
)
1412 struct socket
*sock1
, *sock2
;
1414 struct file
*newfile1
, *newfile2
;
1417 flags
= type
& ~SOCK_TYPE_MASK
;
1418 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1420 type
&= SOCK_TYPE_MASK
;
1422 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1423 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1426 * Obtain the first socket and check if the underlying protocol
1427 * supports the socketpair call.
1430 err
= sock_create(family
, type
, protocol
, &sock1
);
1434 err
= sock_create(family
, type
, protocol
, &sock2
);
1438 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1440 goto out_release_both
;
1442 fd1
= get_unused_fd_flags(flags
);
1443 if (unlikely(fd1
< 0)) {
1445 goto out_release_both
;
1447 fd2
= get_unused_fd_flags(flags
);
1448 if (unlikely(fd2
< 0)) {
1451 goto out_release_both
;
1454 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1455 if (unlikely(IS_ERR(newfile1
))) {
1456 err
= PTR_ERR(newfile1
);
1459 goto out_release_both
;
1462 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1463 if (IS_ERR(newfile2
)) {
1464 err
= PTR_ERR(newfile2
);
1468 sock_release(sock2
);
1472 audit_fd_pair(fd1
, fd2
);
1473 fd_install(fd1
, newfile1
);
1474 fd_install(fd2
, newfile2
);
1475 /* fd1 and fd2 may be already another descriptors.
1476 * Not kernel problem.
1479 err
= put_user(fd1
, &usockvec
[0]);
1481 err
= put_user(fd2
, &usockvec
[1]);
1490 sock_release(sock2
);
1492 sock_release(sock1
);
1498 * Bind a name to a socket. Nothing much to do here since it's
1499 * the protocol's responsibility to handle the local address.
1501 * We move the socket address to kernel space before we call
1502 * the protocol layer (having also checked the address is ok).
1505 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1507 struct socket
*sock
;
1508 struct sockaddr_storage address
;
1509 int err
, fput_needed
;
1511 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1513 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1515 err
= security_socket_bind(sock
,
1516 (struct sockaddr
*)&address
,
1519 err
= sock
->ops
->bind(sock
,
1523 fput_light(sock
->file
, fput_needed
);
1529 * Perform a listen. Basically, we allow the protocol to do anything
1530 * necessary for a listen, and if that works, we mark the socket as
1531 * ready for listening.
1534 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1536 struct socket
*sock
;
1537 int err
, fput_needed
;
1540 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1542 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1543 if ((unsigned int)backlog
> somaxconn
)
1544 backlog
= somaxconn
;
1546 err
= security_socket_listen(sock
, backlog
);
1548 err
= sock
->ops
->listen(sock
, backlog
);
1550 fput_light(sock
->file
, fput_needed
);
1556 * For accept, we attempt to create a new socket, set up the link
1557 * with the client, wake up the client, then return the new
1558 * connected fd. We collect the address of the connector in kernel
1559 * space and move it to user at the very end. This is unclean because
1560 * we open the socket then return an error.
1562 * 1003.1g adds the ability to recvmsg() to query connection pending
1563 * status to recvmsg. We need to add that support in a way thats
1564 * clean when we restucture accept also.
1567 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1568 int __user
*, upeer_addrlen
, int, flags
)
1570 struct socket
*sock
, *newsock
;
1571 struct file
*newfile
;
1572 int err
, len
, newfd
, fput_needed
;
1573 struct sockaddr_storage address
;
1575 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1578 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1579 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1581 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1586 newsock
= sock_alloc();
1590 newsock
->type
= sock
->type
;
1591 newsock
->ops
= sock
->ops
;
1594 * We don't need try_module_get here, as the listening socket (sock)
1595 * has the protocol module (sock->ops->owner) held.
1597 __module_get(newsock
->ops
->owner
);
1599 newfd
= get_unused_fd_flags(flags
);
1600 if (unlikely(newfd
< 0)) {
1602 sock_release(newsock
);
1605 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1606 if (unlikely(IS_ERR(newfile
))) {
1607 err
= PTR_ERR(newfile
);
1608 put_unused_fd(newfd
);
1609 sock_release(newsock
);
1613 err
= security_socket_accept(sock
, newsock
);
1617 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1621 if (upeer_sockaddr
) {
1622 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1624 err
= -ECONNABORTED
;
1627 err
= move_addr_to_user(&address
,
1628 len
, upeer_sockaddr
, upeer_addrlen
);
1633 /* File flags are not inherited via accept() unlike another OSes. */
1635 fd_install(newfd
, newfile
);
1639 fput_light(sock
->file
, fput_needed
);
1644 put_unused_fd(newfd
);
1648 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1649 int __user
*, upeer_addrlen
)
1651 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1655 * Attempt to connect to a socket with the server address. The address
1656 * is in user space so we verify it is OK and move it to kernel space.
1658 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1661 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1662 * other SEQPACKET protocols that take time to connect() as it doesn't
1663 * include the -EINPROGRESS status for such sockets.
1666 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1669 struct socket
*sock
;
1670 struct sockaddr_storage address
;
1671 int err
, fput_needed
;
1673 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1676 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1681 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1685 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1686 sock
->file
->f_flags
);
1688 fput_light(sock
->file
, fput_needed
);
1694 * Get the local address ('name') of a socket object. Move the obtained
1695 * name to user space.
1698 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1699 int __user
*, usockaddr_len
)
1701 struct socket
*sock
;
1702 struct sockaddr_storage address
;
1703 int len
, err
, fput_needed
;
1705 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1709 err
= security_socket_getsockname(sock
);
1713 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1716 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1719 fput_light(sock
->file
, fput_needed
);
1725 * Get the remote address ('name') of a socket object. Move the obtained
1726 * name to user space.
1729 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1730 int __user
*, usockaddr_len
)
1732 struct socket
*sock
;
1733 struct sockaddr_storage address
;
1734 int len
, err
, fput_needed
;
1736 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1738 err
= security_socket_getpeername(sock
);
1740 fput_light(sock
->file
, fput_needed
);
1745 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1748 err
= move_addr_to_user(&address
, len
, usockaddr
,
1750 fput_light(sock
->file
, fput_needed
);
1756 * Send a datagram to a given address. We move the address into kernel
1757 * space and check the user space data area is readable before invoking
1761 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1762 unsigned int, flags
, struct sockaddr __user
*, addr
,
1765 struct socket
*sock
;
1766 struct sockaddr_storage address
;
1774 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1778 iov
.iov_base
= buff
;
1780 msg
.msg_name
= NULL
;
1783 msg
.msg_control
= NULL
;
1784 msg
.msg_controllen
= 0;
1785 msg
.msg_namelen
= 0;
1787 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1790 msg
.msg_name
= (struct sockaddr
*)&address
;
1791 msg
.msg_namelen
= addr_len
;
1793 if (sock
->file
->f_flags
& O_NONBLOCK
)
1794 flags
|= MSG_DONTWAIT
;
1795 msg
.msg_flags
= flags
;
1796 err
= sock_sendmsg(sock
, &msg
, len
);
1799 fput_light(sock
->file
, fput_needed
);
1805 * Send a datagram down a socket.
1808 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1809 unsigned int, flags
)
1811 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1815 * Receive a frame from the socket and optionally record the address of the
1816 * sender. We verify the buffers are writable and if needed move the
1817 * sender address from kernel to user space.
1820 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1821 unsigned int, flags
, struct sockaddr __user
*, addr
,
1822 int __user
*, addr_len
)
1824 struct socket
*sock
;
1827 struct sockaddr_storage address
;
1833 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1837 msg
.msg_control
= NULL
;
1838 msg
.msg_controllen
= 0;
1842 iov
.iov_base
= ubuf
;
1843 msg
.msg_name
= (struct sockaddr
*)&address
;
1844 msg
.msg_namelen
= sizeof(address
);
1845 if (sock
->file
->f_flags
& O_NONBLOCK
)
1846 flags
|= MSG_DONTWAIT
;
1847 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1849 if (err
>= 0 && addr
!= NULL
) {
1850 err2
= move_addr_to_user(&address
,
1851 msg
.msg_namelen
, addr
, addr_len
);
1856 fput_light(sock
->file
, fput_needed
);
1862 * Receive a datagram from a socket.
1865 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1868 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1872 * Set a socket option. Because we don't know the option lengths we have
1873 * to pass the user mode parameter for the protocols to sort out.
1876 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1877 char __user
*, optval
, int, optlen
)
1879 int err
, fput_needed
;
1880 struct socket
*sock
;
1885 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1887 err
= security_socket_setsockopt(sock
, level
, optname
);
1891 if (level
== SOL_SOCKET
)
1893 sock_setsockopt(sock
, level
, optname
, optval
,
1897 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1900 fput_light(sock
->file
, fput_needed
);
1906 * Get a socket option. Because we don't know the option lengths we have
1907 * to pass a user mode parameter for the protocols to sort out.
1910 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1911 char __user
*, optval
, int __user
*, optlen
)
1913 int err
, fput_needed
;
1914 struct socket
*sock
;
1916 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1918 err
= security_socket_getsockopt(sock
, level
, optname
);
1922 if (level
== SOL_SOCKET
)
1924 sock_getsockopt(sock
, level
, optname
, optval
,
1928 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1931 fput_light(sock
->file
, fput_needed
);
1937 * Shutdown a socket.
1940 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1942 int err
, fput_needed
;
1943 struct socket
*sock
;
1945 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1947 err
= security_socket_shutdown(sock
, how
);
1949 err
= sock
->ops
->shutdown(sock
, how
);
1950 fput_light(sock
->file
, fput_needed
);
1955 /* A couple of helpful macros for getting the address of the 32/64 bit
1956 * fields which are the same type (int / unsigned) on our platforms.
1958 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1959 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1960 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1962 struct used_address
{
1963 struct sockaddr_storage name
;
1964 unsigned int name_len
;
1967 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1968 struct msghdr __user
*umsg
)
1970 if (copy_from_user(kmsg
, umsg
, sizeof(struct msghdr
)))
1972 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1977 static int ___sys_sendmsg(struct socket
*sock
, struct msghdr __user
*msg
,
1978 struct msghdr
*msg_sys
, unsigned int flags
,
1979 struct used_address
*used_address
)
1981 struct compat_msghdr __user
*msg_compat
=
1982 (struct compat_msghdr __user
*)msg
;
1983 struct sockaddr_storage address
;
1984 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1985 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1986 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1987 /* 20 is size of ipv6_pktinfo */
1988 unsigned char *ctl_buf
= ctl
;
1989 int err
, ctl_len
, total_len
;
1992 if (MSG_CMSG_COMPAT
& flags
) {
1993 if (get_compat_msghdr(msg_sys
, msg_compat
))
1996 err
= copy_msghdr_from_user(msg_sys
, msg
);
2001 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2003 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2006 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2012 /* This will also move the address data into kernel space */
2013 if (MSG_CMSG_COMPAT
& flags
) {
2014 err
= verify_compat_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2016 err
= verify_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2023 if (msg_sys
->msg_controllen
> INT_MAX
)
2025 ctl_len
= msg_sys
->msg_controllen
;
2026 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2028 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2032 ctl_buf
= msg_sys
->msg_control
;
2033 ctl_len
= msg_sys
->msg_controllen
;
2034 } else if (ctl_len
) {
2035 if (ctl_len
> sizeof(ctl
)) {
2036 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2037 if (ctl_buf
== NULL
)
2042 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2043 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2044 * checking falls down on this.
2046 if (copy_from_user(ctl_buf
,
2047 (void __user __force
*)msg_sys
->msg_control
,
2050 msg_sys
->msg_control
= ctl_buf
;
2052 msg_sys
->msg_flags
= flags
;
2054 if (sock
->file
->f_flags
& O_NONBLOCK
)
2055 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2057 * If this is sendmmsg() and current destination address is same as
2058 * previously succeeded address, omit asking LSM's decision.
2059 * used_address->name_len is initialized to UINT_MAX so that the first
2060 * destination address never matches.
2062 if (used_address
&& msg_sys
->msg_name
&&
2063 used_address
->name_len
== msg_sys
->msg_namelen
&&
2064 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2065 used_address
->name_len
)) {
2066 err
= sock_sendmsg_nosec(sock
, msg_sys
, total_len
);
2069 err
= sock_sendmsg(sock
, msg_sys
, total_len
);
2071 * If this is sendmmsg() and sending to current destination address was
2072 * successful, remember it.
2074 if (used_address
&& err
>= 0) {
2075 used_address
->name_len
= msg_sys
->msg_namelen
;
2076 if (msg_sys
->msg_name
)
2077 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2078 used_address
->name_len
);
2083 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2085 if (iov
!= iovstack
)
2092 * BSD sendmsg interface
2095 long __sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2097 int fput_needed
, err
;
2098 struct msghdr msg_sys
;
2099 struct socket
*sock
;
2101 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2105 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
);
2107 fput_light(sock
->file
, fput_needed
);
2112 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned int, flags
)
2114 if (flags
& MSG_CMSG_COMPAT
)
2116 return __sys_sendmsg(fd
, msg
, flags
);
2120 * Linux sendmmsg interface
2123 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2126 int fput_needed
, err
, datagrams
;
2127 struct socket
*sock
;
2128 struct mmsghdr __user
*entry
;
2129 struct compat_mmsghdr __user
*compat_entry
;
2130 struct msghdr msg_sys
;
2131 struct used_address used_address
;
2133 if (vlen
> UIO_MAXIOV
)
2138 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2142 used_address
.name_len
= UINT_MAX
;
2144 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2147 while (datagrams
< vlen
) {
2148 if (MSG_CMSG_COMPAT
& flags
) {
2149 err
= ___sys_sendmsg(sock
, (struct msghdr __user
*)compat_entry
,
2150 &msg_sys
, flags
, &used_address
);
2153 err
= __put_user(err
, &compat_entry
->msg_len
);
2156 err
= ___sys_sendmsg(sock
,
2157 (struct msghdr __user
*)entry
,
2158 &msg_sys
, flags
, &used_address
);
2161 err
= put_user(err
, &entry
->msg_len
);
2170 fput_light(sock
->file
, fput_needed
);
2172 /* We only return an error if no datagrams were able to be sent */
2179 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2180 unsigned int, vlen
, unsigned int, flags
)
2182 if (flags
& MSG_CMSG_COMPAT
)
2184 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2187 static int ___sys_recvmsg(struct socket
*sock
, struct msghdr __user
*msg
,
2188 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2190 struct compat_msghdr __user
*msg_compat
=
2191 (struct compat_msghdr __user
*)msg
;
2192 struct iovec iovstack
[UIO_FASTIOV
];
2193 struct iovec
*iov
= iovstack
;
2194 unsigned long cmsg_ptr
;
2195 int err
, total_len
, len
;
2197 /* kernel mode address */
2198 struct sockaddr_storage addr
;
2200 /* user mode address pointers */
2201 struct sockaddr __user
*uaddr
;
2202 int __user
*uaddr_len
;
2204 if (MSG_CMSG_COMPAT
& flags
) {
2205 if (get_compat_msghdr(msg_sys
, msg_compat
))
2208 err
= copy_msghdr_from_user(msg_sys
, msg
);
2213 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2215 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2218 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2225 * Save the user-mode address (verify_iovec will change the
2226 * kernel msghdr to use the kernel address space)
2229 uaddr
= (__force
void __user
*)msg_sys
->msg_name
;
2230 uaddr_len
= COMPAT_NAMELEN(msg
);
2231 if (MSG_CMSG_COMPAT
& flags
) {
2232 err
= verify_compat_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2234 err
= verify_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2239 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2240 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2242 if (sock
->file
->f_flags
& O_NONBLOCK
)
2243 flags
|= MSG_DONTWAIT
;
2244 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2250 if (uaddr
!= NULL
) {
2251 err
= move_addr_to_user(&addr
,
2252 msg_sys
->msg_namelen
, uaddr
,
2257 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2261 if (MSG_CMSG_COMPAT
& flags
)
2262 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2263 &msg_compat
->msg_controllen
);
2265 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2266 &msg
->msg_controllen
);
2272 if (iov
!= iovstack
)
2279 * BSD recvmsg interface
2282 long __sys_recvmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2284 int fput_needed
, err
;
2285 struct msghdr msg_sys
;
2286 struct socket
*sock
;
2288 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2292 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2294 fput_light(sock
->file
, fput_needed
);
2299 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
2300 unsigned int, flags
)
2302 if (flags
& MSG_CMSG_COMPAT
)
2304 return __sys_recvmsg(fd
, msg
, flags
);
2308 * Linux recvmmsg interface
2311 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2312 unsigned int flags
, struct timespec
*timeout
)
2314 int fput_needed
, err
, datagrams
;
2315 struct socket
*sock
;
2316 struct mmsghdr __user
*entry
;
2317 struct compat_mmsghdr __user
*compat_entry
;
2318 struct msghdr msg_sys
;
2319 struct timespec end_time
;
2322 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2328 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2332 err
= sock_error(sock
->sk
);
2337 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2339 while (datagrams
< vlen
) {
2341 * No need to ask LSM for more than the first datagram.
2343 if (MSG_CMSG_COMPAT
& flags
) {
2344 err
= ___sys_recvmsg(sock
, (struct msghdr __user
*)compat_entry
,
2345 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2349 err
= __put_user(err
, &compat_entry
->msg_len
);
2352 err
= ___sys_recvmsg(sock
,
2353 (struct msghdr __user
*)entry
,
2354 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2358 err
= put_user(err
, &entry
->msg_len
);
2366 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2367 if (flags
& MSG_WAITFORONE
)
2368 flags
|= MSG_DONTWAIT
;
2371 ktime_get_ts(timeout
);
2372 *timeout
= timespec_sub(end_time
, *timeout
);
2373 if (timeout
->tv_sec
< 0) {
2374 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2378 /* Timeout, return less than vlen datagrams */
2379 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2383 /* Out of band data, return right away */
2384 if (msg_sys
.msg_flags
& MSG_OOB
)
2389 fput_light(sock
->file
, fput_needed
);
2394 if (datagrams
!= 0) {
2396 * We may return less entries than requested (vlen) if the
2397 * sock is non block and there aren't enough datagrams...
2399 if (err
!= -EAGAIN
) {
2401 * ... or if recvmsg returns an error after we
2402 * received some datagrams, where we record the
2403 * error to return on the next call or if the
2404 * app asks about it using getsockopt(SO_ERROR).
2406 sock
->sk
->sk_err
= -err
;
2415 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2416 unsigned int, vlen
, unsigned int, flags
,
2417 struct timespec __user
*, timeout
)
2420 struct timespec timeout_sys
;
2422 if (flags
& MSG_CMSG_COMPAT
)
2426 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2428 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2431 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2433 if (datagrams
> 0 &&
2434 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2435 datagrams
= -EFAULT
;
2440 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2441 /* Argument list sizes for sys_socketcall */
2442 #define AL(x) ((x) * sizeof(unsigned long))
2443 static const unsigned char nargs
[21] = {
2444 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2445 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2446 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2453 * System call vectors.
2455 * Argument checking cleaned up. Saved 20% in size.
2456 * This function doesn't need to set the kernel lock because
2457 * it is set by the callees.
2460 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2462 unsigned long a
[AUDITSC_ARGS
];
2463 unsigned long a0
, a1
;
2467 if (call
< 1 || call
> SYS_SENDMMSG
)
2471 if (len
> sizeof(a
))
2474 /* copy_from_user should be SMP safe. */
2475 if (copy_from_user(a
, args
, len
))
2478 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2487 err
= sys_socket(a0
, a1
, a
[2]);
2490 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2493 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2496 err
= sys_listen(a0
, a1
);
2499 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2500 (int __user
*)a
[2], 0);
2502 case SYS_GETSOCKNAME
:
2504 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2505 (int __user
*)a
[2]);
2507 case SYS_GETPEERNAME
:
2509 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2510 (int __user
*)a
[2]);
2512 case SYS_SOCKETPAIR
:
2513 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2516 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2519 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2520 (struct sockaddr __user
*)a
[4], a
[5]);
2523 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2526 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2527 (struct sockaddr __user
*)a
[4],
2528 (int __user
*)a
[5]);
2531 err
= sys_shutdown(a0
, a1
);
2533 case SYS_SETSOCKOPT
:
2534 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2536 case SYS_GETSOCKOPT
:
2538 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2539 (int __user
*)a
[4]);
2542 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2545 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2548 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2551 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2552 (struct timespec __user
*)a
[4]);
2555 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2556 (int __user
*)a
[2], a
[3]);
2565 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2568 * sock_register - add a socket protocol handler
2569 * @ops: description of protocol
2571 * This function is called by a protocol handler that wants to
2572 * advertise its address family, and have it linked into the
2573 * socket interface. The value ops->family coresponds to the
2574 * socket system call protocol family.
2576 int sock_register(const struct net_proto_family
*ops
)
2580 if (ops
->family
>= NPROTO
) {
2581 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2586 spin_lock(&net_family_lock
);
2587 if (rcu_dereference_protected(net_families
[ops
->family
],
2588 lockdep_is_held(&net_family_lock
)))
2591 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2594 spin_unlock(&net_family_lock
);
2596 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2599 EXPORT_SYMBOL(sock_register
);
2602 * sock_unregister - remove a protocol handler
2603 * @family: protocol family to remove
2605 * This function is called by a protocol handler that wants to
2606 * remove its address family, and have it unlinked from the
2607 * new socket creation.
2609 * If protocol handler is a module, then it can use module reference
2610 * counts to protect against new references. If protocol handler is not
2611 * a module then it needs to provide its own protection in
2612 * the ops->create routine.
2614 void sock_unregister(int family
)
2616 BUG_ON(family
< 0 || family
>= NPROTO
);
2618 spin_lock(&net_family_lock
);
2619 RCU_INIT_POINTER(net_families
[family
], NULL
);
2620 spin_unlock(&net_family_lock
);
2624 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2626 EXPORT_SYMBOL(sock_unregister
);
2628 static int __init
sock_init(void)
2632 * Initialize the network sysctl infrastructure.
2634 err
= net_sysctl_init();
2639 * Initialize skbuff SLAB cache
2644 * Initialize the protocols module.
2649 err
= register_filesystem(&sock_fs_type
);
2652 sock_mnt
= kern_mount(&sock_fs_type
);
2653 if (IS_ERR(sock_mnt
)) {
2654 err
= PTR_ERR(sock_mnt
);
2658 /* The real protocol initialization is performed in later initcalls.
2661 #ifdef CONFIG_NETFILTER
2662 err
= netfilter_init();
2667 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2668 skb_timestamping_init();
2675 unregister_filesystem(&sock_fs_type
);
2680 core_initcall(sock_init
); /* early initcall */
2682 #ifdef CONFIG_PROC_FS
2683 void socket_seq_show(struct seq_file
*seq
)
2688 for_each_possible_cpu(cpu
)
2689 counter
+= per_cpu(sockets_in_use
, cpu
);
2691 /* It can be negative, by the way. 8) */
2695 seq_printf(seq
, "sockets: used %d\n", counter
);
2697 #endif /* CONFIG_PROC_FS */
2699 #ifdef CONFIG_COMPAT
2700 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2701 unsigned int cmd
, void __user
*up
)
2703 mm_segment_t old_fs
= get_fs();
2708 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2711 err
= compat_put_timeval(&ktv
, up
);
2716 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2717 unsigned int cmd
, void __user
*up
)
2719 mm_segment_t old_fs
= get_fs();
2720 struct timespec kts
;
2724 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2727 err
= compat_put_timespec(&kts
, up
);
2732 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2734 struct ifreq __user
*uifr
;
2737 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2738 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2741 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2745 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2751 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2753 struct compat_ifconf ifc32
;
2755 struct ifconf __user
*uifc
;
2756 struct compat_ifreq __user
*ifr32
;
2757 struct ifreq __user
*ifr
;
2761 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2764 memset(&ifc
, 0, sizeof(ifc
));
2765 if (ifc32
.ifcbuf
== 0) {
2769 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2771 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2772 sizeof(struct ifreq
);
2773 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2775 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2776 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2777 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2778 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2784 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2787 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2791 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2795 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2797 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2798 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2799 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2805 if (ifc32
.ifcbuf
== 0) {
2806 /* Translate from 64-bit structure multiple to
2810 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2815 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2821 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2823 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2824 bool convert_in
= false, convert_out
= false;
2825 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2826 struct ethtool_rxnfc __user
*rxnfc
;
2827 struct ifreq __user
*ifr
;
2828 u32 rule_cnt
= 0, actual_rule_cnt
;
2833 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2836 compat_rxnfc
= compat_ptr(data
);
2838 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2841 /* Most ethtool structures are defined without padding.
2842 * Unfortunately struct ethtool_rxnfc is an exception.
2847 case ETHTOOL_GRXCLSRLALL
:
2848 /* Buffer size is variable */
2849 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2851 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2853 buf_size
+= rule_cnt
* sizeof(u32
);
2855 case ETHTOOL_GRXRINGS
:
2856 case ETHTOOL_GRXCLSRLCNT
:
2857 case ETHTOOL_GRXCLSRULE
:
2858 case ETHTOOL_SRXCLSRLINS
:
2861 case ETHTOOL_SRXCLSRLDEL
:
2862 buf_size
+= sizeof(struct ethtool_rxnfc
);
2867 ifr
= compat_alloc_user_space(buf_size
);
2868 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2870 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2873 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2874 &ifr
->ifr_ifru
.ifru_data
))
2878 /* We expect there to be holes between fs.m_ext and
2879 * fs.ring_cookie and at the end of fs, but nowhere else.
2881 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2882 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2883 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2884 sizeof(rxnfc
->fs
.m_ext
));
2886 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2887 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2888 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2889 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2891 if (copy_in_user(rxnfc
, compat_rxnfc
,
2892 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2893 (void __user
*)rxnfc
) ||
2894 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2895 &compat_rxnfc
->fs
.ring_cookie
,
2896 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2897 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2898 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2899 sizeof(rxnfc
->rule_cnt
)))
2903 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2908 if (copy_in_user(compat_rxnfc
, rxnfc
,
2909 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2910 (const void __user
*)rxnfc
) ||
2911 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2912 &rxnfc
->fs
.ring_cookie
,
2913 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2914 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2915 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2916 sizeof(rxnfc
->rule_cnt
)))
2919 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2920 /* As an optimisation, we only copy the actual
2921 * number of rules that the underlying
2922 * function returned. Since Mallory might
2923 * change the rule count in user memory, we
2924 * check that it is less than the rule count
2925 * originally given (as the user buffer size),
2926 * which has been range-checked.
2928 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2930 if (actual_rule_cnt
< rule_cnt
)
2931 rule_cnt
= actual_rule_cnt
;
2932 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2933 &rxnfc
->rule_locs
[0],
2934 rule_cnt
* sizeof(u32
)))
2942 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2945 compat_uptr_t uptr32
;
2946 struct ifreq __user
*uifr
;
2948 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2949 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2952 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2955 uptr
= compat_ptr(uptr32
);
2957 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2960 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2963 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2964 struct compat_ifreq __user
*ifr32
)
2967 struct ifreq __user
*uifr
;
2968 mm_segment_t old_fs
;
2974 case SIOCBONDENSLAVE
:
2975 case SIOCBONDRELEASE
:
2976 case SIOCBONDSETHWADDR
:
2977 case SIOCBONDCHANGEACTIVE
:
2978 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2983 err
= dev_ioctl(net
, cmd
,
2984 (struct ifreq __user __force
*) &kifr
);
2988 case SIOCBONDSLAVEINFOQUERY
:
2989 case SIOCBONDINFOQUERY
:
2990 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2991 if (copy_in_user(&uifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2994 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2997 datap
= compat_ptr(data
);
2998 if (put_user(datap
, &uifr
->ifr_ifru
.ifru_data
))
3001 return dev_ioctl(net
, cmd
, uifr
);
3003 return -ENOIOCTLCMD
;
3007 static int siocdevprivate_ioctl(struct net
*net
, unsigned int cmd
,
3008 struct compat_ifreq __user
*u_ifreq32
)
3010 struct ifreq __user
*u_ifreq64
;
3011 char tmp_buf
[IFNAMSIZ
];
3012 void __user
*data64
;
3015 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
3018 if (__get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
3020 data64
= compat_ptr(data32
);
3022 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
3024 /* Don't check these user accesses, just let that get trapped
3025 * in the ioctl handler instead.
3027 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
3030 if (__put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
3033 return dev_ioctl(net
, cmd
, u_ifreq64
);
3036 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
3037 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
3039 struct ifreq __user
*uifr
;
3042 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3043 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3046 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3057 case SIOCGIFBRDADDR
:
3058 case SIOCGIFDSTADDR
:
3059 case SIOCGIFNETMASK
:
3064 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3072 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3073 struct compat_ifreq __user
*uifr32
)
3076 struct compat_ifmap __user
*uifmap32
;
3077 mm_segment_t old_fs
;
3080 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3081 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3082 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3083 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3084 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3085 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3086 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3087 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3093 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
3096 if (cmd
== SIOCGIFMAP
&& !err
) {
3097 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3098 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3099 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3100 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3101 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3102 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3103 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3110 static int compat_siocshwtstamp(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3113 compat_uptr_t uptr32
;
3114 struct ifreq __user
*uifr
;
3116 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3117 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
3120 if (get_user(uptr32
, &uifr32
->ifr_data
))
3123 uptr
= compat_ptr(uptr32
);
3125 if (put_user(uptr
, &uifr
->ifr_data
))
3128 return dev_ioctl(net
, SIOCSHWTSTAMP
, uifr
);
3133 struct sockaddr rt_dst
; /* target address */
3134 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3135 struct sockaddr rt_genmask
; /* target network mask (IP) */
3136 unsigned short rt_flags
;
3139 unsigned char rt_tos
;
3140 unsigned char rt_class
;
3142 short rt_metric
; /* +1 for binary compatibility! */
3143 /* char * */ u32 rt_dev
; /* forcing the device at add */
3144 u32 rt_mtu
; /* per route MTU/Window */
3145 u32 rt_window
; /* Window clamping */
3146 unsigned short rt_irtt
; /* Initial RTT */
3149 struct in6_rtmsg32
{
3150 struct in6_addr rtmsg_dst
;
3151 struct in6_addr rtmsg_src
;
3152 struct in6_addr rtmsg_gateway
;
3162 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3163 unsigned int cmd
, void __user
*argp
)
3167 struct in6_rtmsg r6
;
3171 mm_segment_t old_fs
= get_fs();
3173 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3174 struct in6_rtmsg32 __user
*ur6
= argp
;
3175 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3176 3 * sizeof(struct in6_addr
));
3177 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3178 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3179 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3180 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3181 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3182 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3183 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3187 struct rtentry32 __user
*ur4
= argp
;
3188 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3189 3 * sizeof(struct sockaddr
));
3190 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3191 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3192 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3193 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3194 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3195 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3197 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3198 r4
.rt_dev
= (char __user __force
*)devname
;
3212 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3219 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3220 * for some operations; this forces use of the newer bridge-utils that
3221 * use compatible ioctls
3223 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3227 if (get_user(tmp
, argp
))
3229 if (tmp
== BRCTL_GET_VERSION
)
3230 return BRCTL_VERSION
+ 1;
3234 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3235 unsigned int cmd
, unsigned long arg
)
3237 void __user
*argp
= compat_ptr(arg
);
3238 struct sock
*sk
= sock
->sk
;
3239 struct net
*net
= sock_net(sk
);
3241 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3242 return siocdevprivate_ioctl(net
, cmd
, argp
);
3247 return old_bridge_ioctl(argp
);
3249 return dev_ifname32(net
, argp
);
3251 return dev_ifconf(net
, argp
);
3253 return ethtool_ioctl(net
, argp
);
3255 return compat_siocwandev(net
, argp
);
3258 return compat_sioc_ifmap(net
, cmd
, argp
);
3259 case SIOCBONDENSLAVE
:
3260 case SIOCBONDRELEASE
:
3261 case SIOCBONDSETHWADDR
:
3262 case SIOCBONDSLAVEINFOQUERY
:
3263 case SIOCBONDINFOQUERY
:
3264 case SIOCBONDCHANGEACTIVE
:
3265 return bond_ioctl(net
, cmd
, argp
);
3268 return routing_ioctl(net
, sock
, cmd
, argp
);
3270 return do_siocgstamp(net
, sock
, cmd
, argp
);
3272 return do_siocgstampns(net
, sock
, cmd
, argp
);
3274 return compat_siocshwtstamp(net
, argp
);
3286 return sock_ioctl(file
, cmd
, arg
);
3303 case SIOCSIFHWBROADCAST
:
3305 case SIOCGIFBRDADDR
:
3306 case SIOCSIFBRDADDR
:
3307 case SIOCGIFDSTADDR
:
3308 case SIOCSIFDSTADDR
:
3309 case SIOCGIFNETMASK
:
3310 case SIOCSIFNETMASK
:
3321 return dev_ifsioc(net
, sock
, cmd
, argp
);
3327 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3330 return -ENOIOCTLCMD
;
3333 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3336 struct socket
*sock
= file
->private_data
;
3337 int ret
= -ENOIOCTLCMD
;
3344 if (sock
->ops
->compat_ioctl
)
3345 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3347 if (ret
== -ENOIOCTLCMD
&&
3348 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3349 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3351 if (ret
== -ENOIOCTLCMD
)
3352 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3358 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3360 return sock
->ops
->bind(sock
, addr
, addrlen
);
3362 EXPORT_SYMBOL(kernel_bind
);
3364 int kernel_listen(struct socket
*sock
, int backlog
)
3366 return sock
->ops
->listen(sock
, backlog
);
3368 EXPORT_SYMBOL(kernel_listen
);
3370 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3372 struct sock
*sk
= sock
->sk
;
3375 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3380 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3382 sock_release(*newsock
);
3387 (*newsock
)->ops
= sock
->ops
;
3388 __module_get((*newsock
)->ops
->owner
);
3393 EXPORT_SYMBOL(kernel_accept
);
3395 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3398 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3400 EXPORT_SYMBOL(kernel_connect
);
3402 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3405 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3407 EXPORT_SYMBOL(kernel_getsockname
);
3409 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3412 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3414 EXPORT_SYMBOL(kernel_getpeername
);
3416 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3417 char *optval
, int *optlen
)
3419 mm_segment_t oldfs
= get_fs();
3420 char __user
*uoptval
;
3421 int __user
*uoptlen
;
3424 uoptval
= (char __user __force
*) optval
;
3425 uoptlen
= (int __user __force
*) optlen
;
3428 if (level
== SOL_SOCKET
)
3429 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3431 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3436 EXPORT_SYMBOL(kernel_getsockopt
);
3438 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3439 char *optval
, unsigned int optlen
)
3441 mm_segment_t oldfs
= get_fs();
3442 char __user
*uoptval
;
3445 uoptval
= (char __user __force
*) optval
;
3448 if (level
== SOL_SOCKET
)
3449 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3451 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3456 EXPORT_SYMBOL(kernel_setsockopt
);
3458 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3459 size_t size
, int flags
)
3461 if (sock
->ops
->sendpage
)
3462 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3464 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3466 EXPORT_SYMBOL(kernel_sendpage
);
3468 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3470 mm_segment_t oldfs
= get_fs();
3474 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3479 EXPORT_SYMBOL(kernel_sock_ioctl
);
3481 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3483 return sock
->ops
->shutdown(sock
, how
);
3485 EXPORT_SYMBOL(kernel_sock_shutdown
);