3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5 (C) 2012 Michel Lespinasse <walken@google.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/rbtree_augmented.h>
25 #include <linux/export.h>
28 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
30 * 1) A node is either red or black
31 * 2) The root is black
32 * 3) All leaves (NULL) are black
33 * 4) Both children of every red node are black
34 * 5) Every simple path from root to leaves contains the same number
37 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38 * consecutive red nodes in a path and every red node is therefore followed by
39 * a black. So if B is the number of black nodes on every simple path (as per
40 * 5), then the longest possible path due to 4 is 2B.
42 * We shall indicate color with case, where black nodes are uppercase and red
43 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
44 * parentheses and have some accompanying text comment.
47 static inline void rb_set_black(struct rb_node
*rb
)
49 rb
->__rb_parent_color
|= RB_BLACK
;
52 static inline struct rb_node
*rb_red_parent(struct rb_node
*red
)
54 return (struct rb_node
*)red
->__rb_parent_color
;
58 * Helper function for rotations:
59 * - old's parent and color get assigned to new
60 * - old gets assigned new as a parent and 'color' as a color.
63 __rb_rotate_set_parents(struct rb_node
*old
, struct rb_node
*new,
64 struct rb_root
*root
, int color
)
66 struct rb_node
*parent
= rb_parent(old
);
67 new->__rb_parent_color
= old
->__rb_parent_color
;
68 rb_set_parent_color(old
, new, color
);
69 __rb_change_child(old
, new, parent
, root
);
72 static __always_inline
void
73 __rb_insert(struct rb_node
*node
, struct rb_root
*root
,
74 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
76 struct rb_node
*parent
= rb_red_parent(node
), *gparent
, *tmp
;
80 * Loop invariant: node is red
82 * If there is a black parent, we are done.
83 * Otherwise, take some corrective action as we don't
84 * want a red root or two consecutive red nodes.
87 rb_set_parent_color(node
, NULL
, RB_BLACK
);
89 } else if (rb_is_black(parent
))
92 gparent
= rb_red_parent(parent
);
94 tmp
= gparent
->rb_right
;
95 if (parent
!= tmp
) { /* parent == gparent->rb_left */
96 if (tmp
&& rb_is_red(tmp
)) {
98 * Case 1 - color flips
106 * However, since g's parent might be red, and
107 * 4) does not allow this, we need to recurse
110 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
111 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
113 parent
= rb_parent(node
);
114 rb_set_parent_color(node
, parent
, RB_RED
);
118 tmp
= parent
->rb_right
;
121 * Case 2 - left rotate at parent
129 * This still leaves us in violation of 4), the
130 * continuation into Case 3 will fix that.
132 parent
->rb_right
= tmp
= node
->rb_left
;
133 node
->rb_left
= parent
;
135 rb_set_parent_color(tmp
, parent
,
137 rb_set_parent_color(parent
, node
, RB_RED
);
138 augment_rotate(parent
, node
);
140 tmp
= node
->rb_right
;
144 * Case 3 - right rotate at gparent
152 gparent
->rb_left
= tmp
; /* == parent->rb_right */
153 parent
->rb_right
= gparent
;
155 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
156 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
157 augment_rotate(gparent
, parent
);
160 tmp
= gparent
->rb_left
;
161 if (tmp
&& rb_is_red(tmp
)) {
162 /* Case 1 - color flips */
163 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
164 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
166 parent
= rb_parent(node
);
167 rb_set_parent_color(node
, parent
, RB_RED
);
171 tmp
= parent
->rb_left
;
173 /* Case 2 - right rotate at parent */
174 parent
->rb_left
= tmp
= node
->rb_right
;
175 node
->rb_right
= parent
;
177 rb_set_parent_color(tmp
, parent
,
179 rb_set_parent_color(parent
, node
, RB_RED
);
180 augment_rotate(parent
, node
);
185 /* Case 3 - left rotate at gparent */
186 gparent
->rb_right
= tmp
; /* == parent->rb_left */
187 parent
->rb_left
= gparent
;
189 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
190 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
191 augment_rotate(gparent
, parent
);
198 __rb_erase_color(struct rb_node
*parent
, struct rb_root
*root
,
199 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
201 struct rb_node
*node
= NULL
, *sibling
, *tmp1
, *tmp2
;
206 * - node is black (or NULL on first iteration)
207 * - node is not the root (parent is not NULL)
208 * - All leaf paths going through parent and node have a
209 * black node count that is 1 lower than other leaf paths.
211 sibling
= parent
->rb_right
;
212 if (node
!= sibling
) { /* node == parent->rb_left */
213 if (rb_is_red(sibling
)) {
215 * Case 1 - left rotate at parent
223 parent
->rb_right
= tmp1
= sibling
->rb_left
;
224 sibling
->rb_left
= parent
;
225 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
226 __rb_rotate_set_parents(parent
, sibling
, root
,
228 augment_rotate(parent
, sibling
);
231 tmp1
= sibling
->rb_right
;
232 if (!tmp1
|| rb_is_black(tmp1
)) {
233 tmp2
= sibling
->rb_left
;
234 if (!tmp2
|| rb_is_black(tmp2
)) {
236 * Case 2 - sibling color flip
237 * (p could be either color here)
245 * This leaves us violating 5) which
246 * can be fixed by flipping p to black
247 * if it was red, or by recursing at p.
248 * p is red when coming from Case 1.
250 rb_set_parent_color(sibling
, parent
,
252 if (rb_is_red(parent
))
253 rb_set_black(parent
);
256 parent
= rb_parent(node
);
263 * Case 3 - right rotate at sibling
264 * (p could be either color here)
274 sibling
->rb_left
= tmp1
= tmp2
->rb_right
;
275 tmp2
->rb_right
= sibling
;
276 parent
->rb_right
= tmp2
;
278 rb_set_parent_color(tmp1
, sibling
,
280 augment_rotate(sibling
, tmp2
);
285 * Case 4 - left rotate at parent + color flips
286 * (p and sl could be either color here.
287 * After rotation, p becomes black, s acquires
288 * p's color, and sl keeps its color)
296 parent
->rb_right
= tmp2
= sibling
->rb_left
;
297 sibling
->rb_left
= parent
;
298 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
300 rb_set_parent(tmp2
, parent
);
301 __rb_rotate_set_parents(parent
, sibling
, root
,
303 augment_rotate(parent
, sibling
);
306 sibling
= parent
->rb_left
;
307 if (rb_is_red(sibling
)) {
308 /* Case 1 - right rotate at parent */
309 parent
->rb_left
= tmp1
= sibling
->rb_right
;
310 sibling
->rb_right
= parent
;
311 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
312 __rb_rotate_set_parents(parent
, sibling
, root
,
314 augment_rotate(parent
, sibling
);
317 tmp1
= sibling
->rb_left
;
318 if (!tmp1
|| rb_is_black(tmp1
)) {
319 tmp2
= sibling
->rb_right
;
320 if (!tmp2
|| rb_is_black(tmp2
)) {
321 /* Case 2 - sibling color flip */
322 rb_set_parent_color(sibling
, parent
,
324 if (rb_is_red(parent
))
325 rb_set_black(parent
);
328 parent
= rb_parent(node
);
334 /* Case 3 - right rotate at sibling */
335 sibling
->rb_right
= tmp1
= tmp2
->rb_left
;
336 tmp2
->rb_left
= sibling
;
337 parent
->rb_left
= tmp2
;
339 rb_set_parent_color(tmp1
, sibling
,
341 augment_rotate(sibling
, tmp2
);
345 /* Case 4 - left rotate at parent + color flips */
346 parent
->rb_left
= tmp2
= sibling
->rb_right
;
347 sibling
->rb_right
= parent
;
348 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
350 rb_set_parent(tmp2
, parent
);
351 __rb_rotate_set_parents(parent
, sibling
, root
,
353 augment_rotate(parent
, sibling
);
358 EXPORT_SYMBOL(__rb_erase_color
);
361 * Non-augmented rbtree manipulation functions.
363 * We use dummy augmented callbacks here, and have the compiler optimize them
364 * out of the rb_insert_color() and rb_erase() function definitions.
367 static inline void dummy_propagate(struct rb_node
*node
, struct rb_node
*stop
) {}
368 static inline void dummy_copy(struct rb_node
*old
, struct rb_node
*new) {}
369 static inline void dummy_rotate(struct rb_node
*old
, struct rb_node
*new) {}
371 static const struct rb_augment_callbacks dummy_callbacks
= {
372 dummy_propagate
, dummy_copy
, dummy_rotate
375 void rb_insert_color(struct rb_node
*node
, struct rb_root
*root
)
377 __rb_insert(node
, root
, dummy_rotate
);
379 EXPORT_SYMBOL(rb_insert_color
);
381 void rb_erase(struct rb_node
*node
, struct rb_root
*root
)
383 rb_erase_augmented(node
, root
, &dummy_callbacks
);
385 EXPORT_SYMBOL(rb_erase
);
388 * Augmented rbtree manipulation functions.
390 * This instantiates the same __always_inline functions as in the non-augmented
391 * case, but this time with user-defined callbacks.
394 void __rb_insert_augmented(struct rb_node
*node
, struct rb_root
*root
,
395 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
397 __rb_insert(node
, root
, augment_rotate
);
399 EXPORT_SYMBOL(__rb_insert_augmented
);
402 * This function returns the first node (in sort order) of the tree.
404 struct rb_node
*rb_first(const struct rb_root
*root
)
415 EXPORT_SYMBOL(rb_first
);
417 struct rb_node
*rb_last(const struct rb_root
*root
)
428 EXPORT_SYMBOL(rb_last
);
430 struct rb_node
*rb_next(const struct rb_node
*node
)
432 struct rb_node
*parent
;
434 if (RB_EMPTY_NODE(node
))
438 * If we have a right-hand child, go down and then left as far
441 if (node
->rb_right
) {
442 node
= node
->rb_right
;
443 while (node
->rb_left
)
445 return (struct rb_node
*)node
;
449 * No right-hand children. Everything down and left is smaller than us,
450 * so any 'next' node must be in the general direction of our parent.
451 * Go up the tree; any time the ancestor is a right-hand child of its
452 * parent, keep going up. First time it's a left-hand child of its
453 * parent, said parent is our 'next' node.
455 while ((parent
= rb_parent(node
)) && node
== parent
->rb_right
)
460 EXPORT_SYMBOL(rb_next
);
462 struct rb_node
*rb_prev(const struct rb_node
*node
)
464 struct rb_node
*parent
;
466 if (RB_EMPTY_NODE(node
))
470 * If we have a left-hand child, go down and then right as far
474 node
= node
->rb_left
;
475 while (node
->rb_right
)
477 return (struct rb_node
*)node
;
481 * No left-hand children. Go up till we find an ancestor which
482 * is a right-hand child of its parent.
484 while ((parent
= rb_parent(node
)) && node
== parent
->rb_left
)
489 EXPORT_SYMBOL(rb_prev
);
491 void rb_replace_node(struct rb_node
*victim
, struct rb_node
*new,
492 struct rb_root
*root
)
494 struct rb_node
*parent
= rb_parent(victim
);
496 /* Set the surrounding nodes to point to the replacement */
497 __rb_change_child(victim
, new, parent
, root
);
499 rb_set_parent(victim
->rb_left
, new);
500 if (victim
->rb_right
)
501 rb_set_parent(victim
->rb_right
, new);
503 /* Copy the pointers/colour from the victim to the replacement */
506 EXPORT_SYMBOL(rb_replace_node
);